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CONVERGENCE PROPERTIES OF THE RANDOMIZED
EXTENDED GAUSS-SEIDEL AND KACZMARZ METHODS

ANNA MA, DEANNA NEEDELL, AADITYA RAMDAS

Abstract. The Kaczmarz and Gauss-Seidel methods both solve a linear system Xβ = y by
iteratively refining the solution estimate. Recent interest in these methods has been sparked by a
proof of Strohmer and Vershynin which shows the randomized Kaczmarz method converges linearly
in expectation to the solution. Lewis and Leventhal then proved a similar result for the randomized
Gauss-Seidel algorithm. However, the behavior of both methods depends heavily on whether the
system is under or overdetermined, and whether it is consistent or not. Here we provide a unified
theory of both methods, their variants for these different settings, and draw connections between
both approaches. In doing so, we also provide a proof that an extended version of randomized Gauss-
Seidel converges linearly to the least norm solution in the underdetermined case (where the usual
randomized Gauss Seidel fails to converge). We detail analytically and empirically the convergence
properties of both methods and their extended variants in all possible system settings. With this
result, a complete and rigorous theory of both methods is furnished.

1. Introduction. We consider solving a linear system of equations

Xβ = y, (1.1)

for a (real or complex) m× n matrix X, in various problem settings. Recent interest
in the topic was reignited when Strohmer and Vershynin [26] proved the linear1 con-
vergence rate of the Randomized Kaczmarz (RK) algorithm that works on the rows
of X (data points). Following that, Leventhal and Lewis [15] proved the linear con-
vergence of a Randomized Gauss-Seidel (RGS), i.e. Randomized Coordinate Descent,
algorithm that works on the columns of X (features).

When the system of equations is inconsistent (i.e. has no exact solution), as is
typically the case when m > n in real-world overconstrained systems, RK is known
to not converge to the ordinary least squares solution

βLS := argmin
β

1
2‖y −Xβ‖22 (1.2)

as studied by Needell [18]. Zouzias and Freris [30] extended the RK method with the
modified Randomized Extended Kaczmarz (REK) algorithm, which linearly converges
to βLS. Interestingly, in this setting, we will argue in Section 3.3 that RGS does
converge to βLS without any special extensions.

1.1. Motivation and contribution. The above introduction represents only
half the story. When m < n, there are fewer constraints than variables, and the
system has infinitely many solutions. In this case, especially if we have no prior reason
to believe any additional sparsity in the signal structure, we are often interested in
finding the least Euclidean norm solution:

βLN := argmin
β

‖β‖2 s.t. y = Xβ. (1.3)

While RGS converges to βLS in the overcomplete setting, we shall argue in Section
3.3 that in the undercomplete setting it does not converge to βLN . We will also argue
that RK does converge to βLN without any extensions in this setting.

1Mathematicians often refer to linear convergence as exponential convergence.
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The main contribution of our paper is to provide a unified theory of these related
iterative methods. We will also construct an extension to RGS that parallels REK,
which unlike RGS does converge to βLN (just as REK, unlike RK, converges to βLS).
Some desired properties for this algorithm include that it should also converge linearly,
not require much extra computation, and work well in simulations. We shall see that
our Randomized Extended Gauss-Seidel (REGS) method does indeed possess these
desired properties. A summary of this unified theory is provided in Table 1.1.

Method
Overconstrained,

consistent :
convergence to β⋆?

Overconstrained,
inconsistent :

convergence to βLS?

Underconstrained :
convergence to βLN?

RK Yes [26] No [18, Thm. 2.1] Yes (Sec. 3.3)
REK Yes [30] Yes [30] Yes (Sec. 3.3)
RGS Yes [15] Yes [15] No (Sec. 3.3)
REGS Yes (Remark 1) Yes (Sec. 4.3) Yes (Thm. 4.1)

Table 1.1

Summary of convergence properties for the overdetermined and consistent setting, overdeter-
mined and inconsistent setting, and underdetermined settings. We write β⋆ to denote the solution
to (1.1) in the overdetermined consistent setting, with βLS and βLN being defined in (1.2) and
(1.3) for the other two settings.

1.2. Paper Outline. In Section 2 we recap the three main existing algorithms
mentioned in the introduction (RK, RGS, REK). We discuss the performance of these
algorithms in the three natural settings described in Table 1.1 in Section 3. Section 4
introduces our proposed algorithm (REGS) and proves its linear convergence to the
least norm solution, completing the theoretical framework. Lastly, we end with some
simulation experiments in Section 5 to demonstrate the tightness and usefulness of
our theory, and conclude in Section 6.

2. Existing Algorithms and Related Work. In this section, we will sum-
marize the algorithms mentioned in the introduction, i.e. RK, RGS and REK. We
will describe their iterative update rules and mention their convergence guarantees,
leaving the details of convergence to the next section. Throughout the paper we will
use the notation Xi to represent the ith row of X (or ith entry in the case of a vector)
and X(j) to denote the jth column of a matrix X. We will write the estimation β as a
column vector. We write vectors and matrices in boldface, and constants in standard
font.

2.1. Randomized Kaczmarz (RK). The Kaczmarz method was first intro-
duced in the notable work of Kaczmarz [14]. It has gained recent interest in tomog-
raphy research where it is known as the Algebraic Reconstruction Technique (ART)
[8, 17, 1, 13]. Although in its original form the method selects rows in a deterministic
fashion (often simply cyclically), it has been well observed that a random selection
scheme reduces the possibility of a poor choice of row ordering [9, 12]. Earlier con-
vergence analysis of the randomized variant were obtained (e.g. [29]), but yielded
bounds with expressions that were difficult to evaluate. Strohmer and Vershynin [26]
showed that the RK method described above has an expected linear convergence rate
to the solution β⋆ of (1.1), and are the first to provide an explicit convergence rate
in expectation which depends only on the geometric properties of the system. This
work was extended by Needell [18] to the inconsistent case, analyzed almost surely
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by Chen and Powell [3], accelerated in several ways [7, 6, 24, 21, 20], and extended to
more general settings [15, 25, 19].

We describe here the randomized variant of the Kaczmarz method put forth by
Strohmer and Vershynin [26]. Taking X,y as input and starting from an arbitrary
initial estimate for β (for example β0 = 0), RK repeats the following in each iteration.
First, a random row i ∈ {1, ...,m} is selected with probability proportional to its
Euclidean norm, i.e.

Pr(row = i) =
‖Xi‖22
‖X‖2F

,

where ‖X‖F denotes the Frobenius norm of X. Then, project the current iterate
onto that row, i.e.

βt+1 := βt +
(yi −Xiβt)

‖Xi‖22
(X i)∗, (2.1)

where here and throughout X∗ denotes the (conjugate) transpose of X.
Intuitively, this update can be seen as greedily satisfying the ith equation in the

linear system. Indeed, it is easy to see that after the update,

Xiβt+1 = yi. (2.2)

Referring to (1.2) and defining

L(β) = 1
2‖y −Xβ‖2 = 1

2

m
∑

i=1

(yi −Xiβ)2,

we can alternatively interpret this update as stochastic gradient descent (choosing a
random data-point on which to update), where the step size is the inverse Lipschitz
constant of the stochastic gradient

∇2 1
2 (y

i −X iβ)2 = ‖Xi‖22.

2.2. Randomized Extended Kaczmarz (REK). For inconsistent systems,
the RK method does not converge to the least-squares solution as one might desire.
This fact is clear since the method at each iteration projects completely onto a se-
lected solution space, being unable to break the so-called convergence horizon. One
approach to overcome this is to use relaxation parameters, so that the estimates are
not projected completely onto the subspace at each iteration [28, 27, 2, 10]. Re-
cently, Zouzias and Freris [30] proposed a variant of the RK method motivated by the
work of Popa [23] which instead includes a random projection to iteratively reduce
the component of y which is orthogonal to the range of X. This method, named
Randomized Extended Kaczmarz (REK) can be described by the following iteration
updates, which can be initialized with β0 = 0 and z0 = y:

βt+1 := βt +
(yi − zit −Xiβt)

‖Xi‖22
(Xi)∗, zt+1 = zt −

〈X(j), zt〉

‖X(j)‖
2
2

X(j). (2.3)

Here, a column j ∈ {1, ..., n} is also selected at random with probability proportional
to its Euclidean norm:

Pr(column = j) =
‖X(j)‖

2
2

‖X‖2F
, (2.4)
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and again X(j) denotes the jth column of X. Here, zt approximates the component
of y which is orthogonal to the range of X , allowing for the iterates βt to converge to
the true least-squares solution of the system. Zouzias and Freris [30] prove that REK
converges linearly in expectation to this solution βLS .

2.3. Randomized Gauss-Seidel (RGS). Again taking X,y as input and
starting from an arbitrary β0, the Randomized Gauss-Seidel (RGS) method (or the
Randomized Coordinate Descent method) repeats the following in each iteration.
First, a random column j ∈ {1, ..., n} is selected as in (2.4). We then minimize the
objective L(β) = 1

2‖y −Xβ‖22 with respect to this coordinate to get

βt+1 := βt +
X∗

(j)(y −Xβt)

‖X(j)‖
2
2

e(j) (2.5)

where e(j) is the jth coordinate basis column vector (all zeros with a 1 in the jth
position). It can be seen as greedily minimizing the objective with respect to the jth
coordinate. Indeed, letting X(−j),β

−j represent X without its jth column and β

without its jth coordinate,

∂L

∂βj = −X∗
(j)(y −Xβ) = −X∗

(j)(y −X(−j)β
−j −X(j)β

j). (2.6)

Setting this equal to zero for the coordinate-wise minimization, we get the aforemen-
tioned update (2.5) for βj . Alternatively, since [∇L(β)]j = −X∗

(j)(y − Xβ), the
above update can intuitively be seen as a univariate descent step where the step size
is the inverse Lipschitz constant of the gradient along the jth coordinate, since the
(j, j) entry of the Hessian is

[∇2L(β)]j,j = (X∗X)j,j = ‖X(j)‖
2
2.

Leventhal and Lewis [15] showed that this algorithm has an expected linear con-
vergence rate. We will detail the convergence properties of this algorithm and the
others in the next section.

3. Problem Variations. We first examine the differences in behavior of the
two algorithms RGS and RK in three distinct but related settings. This will highlight
the opposite behaviors of these two similar algorithms.

When the system of equations (1.1) has a unique solution, we represent this by
β⋆. This happens when m ≥ n, and the system is consistent. Assuming that X has
full column rank,

β⋆ = (X∗X)−1X∗y, (3.1)

and then Xβ⋆ = y.

When (1.1) does not have any consistent solution, we refer to the least-squares
solution of (1.2) as βLS. This could happen in the overconstrained case, when m > n.
Again, assuming that X has full column rank, we have

βLS = (X∗X)−1X∗y, (3.2)

and we can write r := y −XβLS as the residual vector.

4



When (1.1) has infinitely many solutions, we call the minimum Euclidean norm
solution given by (1.3), βLN . This could happen in the underconstrained case, when
m < n. Assuming that X has full row rank, we have

βLN = X∗(XX∗)−1y. (3.3)

In the above notation, the LS stands for Least Squares and LN for Least Norm. We
shall return to each of these three situations in that order in future sections.

One of our main contributions is to achieve a unified understanding of the behavior
of RK and RGS in these different situations. The literature for RK deals mainly with
the first two settings only (see [26], [18], [30]). In the third setting, one readily obtains
convergence to an arbitrary solution (see e.g. (3) of [16]), but the convergence to the
least norm solution is not often studied (likely for practical reasons). The literature
for RGS typically focuses on more general setups than our specific quadratic least
squares loss function L(β) (see Nesterov [22] or Richtárik and Takáč [25]). However,
for both the purposes of completeness, and for a more thorough understanding of
the relationship between RK and RGS, it turns out to be crucial to analyze all three
settings (for equations (1.1)-(1.3)).

1. When β⋆ is a unique consistent solution, we present proofs of the linear
convergence of both algorithms - the results are known from papers by [26]
and [15] but are presented here in a novel manner so that their relationship
becomes clearer and direct comparison is easily possible.

2. When βLS is the (inconsistent) least squares solution, we show why RGS
iterates converge linearly to βLS, but RK iterates do not - making RGS
preferable. These facts are not hard to see, but we make it more intuitively
and mathematically clear why this should be the case.

3. When βLN is the minimum norm consistent solution, we explain why RK
converges linearly to it, but RGS iterates do not (both so far seemingly un-
documented observations) - making RK preferable.

Together, the above three points complete the picture (with solid accompanying
intuition) of the opposing behavior of RK and RGS. Later, we will present our variant
of the RGS method, the Randomized Extended Gauss-Seidel (REGS), and compare
with the corresponding variant of RK (REK). This new analysis will complete the
unified framework for these methods.

3.1. Overconstrained System, Consistent. Here we will assume that m > n,
X has full column rank, and the system is consistent, so y = Xβ⋆. First, let us write
the updates used by both algorithms in a revealing fashion. If RK and RGS select
row i and column j at step t+ 1, and ei (resp. e(j)) is the ith coordinate basis row
(resp. column) vector, then the updates can be rewritten as:

(RK) βt+1 := βt +
eirt

‖Xi‖22
(Xi)∗ (3.4)

(RGS) βt+1 := βt +
X∗

(j)rt

‖X(j)‖
2
2

ej (3.5)
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where rt = y − Xβt = Xβ⋆ − Xβt is the residual vector at iteration t. Then
multiplying both equations by X gives

(RK) Xβt+1 := Xβt +
Xi(β⋆ − βt)

‖Xi‖22
X(X i)∗ (3.6)

(RGS) Xβt+1 := Xβt +
X∗

(j)X(β⋆ − βt)

‖X(j)‖
2
2

X(j). (3.7)

We now come to an important difference, which is the key update equation for
RK and RGS.

First, from the update (3.4) for RK, we have that βt+1 − βt is parallel to Xi.

Also, βt+1 − β⋆ is orthogonal to Xi (since Xi(βt+1 − β⋆) = yi − yi = 0). Then by
the Pythagorean theorem,

‖βt+1 − β⋆‖22 = ‖βt − β⋆‖22 − ‖βt+1 − βt‖
2
2. (3.8)

Note that from the update (3.7), we have that Xβt+1−Xβt is parallel to X(j). Also,
Xβt+1−Xβ⋆ is orthogonal toX(j) (sinceX

∗
(j)(Xβt+1−Xβ⋆) = X∗

(j)(Xβt+1−y) =

0 by the optimality condition ∂L/∂βj = 0). Then again by the Pythagorean theorem,

‖Xβt+1 −Xβ⋆‖22 = ‖Xβt −Xβ⋆‖22 − ‖Xβt+1 −Xβt‖
2
2. (3.9)

The rest of the proof follows by simply substituting for the last term in the above
two equations, and is presented in the following table for easy comparison. Note
Σ = X∗X is the full-rank covariance matrix and we first take expectations with
respect to the randomness at the (t+1)st step, conditioning on all randomness up to
the tth step. We later iterate this expectation.

Randomized Kaczmarz:
Et‖βt+1 − β⋆‖22

Randomized Gauss-Seidel:
Et‖Xβt+1 −Xβ⋆‖22

= ‖βt − β⋆‖22 − E‖βt+1 − βt‖
2
2

= ‖βt − β⋆‖22

−
∑

i

‖Xi‖22
‖X‖2F

(Xi(βt − β⋆))2

(‖Xi‖22)
2

‖Xi‖22

= ‖βt − β⋆‖22

(

1−
‖X(βt − β⋆)‖22
‖X‖2F ‖βt − β⋆‖22

)

≤ ‖βt − β⋆‖22

(

1−
λmin(Σ)

Tr(Σ)

)

= ‖Xβt −Xβ⋆‖22 − E‖Xβt+1 −Xβt‖
2
2

= ‖Xβt −Xβ⋆‖22

−
∑

j

‖X(j)‖
2
2

‖X‖2F

(X∗
(j)X(βt − β⋆))2

(‖X(j)‖
2
2)

2
‖X(j)‖

2
2

= ‖Xβt −Xβ⋆‖22

(

1−
‖X∗X(βt − β⋆)‖22

‖X‖2F‖Xβt −Xβ⋆‖22

)

≤ ‖Xβt −Xβ⋆‖22

(

1−
λmin(Σ)

Tr(Σ)

)

Here, λmin(Σ)‖βt−β⋆‖22 ≤ ‖X(βt−β⋆)‖22 i.e. λmin(Σ) is the smallest eigenvalue
of Σ (singular value of X). It follows that

(RK) E‖βt − β⋆‖22 ≤

(

1−
λmin(Σ)

Tr(Σ)

)t

‖β0 − β⋆‖22 (3.10)

(RGS) E‖βt − β⋆‖2
Σ
≤

(

1−
λmin(Σ)

Tr(Σ)

)t

‖β0 − β⋆‖2
Σ
,

where ‖w‖2
Σ
= w∗Σw = ‖Xw‖22 is the norm induced byΣ. SinceΣ is invertible when

m > n and X has full column rank, the last equation also implies linear convergence
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of E‖βt−β⋆‖22. The final results exist in Strohmer and Vershynin [26], Leventhal and
Lewis [15] but there is utility in seeing the two proofs in a form that differs from their
original presentation, side by side. In this setting, both RK and RGS are essentially
equivalent (without computational considerations).

3.2. Overconstrained System, Inconsistent. Here, we will assume that m >
n, X is full column rank, and the system is inconsistent, so y = XβLS + r, where r

is such that X∗r = 0. It is easy to see this condition, because as mentioned earlier,

βLS = (X∗X)−1X∗y,

implying that X∗XβLS = X∗y. Substituting y = XβLS + r gives that X∗r = 0.
In this setting, RK is known to not converge to the least squares solution, as

is easily verified experimentally and geometrically. The tightest convergence upper
bounds known are by [18] and [30] who show that

E‖βt − βLS‖
2
2 ≤

(

1−
λmin(Σ)

Tr(Σ)

)t

‖β0 − βLS‖
2
2 +

‖r‖22
λmin(Σ)

=

(

1−
σ2
min(X)

‖X‖2F

)t

‖β0 − βLS‖
2
2 +

‖r‖22
σ2
min(X)

,

where we write σmin(X) to denote the smallest (non-zero) singular value of X and
again ‖X‖F its Frobenius norm. Attempting the previous proof, (3.8) no longer holds
– the Pythagorean theorem fails because βt+1 − βLS is no longer orthogonal to Xi

sinceX i(βt+1−βLS) = yi−XiβLS 6= 0. Intuitively, the reason RK does not converge
is that every update of RK (say of row i) is a projection onto the “wrong” hyperplane
that has constant yi (where the “right” hyperplane would involve projecting onto a
parallel hyperplane with constant yi − ri where r was defined above). An alternative
intuition is that all RK updates are in the span of the rows, but βLS is not in the
row span. These intuitive explanations are easily confirmed by experiments seen in
[30, pp. 787–788],[18, pp. 402]. Zouzias and Freris [30] alleviate this issue with the
REK algorithm, whose convergence obeys

E‖βt − βLS‖
2
2 ≤

(

1−
σ2
min(X)

‖X‖2F

)⌊t/2⌋ (

1 + 2
σ2
min(X)

σ2
max(X)

‖βLS‖
2
2

)

. (3.11)

However, the fate of RK doesn’t hold for RGS. Almost magically, in the previous
proof, the Pythagorean theorem still holds in equation (3.9) because

X∗
(j)(Xβt+1 −XβLS) = X∗

(j)(Xβt+1 − y) +X∗
(j)(y −XβLS) = 0. (3.12)

The first term is 0 by the optimality condition for βt+1 i.e. X∗
(j)(Xβt+1 − y) =

∂L/∂βj = 0. The second term is zero by the global optimality of βLS , i.e. X∗(y −
XβLS) = ∇L = 0. Also, Σ is full rank as before. Indeed, RGS works in the space of
fitted values Xβ and not the iterates β.

In summary, RK does not converge to the LS solution, but RGS does at the same
linear rate. This is what motivated the development of Randomized Extended Kacz-
marz (REK) by Zouzias and Freris [30] which, as discussed earlier, is a modification
of RK designed to converge to βLS by randomly projecting out r. An independent
paper by Dumitrescu [5] argues however that in this setting RGS is preferable to REK
in terms of computational convergence.
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3.3. Underconstrained System, Infinite Solutions. Here, we will assume
that m < n, X is full row rank and the system is consistent with infinitely many
solutions. As mentioned earlier, it is easy to show that

βLN = X∗(XX∗)−1y

(which clearly satisfies XβLN = y). Every other consistent solution can be expressed
as

β = βLN + z where Xz = 0.

Clearly any such β would also satisfy Xβ = XβLN = y. Since Xz = 0, z ⊥ βLN

implying ‖β‖2 = ‖βLN‖2 + ‖z‖2, showing that βLN is indeed the minimum norm
solution as claimed.

In this case, RK has good behavior, and starting from β0 = 0, it does converge
linearly to βLN . Intuitively, βLN = X∗α (for α = (XX∗)−1y) and hence is in the
row span of X. Starting from β0 = 0, RK only adds multiples of rows to its iterates,
and hence will never have any component orthogonal to the row span of X. There is
exactly one solution with no component orthogonal to the row span of X, and that
is βLN , and hence RK converges linearly to the required point, where the rate can
be bounded in exactly the same way as (3.10). It is important not to start from an
arbitrary β0 since the RK updates can never eliminate any component of β0 that is
perpendicular to the row span of X. Of course, the same properties are shared by
REK for this case as well. It is noted in Zouzias and Freris [30, Sec. 2.1] that the REK
converges at the same rate for underdetermined systems as it does overdetermined
systems.

Mathematically, the previous earlier proof works because the Pythagorean theo-
rem holds since it is a consistent system. Now, Σ is not full rank but note that since
both βLN and βt are in the row span, βt − βLN has no component orthogonal to
X (unless it equals zero in which case the algorithm has already converged). Hence
λmin(Σ)‖βt−βLN‖2 ≤ ‖X(βt−βLN)‖2 holds, where λmin(Σ) is now understood to
be the smallest positive eigenvalue of Σ. To summarize, the exact same bound (3.10)
still holds in this case, with the appropriate understanding of λmin(Σ) and under the
assumption that the initialized β0 is in the row span of X.

RGS unfortunately suffers the opposite fate. The iterates do not converge to
βLN , even though Xβt does converge to XβLN . Mathematically, the convergence
proof still carries forward as before, but in the last step when X∗X cannot be inverted
because it is not full rank. Hence we get convergence of the residual to zero, without
getting convergence of the iterates to the least norm solution. Intuitively, the iterates
of RGS add components to the estimates that are orthogonal to the row span of X.
These components are never eliminated because in minimizing the residual, they are
ignored. Therefore, RGS is able to minimize the residual without finding the least
norm solution.

Unfortunately, when each update is cheaper for RK than RGS (due to matrix
size), RGS is preferred for reasons of convergence and when it is cheaper for RGS
than RK, RK is preferred.

4. REGS. We next introduce an extension of RGS, analogous to the extension
REK of RK. The purpose of extending RK was to allow for convergence to the least
squares solution. Now, the purpose of extending RGS is to allow for convergence to
the least norm solution. We view this method as a completion to the unified analysis
of these approaches, and it may also possess advantages in its own right.
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4.1. The algorithm. Consider the linear system (1.1) with m < n. Let βLN

denote the least norm solution of the underdetermined system as described in (1.3).
The REGS algorithm is described by the following pseudo-code. Analogous to the
role z plays in REK, z iteratively approximates the component in β orthogonal to
the row-span of X. By iteratively removing this component, we converge to the least
norm solution. Note that outputting βt instead of βLN

t = βt − zt in Algorithm 1
recovers the RGS algorithm. This may be preferable in the overdetermined setting.

Algorithm 1 Randomized Extended Gauss-Seidel (REGS)

1: procedure (X, y, maxIter) ⊲ m× n matrix X, y ∈ C
m, maximum iterations T

2: Initialize β0 = 0, z0 = 0
3: for t = 1, 2, . . . , T do

4: Choose column X(j) with probability
‖X(j)‖

2
2

‖X‖2
F

5: Choose row Xi with probability
‖Xi‖2

2

‖X‖2
F

6: Set γt =
X∗

(j)(Xβt−1−y)

‖X(j)‖
2
2

e(j)

7: Set βt = βt−1 + γt

8: Set P i = Idn − (Xi)∗Xi

‖Xi‖2
2

⊲ Idn denotes the n× n identity matrix

9: Update zt = P i(zt−1 + γt)
10: Update β

LN
t = βt − zt

11: end for
12: Output βLN

t

13: end procedure

4.2. Main result. Our main result for the REGS method shows linear conver-
gence to the least norm solution.

Theorem 4.1. The REGS algorithm outputs an estimate β
LN
T such that

E‖βLN
T − βLN‖22 ≤ αT ‖βLN‖22 + 2α⌊T/2⌋ B

1− α
(4.1)

where B =
‖XβLN‖2

2

‖X‖2
F

and α =
(

1−
σ2
min(X)

‖X‖2
F

)

.

Proof: We devote the remainder of this section to the proof of Theorem 4.1.

Let Et−1 denote the expected value conditional on the first t−1 iterations, and in-
state the notation of the theorem. That is, Et−1[·] = E[·|i1, j1, i2, j2, ...it−1, jt−1] where
it∗ is the t∗th row chosen and jt∗ is the t∗th column chosen. We denote conditional ex-
pectation with respect to the choice of column as Ej

t−1[·] = E[· | i1, j1, ...it−1, jt−1, it].
Similarly, we denote conditional expectation with respect to the choice of row as
Ei
t−1[·] = E[· | i1, j1, ...it−1, jt−1, jt]. Then note by the law of total expectation we

have that Et−1[·] = Ei
t−1[E

j
t−1[·]]. We will use the following elementary facts and

lemmas.

Fact 1. ([30, Fact 3]) For any P i as in the algorithm, E‖P iw‖22 ≤ α‖w‖22 for
any w.

Lemma 4.2. ([15, Thm. 3.6]) We have that

Et−1‖Xβt −XβLN‖22 ≤ α‖Xβt−1 −XβLN‖22
9



and that

E‖Xβt −XβLN‖22 ≤ αt‖Xβ0 −XβLN‖22.

Now we first consider ‖βLN
t − βLN‖22:

‖βLN
t − βLN‖22 = ‖βt − zt − βLN‖22

= ‖βt − P i(zt−1 + γt)− P iβLN − (Idn − P i)βLN‖22

= ‖βt − P i(zt−1 + βt − βt−1)− P iβLN − (Idn − P i)βLN‖22

= ‖(Idn − P i)βt + P i(βt−1 − zt−1)− P iβLN − (Idn − P i)βLN‖22

= ‖(Idn − P i)βt + P iβ
LN
t−1 − P iβLN − (Idn − P i)βLN‖22

= ‖P i(β
LN
t−1 − βLN ) + (Idn − P i)(βt − βLN )‖22

= ‖P i(β
LN
t−1 − βLN )‖22 + ‖(Idn − P i)(βt − βLN )‖22. (4.2)

So far, we have only used substitution of variables as defined for the algorithm and
that βLN = P iβLN +(Idn−P i)βLN is an orthogonal decomposition. We first focus
on the expected value of the second term.

Lemma 4.3. We also have that

Et−1‖(Idn − P i)(βt − βLN )‖22 ≤
α‖X(βt−1 − βLN )‖22

‖X‖2F
.

Proof:

Et−1‖(Idn − P i)(βt − βLN )‖22

= Et−1[(βt − βLN )∗(Idn − P i)
∗(Idn − P i)(βt − βLN )]

= Et−1[(βt − βLN )∗(Idn − P i)(βt − βLN )]

= Et−1

[

(βt − βLN )∗
(

(X i)∗Xi

‖Xi‖22

)

(βt − βLN )

]

= Et−1

[

‖Xi(βt − βLN )‖22
‖Xi‖22

]

= E
j
t−1

[

E
i
t−1

‖Xi(βt − βLN )‖22
‖Xi‖22

]

= E
j
t−1

[

m
∑

i=1

‖Xi(βt − βLN )‖22
‖Xi‖22

·
‖Xi‖22
‖X‖2F

]

= E
j
t−1

[

‖X(βt − βLN )‖22
‖X‖2F

]

≤
α‖X(βt−1 − βLN )‖22

‖X‖2F
.

The first line follows by expanding the norm, the second line since (Idn − P i)
is a projection matrix, the third line from the definition of P i, the fourth line is

10



computation, the fifth line follows from the law of total expectation, the next two
lines are computation, and finally the last line follows by Lemma 4.2. Notice that in
the seventh line, Ej

t−1 = Et−1 because the random variable βt only depends on the
choice of columns.

We want to control the term rt = E‖(Idn −P i)(βt − βLN )‖22 by bounding it by
some α and B such that rt ≤ αtB. We calculate this here:

E‖(Idn − P i)(βt − βLN )‖22 = E[Et−1‖(Idn − P i)(βt − βLN )‖22]

≤
αE‖X(βt−1 − βLN )‖22

‖X‖2F

≤ αt ‖Xβ0 −XβLN‖22
‖X‖2F

.

The first line follows by definition, the second is by Lemma 4.3, and the third by
Lemma 4.2.

Finally, we take the expected value of ‖βLN
t − βLN‖22. From equation (4.2) and

using Fact 1 we obtain:

E‖βLN
t − βLN‖22 = E‖P i(β

LN
t−1 − βLN )‖22 + E‖(Idn − P i)(βt − βLN )‖22

≤ αE‖(βLN
t−1 − βLN )‖22 + E‖(Idn − P i)(βt − βLN )‖22.

We complete the proof using the following lemma from [30]:
Lemma 4.4. ([30, Thm. 8]) Suppose that for some α, ᾱ < 1, the following bounds

hold for all t∗ ≥ 0:

E‖βLN
t∗ − βLN‖22 ≤ αE‖βLN

t∗−1 − βLN‖22 + rt∗ and rt∗ ≤ ᾱt∗B.

Then for any T > 0,

E‖βLN
T − βLN‖22 ≤ αT ‖βLN

0 − βLN‖22 + (α⌊T/2⌋ + ᾱ⌊T/2⌋)
B

1− α
.

Letting α = ᾱ = α, r∗t = E‖(Idn − P i)(βt − βLN )‖22, B =
‖Xβ0−XβLN‖2

2

‖X‖2
F

, and

noting that βLN
0 = β0 = 0, we complete the proof of Theorem 4.1.

Remark 1. Here we note that the same proof works for overdetermined systems.
In particular, this works because Lemma 4.2 holds for βLS and β∗ also (see Thm.
3.6 in [15]). Also, Lemma 4.3 follows for both overdetermined consistent systems (see
table in Section 3.1) as well as overdetermined inconsistent systems (from (3.12) and
subsequent arguments).

4.3. Comparison. Theorem 4.1 shows that, like the RK and REK methods,
REGS converges linearly to the least-norm solution in the underdetermined case. We
believe it serves to complement existing analysis and completes the theory of these
iterative methods in all three cases of interest. For that reason, we compare the three
approaches for the underdetermined setting here. For ease of comparison, set α as in
Theorem 4.1, and write κ = σmax(X)/σmin(X) for the condition number of X. From
the convergence rate bounds for RK [26] and REK [30] given in Section 3, and after
applying elementary bounds to (4.1) of Theorem 4.1, we have:

11



(RK) E‖βt − βLN‖22 ≤ αt‖βLN‖22 (4.3)

(REK) E‖β2t − βLN‖22 ≤ αt(1 + 2κ2)‖βLN‖22 (4.4)

(REGS) E‖β2t − βLN‖22 ≤ αt(1 + 2κ2)‖βLN‖22. (4.5)

We find similar results in the overdetermined, inconsistent setting. Using the
convergence rate bounds for RGS [15], REK [30], and REGS (Theorem 4.1), also
given in section 3, we have:

(RGS) E‖βt − βLS‖
2
2 ≤ αt‖βLS‖

2
2 (4.6)

(REK) E‖β2t − βLS‖
2
2 ≤ αt(1 + 2κ2)‖βLS‖

2
2 (4.7)

(REGS) E‖β2t − βLS‖
2
2 ≤ αt(1 + 2κ2)‖βLS‖

2
2. (4.8)

Thus, up to constant terms (which are likely artifacts of the proofs), the bounds
provide the same convergence rate α, which is not surprising in light of the con-
nections between the methods. In the next section, we compare these approaches
experimentally.

5. Empirical Results. In this section we present our experimental results. The
code used to run these experiments can be found at [4]. For each experiment, we
initialize a matrix X and vector β with independent standard normal entries and run
50 trials. The right hand side y is taken to beXβ. At each iteration t, we keep track of
the ℓ2-error ‖β

LN
t −βLN‖22 and fix the stopping criterion to be ‖βLN

t −βLN‖22 < 10−6

(of course in practice one chooses a more practical criterion). In each plot, the solid
blue line represents the median ℓ2-error at iteration t, the light blue shaded region
captures the range of error across trials, and the red line represents the theoretical
upper bound at each iteration. In Figure 5.1, we show the convergence of βLN

t for
varying sized underdetermined linear systems. In Figure 5.2, we show the convergence
of a matrix X of size 700x1000 and its theoretical upper bound. As it turns out, the
REGS algorithm often converges much faster than the theoretical worst-case bound.

We also tested REGS on tomography problems using the Regularization toolbox
by Hansen [11] (http://www.imm.dtu.dk/∼pcha/Regutools/). For the 2D tomog-
raphy problem Xβ = y with X an m × n matrix where n = dN2 and m = N2, we
use N = 20 and d = 3 for our experiments. Here, X consists of samples of absorption
along a random line on an N ×N grid and d is the oversampling factor. The results
from this experiment are shown in Figure 5.2.

We also compare the performance of all four algorithms (RK, REK, RGS, REGS)
under the different settings discussed in this paper. Each line in each plot represents
the median ℓ2-error at that iteration or CPU time over 50 trials using a stopping
criterion of 10−6. For the underdetermined case, X is a 50 × 500 Gaussian matrix
and a 500× 50 Gaussian matrix for the overdetermined cases. In the overdetermined,
inconsistent case, we set y = Xβ+ r where r ∈ null(X∗) (computed in Matlab using
the null() function). Figure 5.3, Figure 5.4, and Figure 5.5 show the empirical results
for the underdetermined, overdetermined inconsistent, and overdetermined consistent
cases respectively. Note we only plot the methods which actually converge to the
desired solution in each case. Looking at iterations to convergence, it seems that RK
and RGS converge faster than their extended counterparts while REGS and REK
converge to the desired solution at about the same rate.
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Figure 5.1. Left: ℓ2-error (log-scale) of REGS on a 150 × 500 matrix and its the theoretical
bound. Right: Comparison of ℓ2-error (log-scale) of REGS for m × 500 sized matrices with m =
50, 100, 150.

Figure 5.2. Left: ℓ2-error (log-scale) of REGS on a 700 × 1000 matrix and its the theoretical
bound. Right: ℓ2-error (log-scale) of REGS on the tomography problem with a 400 × 1200 matrix.

6. Conclusion. The Kaczmarz and Gauss-Seidel methods operate in two differ-
ent spaces (i.e. row versus column space), but share many parallels. In this paper
we drew connections between these two methods, highlighting the similarities and
differences in convergence analysis. The approaches possess conflicting convergence
properties; RK converges to the desired solution in the underdetermined case but
not the inconsistent overdetermined setting, while RGS does the exact opposite. The
extended method REK in the Kaczmarz framework fixes this issue, converging to the
solution in both scenarios. Here, we present the REGS method, a natural extension
of RGS, which completes the overall picture. We hope that our unified analysis of all
four methods will assist researchers working with these approaches.
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Figure 5.3. Comparison of median ℓ2-error (log-scale) of RK, REK, and REGS for an under-
determined system.

Figure 5.4. Comparison of median ℓ2-error (log-scale) of RGS, REK, and REGS for an
overdetermined, inconsistent system.
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[14] Kaczmarz, S. [1937], ‘Angenäherte auflösung von systemen linearer gleichungen’,

15



Bull. Int. Acad. Polon. Sci. Lett. Ser. A pp. 335–357.
[15] Leventhal, D. and Lewis, A. S. [2010], ‘Randomized methods for linear con-

straints: convergence rates and conditioning’, Math. Oper. Res. 35(3), 641–654.
URL: http://dx.doi.org/10.1287/moor.1100.0456

[16] Liu, J., Wright, S. J. and Sridhar, S. [2014], ‘An asynchronous parallel random-
ized kaczmarz algorithm’, arXiv preprint arXiv:1401.4780 .

[17] Natterer, F. [2001], The mathematics of computerized tomography, Vol. 32 of
Classics in Applied Mathematics, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA. Reprint of the 1986 original.
URL: http://dx.doi.org/10.1137/1.9780898719284

[18] Needell, D. [2010], ‘Randomized Kaczmarz solver for noisy linear systems’, BIT
50(2), 395–403.
URL: http://dx.doi.org/10.1007/s10543-010-0265-5

[19] Needell, D., Sbrero, N. and Ward, R. [2014], ‘Stochastic gradient descent and
the randomized kaczmarz algorithm’, Math. Program. Series A . to appear.

[20] Needell, D. and Tropp, J. A. [2013], ‘Paved with good intentions: Analysis of a
randomized block kaczmarz method’, Linear Algebra and its Applications .

[21] Needell, D. and Ward, R. [2013], ‘Two-subspace projection method for coherent
overdetermined linear systems’, Journal of Fourier Analysis and Applications
19(2), 256–269.

[22] Nesterov, Y. [2012], ‘Efficiency of coordinate descent methods on huge-scale op-
timization problems’, SIAM J. Optimiz. 22(2), 341–362.

[23] Popa, C. [1998], ‘Extensions of block-projections methods with relaxation param-
eters to inconsistent and rank-deficient least-squares problems’, BIT 38(1), 151–
176.
URL: http://dx.doi.org/10.1007/BF02510922

[24] Popa, C., Preclik, T., Köstler, H. and Rüde, U. [2012], ‘On Kaczmarz’s projection
iteration as a direct solver for linear least squares problems’, Linear Algebra and
Its Applications 436(2), 389–404.
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