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THE HERMENEUTICS OF MATHEMATICAL MODELING

David Tudor
Mathematics Department
Bradley University
Peoria, lllinois

I. Introduction

Mathematics is a language. Those who speak this
language frequently use it to describe the world around
them. As in any language, signs (words, symbols,
signifiers) are created to represent those objects of
discussion in the language [20,23]. Depending on the
existence of physical referents for the signs created,
points of view may fall into two broad categories. There
are those who believe philosophically that, physical ref-
erents are not necessary, that the only meaningful dis-
course in the language is through the signs and their
relationships to one another. These are the “pure
mathematicians” (or, one may call them “structuralists”).
On the other hand, the non-structuralists, or “applied
mathematicians,” attempt to construct a “symbolic order”
or sub-language of mathematics which, ideally, would be
a perfect representation of some physical (“real world”)
phenomenon. This representation would be “perfect™in
the sense that every change in the “real workd™ would be
reflected by a corresponding change in the “symbolic
world" and vice versa. Inotherwords, the transformation
relating the “real world" to the “symbolic world” would be
explicitly known. This does not seem likely to occur. Yet,
the predictive power and pragmatic application of
mathematics has produced undeniable results in science
and technology. The objective, then, of the applied
mathematician is to minimize, in some way, the dis-
crepancy between the behavior of the symbolusedin the
symbolic world and that of the object represented in the
real world. In other words, applied mathematics is
constantly evolving towards pure mathematics because
the ultimate goal ofthe formeris to ignore the discrepancy
between sign and referent and to exist solely within the
realm of the symbolic worid.

This essay investigates some of the historical and
philosophical background of the division between pure
and applied mathematics. The “symbolic order” con-
structed by the pure mathematician and used by the
applied mathematician to describe the “real world™ is
called a mathematical model. The nature, interpretation
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and limitations of the mathematical model are also dis-
cussed. An illustration of the means used by applied
mathematicians todrive the above mentioned evolutionary
processtoward pure mathematics is given. This process,
the “modeling cycle," is presented as a response to the
“hermeneutic circle” of applied mathematics. The term
“hermeneutic circle” (borrowed fromthe theory of literature
[8,9]) refers to the dilemma that, before a model is
developed, one must know the important factors con-
tributing to the phenomenon under investigation but, in
order to know these factors, one should first develop a
model.

It is hoped that a better understanding of the objec-
tives and limitations of the use of mathematical models
will contribute to the increased acceptance of them as a
means of providing additional information and perspec-
tives in areas of research traditionally considered “non-
quantitative.” The crucial factor in this understanding is
the analysis of the connection between philosophy and
theory, pragmatism and application.

Il. History and Theory

Plato is seen by many as one of the major figures
contributing to the logocentric nature of western phi-
losophy. Logocentrism sets forth the premise that there
is adivision betweenword andthought [21, p165ff]. Plato
was consistent in maintaining this dichotomy and in the
Republic, applied it to his view of mathematics:

.. . those who deal with geometrics and calcu-
lations . . . take forgranted. . .things cognate...
in each field of inquiry; assuming these things to
be known, they make them hypotheses, and . . .
setting out from these hypotheses, they go at
once throughthe remainderof the argumentuntil
they arrive with perfect consistency atthe goalto
which their inquiry was directed. . . . although
they use visible figures and argue about them,
they are not thinking about these figures but of
those things which the figures represent.
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(Strictly adhering to Platonic belief, the constructs of
mathematics represent “disembodied eternal forms,” or
“archetypes” which are perceived only by the intellect.)
For subsequent philosophers also, this was the prevail-
ing view in mathematics — it always “represented™ some-
thing. Mathematicians were constructing a language
with which they could describe the world around them.
This description was accomplished through what is today
called a “mathematical model.”

There are two general categories of models, iconic
and symbolic[7]. An iconic model is one that is intended
to resemble in some way the object modeled. A “model”
train would be an example. Although the determination
of “iconic” versus “symbolic” is often controversial, aroad
map or a schematic diagram of some electrical circuit
may also be considered to be an iconic model. A
symbolic model is one that is not iconic. This type of
model often takes the form of some kind of equation
whose variables represent some quantities in nature.
Descartes introduced the association of iconic and
symbolic models in modern mathematics. He represented
algebraic relations between variables in a geometric
“Cartesian coordinate system” (the type of coordinate
system used in road maps). Thus an explicitly demon-
strable relationship between the iconic and symbolic
model contributed greatly to the facility with which later
models could be built and analyzed.

The distinction “pure” and “applied” mathematics did
not exist until the second half of the 19th century. Until
then, the manipulation of the symbols of mathematics
was simply a necessary part of the use of the “symbolic
order” used to describe the non-mathematical world.
Indeed, there was no need to study pure mathematics of
itself until inconsistencies in certain predictions based on
interpretations of the mathematics forced the consider-
ation of the logical foundations of mathematics itself.

Thus, atthe end of the 19th and beginning of the 20th
centuries, about the time that Ferdinand de Saussure
was searching to define the basic “signs™ and “values” or
“significations” of linguistics [20], Bertrand Russell and
other philosophers and mathematicians were attempting
to reduce language (and hence mathematics) to a fun-
damental classofirreducible objects, thus generating the
entire spectrum of valid claims concerning the “language”
[22, 23]. In mathematics this meant that for each area, a
set of axioms was sought from which all valid theorems
may be deduced. This property of a set of axioms is
called “completeness.” Perhaps a more desirable prop-
erty of a set of axioms is that they be “consistent.” This
means that one must not be able to prove the validity of
a proposition and its negation from the given axioms.
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Hilbert, Russell and Whitehead (see [22]) believed
wholeheartedly in the possibility of establishing such
axiomatic systems and spent a tremendous effort in
attempting it. Kurt Gddel, in his article “Uber formal
unentscheidbare Satze der Principia Mathematica und
verwandter Systeme 1,” [11, 16] finally settled the ques-
tion in a most unsettling way. He first restricted his
attention to the set of integers, that is, the usual whole
numbers of arithmetic 0, £1, 2. He then proved that for
this most primitive “‘world” the axiomatic method has
inherent limitations in the following sense. If the axiomatic
system is complete, then it will be inconsistent and if the
system is restricted enough to be consistent, then there
are propositions conceming the integers which cannot
be proven from this consistent system. Since an incon-
sistent system is entirely unpalatable to the mathemati-
cian, consistent axiomatic systems are used at the ex-
pense of completeness. Thus the working mathemati-
cian is fully aware that there are most likely questions
which may be asked but may not be resolved from within
the system.

Russell had already happened upon what is now
called “Russell's Paradox™ [22, p124-125, p153] which
foreshadowed Gddel's discovery. The most popular
form of this paradox is to consider a barber in a town who
shaves everyone who does not shave himself. Doesthe
barbershave himself? Now, if the barber shaves himself,
then he must be one of those who don't shave themselves.
Therefore, he doesn't shave himself. On the other hand,
if he doesn't shave himself, then he is one of those whom
the barber shaves, so he must shave himself. Eitherway
we answer, we arrive at a contradiction. In Set Theory,
Russell's Paradox takes the following form: Let S be the
set of all sets which are not elements of themselves. Is
S an element of itself?

Thus, one of the most important consequences of
the 19th and 20th century developments in the logical
foundations of mathematics is that it is possible to prove
the impossibility of proving something. Russell noted
the impact of such an advance on philosophical discourse:
“Those philosophers who have adopted the methods
derived from logical analysis can argue with one another,
not in the old aimless way, but cooperatively, so that both
sides can concur as to the outcome.” This, of course,
refers to the “conditional” nature of modem mathematics
(both pure and applied), which Russell [18] humorously
expresses thus:

We star, in pure mathematics, fromcertainrules
of inference, by which we can infer that if one
proposition is true, then so is some other
proposition. These rules of inference constitute




the major part of the principles of formal logic.
We then take any hypothesis that seems
amusing, and deduce its consequences. |f our
hypothesis is about anything, and not about
some one or more particular things, then our
deductions constitute mathematics. Thus math-
ematics may be defined as the subject in which
we never know what we are talking about, nor
whether what we are saying is true.

Having examined some of the historical background
and theoretical limitations of mathematics (and hence its
applications), we address, inthe next section some of the
responses to the problems arising from the theory.

lll. Pragmatism and Hermeneutics of Mathematical
Modeling

Suppose one wishes to investigate some aspectof a
particular field of inquiry and employs mathematics as a
part of the analysis used to carry out the study. Variables
(signs) are created which represent entities (referents).
The method is to establish the behavior of the signs and
make conclusions about them. Since mathematical
symbols are not the objects they represent, the question
then is in what way one could in applied mathematics
assert that “only the behavior of the signs need be
understood™? The answer is inthe degree of association
between sign and referent. In other words, a perfect
association would mean that “events” taking place in the
model would be perfectly reflected in the object or phe-
nomenon being modeled and vice versa. Thus, the
axioms governing the mathematical order would obtain
for the model. This association and the degree of it are
the two major goals (and problems) of mathematical
modeling. The “pragmatic solution” to the problem of
creating the association must, of course, begin with the
construction of the model. One uses mathematics — or
any method of analysis, for that matter — in order to
understand something. So, in order to buikd a math-
ematical model, one decides first what the most influential
factors goveming the observed phenomenon actually
are. One then represents them as variables and builds
the model. But, in order to decide upon these “most
influential factors® one must already understand the
“observed phenomenon.” The achievement of this un-
derstanding is, however, the original reason for building
the mathematical model. This is a problem in general
hermeneutics, the theory of interpretation which in liter-
ary terms Abrams [1] defines as “a formulation of the
procedures and principles involved in getting at the
meaning of all written texts.” In discussing the theory of
understanding texts, Dilthey labeled the problem of not
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understanding the whole without understanding its
component parts and not understanding the parts with-
out understanding the whole, the “hermeneutic circle™ [1,
p84]. Thus, anyone including mathematics as part of the
process of understanding is confronted with the “math-
ematical hermeneutic circle” introduced above: how can
the object of investigation be understood without a model,
and how can a model be built without understanding the
object already?

Dilthey [5,6] and, more specifically, Gadamer [8,9]
advocated an approach to overcome the problem of the
hermeneutic circle and, interestingly, mathematicians
have arrived at the analogous “solution™ in their own
context. Gadamer's solution was that one establishes a
“dialogue™ between the “pre-understanding™ brought to
the text being read and the ideas expressed by the text
itself. The readermustthen modify the “preunderstanding”
using a synthesis of the new ideas of the text and the “old
understanding.” Thus, one builds to an understanding of
a given text through the spiraling process of reading,
dialogue (comparison) and synthesis of ideas.

The analogous situation in applied mathematics is
the “modeling cycle” [13]. The investigator observes the
“natural phenomenon™ and conjectures what the most
significant factors affecting the observed behavior and
the relationships among these variables are. A model is
then developed, which can include virtually any object or
technique considered to be within the realm of math-
ematics. Forthe sake of argument, we may assume the
model takes the form of some kind of equation (this is
usually the case, but not always). Then the model must
be analyzed mathematically. This is the “pure”or“abstract”
stage of the process. After a “solution” to the equation is
obtained or the mathematical analysis has been other-
wise completed the resulis are compared to the actual
observations. This is part of the measurement of the
association between sign and referent. If this compari-
son reveals that the representation is not adequate, then
more observations must be made and also more con-
jectures as to the missing “important factors.” Then the
existing model is usually modified to improve the ap-
proximation to (association with) the observations. The
process then continues until the researcher is satisfied
that the representation is sufficient for the intended
purpose. Ideally, the association between sign and
referent would become “perfect,” consistent with the
rigors of the axiomatics of pure mathematics. However,
if such a perfect correlation were possible, we would still
be faced with the problem of the incompleteness of the
axiomatic system. That is to say, it is possible that
questions may be asked that cannot be answered from
within the system itself. While the modeling cycle is a
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pragmatic answer to the problem of obtaining functional
representations of physical systems, the problem of
incompletenessis a limitation of the use of mathematics.

Despite the limitations, there are many attractive
features of the mathematical modeling method. Since
mathematicians have chosen to forego completeness in
favorof consistency, results derived fromthe mathematics
itself cannot be contradictory. The variables and relations
of mathematics, i.e. the vocabulary, is free of connotation.
Nageland Newman [16, p12] attribute this to the fact that
“the validity of mathematical demonstrations is grounded
in the structure of statements, rather thanin the nature of
aparticular subject matter.” Implicit in this view is that the
variables, their relations and the means of analysis are
clearly and unambiguously defined. In other words, with
a mathematical model one may create an idealized world
in which all variables and factors influencing them are
known and fully controlled. The point of view taken then
is that if some particular behavior is observed in the
idealized world, then one cannot exclude the possibility
of it occurring inthe “real”workd and possibly for the same
reasons. This can and will be expressed more strongly
dependingonthe degree ofthe sign-referent association.
In many cases, there is a way of measuring the extent of
this association. This measurement is based on the
simple fact that models have a certain predictive power.
Thus, in many instances one may compare the predic-
tions of the model with subsequent occurrences in the
“world of referents” and formulate a sense of confidence
or no confidence in the ability of the idealized world to
reflect this behavior. Besides being predictive, models
may indicate further areas of research, reveal funda-
mentals of the underlying dynamical processes observed
(subject to the degree of sign/referent association), or,in
some cases, discover previously unknown relationships
between variables. Finally, a great advantage of math-
ematics is that its results are reproducible. Thatisto say,
if two investigators accept the same axiomatic system
and the same hypotheses conceming the phenomenon
in question, both will obtain the same results. This is
Russell's observation about “philosophers” arguing from
“methods derived from logical analysis." The modelers
or philosophers may argue about axiomatic systems or
hypotheses but once these are fixed, so are the results.

IV, lllustration

To make the ideas discussed inthe previous sections
more concrete, consider the following examples from
epidemiology. Among the first models of this type are
those constructed by Kermack and McKendrick [15]. The
book by Bailey [3] treats such equations but is also a
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comprehensive introduction to the subject matter with an
extensive bibliography. The models presented here are
from Hethcote [12]. They were selected for several
reasons. First, they are from a field of investigation in
which the analytic tool of mathematics has not yet been
fully accepted. Second, they do invoive typical modeling
techniques. Third, they are qualitative in the sense that,
while they involve parameters which cannot be measured
(or have not yet been measured), they nevertheless may
indicate significant characteristics of epidemics.

The objective of mathematical modeling in epidemi-
ology is understanding better the dynamic factors influ-
encing the spread and/or maintenance of acommunicable
disease throughout a population. This information may
be usefulindesigning strategies for reducing the incidence
of the disease or eliminating it altogether. Indeed, much
mathematical research is now being done to understand
the dynamics of AIDS. (See Jacquez. et. al.[14], and the
references there.)

Itis easy to posit many factors which could contribute
to the transmission of a disease. For example, some
diseases are incurable, some the body will eventually
overcome; some confer immunity, some don't; some are
preventable by immunization, others must runtheircourse.
Many diseases are transmitted from person to person,
some from animalto person or vice versa and some even
travel from person to animal to person. Sometimes it is
possible for a person to be a carrier of the disease, i.e. to
transmit the disease without demonstrating the symptoms.
The population dynamics may also play arole. Individuals
may enter or leave a population through birth and death
or through emigration or immigration. The age of indi-
viduals in the population could be important as well as the
presence and interference of other diseases. Sexual
promiscuity could be important (even outside the context
of epidemiology). Geographic location and spread among
numerous other factors may affect the disease.

To “break into” the modeling cycle, many simplifying
assumptions must be made. It may be validly arguedthat
these assumptions are too restrictive to provide a real-
istic representation of the transmission of disease, but it
must be kept in mind that this is simply the first step in the
process. Theintentisto improve the initial models. Atthe
outset, the following definitions and assumptions will
then be made:

1) A susceptibleis an individual who does not have the
disease in question but is capable of contracting it.
The setof all susceptiblesis the susceptible class. The
fraction of the population that is susceptible is called
the susceptible fraction and at time t will be denoted
by S(t);
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2)

3)

4)

5)

6)

7)

8)

8)
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An infective is an individual who has and is actively
transmitting the disease or at least contacting other
individuals sufficiently to transmit the disease.
Definitions for infective class, infective fraction and
I({t) are analogous to those above;

A removed is an individual who, by any means
(immunity, inoculation, isolation) is not invoived in
the susceptible-infective interaction. The removed
class and fraction and R(t) are also defined as above.

Each individual in the population must be in one of
the three classes described above. Thus, S(t) + I(t)
+R(t)=1forallt.

Diseases will be classified by the epidemiological
states through which an individual passes in the
course of the disease. Thus, an Sl disease is one
inwhich the susceptible becomes infective and never
recovers. Herpes simplex is an example. An SIS
disease is one that can be cured, but confers no
immunity. Anexample is gonorrhea. A disease that
confers permanent immunity is an SIR disease.
Measles is such a disease.

A contactis any interaction between an infective and
any other individual in the population that is sufficient
to transmit the disease if the other individual is
susceptible. The contact rate, A, is the average
number of contacts per unit time per infective. We
will assume that the contact rate is constant.

The population size, N, will be assumed to be large
and constant. This assumption is largely math-
ematically motivated. It allows a tractable model to
be developed. It is, however, bioclogically defensible
if the disease is to be studied over a relatively short
period of time.

The population is assumed to be homogeneously
mixing . This means that the probability of any two
individuals coming in contact with one another is the
same. This is admittedly restrictive, but again, a
tractable model is then possible. This restriction can
then be removed by considering the population to be
composed of several homogeneously mixing sub-
populations, so the difficulty may be overcome.

The susceptible-infective interaction is assumed to
follow the “law of mass action” from physics. This
means that the rate of loss from the susceptible class
(gain in the infective class) is proportional to the
product of the susceptible and infective fractions.
This is perhaps made clearer by the following devel-

opment: NS(t) is the actual number of susceptibles.
(NS(t))" is simply the mathematical notation for the
rate of change per unit time of the number of
susceptibles. Each infective contacts A individuals
per unit time and there are NI(t) infectives, so a total
of ANI(t) individuals are being contacted per unit
time. However, not all those contacted are suscep-
tible. In fact, only S(t) (the susceptible fraction) are
susceptible, so the rate of loss from the susceptible
class due to the susceptible-infective interaction is
given by —ANI(t)S(t).

10) Recovery from the disease will be assumed to follow
the “law of exponential growth and decay.” That is,
the rate of loss from the infective class due to
recovery is proportional to the size of the class. This
is the same assumption made in radioactive decay
or, in another context, the calkulation of interest
compounded continuously (at 5.5% interest com-
pounded continuously, the rate of change of the
amount of money is .055 x Amount, or A" = .055A).
The principle involved is that the rate of growth or
decay is proportional to the amount present. Thus,
the rate of loss from the infective class due to
recovery is given by —yNI(t). yis called the recovery
rate (it is analogous to the .055 above).

Assumptions 6 through 10 are debatable. They do,
however, allow a model to be created. Noting that
(NS(1))", (NI(t))", (NR(t))" represent the rates of change
per unit time of the numbers of susceptibles, infectives
and removeds respectively, the model becomes the
following system of equations:
(NS(t))” = —ANI(t)S(t)
(NI)” = ANI@BS(H) — yNI()
(NR(t))" = yNI(t)

and  NS(0) + NI(0) + NR(0) =N, NI(0)>0

We will not actually do a detailed analysis of this
system of equations; it is presented only for the sake of
discussion and illustration. Notice that the individuals
leaving the susceptible class (first equation) go into the
infective class (second equation) and those leaving the
infective class (second equation) go into the removed
class. The last equation simply says that initially (t=0)
everyone in the population falls into one of the three
categories andthat we do have some infectives (NI(0)>0).
Notice also that i) all variables are explicitly defined, ii) all
relationships between the variables are demonstrated,
and iii) the only dynamic factors involved are the sus-
ceptible/infective interaction and recovery. Although the
mathematical analysis is not pertinent to the present
study, we can see from the following mathematical cal-
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culations that the model is inadequate for certain dis-
eases, and hence by refining the model, we will illustrate
the modeling cycle. Notice that if the disease is in an
endemic equilibrium, thatisto say, has stabilized at some
persistent level inthe community, then the rate of change
of NS(t) and NI(t) must be zero. This yields, from the
second equation, that

0= AlS -yl

Factoring out the common factor of |, we obtain the
equation 0 = I(AS —7). So, either | =0 and the disease
dies out (no infectives), or 120 inwhichcase AS —y must
be zero, so S =v/A. If thisisthe case, then —ANIS cannot
be zero, so the rate of change of the number of susceptibles
cannot be zero and we would not be at an equilibrium.
This is a contradiction. Therefore, the only possibility is
that at equilibrium | = 0. The disease dies out. This is
unsatisfactory based on physical observations. Measles
is an SIR disease and therefore should have these
dynamic characteristics, but has shown no tendency to
die out. To follow the modeling cycle then, we must make
new conjectures as to the important dynamical factors
determining the spread of the disease. Since a disease
following explicitly the old assumptions would eventually
“run its course™ and die out, perhaps the introduction of
new individuals into the population would replenish the
depleted pool of susceptibles. Following through on this
conjecture we make the assumptions:

11) Births and deaths occur at the same rate, a (expo-
nential growth and decay as above). Note that the
assumption of exponential growth in all cases in
which it is assumed is also subject of “verification”
through the comparison phase of the modeling cycle.

12) There are no disease-related deaths. So, deaths
occur at the same rate in each class.

13) Birthrate equals deathrate. This is a mathematical
assumption to guarantee thatthe population remains
constant; and

14) All newbomns are susceptible. Since maternal anti-
bodies confer temporary immunity, a “newborn” is
defined to be a child of 12-15 months.

Building on the old model, the new model becomes
(NS(t))" = =ANIt)S(t) + aN - aNS(1)
(NIt))" = A()S(t) — ¥NIt) — aNI(t)

(NR(t))" = yNI) — aNR(t)
NS(0) + NI(0) + NR(0) = N
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The infectious contact number , o, is defined to be
the average number of contacts per infective per infec-
tious period. The analysis of the new model yields that
o =N(y+a)andthe result that if ¢ >1, then the disease
remains in the population. This seems to give a more
realistic prediction of the behavior of the disease thanthe
original model. One conclusion that may be drawn from
this is that the “vital dynamics™ (births and deaths) are
important in creating the behavior in the model that is
actually observed in human populations. it then may be
the case that the introduction of new susceptibles into the
populationis essential inthe transmission characteristics
of some diseases. There are, of course, many questions
and objections that may be raised, among which are:

1) Why shouldthe contact rate be constant? Inschools,
for example, winter contact rates should be much
higher than summer contact rates.

2) Thedisease may be affected by spatial (geographic)
spread.

3) What happens if the population size is allowed to
vary?

4) How might the effect of immunization programs be
studied?

5) Is the assumption of homogeneous mixing too se-
vere?

6) What aboutthe effects of immigration and emigration?

Most of these questions can and have been ad-
dressed by researchers in this area. Many interesting
possibilities for explanations of the occurrence and
transmission of communicable diseases have been
suggested along with indications of areas of investigation
not considered before the introduction of the modeling
method — another benefit of the modeling approach.

V. Conclusion

If the language of mathematics is considered as a
symbolic order with a very precisely defined syntax
(axiomatic system), the distinction between pure and
applied mathematics may be drawn through the treatment
of sign versus referent. Pure mathematics considers the
symbolic order itself as the subject of investigation, thus
referents are not necessary. Applied mathematics, on
the other hand, must deal with referents, and through an
association which always seems to be imperfect.




The goal of applied mathematics is to become “pure”
in the sense of working toward a perfect association
between sign and referent so that the syntax of pure
mathematics may be applied and only the signs need to
be analyzed. The problem in the realm of pure math-
ematics is that it cannot solve all problems that may arise.
Itis incomplete. Acceptingthis, the applied mathematician
nevertheless works toward the goal of the perfect asso-
ciation through the modeling cycle — a process designed
to understand the phenomenonto which the mathematics
is being applied. The interpretation of the results obtained
through a mathematical model must be taken in the
sense that, if a certain behavior of the model is observed,
one cannot exclude the possibility of it occurring in the
observed phenomenon and possibly forthe same reasons.

The illustration of the modeling cycle in epidemiology
showed how conjectures about the dynamical factors
affecting the spread of infectious disease could be rep-
resented by equations. Thus, a system of signs was
developed to analyze the behavior of physical referents.
First the equations proved to be inadequate, but upon
improvement, “behaved”wellwhile revealing an additional
factor (vital dynamics) not initially considered.

Now, one may think that modeling is very fruitful in
those areas of inquiry to which it is applicable but leaves
the guestion of identification of these areas open. The
identification question may also be approached through
the philosophy presented here. Are there phenomena so
complex that they cannot be analyzed through the
mathematical method? This must be rephrased (gen-
eralized) to ask whether there are phenomena so com-
plex that they cannot be understood by human beings.
The answer is “probably.” However, the mere factthat a
subject is being investigated at all is admissionthat those
carrying out the investigation believe that some under-
standing may be achieved. The most pertinent response
to the question posed above is that the “sufficient”
complexity of the phenomenon in question cannot be
determined a priori. In this sense, the modeling cycle
could actually result in the conciusion that the math-
ematical method is inadequate for the problem at hand.
But this in itself would be a significant contribution to the
understanding of the phenomenon (if only to under-
standing its complexity). The major resuit of our study is
that mathematical modeling may be considered as a
particular form of philosophical discourse and as such
should not be discounted as an approach to understand-
ing.

There are special cases in which the “validity” of a

particular model in science has been “proven.” The
connotation of the word “proven” in this case means that
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the model has “pragmatic validity.” For example, predic-
tions of chemical reactions based on present atomic
theory are very consistently correct. The question of
whether matter actually is made up of atoms then be-
comes irrelevant. We have a model and a high degree of
association between model and observations. The first
atomic theories however were not entirely adequate.
The model has undergone many changes in recent
decades. Inone sense, the modeling cycle assumes that
models are accepted only until they are “refined” or
“replaced.” As situations arise in which a model has
been reformulated, the “new™ model replaces the old,
thus guararnteeing the evolution of the field in aconstructive
direction.

In those areas under mathematical investigation
where the “pragmatic validity™ has yet to be proven or
where a controversy exists concerning mathematical
applications at all, modeling must be consideredto be the
type of philosophical discourse mentioned above. Inthis
light, the boundaries betweenthose traditional “sciences”
and the “non-quantitative™ subjects have been identified
and they are vague. If the argument against the math-
ematical method is that it cannot provide us with “truth,”
then we must reject any means of discourse, since none
yet have succeeded in providing “truth.” On the other
hand, as a form of discourse, the conclusions from the
argumentation are always subject to human interpreta-
tion, acceptance or rejection.
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