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THE HERMENEUTICS OF MATHEMATICAL MODELING

David Tudor
Mathematics Department

Bradley Unwersity
Peore. lJIinois

I. Introduction

Mathematics is a language. Thos e who speak this
language frequently use it to describe the world around
them. As in any language, signs (words, symbols,
signifiers) are created 10 represent those objects of
discussion in the language 120,23]. Depending on the
existence of physical referents for the signs created .
points of view may fall into two broad categories. There
are thos e who believe phi losophically that. physical ref­
erents are not necessary, that the on ty meaningfu l dis­
course in the language is through the signs and their
relationships to one another. These are the "pure
mathematicians" (or,one maycall them "structuralists·).
On the other hand, the non-structuralists, or -applied
mathematicians: attempt to construct a "symbolic order"
or sub- language of mathematics which. ideal ly. would be
a perfect repr esentation of some physica l ("real world")
phenomenon. This represent ation would be -pertecr in
the sense that every change in the ' real wor1d· would be
reflected by a corresponding change in the "symbolic
world" and vice versa . In other words, the transformation
relating the "real world· to the "syrroolic world· would be
explicitly known. This does not seem like ly to occur. Yet .
the predictive power and pragmatic applicahon of
mathematics has produced undeniable results in science
and technology. The ob ject ive. then, of the applied
mathematician is to minimize, in some way. the dis ­
crepancy between the behaviorof the syrroorusec inthe
symbolic wo rld and that of the object represented in the
real world . In other words, applie d mathematics is
constantly evolv ing towards pure mathematics because
the ultimate goal 01the former is to ignore the discrepancy
between sign and referent and to exist solely within the
realm of the symbolic wortd .

This essay invest igates some of the historica l and
philosoph ical background of the division between pure
and applied mathematics. The "symbo lic order" con­
structed by the pure mathematician and used by the
applied mathematician to describe the "real world~ is
called a mathematical model. The nature, interpretation
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and limitations of the mathematical model are also dis­
cussed. Ail illustration of the means used by applied
mathematicians to drive the abovementcoed evcutonary
process toward pure mathematics is given. This process,
the "modeling cycle, · is presented as a response to the
"hermeneutic circle" of applied mathematics. The term
"hermeneutic circle" (borrowed from the theory of literature
(8,9)) refers to the dilerrvna that , before a model is
developed, one must know the rrrconaot factors con ­
tribut ing to the phenomenon under investigation but, in
order to know these factors . one shOuld first develop a
model.

It is hoped that a better understanding of fhe objec­
tives and limitations of the use of mathematical models
will contribute to the increased acceptance of them as a
means of providing add itional informat ion and perspec ­
tives in areas of research traditionally considered 'ron­
quantitative." The crudal factor in this understanding is
the analys is of the connection between philosophy and
theory, pragmatism and applicat ion.

II. History and Theory

Plato is seen by many as one of the major figures
contri:xJting to the Iogocentnc nature of western ph j.
Iosophy. logocentrism sets forth the premise that there
is adivision between word and thoug ht {21. p165H]. Plato
was consistent in maintaining this dichotomy and in the
aepubtc. applied it to his view of mathematics:

. . . those who deal with geometries and calcu­
lations . . . take for granted ... th ings cog nate...
in each fie'd of inqu iry; assuming these things to
be known, they make them hypotheses, and .. .
sett ing out from these hypotheses, they go at
once through the remainder of the argument until
they arrive with perfect consistency atlhe goal to
which their inquiry was directed.... although
they use visible figures and argue about them,
they are not thinking about these figures but of
trcse things which the figures represent.
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(Strictly adhering to Platonic belief, the constructs of
mathematics represent "disembodied eternal terms.' or
"arcnetypes" which are perceived only by the intellect.)
For subsequent philosophers also, this was the prevail­
ingviewin mathematics- it always·represented"' some­
thing. Mathematicians were construd ing a language
with which they could describe the world around them.
Thisdescriptionwasaccomplishedthroughwhat istoday
called a 'mathematical model:

There are two general categories of models. iconic
and symbo fic[7] . An iconic model is one thai is intended
to resentlle in someway the object modeled. A "moder
train would be an example. Although the determination
of "iconic~versus ·syrrtxllic- is oftencontroversial,a road
map or a schematic diagram of some electrical circuit
may also be considered to be an iconic model. A
symbolic model is one that is not iconic. This type 01
model olten takes the form of some lUnd of equation
whose variables represent some quantities in nature.
Descartes introduced the association of iconic and
syrreotc modelS in rrodem mathematics. Herepresented
algebraic relations between variables in a geometric
~Cartesian coordinate system" (the type 01 coordinate
system used in road maps). Thus an explicitlydemon­
strable relationship between the iconic and symbolic
model contributedgreatly to the facility with which later
models could be built and analyzed.

The distinction "pure· and ~applied" mathematicsdid
not exist until the second halt of the 19th century. Until
then, the manipulation of the symbols of mathematics
was simply a necessary part of the use 01 the ·symbolic
order" used to describe the non-mathematical world.
Indeed, therewas no need to study pure mathematicsof
ftsef until inconsistencies incertain predictionsbasedon
interpretations 01 the mathematics forced the consider­
ation of the logical foundations of mathematics ttseft,

Thus,at the endof the 19thanclbeginningof the 20th
centuries, about the time that Ferdinand de Saussure
was searching to define the basic ~signs· and'Values~or

"s ignif icat ions~ of linguistics (20], Bertrand Russell and
otherphilosophers and mathematicians wereanerJl)ting
to reduce language (and hence mathematics) to a fun­
damentalctassot irreducibleobjects, thusgeneratingthe
entirespectrumof validclaimsconcerningthe"language~

[22, 23J. In mathematics this meant that for eacharea. a
set of axioms was sought from which all valid theorems
may be deduced. This property of a set of axioms is
called Mcompleteness." Perhaps a moredesirableprop­
erty of a set of axioms is that they be ~consistent . · This
means that one must not be able to prove the validity of
a proposition and its negation trom the given axioms.
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Hilbert, Russell and Whitehead (see (22]) believed
wholeheartedly in the possibility of establishing such
axiomatic systems and spent a tremendous eNort in
attempting it. Kurt GOdel, in his anicle ~Ober formal
unentscheidbare Satze dar Principia Mathematica unci
verwandlerSysteme I,· [11, 16)finally settled the QUes­
tion in a most unsettling way. He first restricted his
attention to the set at integers, that is, the usual whole
numbersof arithmetic 0, ±1.±2. Hethen proved that for
this most primitive "world· the axiomatic method has
inherentlimitations inthefollowingsense. "the axiomatic
system iscomplete, then it will be inconsistentand if the
system is restrided enoughto bEt consistent, then there
are propositions concerning the integers which cannot
be proven 'rom this consistent system. Since an incon­
sistent systemis entirely unpalatable to the mathematl­
cian, consistent axiomatic systems are used at the ex­
pense of completeness. Thus the working mathemati­
cian is fully aware that there are most likely questions
which maybeaskedbut maynot be resolvedfromwithin
the system.

RusseU had already happened upon what is now
called -RusseU's Paradox· [22, p124-125 , p153) which
foreshadowed GOdel's discovery. The most popular
form of thisparadoxisto considera barber in a townwho
shaveseveryone whodoes not shave himself. Doesthe
barbershavehimself? Now, iIthebarbershaveshimself,
thenhe mistbeoneof thosewhodonl shavethemselves.
Therefore,heecesnt shavehimsell. On the oltler hand.
ifhe doesnl shavehimself, then he isoneof thosewhom
the barbershaves. sohe rnrst shavehimself. Etherway
we answer, we arriveat a contradiction. In Set Theory,
Russell'sParadox takesthefollowingform: Let S bEt the
set of all setswhich are not elementsof themselves. Is
S an elementof itself?

Thus, one of the rn:>st important consequences of
the 19th and 20th century developments in the k>gical
foundationsol mathematics is that it is possible to prove
the impossibility of proving something. Russell noted
the impactofsuchanadvanceon philosophical discourse:
"Those philosophers who have adopted the methods
derivedfromlogicalanalysiscanarguewith one another,
not in theoldaimlessway, but cooperatively, so that both
sides can ccrccr as to the outcome.· This, of course,
rerersto the·conditionar natureof modem mathematics
(both pure andapplied), which Russell (19) hUmJrously
expresses thus:

Westart,inpuremathematics, fromcertain rules
of inference, by which we can infer that if one
proposition is true, then so is some other
proposition. These rulesof inferenceconstitute
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the major pan of the principles of formal bgic.
We then take any hypothesis that seems
amusing, and deduce its consequences. "our
hypothesis is about anything , and not about
some one or more particular th ings, then our
dedudions constitute mathematics. Thus math­
ematics may be defined as the subject in which
we never know what we are talk ing about. nor
whether what we are saying is true.

Having examined some 01 the historical background
and theoretical limitations of mathematics (and hence its
applications), we address, in the next section some of the
responses to the problems arising from the theory .

III. Pragmatism and Henneneutlcs of Mathematical
Modeling

Suppose one wishes to invest igate some aspect of a
particular fie ld of inqu iry and el1"ploys mathematics as a
part of the ana lysis used to carry out the study . Variables
(signs) are created wh ich represent entities (referents).
The method is to establish the behavior of the signs and
make conclusions about them. Since mathematical
syrrt>ols are not the objects they represent, the question
then is in what way one cou ld in applied mathematics
assert that Monly the behavior of the signs need be
understood"? The answer isin the degree of association
between sign and refe rent . In other words, a perfect
association would mean that "eventsMtaking place in the
model would be pertedly reflected in the objed or phe ­
nomenon being modeled and vice versa . Thus, the
axioms governing the mathematical order would obtain
for the model. This association and the degree of it are
the two major goals (and problems) 01 mathematical
modeling. The Mpragmatic soluucn" 10 the problem 01
creat ing the association nust. of course . beg in w ith the
construction of the model. Oneuses mathematics - or
any method of ana lysis , for that maner - in order to
unde rstand something. So, in order to bu ild a math­
ematical model.one decides firstwhat the most influential
factors goveming the observed phenomenon adually
are. One then represents them as variables and bu ilds
the model. But, in order to decide upon these -rrcst
infu ential factors- one must alread y understand the
"obse rved phenomenon: The aChievement of this un­
derstanding is. however, the orig inal reason for bu ilding
the mathematical model, This is a problem in general
hermeneutics, the theory of interpretation which in lite r­
ary terms Abrams I' l def ines as "a formulation of the
procedures and principles involved in gening at the
meaning of all written texts." In discussing the tneory of
understanding texts . Dilthey labeled the probl em of not
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understanding the whole without understanding its
component parts and not understanding the parts with­
out understanding the who le, the "hermeneutic circle- lt .
p84] , Thus. anyone including mathematics as part of the
process of understanding is con fronted with the "math-­
ematical hermeneutic circ le· introduced above: how can
1heobjectof invest igat ion be understood without a model,
and how can a model be built without: understanding the
object alread y?

Dilthey (5,6J and, more specifically, Gadamer 18,91
advocated an approach to overcome the problem of the
hermeneutic circle and , interestingly, mathematicians
have arrived at the analogous Msolution~ in their own
context. Gadamer's solution was that one establishes a
Mdialogue- between the "pre-understanding" brought to
the text being read and the ideas expressed by the text
itself . The reader must then rrodifythe "preunderstanding­
us ing a synthes is of the new ideas of the text and the Mold
understanding.~ Thus, one builds to an understanding of
a given text through the spiraling process of read ing.
dialogue (comparison) and synthesis of ideas.

The analogous situation in applied mathematics is
the '"mOdeling cycle" (13]. The investigator observes the
"natural phenomenon- and conjectures what the most
sign ificant factors aHeeting the observed behavior and
the relationsh ips among these variables are . A mode l is
then developed. wh ich can inctude virtualty any object or
technique considered to be within the realm of math­
ematics. Forthe sake 01 argument . we may assume the
model takes the form of some kind of equation (this is
usually the case. but not always). Then the model must
be analyzed mathematically. This isthe"p..Jre"orMabstraet~
stage of the process. After a "solution" to the equation is
obtained or the mathematical analysis has been ether­
w ise ccrroreted the results are compared to the actual
observations. This is part of the measurement of the
assoc iation between sign anc referent. If this ccrreen­
son revea ls that the representation is not adequate, then
more observations must be made and also more con­
jectures as to the m issing -il'll>Ortant factors: The n the
existing model is usually modified to jrrorcve the ap­
proximat ion to (association with) the observat ions . The
process then ccntirares until the researcher is satisfied
that the repre sentahon is suff icient for the intended
purpose. k:IealJy, the association between sign and
referent would become 'perfect, " consiste nt with the
rigors of the axiomatics of pure mathematics. However.
if such a pertect correlation were possible . we would still
be faced with lhe probl em of the incompleteness of the
axiomatic system . That is to say. it is possible that
questions may be asked that cannot be answered from
within the system itself. While the modeling cycle is a

HMN Newsletter #6



pragmatic answer to the problem of obtaining functional
representations of physical systems, the problem of
incompleteness is a limitationof the use01mathematics.

Despite the limitations, there are many attractive
features of the mathematical modeling method. Since
mathematicians have chosen to foregocompleteness in
favorofconsistency,results derivedtramthemathematics
itself cannotbecontradictory. Thevariablesandralations
of mathematics,Le.thevocabulary, isfree01connotation.
Nagel andNewman[16,p12] attributethis tothe fact that
'th evalidityof mathematicalderronstratons isgrounded
in the structure of statements, rather thanin the natureof
apancu larsubjectmatter.· Illl'licit in thisview is that tne
variables, their relations and the means of analysis are
clearly andunambiguouslydefined. Inotherwords,with
a mathematical modelone maycreatean idealizedworld
in which all variables and Iactcrs influencing them are
known and fully controlled. The point of view taken then
is that if some particular behavior is observed in the
idealized world, then one cannot exclude the possibility
of itoccurring in the·rear· worldandpossiblyforthe same
reasons. This can and will be expressed rrcre strongly
dependingon thedegree01 thesign-referent association.
In many cases, there is a way of measuring the extentof
this association. This measurement is based on the
simple fact that modelshave a certain predictivepower.
Thus, in many inslances one may compare the predic­
tions 01 the rrcdet with subsequent occurrences in the
'"world of reterems" and formulate a sense of confidence
or no confidence in the ability of the idealized world to
retect this behavior. Besides being predictive, models
may indicate further areas 01 research , reveal funda­
mentalsof theunderrying dynamicalprocessesobserved
(subject to the degreeof sign/referentassociation), or, in
somecases, discover previously unknown relationships
between variables. Finally. a great advantage of math­
ernatc s isthat its results are reproducible. That isto say,
if two investigators accept the same axiomatiC system
and the same hypotheses concerning the phenomenon
in question, both will obtain the same results. This is
Russell's observationabout"philosophers· arguing from
' methods derived tram logical analysis.~ The modelers
or philosophers may argue aocut axiomatic systems or
hypotheses but once these are fixed, so are the results.

IV. illustration

Tomakethe ideasdiscussed in theprevioussections
more concrete, consider the following examples from
epidemiology. Among the first models of this type are
thoseconstructedbyKermackandMcKendricx (15]. The
book by Bailey (3) treats such equations tx.rt is also a
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comprehensive introductionto the SUbjectmatterwithan
extensive bibliography. The models presented here are
from Hethcote [12). They·were selected for severa!
reasons. First. they are from a field of investigation in
which the analytic tool of mathematics has not yet been
fully accepted. Second, theydo involvetypical rrodeling
techniques. Third, they are qualitative in the sense mat,
whilethey involve parameterswhichcannotbemeasured
(or havenot yet been measured), they neverthelessmay
indicate significant characteristics of epidemics.

The objective of mathematical modeling in epidemi­
ology is understanding better the dynamic factors intlu­
encingthespread andiormaintenance ofacomrnmcabte
disease throughouta population. This information may
beusefulindesigningstrategiesfor reducingtheincldence
of the disease or eliminating it altogether. Indeed"much
mathematicalresearch is nowbeing doneto understand
thedynamics of AIDS. (See Jacquez. et.al. [14J,and the
references there.)

It is easyto positmany factorswhichcouldcontribute
to the transmission of a disease. For example. some
diseases are incurable. some the body will eventually
overcome; some confer immunity, somedon't; some are
preventable by immunization,othersmustruntheircourse .
Many diseases are transmitted from person to person,
somefromanimal to person crvke versaandsomeeven
travel from person to animal to person. Sometimes it is
possible for a person to be a carrier 01 the disease, i.e. to
transmitthediseasewithoutdem::>nsttatingthesY"lltoms.
Thepopulationdynamicsmayalsoplaya role. Individuals
may enter or leave a populationthrough birth and death
or through emigration or immigration. The age of indi­
viduals in thepopulationcouldbe importantaswell asthe
presence and interference 01 other diseases. Sexual
promiscuity couldbe important (evenoutsidethecontext
of epiderruoJogy). Geographiclocationand spreadamong
numerousother factors may affect the disease.

To '"break into· the modelingcycle, manysimplifying
assumptionsmust be made. It maybe validlyarguedthat
these assumptions are too restrictive to pro...ide a real­
istic representation 01 the transmission 01 disease, but it
must be kept in mind that this is simply the first stepin the
process. Theintentisto trrcrcve tne initial models. At the
outset, the following definitions and assumptions will
then be made:

' ) A susceptible is an individualwho doesnot have the
disease in question but is capable of contracting it.
Theset 01 all susceptiblesisthewsceptibleclass. The
fradionof the population that is susceptible is caned
the susceptible fraction and at timet will be denoted
by $(1);
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An infectNe is an individual who has and is actively
transmitting the disease or at least contacting other
individu als sufficiently to transmit the disease.
Definitions for infectNe dass, infectNe fraction and
I(t) are analogous to those above:

A removed is an individual who , by any means
(immunity, iflOQJlation. isolation) is not invotved in
the susceptible-infective interaction. The removed
class and fraction and R(t) are also defined as above.

Each inc:lividual in the population must be in one of
the three classes described above . Thus, $(t) + I(t)
+ R(t) • 1 for alit.

Diseases will be classified by the epidemiological
states through which an individual passes in the
course of the disease. Thus, an SI disease is one
inwhich the suscecube becomes infective and never
recovers. Herpes si~x is an example. An SIS
disease is one that can be cured, but confers no
immunity. An exarrore is gonorrhea. A disease thai
confers pennanent irrvnunity is an SIR disease.
Measles is such a disease.

A contact is any interaction between an infective and
any other individual in the population that is sufficient
to transmit the disease if the other individual is
susceptible. The contact rate, A., is the average
number of contacts per unit time per infective. We
will assume that the contact rate is constant.

The population size, N, will be assumed to be large
and constant. This assumption is largely math­
ematically motivated. It allows a tractable mocIelto
be developed. It is, however, biologically defensible
if the disease is to be studied over a relatively sbort
period of time .

The population is assumed to be homogeneously
mixing . This means that the probability of any two
individuals coming in contact with one another is the
same . This is admittedly restrictive. but again, a
tractable model is then possible. This restriction can
then be removed by considering the population to be
composed of several homogeneously mixing sub­
populations. so the difficuhy may be overcome.

The susceptible-infective interaction is assumed to
tollow the "law of mass acton" 1rom physics . This
means that the rate of loss from the susceptible class
(gain in the infecti'Je class ) is propcncoar to the
product 01 the susceptible and infective fractions.
This is perhaps made clearer by the follow ing cevei-

opment : NS(t) is the actual nurroerot susceptibles.
(NS (t» ' is simply the mathematical notation 10r the
rete of change per unit time of the number of
susceptibles. Each infective contacts A. indivK1uals
per unit tifne and there are NI(t) infectives. so a total
of ANI(t) indi'Jiduals are being contacted per unit
time. However, not all those contacted are suscep­
tible . In fact , only S(t) (the susceptible fraction ) are
susceptible. so the rate of loss from the susceptible
class due to the susceptible-infective interaction is
given by -WI(I)S(I).

, 0) Recovery from the disease will be assumed to follow
the "law of exponential growth anc:l decay: That is ,
the rate of loss from the infective class due to
recovery isprcoortcnat to the size of the class . This
is the same assurrctcn made in radioactive decay
or, in another context, the calculation of interest
compounded cont inuously (at 5.5% interest com­
pounded continuously, the rate of change of the
amount of money is .055 x Amount, or A' .. .OSSA).
The principle involved is that the rate of growth or
decay is prcportcnar to the amount present. Thus .
the rate of loss from the infecti'Je class due to
recovery isgiven by ~NI(t) . ris called the reCXJvery
rate (it is analogous to the .055 above) .

Assu~ions 6 through 10 are debatable. They do ,
however, allow a rrcdel to be created. Noting that
(NS(I))", (NI(I))" , (NR(I))" represent Ihe rates of change
per unit time of the numbers of susceptibles, infectives
and removeds respectively, the model becomes 1he
following system of equations:

(NS(I))" • -WlltIS(I)
(NI(I))" • WIII)SII) - yNI(11
(NR(I))" • y NI(tl

and NS(O) + NI(O)+ NR(O) • N, NI(O) > 0

We will not actually do a detailed analysis of this
system 01 equations: it is presented only lor the sake of
diSQJssion and illustration. Notice that the individuals
leaving the susceptible class (first equation) go into the
infective dass (second equation) and those leaving the
infective class (second equation) go into the removed
class. The last equation simply says that initiaUy (t.O)
everyone in the popu laHon falls into one 01 the three
categories and that we do have some infedives (NI(O» O) .
Notice also that i) all variables are explicitly defined . ii) all
relationships between the variables are demonstrated ,
and iii) the only dynamic factors involved are the sus­
ceptotenntecwe interaction and recovery. Atthough the
mathematical analysis is not pertinent to the present
study . we can see from the following mathematical cal-
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cutatons that the model is inadequate for certain dis­
eases, and hence by refiningthe model, we will illustrate
the modeling cycle. Notice that if the disease is in an
endemicequilibrium,that isto say, has stabilizedat some
persistent level in theconvnunity,then the rate ofchange
01NS(t) and NI(t) rrust be zero. This yields, from the
second equation, that

O . ).15 - yl

Fadoling out the convnon factor of I, we obtain the
equation 0 - I(AS --y) . So, either I _ 0 and the disease
diesout (noinfedives),or 1'11:0 lnwhichcase ),.$-1 1TIJst
be zero,so S_ "f)... lfthisisthecase,then -ANIScannot
bezero,sothe rateofchange oftherurrberof susceptibles
cannot be zero and we would not be at an equilibrium.
This is a contradiction. Therefore, the only possibility is
that at equilibrium I ,. O. The disease dies out. This is
unsatisfactorybased on physical observations. Measles
is an SIR disease and therefore should have these
dynamic characteristics, but has shown no tendency to
dieout. To follow therrodelingcycle then,we mustmake
new conjectures as to the important dynamical factors
determining the spread 01 the disease. Since a disease
following explicitly the old assumptions would eventually
'run its course- and die out, perhaps the introduction of
new individuals into the population would replenish the
depleted pool of susceplibles. Following through on this
conjecture we make the assurrctcns:

11) Births and deaths occur at the same rate, a (expo­
nential growth and decay as above). Note that the
assumption of exponential growth in all cases in
which it is assumed is also subject 01 "verification­
throughthe comparisonphaseof the modelingcycle.

12) There are no disease-related deaths. So, deaths
occur at the same rate in each class.

13) Birthrate equals deathrate. This is a mathematical
assumption toguaranteethat the population remains
constant; and

14) All newborns are susceptible. Since maternal anti­
bodies confer temporary irTVT'llnity, a "newborn- is
defined to be a child of 12-15 months.

Buik::l ing on the old model. the new model becomes

(NS(I))" • -ml(I)S(I) + aN - aNS(I)
(NI(I))" • l.(1)S(I) - YNI(I) - aNl(!)
(NR(I))" • YNl lt ) - aNR(t)
NS(O) + NI(O) + NR(O) • N
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The infectious contact ramoe« , a, is defined to be
the average number of contacts per infedive per infec­
tious period. The analysisof the new model yields that
a = ')J(r + a ) and the result that if (J >1 • then the disease
remains in the population. This seems to give a more
realistic predictionof thebehaviorof the disease thanthe
original model. Oneconclusionthat may be drawn from
this is that the .....ital dynamics- (births and deaths) are
important in creating the behavior in the model that is
actuallyobserved in humanpopctancos. It then may be
thecase that the introdUCIionof newsusceptiblesinto the
populationis essentialinthe transmissioncharacteristics
of some diseases. Thereare, ofcourse, many questions
and objections that may be raised. among which are:

1) Why shouk::lthe contaCl ratebeconstant'? Inschools,
for exal'l'l'le . winter contact rates should be rruch
higher than summer contact rates.

2) Thediseasemaybeaffectedby spatial (geographic)
spread.

3) What happens if the population size is allowed to
vary'?

4) How might the effect of immunization programs be
studied'?

5) Is the assurrctcn 01 homogeneous mixing too se­
vere'?

6) Whatabouttheeflectsof immigration arxiemigration?

Most of these questions can and have been ad­
dressed by researchers in this area. Many interesting
possibilities for explanations of the occurrence and
transmission 01 communicable diseases have been
suggestedalongwith indicationsof areasof investigation
not considered belore the introduction of the rn::ldeling
method - anotherbenefit of the modeling approach.

V. Conclusion

If the language of mathematics is considered as a
syrrixllic order with a very precisely defined syntax
(axiomatic system), the distinction between pc.lre and
appliedmathematics maybedrawnthroughthe treatment
of signversus referent. Puremathematicsconsidersthe
syrrixllic order itse" as the subjectof investigation. tt1Js
referents are not necessary. Applied mathematics. on
the other hemet nust dealwith referents. andttvough an
association which always seems to be imperfeCl.
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The goal of applied mathematics is to beoome *pure­
in the sense of working toward a perfect association
between sign and referent so that the syntax of pure
mathematics may be applied and only the signs need to
be analyzed, The problem in the realm of pure math­
ematics is that it cannot solve all problems that may arise.
It is incomplete. Acceptingthis, the applied mathematician
nevertheless works toward the goal 01 the perfect ass0­
ciation through the modeling cycle- a process designed
to understand the phenomenon to which the mathematics
is being applied. the interpretation of the results obtained
through a mathematical model most be taken in the
sense that, if a certain behavior of the model is observed,
one cannot exclude the possibility of it occurring in the
observedphenomenon and possibly torthe same reasons .

The illustrat ion of the mode ling cycle in epidemiology
showed how conjectures about the dynamical factors
affecting the spread of infectious disease could be rep­
resented by equations. Thus , a system of signs was
developed to analyze the behavicr ct physical referents .
First the equations proved to be inadequate. but upon
irJl:lrovement. 'behaved-wenwhile revealing an additional
factor (vital dynamics) not initially considered .

Now, one may think that mJdeling is very fruitful in
those areas of inquiry to which it is applicable but leaves
the question of identification of these areas open. The
identification question may also be approached through
the philosophy presented here. Ale there phenomena so
complex that they cannot be analyzed through the
mathematical method? This must be rephrased (gen­
eralized) to ask whether there are phenomena so com­
plex that they cannot be understood by human beings .
The answer is "probably." However, the mere lactthat a
subject is being investigated at all is admission that those
carrying out the investigation believe that some under­
standing may be achieved. The most pertinent response
to the question posed above is that the -sufficient­
complexity of the phenomenon in question cannot be
determined a priori . In this sense, the modeling cycle
could actually result in the conclusion that the math­
ematical method is inadequate for the problem at hanc!.
But this in itselt would be a significant contribution to the
understanding 01 the phenomenon (if only to under­
standing its complexity). The major result of our study is
that mathematical modeling may be considered as a
particular form of ph ilosophical discourse and as such
should not be discounted as an approach to understand­
ing .

There are special cases in which the -Validity- of a
particular model in science has been "proven.- The
connotation of the word "proven- in this case means that

the model has "pragmatic validity: For example. predic­
tions of chemical reactions based on present atomic
theory are very consistently correct. The question of
whether matter actually is made up of atoms then be­
comes irrelevant. We have a model and a high degree of
association between model and observations. The first
atomic theories however were not entirely adequate.
The model has undergone many changes in recent
decades. In one sense,the modeling cycle assumes that
models are accepted only until they are 'refined" or
'replaced." As situations arise in which a model has
been reformulated, the "new" model replaces the old ,
thus guaranteeing the evolutionofthe field in aconstructive
direction.

In those areas under mathematical investigation
where the "pragmatic validity· has yet to be proven or
where a controversy exists concerning mathematical
applications at all. modeling must be consideredto be the
type 01 philosophical discourse mentioned above. In this
light, the boundaries between those traditional "sciences"
and the -non..quantitative- subjects have been identified
and they are vague . If the argument aga inst the math­
ematical method is that it cannot provide us with .,ruth.·
then we must rejed any means of discourse. since none
yet have succeeded in prOViding 'ruth." On the other
hand, as a form of discourse. the conclusions 1rom the
argumentation are always sUbject to human interpreta­
tion . acceptance or rejection.
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