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BATCHED STOCHASTIC GRADIENT DESCENT WITH WEIGHTED SAMPLING

DEANNA NEEDELL AND RACHEL WARD

ABSTRACT. We analyze a batched variant of Stochastic Gradient Descent (SGD) with weighted sampling dis-
tribution for smooth and non-smooth objective functions. We show that by distributing the batches com-
putationally, a significant speedup in the convergence rate is provably possible compared to either batched
sampling or weighted sampling alone. We propose several computationally efficient schemes to approxi-
mate the optimal weights, and compute proposed sampling distributions explicitly for the least squares and
hinge loss problems. We show both analytically and experimentally that substantial gains can be obtained.

1. MATHEMATICAL FORMULATION

We consider minimizing an objective function of the form
1 n
F(x):;Zfi(x)z[Efi(x). (1.1)
i=1

One important such objective function is the least squares objective for linear systems. Given an n x m
matrix A with rows a;,..., a, and a vector b € R”, one searches for the least squares solution x; s given by

e 1 1&n
XIS © argmin — || Ax — bll% = argmin — Z —(b; — (ai,x))2 =argminE f; (x), (1.2)
xeRm xeRm N ;5 xeRm
where the functionals are defined by f;(x) = 5 (b; —(a;, x))2.
Another important example is the setting of support vector machines where one wishes to minimize
the hinge loss objective given by

e 1 A
xpr = argmin = Y [1 - yi(w, x)]+ + — | wl. (1.3)
weRm N ;25 2

Here, the data is given by the matrix X with rows x,,...,x, and the labels y; € {-1,1}. The function
[z]+ £ max(0,z) denotes the positive part. We view the problem in the form with fj(w) =
[1-yi{w,x;)]+ and regularizer %II wll%.

The stochastic gradient descent (SGD) method solves problems of the form by iteratively moving

in the gradient direction of a randomly selected functional. SGD can be described succinctly by the
update rule:
Xier1 — Xk =YV fip (x0),

where index iy is selected randomly in the kth iteration, and an initial estimation x; is chosen arbitrarily.
Typical implementations of SGD select the functionals uniformly at random, although if the problem at
hand allows a one-pass preprocessing of the functionals, certain weighted sampling distributions pre-
ferring functionals with larger variation can provide better convergence (see e.g. [NSW16, [ZZ15] and
references therein). In particular, Needell et al. show that selecting a functional with probability pro-
portional to the Lipschitz constant of its gradient yields a convergence rate depending on the average of
all such Lipschitz constants, rather than the supremum [NSW16]. An analogous result in the same work
shows that for non-smooth functionals, the probabilities should be chosen proportional to the Lipschitz
constant of the functional itself.
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Another variant of SGD utilizes so-called mini-batches; in this variant, a batch of functionals is se-
lected in each iteration rather than a single one [CSSS11}/AD11, [DGBSX12| TBRS13]. The computations
over the batches can then be run in parallel and speedups in the convergence are often quite significant.

Contribution. Our main contribution is to propose a weighted sampling scheme to be used in mini-
batch SGD. We show that when the batches can be implemented in parallel, significant speedup in con-
vergence is possible. In particular, we analyze the convergence using computed distributions for the
least squares and hinge loss objectives, the latter being especially challenging since it is non-smooth.
We demonstrate theoretically and empirically that weighting the distribution and utilizing batches of
functionals per iteration together form a complementary approach to accelerating convergence.

Organization. We next briefly discuss some related work on SGD, weighted distributions, and batch-
ing methods. We then combine these ideas into one cohesive framework and discuss the benefits in
various settings. Section [2]focuses on the impact of weighting the distribution. In Section [3|we analyze
SGD with weighting and batches for smooth objective functions, considering the least squares objective
as a motivating example. We analyze the non-smooth case along with the hinge loss objective function
in Section 4, We display experimental results for the least squares problem in Section |5| that serve to
highlight the relative tradeoffs of using both batches and weighting, along with different computational
approaches. We conclude in Section|]

Related work. Stochastic gradient descent, stemming from the work [RM51], has recently received re-
newed attention for its effectiveness in treating large-scale problems arising in machine learning [BB11),
Bot10, [NJLS09, [SSS08]. Importance sampling in stochastic gradient descent, as in the case of mini-
batching (which we also refer to simply as batching here), also leads to variance reduction in stochastic
gradient methods and, in terms of theory, leads to improvement of the leading constant in the complex-
ity estimate, typically via replacing the maximum of certain data-dependent quantities by their average.
Such theoretical guarantees were shown for the case of solving least squares problems where stochastic
gradient descent coincides with the randomized Kaczmarz method in [SV09]. This method was extended
to handle noisy linear systems in [Neel0O]. Later, this strategy was extended to the more general setting
of smooth and strongly convex objectives in [NSW16], building on an analysis of stochastic gradient de-
scent in [BM11]. Later, [ZZ15] considered a similar importance sampling strategy for convex but not
necessarily smooth objective functions. Importance sampling has also been considered in the related
setting of stochastic coordinate descent/ascent methods [Nes12, RT15| [QRZ15, |[CQR15]. Other papers
exploring advantages of importance sampling in various adaptations of stochastic gradient descent in-
clude but are not limited to [LS13}[SRB13} X714} DB15].

Mini-batching in stochastic gradient methods refers to pooling together several random examples
in the estimate of the gradient, as opposed to just a single random example at a time, effectively re-
ducing the variance of each iteration [SSSSC11]. On the other hand, each iteration also increases in
complexity as the size of the batch grows. However, if parallel processing is available, the computation
can be done concurrently at each step, so that the “per-iteration cost" with batching is not higher than
without batching. Ideally, one would like the consequence of using batch size b to result in a conver-
gence rate speed-up by factor of b, but this is not always the case [BCNW12]. Still, [TBRS13] showed
that by incorporating parallelization or multiple cores, this strategy can only improve on the conver-
gence rate over standard stochastic gradient, and can improve the convergence rate by a factor of the
batch size in certain situations, such as when the matrix has nearly orthonormal rows. Other recent pa-
pers exploring the advantages of mini-batching in different settings of stochastic optimization include
ICSSS11}, IDGBSX12, INW13, [KLRT16, LZCS14].

The recent paper [CR16] also considered the combination of importance sampling and mini-batching
for a stochastic dual coordinate ascent algorithm in the general setting of empirical risk minimization,
wherein the function to minimize is smooth and convex. There the authors provide a theoretical optimal
sampling strategy that is not practical to implement but can be approximated via alternating minimiza-
tion. They also provide a computationally efficient formula that yields better sample complexity than
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uniform mini-batching, but without quantitative bounds on the gain. In particular, they do not pro-
vide general assumptions under which one achieves provable speed-up in convergence depending on
an average Lipschitz constant rather than a maximum.

For an overview of applications of stochastic gradient descent and its weighted/batched variants in
large-scale matrix inversion problems, we refer the reader to [GR16].

2. SGD WITH WEIGHTING

Recall the objective function (I.1). We assume in this section that the function F and the functionals
fi satisfy the following convexity and smoothness conditions:

Convexity and smoothness conditions

(1) Each f; is continuously differentiable and the gradient function V f; has Lipschitz constant
bounded by L;: |V fi(x) =V fi(p)ll2 < Lillx — yll, for all vectors x and y.

(2) F has strong convexity parameter y; thatis, (x —y,VF(x) - VF(y)) = ullx — yllg for all vectors
xandy.

(3) At the unique minimizer x, = argmin F(x), the average gradient norm squared ||V f; (x.) II§ is
not too large, in the sense that

1 & 2 2
=Y IVfix)l; <o
niz1

An unbiased gradient estimate for F(x) can be obtained by drawing i uniformly from [n] £4,2,...,m
and using V f; (x) as the estimate for VF(x). The standard SGD update with fixed step size vy is given by

Xis1 < Xk — YV fi, (x) 2.1)

where each iy is drawn uniformly from [n]. The idea behind weighted sampling is that, by drawing i from
a weighted distribution 2”) = {p(1), p(2),..., p(n)} over [n], the weighted sample ﬁv fi, (x5) is still an
unbiased estimate of the gradient VF(x). This motivates the weighted SGD update

Y
X — X — Vi (x ’ 2.2
A R i (%) (2.2)
In [NSW16], a family of distributions 2”) whereby functions f; with larger Lipschitz constants are more
likely to be sampled was shown to lead to an improved convergence rate in SGD over uniform sampling.
In terms of the distance || x;—x. ||§ of the kth iterate to the unique minimum, starting from initial distance
g0 = llxg — x. II§, Corollary 3.1 in [NSW16] is as follows.

Proposition 2.1. Assume the convexity and smoothness conditions are in force. For any desired € > 0, and
using a stepsize of
_ pe
r= lyn 1..52)
4(ep, X1 Li+0?)

we have that after
1yn
lyn . 2
k =4log(2¢p/€) (%_ll + % (2.3)
iterations of weighted SGD (2.2) with weights

. 1 1 L;
pi)=—

+—- , (2.4)
2n 2n 1y,

the following holds in expectation with respect to the weighted distribution 2.4): EP|x;. — X, ||§ <e.



4 DEANNA NEEDELL AND RACHEL WARD

Remark. This should be compared to the result for uniform sampling SGD [NSW16]: using step-size y =

ue . _ 2 . .
Teatup, IyTo? One obtains the comparable error guarantee E|x; —X. |5 < € after a number of iterations

sup;L; o?

k=2mgeaﬂa(—ii—b+7r). 2.5)
H HoE

Since the average Lipschitz constant %Z ; L; is always at most sup; L;, and can be up to n times smaller

than sup; L;, SGD with weighted sampling requires twice the number of iterations of uniform SGD in the
worst case, but can potentially converge much faster, specifically, in the regime where

3. MINI-BATCH SGD WITH WEIGHTING: THE SMOOTH CASE

Here we present a weighting and mini-batch scheme for SGD based on Proposition 2.1} For practical
purposes, we assume that the functions f;(x) such that F(x) = %Z?Zl fi(x) are initially partitioned into
fixed batches of size b and denote the partition by {r;,72,...74} where |7;| = bforall i < d and d = [n/b]
(for simplicity we will henceforth assume that d = n/b is an integer). We will randomly select from this
pre-determined partition of batches; however, our analysis extends easily to the case where a batch of
size b is randomly selected each time from the entire set of functionals. With this notation, we may
re-formulate the objective given in as follows:

1

F(x):d

d

2 & (%) =Egr, (%),
i=1
where now we write g7, (x) = % Y jer,; fj(x). We can apply Propositionto the functionals g;,, and select
batch 7; with probability proportional the Lipschitz constant of Vg, (or of g7, in the non-smooth case,
see Section[4). Note that

¢ The strong convexity parameter u for the function F remains invariant to the batching rule.

o The residual error 2 such that % Z?zl IV gz, (x.)ll5 < 02 can only decrease with increasing batch

size, since
, 1.& 1 2_1¢ 2 252
o7 =~ > ||EV Y i |ls < o 2 IVfixl; <o
k=1 ket; i=1

¢ The average Lipschitz constant L;= 52?:1 L, of the gradients of the batched functions g;, can
only decrease with increasing batch size, since by the triangle inequality, L;, < %): ker; Lk, and
thus

1§: 1§: -
=YL, ==Y Ly=L
diz " k=1

Incorporating these observations, applying Proposition[2.1]in the batched weighted setting implies that
incorporating weighted sampling and mini-batching in SGD results in a convergence rate that equals or
improves on the rate obtained using weights alone:

Theorem 3.1. Assume that the convexity and smoothness conditions on F(x) = %Z;‘:l fi(x) are in force.
Consider the d = n/ b batches g;,(x) = %Z ker,; [x(x), and the batched weighted SGD iteration

Y
Xyl — X — —————Vgr, (xg)
R P 8, (X
where batch t; is selected at iteration k with probability
1 1 Ly
pai)=—+— = (3.1)

2d " 2d T,



For any desired €, and using a stepsize of
e
4(5;@, + 0%) ,

we have that after a number of iterations

I 2
k = 4log(2eq/€) [ = 021 )
B pE

the following holds in expectation with respect to the weighted distribution B1): EP ||x; —x. |5 < €.

L, o? L o?
—+ <|—+—|,
poopte)  \po opte

this implies that batching and weighting can only improve the convergence rate of SGD compared to
weighting alone.

Remark. Since

To completely justify the strategy of batching + weighting, we must also take into account the precom-
putation cost in computing the weighted distribution (3.1), which increases with the batch size b. In the
next section, we refine Theorem [3.1| precisely this way in the case of the least squares objective, where
we can quantify more precisely the gain achieved by weighting and batching. We give several explicit
bounds and sampling strategies on the Lipschitz constants in this case that can be used for computa-
tionally efficient sampling.

3.1. Least Squares Objective. Consider the least squares objective
1 , 1&
F(x)=-||Ax—bl5=—)_ fi(x),
2 iz

where f;(x) = g(bi —(a;,x))?. We assume the matrix A has full row-rank, so that there is a unique mini-
mizer x, to the least squares problem:

Xrs =X, =argmin || Ax — bllg.
X

Note that the convexity and smoothness conditions are satisfied for such functions. Indeed, observe that
Vfi(x) = n(a;,x)— b;)a;, and
(1) The individual Lipschitz constants are bounded by L; = n||a; |I§, and the average Lipschitz con-
stant by %Zi L= ||A||fD (where || - | ¢ denotes the Frobenius norm),
(2) The strong convexity parameter is u = 1”2 (where |A7!|| = o2
smallest singular value of A),
(3) The residual is o2 = ny;lla; |I§|(a,~,x*) - a;

1 (A) is the reciprocal of the

A~ min
2.
In the batched setting, we compute
gri(x) = Z fi(x) = Z (bie — (ar, x))* = —||AT,.x— b, 15, (3.2)
kETl ker,

where we have written A;, to denote the submatrix of A consisting of the rows indexed by 7;.
Denote by 03 the residual in the batched setting. Since Vg;, = d} rer, (a, x) — by) ay,

1
of=- Z IVgr, ()l = dZ I ) K, x.) = boagl;

= i=1 kET,

Q..
QU

Z 1A (Ar, % — b )5 < dZ 1Az, 1211 A, % — by, |13

i=1 i=1
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Denote by L;, the Lipschitz constant of Vg;,. Then we also have

”Vg‘ri (X)-Vg, (y) ll2

Ly, =
xy lx—yl2
_n sup I Y ker, [(ak, x) — br) ar — Cak, y) — b ak] 2
b Xy ”x_.)’”Z
n I X ker, (aAk, 2) agll2
=—su
b - lzll2
n IA7, Az, zl2
=—sup———
b - Izl
n *
= ZIIATiAriII
=d| Az, l3,

where we have written || B|| to denote the spectral norm of the matrix B, and B* the adjoint of the matrix.

We see thus that if there exists a partition such that | A, | are as small as possible for all T; in the
partition, then both o2 and L, = %Z i Ly, are decreased by a factor of the batch size b compared to the
unbatched setting. These observations are summed up in the following corollary of Theorem 3.1]for the
least squares case.

Corollary 3.2. Consider F(x) = 3| Ax - bl5 = %Z?zl | Az, x — by, ||5. Consider the batched weighted SGD
iteration

X411 — X — ! Y (aj,xc)—bj)a;. (3.3)

p(Ti)jer,-
with weights
b 1 [Agl?

p(ty) = %+z-—2?:1 IIAT,-IIZ' (3.4)
For any desired €, and using a stepsize of
y= i€ , (3.5)
eX L AL 12+ dIATREL | (| A, 1211 Ar, % — b, |12
we have that after
k= dlog2eo/o) | 147112 i Ao P+ dIAT P EL | Ar, 121 A, X = by, 113 56

i=1 €

iterations of (3.3), EP X — X+ |2 < € where EP[-] means the expectation with respect to the index at each
iteration drawn according to the weighted distribution (3.4).

This corollary suggests a heuristic for batching and weighting in SGD for least squares problems, in
order to optimize the convergence rate:
(1) Find a partition 71, 73,..., T4 that roughly minimizes Z?: 1 1Az, ||§ among all such partitions
(2) Apply the weighted SGD algorithm (2.2) using weights
1 1 A3
pai)=—t+o .
2d 2 ¥4 |Agl2
We can compare the results of Corollary[3.2]to the results for weighted SGD when a single functional
is selected in each iteration, where the number of iterations to achieve expected error € is
n|ATHAEE lail? K, x.) = bill5 )

n
k =4log(2eo/e) [IATM 1P Y. lla;|* + ; 3.7)
i=1 €
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That is, the ratio between the standard weighted number of iterations k4,4 in (3.7) and the batched
weighted number of iterations k¢, in (3.6) is

Kstana _ €Xi-y lail®+nl AT P llail®<a;, x.) - bil;

kpatch  €X L 1A 12+ dI A2 LD, | A, 121 Ar, % — by, 112

(3.8)
In case the least squares residual error is uniformly distributed over the 7 indices, that s, || {a;, x.)—b; II§ ~
1||Ax. — b|1? for each i € [n], this factor reduces to

2
kstund _ ”A”F
kbaren ¥ || Ar, |12

(3.9)

It follows thus that the combination of batching and weighting in this setting always reduces the iteration
complexity compared to weighting alone, and can result in up to a factor of b speed-up:

lswsb;

kbatch
In the remainder of this section, we consider several families of matrices where the maximal speedup is
achieved, k”“"f b. We also take into account the computational cost of computing the norms || A, ||2
which determine the weighted sampling strategy.

Orthonormal systems: It is clear that the advantage of mini-batching is strongest when the rows of
A in each batch are orthonormal. In the extreme case where A has orthonormal rows, we have
L Z 1A* A; |l = — = 17
=T b b
Thus for orthonormal systems, we gain a factor of b by using mini-batches of size b. However,
there is little advantage to weighting in this case as all Lipschitz constants are the same.

Incoherent systems: More generally, the advantage of mini-batching is strong when the rows a;
within any particular batch are nearly orthogonal. Suppose that each of the batches is well-
conditioned in the sense that

n
Z”ulllgzcln) ||A;'<IATII| = ||AT,A:I|| SC, l:]-)-rd; (310)
i=1
For example, if A* has the restricted isometry property [CT05| of level § at sparsity level b, (3.10)
holds with C < 1+6. Alternatively, if A has unit-norm rows and is incoherent, i.e. max;x; |[{a;, a;)| <
7o, then (3.10) holds with constant C < 1 + a by Gershgorin circle theorem.
If the incoherence condition (3.10) holds, we gain a factor of b by using weighted mini-batches
of size b:
4 —
— n_ CL
L= Al A | <=C-<——
T i;ll Al = b oD
Incoherent systems, variable row norms: More generally, consider the case where the rows of A
are nearly orthogonal to each other, but not normalized as in (3.10). We can then write A= DV,
where D is an n x n diagonal matrix with entry d;; = | a;ll», and ¥ with normalized rows satisfies

IWE W, =¥, Wi <C,  i=1,...d,

as is the case if, e.g., ¥ has the restricted isometry property or ¥ is incoherent.
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In this case, we have
1A} Az, | = | Ay, AL | = | Dy, ¥, ¥}, Dy,

2
< nklaXII ailz ¥, Y7, |

Ti

<Cmax|lagl3, i=1,....d. (3.11)
kET,‘
Thus,
d
LT—Z IA7, Az, | <CZ r;gaxnaknz (3.12)

i=1 =
In order to minimize the expression on the rlght hand side over all partitions into blocks of size
b, we partition the rows of A according to the order of the decreasing rearrangement of their row
norms. This batching strategy results in a factor of b gain in iteration complexity compared to
weighting without batching:

[\/]m.

L, <C

laqi-1yp+1) ||2
i=1
cC & 9
< -1 ; lla;ll;
Cc'—
<—L. 3.13
b (3.13)

We now turn to the practicality of computing the distribution given by the constants L;,. We propose
several options to efficiently compute these values given the ability to parallelize over b cores.

Max-norm: The discussion above suggests the use of the maximum row norm of a batch as a proxy
for the Lipschitz constant. Indeed, shows that the row norms give an upper bound on these
constants. Then, shows that up to a constant factor, such a proxy still has the potential to
lead to an increase in the convergence rate by a factor of b. Of course, computing the maximum
row norm of each batch costs on the order of mn flops (the same as the non-batched weighted
SGD case).

Power method: In some cases, we may utilize the power method to approximate || A7, A, || effi-
ciently. Suppose that for each batch we can approximate this quantity by Qr,-- Classical results on
the power method allow one to approximate the norm to within an arbitrary additive error, with
a number of iterations that depends on the spectral gap of the matrix. An alternative approach,
that we consider here, can be used to obtain approximations leading to a multiplicative factor
difference in the convergence rate, without dependence on the eigenvalue gaps 1;/A, within
batches. For example, [KL96, Lemma 5] show that with high probability with respect to a ran-
domized initial direction to the power method, after T > £~ 'log(¢~'b) iterations of the power

method, one can guarantee that
A A7 Azl
AP A =20y = ———
IA7, Al = Qq, = l+e

At b? computations per iteration of the power method, the total computational cost (to compute
all quantities in the partition), shared over all b cores, is be 'log(e'log(b)). This is actually
potentially much lower than the cost to compute all row norms L; = || a; II§ as in the standard
non-batched weighted method. In this case, the power method yields

L,
1+¢’

- b&n.
Liz—) —Qr =
T ni:lb T

for a constant €.



4. MINI-BATCH SGD WITH WEIGHTING: THE NON-SMOOTH CASE

We next present analogous results to the previous section for objectives which are strongly convex but
lack the smoothness assumption. Like the least squares objective in the previous section, our motivating
example here will be the support vector machine (SVM) with hinge loss objective.

A classical result (see e.g. [Nes04,/SZ12},[RSS12]) for SGD establishes a convergence bound of SGD with
non-smooth objectives. In this case, rather than taking a step in the gradient direction of a functional, we
move in a direction of a subgradient. Instead of utilizing the Lipschitz constants of the gradient terms,
we utilize the Lipschitz constants of the actual functionals themselves. Concretely, a classical bound is
of the following form.

Proposition 4.1. Let the objective F(x) = Eg;(x) with minimizer x, be a |1-strongly convex (possibly non-
smooth) objective. Run SGD using a subgradient h; of a randomly selected functional g; at each iteration.
Assume thatEh; € OF (x;) and that

ax 18D =8N _ i)l < G,
x,y lx—yll *

Set G2 = [E(G?). Using step sizey = v = 1/(uk), we have

CG2(1+ logk)

E[F(xg) — F(x4)] =
uk

4.1)
where C is an absolute constant.

Such a result can be improved by utilizing averaging of the iterations; for example, if x]' denotes the
average of the last ak iterates, then the convergence rate bound (4.1I) can be improved to:

— 1 — 1
CG? (1 +logm) CG? (1+10gmin(w,l—a’))

E[F(xg) — F(x,)] = = .
uk uk
Setting m, = min(a, 1 — a), we see that to obtain an accuracy of E [F(xy) — F(x4)] < €, we need
G2
k> M

ue

In either case, it is important to notice the dependence on G2 = [E(Gf). By using weighted sampling
with weights p(i) = G;/Y_; G;, we can improve this dependence to one on (G)2, where G = EG; [NSW16),
7715]. Since G2 — (G)? = Var(G;), this improvement reduces the dependence by an amount equal to the
variance of the Lipschitz constants G;. Like in the smooth case, we now consider not only weighting the

distribution, but also by batching the functionals g;. This yields the following result, which we analyze
for the specific instance of SVM with hinge loss below.

Theorem 4.2. Instate the assumptions and notation of Proposition[4.1 Consider the d = n/b batches
gr,(x) = %Z jer; 8j(x), and assume each batch gy, has Lipschitz constant Gr,. Write G; =EG; .- Run the
weighted batched SGD method with averaging as described above, with step sizey!/ p(t;). For any desired
g, it holds that after

i = CG*ma
ue
iterations with weights
o 4.2)
pEi)==—=—, .
2] G‘[j

we have E'P) [F(xy) — F(x4)] < € where E'P[-] means the expectation with respect to the index at each iter-
ation drawn according to the weighted distribution (4.2).
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Proof. Applying weighted SGD with weights p(;), we re-write the objective P(x) = E(g;(x)) as P(x) =

EP (g;,(x)), where
) ) b g (%)
8r; (x) = (E;GU ;;GH ( Gr, )

Then, the Lipschitz constant G; of &:, isbounded above by G; = %Z jGrp» and so

1
o 2 gj(x)) =

Ti jet;

2 2
b b _
EZGTJ‘) ) (ﬁ;GTj = ([EGTi)Z = (Gr)”.

A Gy,
EPGE=Y —Z
l ; 2jGr, J

O

We now formalize these bounds and weights for the SVM with hinge loss objective. Other objec-
tives such as L1 regression could also be adapted in a similar fashion, e.g. utilizing an approach as in
[YCRM16].

4.1. SVM with Hinge Loss. We now consider the SVM with hinge loss problem as a motivating example
for using batched weighted SGD for non-smooth objectives. Recall the SVM with hinge loss objective is

1 & A
P(x):= ;Z lyi(x, ai>1++§||x||§ =Eg;(x), (4.3)
where y; € {1}, [u]+ = max(0, u), and

A 2
gi(x) =lyil{x,a;)]+ + Ellxllz.

This is a key example where the components are (1-strongly) convex but no longer smooth. Still, each g;
has a well-defined subgradient:

Vgi(x) = xi(x)y;a; + Ax,
where y;(x) = 1if y;(x,a;) <1 and 0 otherwise. It follows that g; is Lipschitz and its Lipschitz constant is
bounded by
G; = max llgi(x)— g
%y lx—yl
As shown in [ZZ15], [NSW16], in the setting of non-smooth objectives of the form (4.3), where the com-
ponents are not necessarily smooth, but each g; is G;-Lipschitz, the performance of SGD depends on the

<max|[Vg;i (x|l < llajll2 + A.

quantity G2= [E[Gz] In particular, the iteration complexity depends linearly on G2.
For the hinge loss example, we have calculated that
—_1¢ 2 2, 2 ¢ 2
= Z (laillz + )" <247 + o Z laill3-

Incorporating (non-batch) weighting to this setting, as discussed in [NSW16], reduces the iteration com-
plexity to depend linearly on G)? = (E[G;1)?, which is at most G2 and can be as small as 1 G2 For the
hinge loss example, we have

— 12 2

G*=(r+=) ||a,~||z) .

nic

We note here that one can incorporate the dependence on the regularizer term %II xllg in a more optimal
way by bounding the functional norm only over the iterates themselves, as in [TBRS13,[RSS12]; however,

we choose a crude upper bound on the Lipschitz constant here in order to maintain a dependence on
the average constant rather than the maximum, and only sacrifice a constant factor.
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4.1.1. Batched sampling. The paper [TBRS13] considered batched SGD for the hinge loss objective. For

batches 7; of size b, let g;, = %lellg + %Zkeri [yk{x, a;)]+ and observe

n A
P(x):= [y (x, a;)] 4 + Enxn% =Egr,(%).
=1

1
ni
We now bound the Lipschitz constant G; for a batch. Let y = yx(x) and A; have rows yiay for k € 7. We

have

1 1
=m;1x\l <l_7 Z Xk(x)J/kak,E Z Xk(x)J’k“k>
2

kETi kETi

_ T *
bmJ?X\/X A AT )
1
_ T *

Sbmj?x\/)( A AT Y
1
b

1
m;lXHl; > Xk year

kETi

= —\/blA A7l
1
Vb

and therefore G; < \/LE | Az ||+ A. Thus, for batched SGD without weights, the iteration complexity depends

linearly on

| Azl (4.4)

2 b 2
GTZ_ZGH
nizy
2, 2 d 2
<22%+ =) 1Al
niz

—2/12+3i||A*A [
- T;“ Tl
niz

Even without weighting, we already see potential for drastic improvements, as noted in [TBRS13]. For
example, in the orthonormal case, where || A7, A, || = 1 for each 7;, we see that with appropriately chosen

A, G is on the order of %, which is a factor of b times smaller than G2 ~ 1. Similar factors are gained for
the incoherent case as well, as in the smooth setting discussed above. Of course, we expect even more
gains by utilizing both batching and weighting.

4.1.2. Weighted batched sampling. Incorporating weighted batched sampling, where we sample batch
7; with probability proportional to Gz, the iteration complexity is reduced to a linear dependence on

(G_T)z, asin Theorem For hinge loss, we calculate

., (b& ) (p& 1 ’ b
(G =|=) G| =|=) —=IALII+A| =|A+— ) lAl
o R e

We thus have the following guarantee for the hinge loss objective.

2

Corollary 4.3. Consider P(x) = %Z’?Zl [yi{x,a;)]++ %lellg. Consider the batched weighted SGD iteration

1

1

1 1
ukp(t;)

(Axk+ b > Xj(xk)yjaj), (4.5)

JETi

Xi+1 < Xk
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where y j(x) =1 ifyj(x,a;) <1 andO0 otherwise. Let A; have rows y;a; for j € T. For any desired €, we have
that after

2
Cmin(a,1- ) (A+ X2 ¥, 14, 1)

k= (4.6)
Ae
iterations of (4.5) with weights
0y = Al +AVD 7
P Ay 1A |

it holds that E"P) [P (x;) — P(x,)] <E€.

5. EXPERIMENTS

In this section we present some simple experimental examples that illustrate the potential of utilizing
weighted mini-batching. We consider several test cases as illustration.

Gaussian linear systems: The first case solves a linear system Ax = b, where A is a matrix with i.i.d.
standard normal entries (as is x, and b is their product). In this case, we expect the Lipschitz
constants of each block to be comparable, so the effect of weighting should be modest. However,
the effect of mini-batching in parallel of course still appears. Indeed, Figure (1| (left) displays the
convergence rates in terms of iterations for various batch sizes, where each batch is selected with
probability as in (3.4). When batch updates can be run in parallel, we expect the convergence
behavior to mimic this plot (which displays iterations). We see that in this case, larger batches
yield faster convergence. In these simulations, the step size y was set as in (approximations
for Lipschitz constants also apply to the step size computation) for the weighted cases and set
to the optimal step size as in [NSW16, Corollary 3.2] for the uniform cases. Behavior using uni-
form selection is very similar (not shown), as expected in this case since the Lipschitz constants
are roughly constant. Figure (1] (right) highlights the improvements in our proposed weighted
batched SGD method versus the classical, single functional and unweighted, SGD method. The
power method refers to the method discussed at the end of Section |3} and max-norm method
refers to the approximation using the maximum row norm in a batch, as in (3.11). The notation
“(opt)” signifies that the optimal step size was used, rather than the approximation; otherwise in
all cases both the sampling probabilities and step sizes were approximated using the
approximation scheme given. Not suprisingly, using large batch sizes yields significant speedup.

Gaussian linear systems with variation: We next test systems that have more variation in the dis-
tribution of Lipschitz constants. We construct a matrix A of the same size as above, but whose
entries in the kth row are i.i.d. normally distributed with mean zero and variance k2. We now ex-
pect a large effect both from batching and from weighting. In our first experiment, we select the
fixed batches randomly at the onset, and compute the probabilities according to the Lipschitz
constants of those randomly selected batches, as in (3.4). The results are displayed in the left plot
of Figure[2] In the second experiment, we batch sequentially, so that rows with similar Lipschitz
constants (row norms) appear in the same batch, and again utilized the weighted sampling. The
results are displayed in the center plot of Figure[2| Finally, the right plot of Figure [2|shows con-
vergence when batching sequentially and then employing uniform (unweighted) sampling. As
our theoretical results predict, batching sequentially yields better convergence, as does utilizing
weighted sampling.

Since this type of system nicely highlights the effects of both weighting and batching, we per-
formed additional experiments using this type of system. Figure [3|highlights the improvements
gained by using weighting. In the left plot, we see that for all batch sizes improvements are ob-
tained by using weighting, even more so than in the standard normal case, as expected (note that
we cut the curves off when the weighted approach reaches machine precision). In the right plot,
we see that the number of iterations to reach a desired threshold is also less using the various
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weighting schemes; we compare the sampling method using exact computations of the Lipshitz
constants (spectral norms), using the maximum row norm as an approximation as in (3.11), and
using the power method (using number of iterations equal to e~ log(e~!b) with € = 0.01). Step
size y used on each batch was again set as in (approximations for Lipschitz constants also
apply to the step size computation) for the weighted cases and as in [NSW16, Corollary 3.2] for
the uniform cases. For cases when the exact step size computation was used rather than the
corresponding approximation, we write “(opt)”. For example, the marker “Max norm (opt)” rep-
resents the case when we use the maximum row norm in the batch to approximate the Lipschitz
constant, but still use the exact spectral norm when computing the optimal step size. This of
course is not practical, but we include these for demonstration. Figure [4] highlights the effect of
using batching. The left plot confirms that larger batch sizes yield significant improvement in
terms of L2-error and convergence (note that again all curves eventually converge to a straight
line due to the error reaching machine precision). The right plot highlights the improvements
in our proposed weighted batched SGD methods versus the classical, single functional and un-
weighted, SGD method.

We next further investigate the effect of using the power method to approximate the Lipschitz
constants used for the probability of selecting a given batch. We again create the batches se-
quentially and fix them throughout the remainder of the method. At the onset of the method,
after creating the batches, we run the power method using el log(e_1 b) iterations (with € = 0.01)
per batch, where we assume the work can evenly be divided among the b cores. We then deter-
mine the number of computational flops required to reach a specified solution accuracy using
various batch sizes b. The results are displayed in Figure|5| The left plot shows the convergence
of the method; comparing with the left plot of Figure 2] we see that the convergence is slightly
slower than when using the precise Lipschitz constants, as expected. The right plot of Figure 5]
shows the number of computational flops required to achieve a specified accuracy, as a function
of the batch size. We see that there appears to be an “optimal” batch size, around b = 40 for
this case, at which the savings in computational time computing the Lipschitz constants and the
additional iterations required due to the inaccuracy are balanced.

Correlated linear systems: We next tested the method on systems with correlated rows, using a
matrix with i.i.d. entries uniformly distributed on [0, 1]. When the rows are correlated in this way,
the matrix is poorly conditioned and thus convergence speed suffers. Here, we are particularly
interested in the behavior when the rows also have high variance; in this case, row k has uni-
formly distributed entries on [0,v/3k] so that each entry has variance k? like the Gaussian case
above. Figure [6] displays the convergence results when creating the batches randomly and us-
ing weighting (left), creating the batches sequentially and using weighting (center), and creating
the batches sequentially and using unweighted sampling (right). Like Figure[2} we again see that
batching the rows with larger row norms together and then using weighted sampling produces a
speedup in convergence.

Orthonormal systems: As mentioned above, we expect the most notable improvement in the case
when A is an orthonormal matrix. For this case, we run the method on a 200 x 200 orthonormal
discrete Fourier transform (DFT) matrix. As seen in the left plot of Figure [/} we do indeed see
significant improvements in convergence with batches in our weighted scheme.

Sparse systems: Lastly, we show convergence for the batched weighted scheme on sparse Gauss-
ian systems. The matrix is generated to have 20% non-zero entries, and each non-zero entry is
i.i.d. standard normal. Figure[7](center) shows the convergence results. The convergence behav-
ior is similar to the non-sparse case, as expected, since our method does not utilize any sparse
structure.

Tomography data: The final system we consider is a real system from tomography. The system
was generated using the Matlab Regularization Toolbox by PC. Hansen (http://www.imm.dtu.
dk/“pcha/Regutools/) [Han07]. This creates a 2D tomography problem Ax = b for an n x d
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matrix with n = fN? and d = N?, where A corresponds to the absorption along a random line
through an N x N grid. We set N = 20 and the oversampling factor f = 3. Figure[7] (right) shows
the convergence results.

Noisy (inconsistent) systems: Lastly, we consider systems that are noisy, i.e. they have no exact
solution. We seek convergence to the least squares solution x;s. We consider the same Gaussian
matrix with variation as desribed above. We first generate a consistent system Ax = b and then
add a residual vector e to b that has norm one, |le|» = 1. Since the step size in depends
on the magnitude of the residual, it will have to be estimated in practice. In our experiments,
we estimate this term by an upper bound which is 1.1 times larger in magnitude than the true
residual |Axrs — bll,. In addition, we choose an accuracy tolerance of € = 0.1. Not surprisingly,
our experiments in this case show similar behavior to those mentioned above, only the method
convergences to a larger error (which can be lowered by adjusting the choice of €). An example
of such results in the correlated Gaussian case are shown in Figure|[8]

—Batch size 1 12-
---Batch size 2 —Exact weighted
~Batch size 4 1r - ~Max norm
Batch size 5 ~-Power method
Y . 0.8} Max norm (opt)
Batch size 8 ——Power method (opt)

—+—Batch size 10
~._ | Batch size 20
*~|-—-Batch size 25~_]

Ratio required its.
o
(o2}

0.4
Batch size 40
‘ ~ |=Batch size 50 0.2y
10-15 & 4 0 ‘ ) ‘ : :
0 2000 4000 6000 8000 0 10 20 30 40 50
lterations Batch size

Figure 1 (Gaussian linear systems: convergence) Mini-batch SGD on a Gaussian 1000 x 50 system with var-
ious batch sizes; batches created randomly at onset. Graphs show mean L2-error versus iterations (over 40
trials). Step size y used on each batch was as given in for the weighted cases and as in [NSW16, Corollary
3.2] for the uniform comparisons, where in all cases corresponding approximations were used to compute
the spectral norms. Left: Batches are selected using proposed weighted selection strategy (3.4). Right: Ratio
of the number of iterations required to reach an error of 10~ for weighted batched SGD versus classical (sin-
gle functional) uniform (unweighted) SGD. The notation “(opt)” signifies that the optimal step size was used,
rather than the approximation.

—Batch size 1 0 0
---Batch size 2 10°g 10
""" Batch size 4 . .
Batch size 5 =] [«
. |—Batch size 8 g 10° g 10°
.. |~Batch size 10 ] ]
~Batchsize20 ~~_| 5 5
»»»»» Batch size 25-..__ ~ 107 ~ 107
Batch size 40 ~ ~
——Batch size 50 | . N
- £ 10715 3 ; 3 10715 - :
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
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Figure 2 (Gaussian linear systems with variation: convergence) Mini-batch SGD on a Gaussian 1000 x 50
system whose entries in row k have variance k?, with various batch sizes. Graphs show mean L2-error ver-
sus iterations (over 40 trials). Step size y used on each batch was as given in for weighted SGD and the
optimal step size as in [NSW16} Corollary 3.2] for uniform sampling SGD. Left: Batches are created randomly
at onset, then selected using weighted sampling. Center: Batches are created sequentially at onset, then se-
lected using weighted sampling. Right: Batches are created sequentially at onset, then selected using uniform
(unweighted) sampling.
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Figure 3 (Gaussian linear systems with variation: effect of weighting) Mini-batch SGD on a Gaussian
1000 x 50 system whose entries in row k have variance k2, with various batch sizes; batches created sequen-
tially at onset. Step size y used on each batch was set as in (approximations for Lipschitz constants also
apply to the step size computation) for the weighted cases and as in [NSW16} Corollary 3.2] for the uniform
cases. Left: Ratio of mean L2-error using weighted versus unweighted random batch selection (improvements
appear when plot is less than one). Right: Ratio of the number of iterations required to reach an error of 107>
for various weighted selections versus unweighted random selection. The notation “(opt)” signifies that the
optimal step size was used, rather than the approximation.
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Figure 4 (Gaussian linear systems with variation: effect of batching) Mini-batch SGD on a Gaussian 1000 x 50
system whose entries in row k have variance k?, with various batch sizes; batches created sequentially at on-
set. Step size y used on each batch was set as in (approximations for Lipschitz constants also apply to
the step size computation) for the weighted cases and as in [NSW16, Corollary 3.2] for the uniform cases.
Left: Ratio of mean L2-error using weighted batched SGD versus classical (single functional) weighted SGD
(improvements appear when plot is less than one). Right: Ratio of the number of iterations required to reach
an error of 107> for various weighted selections with batched SGD versus classical (single functional) uni-
form (unweighted) SGD. The notation “(opt)” signifies that the optimal step size was used, rather than the
approximation.

6. CONCLUSION

We have demonstrated that using a weighted sampling distribution along with batches of functionals
in SGD can be viewed as complementary approaches to accelerating convergence. We analyzed the ben-
efits of this combined framework for both smooth and non-smooth functionals, and outlined the specific
convergence guarantees for the smooth least squares problem and the non-smooth hinge loss objective.
We discussed several computationally efficient approaches to approximating the weights needed in the
proposed sampling distributions and showed that one can still obtain approximately the same improved
convergence rate. We confirmed our theoretical arguments with experimental evidence that highlight in
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Figure 5 (Gaussian linear systems with variation: using power method) Mini-batch SGD on a Gaussian
1000 x 50 system whose entries in row k have variance k2, with various batch sizes; batches created sequen-
tially at onset. Step size y used on each batch was set as in (approximations for Lipschitz constants also
apply to the step size computation) for the weighted cases and as in [NSW16} Corollary 3.2] for the uniform
cases. Lipschitz constants for batches are approximated by using e~ log(e ! b) (with € = 0.01) iterations of the
power method. Left: Convergence of the batched method. Next: Required number of computational flops to
achieve a specified accuracy as a function of batch size when computation is shared over b cores (center) or

done on a single node (right).
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Figure 6 (Correlated systems with variation: convergence) Mini-batch SGD on a uniform 1000 x 50 system
whose entries in row k have variance k2, with various batch sizes. Graphs show mean L2-error versus itera-
tions (over 40 trials). Step size y used on each batch was set as in (approximations for Lipschitz constants
also apply to the step size computation) for the weighted cases and as in [NSW16, Corollary 3.2] for the uni-
form cases. Left: Batches are created randomly at onset, then selected using weighted sampling. Center:
Batches are created sequentially at onset, then selected using weighted sampling. Right: Batches are created

sequentially at onset, then selected using uniform (unweighted) sampling.
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Figure 7 (Orthonormal, sparse, and tomography systems: convergence) Mini-batch SGD on two systems for
various batch sizes; batches created randomly at onset. Graphs show mean L2-error versus iterations (over
40 trials). Step size y used on each batch was set as in (3.5). Left: Matrix is a 200 x 200 orthonormal discrete
Fourier transform (DFT). Center: 1000 x 50 matrix is a sparse standard normal matrix with density 20%. Right:

Tomography data (1200 x 400 system).

many important settings one can obtain significant acceleration, especially when batches can be com-
puted in parallel. It will be interesting future work to optimize the batch size and other parameters when
the parallel computing must be done asynchronously, or in other types of geometric architectures.
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Figure 8 (Noisy systems: convergence) Mini-batch SGD on a Gaussian 1000 x 50 system whose entries in row
k have variance k?, with various batch sizes. Noise of norm 1 is added to system to create an inconsistent
system. Graphs show mean L2-error versus iterations (over 40 trials). Step size y used on each batch was set
as in for the weighted case and as in [NSW16, Corollary 3.2] for the uniform case; the residual Ax;s — b
was upper bounded by a factor of 1.1 in all cases. Upper Left: Batches are created sequentially at onset,
then selected using weighted sampling. Upper Right: Batches are created sequentially at onset, then selected
using uniform (unweighted) sampling. Lower Left: Ratio of the number of iterations required to reach an
error of 107 for various weighted selections with batched SGD versus classical (single functional) uniform
(unweighted) SGD. Lower Right: Ratio of the number of iterations required to reach an error of 10~ for various
weighted selections with batched SGD versus classical uniform (unweighted) SGD as a function of batch size.
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