# Toeplitz determinants with perturbations in the corners 

Albrecht Böttcher<br>Technische Universitat Chemnitz<br>Lenny Fukshansky<br>Claremont McKenna College<br>Stephan Ramon Garcia<br>Pomona College<br>Hiren Maharaj<br>Clemson University

## Recommended Citation

Böttcher, A., Fukshansky, L., Garcia, S.R., Maharaj, H., Toeplitz determinants with perturbations in the corners, Journal of Functional Analysis 268 (2015), 171-193.

# Toeplitz determinants with perturbations in the corners 

Albrecht Böttcher, Lenny Fukshansky, Stephan Ramon Garcia, Hiren Maharaj


#### Abstract

The paper is devoted to exact and asymptotic formulas for the determinants of Toeplitz matrices with perturbations by blocks of fixed size in the four corners. If the norms of the inverses of the unperturbed matrices remain bounded as the matrix dimension goes to infinity, then standard perturbation theory yields asymptotic expressions for the perturbed determinants. This premise is not satisfied for matrices generated by socalled Fisher-Hartwig symbols. In that case we establish formulas for pure single FisherHartwig singularities and for Hermitian matrices induced by general Fisher-Hartwig symbols. ॥\|]


## 1 Introduction

This paper was prompted by a problem from lattices associated with finite Abelian groups. This problem, which will be described in Section 2, led to the computation of the determinant of the $n \times n$ analogue $A_{n}$ of the matrix

$$
A_{6}=\left(\begin{array}{rrrrrr}
6 & -4 & 1 & 0 & 0 & 1  \tag{1}\\
-4 & 6 & -4 & 1 & 0 & 0 \\
1 & -4 & 6 & -4 & 1 & 0 \\
0 & 1 & -4 & 6 & -4 & 1 \\
0 & 0 & 1 & -4 & 6 & -4 \\
1 & 0 & 0 & 1 & -4 & 6
\end{array}\right)
$$

It turns out that $\operatorname{det} A_{n}=(n+1)^{3}$. What makes the matter captivating is that the determinant of the $n \times n$ version $T_{n}$ of

$$
T_{6}=\left(\begin{array}{rrrrrr}
6 & -4 & 1 & 0 & 0 & 0  \tag{2}\\
-4 & 6 & -4 & 1 & 0 & 0 \\
1 & -4 & 6 & -4 & 1 & 0 \\
0 & 1 & -4 & 6 & -4 & 1 \\
0 & 0 & 1 & -4 & 6 & -4 \\
0 & 0 & 0 & 1 & -4 & 6
\end{array}\right)
$$

is a so-called pure Fisher-Hartwig determinant. The latter determinant is known to be

$$
\begin{equation*}
\frac{(n+1)(n+2)^{2}(n+3)}{12} \tag{3}
\end{equation*}
$$

[^0]This formula was established in 3]. See also [5, Theorem 10.59] or 6]. We were intrigued by the question why the perturbations in the corners lower the growth from $n^{4}$ to $n^{3}$.
The general context is as follows. Every complex-valued function $a \in L^{1}$ on the unit circle $\mathbf{T}$ has well-defined Fourier coefficients

$$
a_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} a\left(e^{i \theta}\right) e^{-i k \theta} d \theta, \quad k \in \mathbf{Z}
$$

and generates the infinite Toeplitz matrix $T(a)=\left(a_{j-k}\right)_{j, k=1}^{\infty}$. The principal $n \times n$ truncation of this matrix is denoted by $T_{n}(a)$. Thus, $T_{n}(a)=\left(a_{j-k}\right)_{j, k=1}^{n}$. The function $a$ is usually referred to as the symbol of the infinite matrix $T(a)$ and of the sequence $\left\{T_{n}(a)\right\}_{n=1}^{\infty}$. For example, matrix (2) is just $T_{6}(a)$ with

$$
\begin{equation*}
a(t)=t^{-2}-4 t^{-1}+6-4 t+t^{2}=\left(1-\frac{1}{t}\right)^{2}(1-t)^{2}=|1-t|^{4} \tag{4}
\end{equation*}
$$

where here and in the following $t=e^{i \theta}$. The function $a(t)=|1-t|^{4}$ has a zero on the unit circle and therefore the classical Szegő limit theorem cannot be used to compute $\operatorname{det} T_{n}(a)$ asymptotically. Fortunately, $a(t)=|1-t|^{4}$ is a special pure FisherHartwig symbol, and for such symbols the determinants are known both exactly and asymptotically.
In Section 3 we consider the determinants of perturbations of $T_{n}(a)$ under the assumption that the norms of the inverses of $T_{n}(a)$ remain bounded as $n \rightarrow \infty$. In that case, under mild additional conditions, the determinants of the unperturbed matrices are asymptotically given by Szegő's strong limit theorem.
The (standard) techniques of Section 3 do not work for so-called Fisher-Hartwig symbols. This class of symbols was introduced by Fisher and Hartwig in 10 in connection with several problems of statistical physics. Paper 7 contains a very readable exposition of the entire story up to the recent developments. See also the books 4 and 5 . A pure Fisher-Hartwig symbol is of the form $a(t)=(1-t)^{\gamma}(1-1 / t)^{\delta}$. In particular, symbol (4) is of this form with $\gamma=\delta=2$. Determinants of perturbed Toeplitz matrices with pure Fisher-Hartwig symbols are studied in Section 4. Among other things, we there give an explanation of the growth drop from $n^{4}$ to $n^{3}$ when replacing (2) by (11). In Section 5 we consider the very general case of symbols $a \in L^{1}$ which are nonnegative a.e. on the unit circle and whose $\operatorname{logarithm} \log a$ is also in $L^{1}$. We there show that the quotient of the perturbed and unperturbed determinants approaches a limit as $n \rightarrow \infty$ and we determine this limit. The class of symbols treated in Section 5 includes the general positive Fisher-Hartwig symbols $a(t)=\left|t_{1}-t\right|^{2 \alpha_{1}} \cdots\left|t_{r}-t\right|^{2 \alpha_{r}} b(t)$ where the $t_{j}$ are distinct points on $\mathbf{T}$, the $\alpha_{j}$ are real numbers in $(-1 / 2,1 / 2)$, and $b$ is a sufficiently smooth and strictly positive function on $\mathbf{T}$.

## 2 The lattice of a cyclic group

The idea behind paper 11 is to associate a lattice with an elliptic curve and then to connect arithmetic properties of the curve with geometric properties of the lattice. The lattices obtained in this way are generated by finite Abelian (additively written) groups $G=\left\{0, P_{1}, \ldots, P_{n}\right\}$ and are of the form

$$
\begin{equation*}
\left\{\left(x_{1}, \ldots, x_{n},-x_{1}-\cdots-x_{n}\right) \in \mathbf{Z}^{n+1}: x_{1} P_{1}+\cdots+x_{n} P_{n}=0\right\} . \tag{5}
\end{equation*}
$$

One may think of these lattices as full rank sublattices of the well-known family of root lattices

$$
\mathcal{A}_{n}:=\left\{\left(x_{1}, \ldots, x_{n},-x_{1}-\cdots-x_{n}\right) \in \mathbf{Z}^{n+1}: x_{1}, \ldots, x_{n} \in \mathbf{Z}\right\}
$$

A fundamental quantity of every lattice is its determinant (i.e., the volume of a fundamental domain). Papers 1 and 19 contain a simple, purely group-theoretic argument which shows that the determinant of the lattice (5) equals $(n+1)^{3 / 2}$. In particular, the determinant depends only on the order of the group. As shown in [1], this result can also be derived in a completely elementary fashion via the computation of (usual) determinants. Here is this computation in the simple case where $G$ is the cyclic group of order $n+1$. The corresponding lattice is

$$
\mathcal{L}_{n}:=\left\{\left(x_{1}, \ldots, x_{n},-x_{1} \cdots-x_{n}\right) \in \mathbf{Z}^{n+1}: x_{1}+2 x_{2}+\cdots+n x_{n}=0 \text { modulo } n+1\right\} .
$$

The rank of the lattice $\mathcal{L}_{n} \subset \mathcal{A}_{n}$ is $n$, and in it is proved that the columns of the $(n+1) \times n$ matrix

$$
B_{n}=\left(\begin{array}{rrrrrr}
-2 & 1 & 0 & \ldots & 0 & 0 \\
1 & -2 & 1 & \ldots & 0 & 0 \\
0 & 1 & -2 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & -2 & 1 \\
0 & 0 & 0 & \ldots & 1 & -2 \\
1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

form a basis of the lattice $\mathcal{L}_{n}$. The determinant of $\mathcal{L}_{n}$ is known to be $\sqrt{\operatorname{det}\left(B_{n}^{\top} B_{n}\right)}$, and $B_{n}^{\top} B_{n}$ is just the matrix $A_{n}$ we encountered in the introduction. Thus, the calculation of the determinant of the lattice $\mathcal{L}_{n}$ is equivalent to the computation of the determinant of the matrix $A_{n}$.
Applying the Cauchy-Binet formula, we may write

$$
\operatorname{det} A_{n}=\operatorname{det}\left(B_{n}^{\top} B_{n}\right)=\left(\operatorname{det} C_{1}\right)^{2}+\left(\operatorname{det} C_{2}\right)^{2}+\cdots+\left(\operatorname{det} C_{n+1}\right)^{2}
$$

where $C_{j}$ results from $B_{n}$ by deleting the $j$ th row. Expanding $\operatorname{det} C_{j}$ along the last row and using the fact that the determinant of the $k \times k$ tridiagonal Toeplitz matrix with -2 on the main diagonal and 1 on the two neighboring diagonals is $(-1)^{k}(k+1)$, it follows that each $\operatorname{det} C_{j}$ equals $\pm(n+1)$. Consequently,

$$
\operatorname{det} A_{n}=(n+1) \cdot(n+1)^{2}=(n+1)^{3}
$$

as desired.

## 3 The tame case

We now turn to Toeplitz determinants and their perturbations. Suppose the symbol $a$ is a piecewise continuous function, that is, the one-sided limits $a(t \pm 0)$ exist for each $t \in \mathbf{T}$. Let $a^{\sharp}$ be the continuous curve in the plane that results from the range of $a$ by filling in the line segments $[a(t-0), a(t+0)]$ for each $t$ where $a$ makes a jump. A famous theorem of Gohberg [12] (see also [4, Corollary 2.19] or [13, Theorem IV.4.1]) says that if the curve $a^{\sharp}$ does not pass through the origin and has winding number zero about the origin, then the infinite matrix $T(a)$ generates a bounded and invertible operator on $\ell^{2}$, the truncations $T_{n}(a)$ are invertible for all sufficiently large $n$, and the inverses $T_{n}^{-1}(a):=\left[T_{n}(a)\right]^{-1}$ converge strongly to the inverse $T^{-1}(a):=[T(a)]^{-1}$. To be more precise,

$$
\begin{equation*}
T_{n}^{-1}(a) P_{n} x \text { converges in } \ell^{2} \text { to } T^{-1}(a) x \text { for every } x \in \ell^{2}, \tag{6}
\end{equation*}
$$

where $P_{n}$ is the projection $P_{n}:\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \mapsto\left\{x_{1}, \ldots, x_{n}, 0, \ldots\right\}$.
Let $E_{11}, E_{12}, E_{21}, E_{22}$ be four $m_{0} \times m_{0}$ matrices. For $n \geq 2 m_{0}$, we denote by $E_{n}$ the $n \times n$ matrix with the matrices $E_{j k}$ in the corners and zeros elsewhere,

$$
E_{n}=\left(\begin{array}{ccc}
E_{11} & 0 & E_{12} \\
0 & 0 & 0 \\
E_{21} & 0 & E_{22}
\end{array}\right)
$$

If $T(a)$ is invertible, then the operator $T^{-1}(a)$ is given by an infinite matrix in the natural fashion. We denote the entries of $T^{-1}(a)$ by $c_{j k}$ and let $S_{11}=\left(c_{j k}\right)_{j, k=1}^{m_{0}}$ stand for the upper-left $m_{0} \times m_{0}$ block of $T^{-1}(a)$,

$$
T^{-1}(a)=\left(\begin{array}{cccc}
c_{11} & \ldots & c_{1, m_{0}} & \ldots \\
\ldots & & \ldots & \ldots \\
c_{m_{0}, 1} & \ldots & c_{m_{0}, m_{0}} & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)=\left(\begin{array}{cc}
S_{11} & * \\
* & *
\end{array}\right) .
$$

Let $W_{m}$ be the $m \times m$ counter-identity matrix, that is, $W_{m}$ has ones on the counterdiagonal and zeros elsewhere. Given an $m \times m$ matrix $B$, we denote by $\widetilde{B}$ the matrix $W_{m} B W_{m}$. Recall that $B^{\top}$ stands for the transposed matrix. Toeplitz matrices enjoy the property that $\left[T_{n}(a)\right]^{\sim}=\left[T_{n}(a)\right]^{\top}=T_{n}(\widetilde{a})$, where $\widetilde{a}$ is the function defined by $\widetilde{a}(t)=a(1 / t), t \in \mathbf{T}$.

Theorem 3.1 Let a be piecewise continuous and suppose $a^{\sharp}$ does not contain the origin and has winding number zero about the origin. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(T_{n}(a)+E_{n}\right)}{\operatorname{det} T_{n}(a)}=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0  \tag{7}\\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}^{\top}
\end{array}\right)\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]
$$

Proof. We know that $T_{n}(a)$ is invertible for sufficiently large $n$, in which case

$$
\begin{equation*}
\operatorname{det}\left(T_{n}(a)+E_{n}\right)=\operatorname{det} T_{n}(a) \operatorname{det}\left(I+T_{n}^{-1}(a) E_{n}\right) \tag{8}
\end{equation*}
$$

We write $T_{n}^{-1}(a)$ as

$$
T_{n}^{-1}(a)=\left(\begin{array}{ccc}
S_{11}^{(n)} & * & S_{12}^{(n)}  \tag{9}\\
* & * & * \\
S_{21}^{(n)} & * & S_{22}^{(n)}
\end{array}\right)
$$

with $m_{0} \times m_{0}$ matrices $S_{j k}^{(n)}$. From (6) we infer that if $I$ is the $m_{0} \times m_{0}$ identity matrix, then

$$
\left(\begin{array}{c}
S_{11}^{(n)} \\
* \\
S_{21}^{(n)}
\end{array}\right)=T_{n}^{-1}(a)\left(\begin{array}{l}
I \\
0 \\
0
\end{array}\right) \rightarrow T^{-1}(a)\binom{I}{0}=\binom{S_{11}}{*}
$$

This implies that $S_{11}^{(n)} \rightarrow S_{11}$ and $S_{21}^{(n)} \rightarrow 0$. (Here we are dealing with convergence of $m_{0} \times m_{0}$ matrices, which may be understood entry-wise.) We further have

$$
T_{n}^{-1}(\widetilde{a})=W_{n} T_{n}^{-1}(a) W_{n}=\left(\begin{array}{ccc}
\widetilde{S}_{22}^{(n)} & * & \widetilde{S}_{21}^{(n)} \\
* & * & * \\
\widetilde{S}_{12}^{(n)} & * & \widetilde{S}_{11}^{(n)}
\end{array}\right)
$$

and

$$
\left[T_{n}^{-1}(a)\right]^{\top}=\left(\begin{array}{ccc}
{\left[S_{11}^{(n)}\right]^{\top}} & * & {\left[S_{21}^{(n)}\right]^{\top}} \\
* & * & * \\
{\left[S_{12}^{(n)}\right]^{\top}} & * & {\left[S_{22}^{(n)}\right]^{\top}}
\end{array}\right)
$$

Since $T_{n}^{-1}(\widetilde{a})=\left[T_{n}^{-1}(a)\right]^{\top}$, we see that $\widetilde{S}_{22}^{(n)}=\left[S_{11}^{(n)}\right]^{\top}$ and $\widetilde{S}_{12}^{(n)}=\left[S_{21}^{(n)}\right]^{\top}$. From what was already proved we therefore obtain that $S_{12}^{(n)} \rightarrow 0$ and $S_{22}^{(n)}=\left[\widetilde{S}_{11}^{(n)}\right]^{\top} \rightarrow \widetilde{S}_{11}^{\top}$. The $\operatorname{matrix} I+T_{n}^{-1}(a) E_{n}$ equals

$$
\left(\begin{array}{ccc}
I+S_{11}^{(n)} E_{11}+S_{12}^{(n)} E_{21} & 0 & S_{11}^{(n)} E_{12}+S_{12}^{(n)} E_{22} \\
0 & I & 0 \\
S_{21}^{(n)} E_{11}+S_{22}^{(n)} E_{21} & 0 & I+S_{21}^{(n)} E_{12}+S_{22}^{(n)} E_{22}
\end{array}\right)
$$

and hence $\operatorname{det}\left(I+T_{n}^{-1}(a) E_{n}\right)$ is equal to

$$
\operatorname{det}\left(\begin{array}{cc}
I+S_{11}^{(n)} E_{11}+S_{12}^{(n)} E_{21} & S_{11}^{(n)} E_{12}+S_{12}^{(n)} E_{22}  \tag{10}\\
S_{21}^{(n)} E_{11}+S_{22}^{(n)} E_{21} & I+S_{21}^{(n)} E_{12}+S_{22}^{(n)} E_{22}
\end{array}\right)
$$

This goes to the limit

$$
\operatorname{det}\left(\begin{array}{cc}
I+S_{11} E_{11} & S_{11} E_{12} \\
\widetilde{S}_{11}^{\top} E_{21} & I+\widetilde{S}_{11}^{\top} E_{22}
\end{array}\right)=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}^{\top}
\end{array}\right)\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]
$$

The assertion is now straightforward from (8)).
The curve $a^{\sharp}$ has a natural orientation. Under the assumption of Theorem 3.1, we may associate an argument to each point of $a^{\sharp}$ such that this argument changes continuously as the point moves along the curve. The restriction of this argument to the points in
the range of $a$ defines an argument and thus a logarithm $\log a$ of $a$. Note that if $a$ itself is continuous, then $\log a$ is also a continuous function on the unit circle. Let $(\log a)_{k}$ denote the $k$ th Fourier coefficient of $\log a$. The geometric mean of $a$ is defined by

$$
\begin{equation*}
G(a)=\exp (\log a)_{0}=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log a\left(e^{i \theta}\right) d \theta\right) \tag{11}
\end{equation*}
$$

It is well known that the $(1,1)$ entry of $T^{-1}(a)$ is just $1 / G(a)$; see, e.g., 5 , Prop. 10.6(b)].

Example 3.2 Suppose $m_{0}=1$, that is, suppose $T_{n}(a)$ has at most perturbations by four scalars $E_{j k}$ in its four corners. Then $S_{11}=\widetilde{S}_{11}^{\top}=c_{11}=1 / G(a)$ and the right-hand side of (7) becomes

$$
\operatorname{det}\left[\left(\begin{array}{ll}
1 & 0  \tag{12}\\
0 & 1
\end{array}\right)+\frac{1}{G(a)}\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]
$$

For

$$
\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),
$$

this is

$$
\left(1+\frac{1}{G(a)}\right)^{2}, \quad 1-\frac{1}{G(a)^{2}}, \quad \frac{2}{G(a)}+\frac{1}{G(a)^{2}}
$$

respectively. The limit (7) is zero if and only if $G(a)$ is an eigenvalue of the $2 \times 2$ matrix $-\left(\begin{array}{ll}E_{11} & E_{12} \\ E_{21} & E_{22}\end{array}\right)$.

If the symbol $a$ is continuous, then the curve $a^{\sharp}$ is simply the range $a(\mathbf{T})$. Now suppose that $a$ is sufficiently smooth, say

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} k^{\lambda}\left|a_{k}\right|<\infty \tag{13}
\end{equation*}
$$

for some $\lambda>0$. The set of all $a$ satisfying (13) is a weighted Wiener algebra and will be denoted by $W^{\lambda}$. If $\lambda>1 / 2$ and if $a$ has no zeros on the unit circle and winding number zero about the origin, then the asymptotic behavior of the determinants $\operatorname{det} T_{n}(a)$ is described by Szegő's strong limit theorem. This theorem says that

$$
\begin{equation*}
\operatorname{det} T_{n}(a)=G(a)^{n} E(a)(1+o(1)) \tag{14}
\end{equation*}
$$

where $G(a)$ is given by (11) and $E(a)$ is defined by

$$
E(a)=\exp \sum_{k=1}^{\infty} k(\log a)_{-k}(\log a)_{k} .
$$

Formula (14) may also be written in the form

$$
\lim _{n \rightarrow \infty} \operatorname{det} T_{n}\left(\frac{a}{G(a)}\right)=E(a)
$$

In other words, after appropriate normalization the determinants approach a finite and nonzero limit as their order increases to infinity. In [5, Corollary 10.38] it is shown that the $o(1)$ in (14) is $o\left(1 / n^{2 \lambda-1}\right)$.
The following result is a refinement of Theorem 3.1 for smooth symbols.
Theorem 3.3 Let $a \in W^{\lambda}$ with $\lambda>1 / 2$ and suppose a has no zeros on the unit circle and winding number zero about the origin. Then

$$
\frac{\operatorname{det}\left(T_{n}(a)+E_{n}\right)}{\operatorname{det} T_{n}(a)}=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}^{\top}
\end{array}\right)\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]+O\left(\frac{1}{n^{\lambda}}\right)
$$

Proof. We adopt the notations of the proof of Theorem 3.1. From Theorem 2.15 of 44 we see that $S_{11}^{(n)}=S_{11}+O\left(1 / n^{\lambda}\right)$ (entry-wise). It follows that $S_{22}^{(n)}=\left[\widetilde{S}_{11}^{(n)}\right]^{\top}=$ $S_{11}^{\top}+O\left(1 / n^{\lambda}\right)$. Let $\ell_{\lambda}^{2}$ be the weighted $\ell^{2}$ space of all sequences $x$ satisfying

$$
\|x\|_{2, \lambda}:=\left(\sum_{n=1}^{\infty} n^{2 \lambda}\left|x_{n}\right|^{2}\right)^{1 / 2}<\infty
$$

Theorem 7.25 of [5] implies that if $x \in \ell_{\lambda}^{2}$, then $T^{-1}(a) x \in \ell_{\lambda}^{2}$ and

$$
\begin{equation*}
\left\|T_{n}^{-1}(a) P_{n} x-T^{-1}(a) x\right\|_{2, \lambda} \rightarrow 0 \tag{15}
\end{equation*}
$$

Let $T_{n}^{-1}(a)=\left(c_{j k}^{(n)}\right)_{j, k=1}^{n}$. The $k$ th column of $S_{12}^{(n)}$ is $\left(c_{n-m_{0}+1, k}^{(n)}, \ldots, c_{n, k}^{(n)}\right)^{\top}$, while the last $m_{0}$ components of the $k$ th column of $T^{-1}(a)$ are $c_{n-m_{0}+1, k}, \ldots, c_{n, k}$.
Let $e_{k}$ be the sequence which has 1 in position $k$ and zeros elsewhere. The convergence result (15) with $x=e_{k}$ shows that

$$
\sum_{j=1}^{m_{0}}\left(n-m_{0}+j\right)^{2 \lambda}\left|c_{n-m_{0}+j, k}^{(n)}-c_{n-m_{0}+j, k}\right|^{2} \rightarrow 0
$$

This implies that $\left(n-m_{0}+j\right)^{2 \lambda}\left|c_{n-m_{0}+j, k}^{(n)}-c_{n-m_{0}+j, k}\right|^{2} \rightarrow 0$ and hence

$$
c_{n-m_{0}+j, k}^{(n)}=c_{n-m_{0}+j, k}+o\left(1 / n^{\lambda}\right)
$$

Since $T^{-1}(a) e_{k} \in \ell_{\lambda}^{2}$, we also have $\sum_{n=1}^{\infty} n^{2 \lambda}\left|c_{n, k}\right|^{2}<\infty$, which yields

$$
c_{n-m_{0}+j, k}=o\left(1 / n^{\lambda}\right)
$$

Consequently, $c_{n-m_{0}+j, k}^{(n)}=o\left(1 / n^{\lambda}\right)$ and thus $S_{12}^{(n)}=O\left(1 / n^{\lambda}\right)$. This in turn tells us that $S_{21}^{(n)}=\left[\widetilde{S}_{12}^{(n)}\right]^{\top}=o\left(1 / n^{\lambda}\right)$. In summary, the determinant (10) is

$$
\operatorname{det}\left[\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}^{\top}
\end{array}\right)\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]+O\left(\frac{1}{n^{\lambda}}\right)
$$

which completes the proof.

Example 3.4 Let $a(t)=(1-\mu t)(1-\nu / t)$ with $|\mu|<1,|\nu|<1$. The $n \times n$ versions of the matrices

$$
\left(\begin{array}{cccc}
1+\mu \nu & -\nu & 0 & 0 \\
-\mu & 1+\mu \nu & -\nu & 0 \\
0 & -\mu & 1+\mu \nu & -\nu \\
0 & 0 & -\mu & 1+\mu \nu
\end{array}\right), \quad\left(\begin{array}{cccc}
1+\mu \nu & -\nu & 0 & 1 \\
-\mu & 1+\mu \nu & -\nu & 0 \\
0 & -\mu & 1+\mu \nu & -\nu \\
1 & 0 & -\mu & 1+\mu \nu
\end{array}\right)
$$

are $T_{n}(a)$ and $T_{n}(a)+E_{n}$. We have $G(a)=1$ and $E(a)=1 /(1-\mu \nu)$, and hence Szegő's strong limit theorem tells us that $\operatorname{det} T_{n}(a)$ has the limit $1 /(1-\mu \nu)$. Theorem 3.3 may be applied with arbitrarily large $\lambda$. Since $G(a)=1$ is an eigenvalue of

$$
-\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Example 3.2 and Theorem 3.3 predict that $\operatorname{det}\left(T_{n}(a)+E_{n}\right) / \operatorname{det} T_{n}(a)$ goes to zero faster than an arbitrary power of $1 / n$. In fact it is easy to compute the determinants exactly. We have

$$
\begin{aligned}
& \operatorname{det} T_{n}(a)=\frac{1-(\mu \nu)^{n+1}}{1-\mu \nu} \\
& \operatorname{det}\left(T_{n}(a)+E_{n}\right)=(1+\mu \nu)^{2}(\mu \nu)^{n-1}+\mu^{n-1}+\nu^{n-1}
\end{aligned}
$$

This shows that the quotient $\operatorname{det}\left(T_{n}(a)+E_{n}\right) / \operatorname{det} T_{n}(a)$ actually decays exponentially fast to zero.

## 4 The pure Fisher-Hartwig singulaity

The symbol $a(t)=(1-t)^{\gamma}(1-1 / t)^{\delta}$ is referred to as the pure Fisher-Hartwig singularity. Here $\delta$ and $\gamma$ are complex numbers. We define

$$
\begin{aligned}
& \xi_{\delta}(t):=(1-1 / t)^{\delta}:=\sum_{k=0}^{\infty}(-1)^{k}\binom{\delta}{k} t^{-k} \\
& \eta_{\gamma}(t):=(1-t)^{\gamma}:=\sum_{k=0}^{\infty}(-1)^{k}\binom{\gamma}{k} t^{k}
\end{aligned}
$$

and may then write $a=\xi_{\delta} \eta_{\gamma}$. Throughout what follows we assume that the real parts of $\delta, \gamma$, and $\delta+\gamma$ are greater than -1 . This guarantees that $\xi_{\delta}, \eta_{\gamma}$, and $\xi_{\delta} \eta_{\gamma}$ are in $L^{1}$. Note that the symbol (4), which belongs to the $n \times n$ versions of matrix (2), is the pure Fisher-Hartwig singularity $a=\xi_{2} \eta_{2}$.
As shown in [5, Lemma 6.18], the $k$ th Fourier coefficient of $\xi_{\delta} \eta_{\gamma}$ is

$$
(-1)^{k} \frac{\Gamma(1+\delta+\gamma)}{\Gamma(\delta+n+1) \Gamma(\gamma-n+1)}
$$

in case neither $\delta+n+1$ nor $\gamma-n+1$ is a nonpositive integer and is equal to zero if $\delta+n+1$ or $\gamma-n+1$ is a nonpositive integer. The determinants of $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ are known both exactly and asymptotically. Section 10.58 and Theorem 10.59 of 5 tell us that

$$
\begin{align*}
\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right) & =\frac{\mathrm{G}(1+\delta) \mathrm{G}(1+\gamma)}{\mathrm{G}(1+\delta+\gamma)} \frac{\mathrm{G}(n+1) \mathrm{G}(n+1+\delta+\gamma)}{\mathrm{G}(n+1+\delta) \mathrm{G}(n+1+\gamma)}  \tag{16}\\
& =\frac{\mathrm{G}(1+\delta) \mathrm{G}(1+\gamma)}{\mathrm{G}(1+\delta+\gamma)} n^{\delta \gamma}(1+o(1)) \tag{17}
\end{align*}
$$

where $\mathrm{G}(z)$ is the Barnes function. We see in particular that $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ is invertible for every $n \geq 1$. We write $T_{n}^{-1}\left(\xi_{\delta} \eta_{\gamma}\right)=\left(c_{j k}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)\right)_{j, k=1}^{n}$.

Theorem 4.1 For each fixed $j$,

$$
\begin{equation*}
c_{j n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=\frac{\Gamma(j+\gamma)}{\Gamma(\delta) \Gamma(j)} n^{\delta-\gamma-1}\left(1+\frac{p_{j}\left(\xi_{\delta} \eta_{\gamma}\right)}{2 n}+O\left(\frac{1}{n^{2}}\right)\right) \tag{18}
\end{equation*}
$$

with

$$
p_{j}\left(\xi_{\delta} \eta_{\gamma}\right)=(\delta-j)(\delta-j-1)+\delta(\delta-1)-(\delta+\gamma)(\delta+\gamma-1)-j(j-1)
$$

and

$$
\begin{equation*}
c_{n-j, n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=\frac{\Gamma(j+\delta)}{\Gamma(\delta) \Gamma(j+1)}\left(1+\frac{q_{j}\left(\xi_{\delta} \eta_{\gamma}\right)}{2 n}++O\left(\frac{1}{n^{2}}\right)\right) \tag{19}
\end{equation*}
$$

with

$$
q_{j}\left(\xi_{\delta} \eta_{\gamma}\right)=(\gamma-j)(\gamma-j-1)+\delta(\delta-1)-(\delta+\gamma)(\delta+\gamma-1)-(j+1) j
$$

Furthermore, again for each fixed $j$,

$$
\begin{equation*}
c_{j 1}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=c_{n-j+1, n}^{(n)}\left(\xi_{\gamma} \eta_{\delta}\right), \quad c_{n-j, 1}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=c_{j+1, n}^{(n)}\left(\xi_{\gamma} \eta_{\delta}\right) . \tag{20}
\end{equation*}
$$

Proof. The key is the Duduchava-Roch formula, which can be found as Theorem 6.20 in [5; see also equalities (7.87) and (7.88) of [5] This formula says that

$$
\begin{equation*}
T_{n}^{-1}\left(\xi_{\delta} \eta_{\gamma}\right)=\Gamma_{\delta, \gamma} M_{\gamma} T_{n}\left(\xi_{-\delta}\right) M_{\gamma+\delta}^{-1} T_{n}\left(\eta_{-\gamma}\right) M_{\delta}, \tag{21}
\end{equation*}
$$

where $\Gamma_{\delta, \gamma}=\Gamma(1+\delta) \Gamma(1+\gamma) / \Gamma(1+\delta+\gamma), M_{\alpha}$ stands for the diagonal matrix

$$
M_{\alpha}=\operatorname{diag}\left(\mu_{1}(\alpha), \ldots, \mu_{n}(\alpha)\right), \quad \mu_{k}(\alpha)=\frac{\Gamma(k+\alpha)}{\Gamma(1+\alpha) \Gamma(k)}
$$

$T_{n}\left(\xi_{\delta}\right)$ is the upper-triangular Toeplitz matrix whose first row is

$$
\left(\left(\xi_{-\delta}\right)_{0}, \ldots,\left(\xi_{-\delta}\right)_{n-1}\right) \quad \text { with } \quad\left(\xi_{-\delta}\right)_{k}=\frac{\Gamma(k+\delta)}{\Gamma(\delta) \Gamma(k+1)}
$$

[^1]and $T_{n}\left(\eta_{\gamma}\right)$ is the lower-triangular Toeplitz matrix with the first column
$$
\left(\left(\eta_{-\gamma}\right)_{0}, \ldots,\left(\eta_{-\gamma}\right)_{n-1}\right)^{\top} \quad \text { with } \quad\left(\eta_{-\gamma}\right)_{k}=\frac{\Gamma(k+\gamma)}{\Gamma(\gamma) \Gamma(k+1)}
$$

Let $e_{n}=(0, \ldots, 0,1)^{\top}$. Using (21) it is easily seen that the $j$ th component of the column $T_{n}^{-1}\left(\xi_{\delta} \eta_{\gamma}\right) e_{n}$ is

$$
c_{j n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=\Gamma_{\delta, \gamma}\left(\xi_{-\delta}\right)_{n-j}\left(\eta_{-\gamma}\right)_{0} \frac{\mu_{j}(\gamma) \mu_{n}(\delta)}{\mu_{n}(\delta+\gamma)}
$$

Inserting the above expressions for the pieces on the right we obtain

$$
\begin{equation*}
c_{j n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)=\frac{\Gamma(j+\gamma)}{\Gamma(\delta) \Gamma(j)} \frac{\Gamma(n-j+\delta) \Gamma(n+\delta)}{\Gamma(n-j+1) \Gamma(n+\delta+\gamma)} \tag{22}
\end{equation*}
$$

Stirling's formula gives

$$
\begin{equation*}
\frac{\Gamma(n+\alpha)}{\Gamma(n)}=n^{\alpha}\left(1+\frac{\alpha(\alpha-1)}{2 n}+O\left(\frac{1}{n^{2}}\right)\right) \tag{23}
\end{equation*}
$$

for every complex number $\alpha$. Fixing $j$ in (22), dividing numerator and denominator of (22) by $\Gamma(n)^{2}$, and using (23) we arrive at (18). Replacing $j$ by $n-j$ in (22) we get

$$
c_{n-j, n}^{(n)}=\frac{\Gamma(j+\delta)}{\Gamma(\delta) \Gamma(j+1)} \frac{\Gamma(n-j+\gamma) \Gamma(n+\delta)}{\Gamma(n-j) \Gamma(n+\delta+\gamma)}
$$

Making again use of (23), we obtain (19) for each fixed $j$.
The numbers (18) and (19) are the upper and lower components of the last column of $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$, that is, of the column $x$ given by $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right) x=e_{n}$. The entries in the first column of $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ are the entries of the column $y$ defined by $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right) y=e_{1}:=$ $(1,0, \ldots, 0)^{\top}$. With the counter-identity $W_{n}$ we therefore have $W_{n} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right) W_{n} W_{n} y=$ $W_{n} e_{1}=e_{n}$, and since $W_{n} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right) W_{n}=T_{n}\left(\xi_{\gamma} \eta_{\delta}\right)$, it follows that $T_{n}\left(\xi_{\gamma} \eta_{\delta}\right) W_{n} y=e_{n}$. This proves (20).

Example 4.2 The proof of Theorem 3.1 shows that if the symbol $a$ is as in this theorem, then the lower-left and upper-right entries of $T_{n}^{-1}(a)$ always approach zero as $n \rightarrow \infty$. In Section 5 we will see that this also happens if $a \in L^{1}, a \geq 0$ almost everywhere on the unit circle, and $\log a \in L^{1}$. However, Theorem 4.1 reveals that in general the lower-left and upper-right entries of $T_{n}^{-1}(a)$ need not to converge to zero. Indeed, from (18) we infer that the upper-right entries of $T_{n}^{-1}\left(\xi_{\delta} \eta_{\gamma}\right)$ decay to zero only if $\operatorname{Re} \delta-\operatorname{Re} \gamma<1$, and combining (18) and (20) we see that the lower-left entries of $T_{n}^{-1}\left(\xi_{\delta} \eta_{\gamma}\right)$ go to zero only if $\operatorname{Re} \gamma-\operatorname{Re} \delta<1$. Thus, both the lower-left and upper-right entries converge to zero only if $|\operatorname{Re} \gamma-\operatorname{Re} \delta|<1$. Pure Fisher-Hartwig symbol are a nice tool to get a first feeling for several phenomena concerning Toeplitz matrices and in particular for disproving conjectures on such matrices!

Theorem 4.1 is all we need to tackle the case $m_{0}=1$, that is, the case where $T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ has at most four scalar perturbations in the corners. From (8) and (10) we infer that if the $E_{j k}$ are scalars, then

$$
\frac{\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)}{\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)}=\operatorname{det}\left[\left(\begin{array}{ll}
1 & 0  \tag{24}\\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
c_{11}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{1 n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) \\
c_{n 1}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{n n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)
\end{array}\right)\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right] .
$$

Example 4.3 Suppose

$$
\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\frac{\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)}{\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)} & =\operatorname{det}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
c_{11}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{1 n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) \\
c_{n 1}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{n n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\right] \\
& =\operatorname{det}\left(\begin{array}{cc}
1+c_{1 n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{11}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) \\
c_{n n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & 1+c_{n 1}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)
\end{array}\right)
\end{aligned}
$$

and by virtue of (20), this equals

$$
\operatorname{det}\left(\begin{array}{cc}
1+c_{1 n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & c_{n n}^{(n)}\left(\xi_{\gamma} \eta_{\delta}\right)  \tag{25}\\
c_{n n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right) & 1+c_{1 n}^{(n)}\left(\xi_{\gamma} \eta_{\delta}\right)
\end{array}\right)
$$

We take only the main term of (18) for $j=1$, and we take (19) for $j=0$, in which case $q_{0}\left(\xi_{\delta} \eta_{\gamma}\right)=q_{0}\left(\xi_{\gamma} \eta_{\delta}\right)=-2 \delta \gamma$. Then (25) becomes

$$
\operatorname{det}\left(\begin{array}{cc}
1+\frac{\Gamma(1+\gamma)}{\Gamma(\delta)} n^{\delta-\gamma-1}+O\left(n^{\operatorname{Re} \delta-\operatorname{Re} \gamma-2}\right) & 1-\frac{\delta \gamma}{n}+O\left(\frac{1}{n^{2}}\right)  \tag{26}\\
1-\frac{\delta \gamma}{n}+O\left(\frac{1}{n^{2}}\right) & 1+\frac{\Gamma(1+\delta)}{\Gamma(\gamma)} n^{\gamma-\delta-1}+O\left(n^{\operatorname{Re} \gamma-\operatorname{Re} \delta-2}\right)
\end{array}\right)
$$

This is

$$
\frac{\Gamma(1+\gamma)}{\Gamma(\delta)} n^{\delta-\gamma-1}+O\left(n^{\operatorname{Re} \delta-\operatorname{Re} \gamma-2}\right) \quad \text { for } \quad \operatorname{Re} \delta \geq \operatorname{Re} \gamma+1
$$

and

$$
\frac{\Gamma(1+\gamma)}{\Gamma(\delta)} n^{\delta-\gamma-1}+O\left(\frac{1}{n}\right) \quad \text { for } \quad \operatorname{Re} \gamma+1>\operatorname{Re} \delta>\operatorname{Re} \gamma
$$

We know that $\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ is asymptotically a constant times $n^{\delta \gamma}$. It follows that $\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)$ is asymptotically a constant times

$$
n^{\delta \gamma} n^{\delta-\gamma-1}=n^{(\delta-1)(\gamma+1)}
$$

provided $\operatorname{Re} \delta>\operatorname{Re} \gamma$. In the case where $\operatorname{Re} \delta<\operatorname{Re} \gamma$, we may pass to transposed matrices, which does not change determinants but changes the roles of $\gamma$ and $\delta$ and therefore shows that then $\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)$ is asymptotically a constant times

$$
n^{\delta \gamma} n^{\gamma-\delta-1}=n^{(\gamma-1)(\delta+1)} .
$$

In summary, if $\delta, \gamma$ are positive real numbers, in which case $\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ grows with $n$, then

- $\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)$ grows faster than $\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ if $\delta>\gamma+1$ or $\delta<\gamma-1$,
- $\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)$ grows slower than $\operatorname{det} T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)$ if $\gamma-1<\delta<\gamma+1$,
- $\operatorname{det}\left(T_{n}\left(\xi_{\delta} \eta_{\gamma}\right)+E_{n}\right)$ decays to zero if $\gamma<1$ and $\delta<1$.

The case $\delta=\gamma$ is especially nice and therefore deserves a separate treatment by the following corollary. We have $\xi_{\alpha}(t) \eta_{\alpha}(t)=|1-t|^{2 \alpha}$. Recall that we require $\operatorname{Re} \alpha>-1 / 2$ and that for $\alpha=2$ we get the symbol (4). For a square matrix $A$, we abbreviate $\operatorname{det} A$ to $|A|$.

Corollary 4.4 If the $E_{j k}$ are scalars, then $\operatorname{det}\left(T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)+E_{n}\right) / \operatorname{det} T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)$ is

$$
\left|\begin{array}{cc}
1+E_{11} & E_{12} \\
E_{21} & 1+E_{22}
\end{array}\right|+\frac{\alpha}{n}\left(E_{12}+E_{21}-\alpha\left(E_{11}+E_{22}\right)-2 \alpha\left|\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right|\right)+O\left(\frac{1}{n^{2}}\right)
$$

If in particular

$$
\left(\begin{array}{ll}
E_{11} & E_{12}  \tag{27}\\
E_{21} & E_{22}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then

$$
\begin{equation*}
\frac{\operatorname{det}\left(T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)+E_{n}\right)}{\operatorname{det} T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)}=\frac{2 \alpha(\alpha+1)}{n}+O\left(\frac{1}{n^{2}}\right) \tag{28}
\end{equation*}
$$

Proof. From Theorem 4.1 we deduce that

$$
\begin{equation*}
c_{1 n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=c_{n 1}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=\frac{\alpha}{n}+O\left(\frac{1}{n^{2}}\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{11}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=c_{n n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=1-\frac{\alpha^{2}}{n}+O\left(\frac{1}{n^{2}}\right) . \tag{30}
\end{equation*}
$$

Thus, (24) equals

$$
\left|\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
1-\frac{\alpha^{2}}{n}+O\left(\frac{1}{n^{2}}\right) & \frac{\alpha}{n}+O\left(\frac{1}{n^{2}}\right) \\
\frac{\alpha}{n}+O\left(\frac{1}{n^{2}}\right) & 1-\frac{\alpha^{2}}{n}+O\left(\frac{1}{n^{2}}\right)
\end{array}\right)\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right|
$$

which can be simplified to the asserted expression.
When restricted to the present context, Theorem 5 of 18 says that

$$
c_{1 n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=\frac{\alpha}{n}(1+o(1)), \quad c_{11}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=\left(1-\frac{\alpha^{2}}{n}\right)(1+o(1)) .
$$

The second formula is probably misstated in 18 and should correctly read

$$
c_{11}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=1-\frac{\alpha^{2}}{n}(1+o(1)) .
$$

Clearly, these formulas are close to but nevertheless weaker than (29) and (30).

Example 4.5 We write $a_{n} \sim b_{n}$ if $a_{n} / b_{n} \rightarrow 1$. Combining (17) and the corollary we see that the two corner perturbations given by (27) lead to

$$
\operatorname{det}\left(T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)+E_{n}\right) \sim \frac{\mathrm{G}(1+\alpha)^{2}}{\mathrm{G}(1+2 \alpha)} 2 \alpha(\alpha+1) n^{\alpha^{2}-1}
$$

Thus, the exponent $\alpha^{2}$ is indeed lowered by 1 . If $k$ is a positive integer then $\mathrm{G}(k)=$ $(k-2)!\ldots 2!1$ ! with $\mathrm{G}(2)=\mathrm{G}(1)=1$. We so obtain in particular

$$
\begin{aligned}
\operatorname{det} T_{n}\left(\xi_{1} \eta_{1}\right) & \sim n, \quad \operatorname{det}\left(T_{n}\left(\xi_{1} \eta_{1}\right)+E_{n}\right) \sim 4, \\
\operatorname{det} T_{n}\left(\xi_{2} \eta_{2}\right) & \sim \frac{n^{4}}{12}, \quad \operatorname{det}\left(T_{n}\left(\xi_{2} \eta_{2}\right)+E_{n}\right) \sim n^{3}, \\
\operatorname{det} T_{n}\left(\xi_{3} \eta_{3}\right) & \sim \frac{n^{9}}{8640}, \quad \operatorname{det}\left(T_{n}\left(\xi_{3} \eta_{3}\right)+E_{n}\right) \sim \frac{n^{8}}{360} .
\end{aligned}
$$

We can of course also compute the determinants exactly. Formula (22) provides us with an exact expression for $c_{j n}^{(n)}\left(\xi_{\delta} \eta_{\gamma}\right)$. It implies that

$$
c_{1 n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=\alpha \frac{\Gamma(n-1+\alpha) \Gamma(n+\alpha)}{\Gamma(n) \Gamma(n+2 \alpha)}, \quad c_{n n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=\frac{1}{\Gamma(\alpha)} \frac{\Gamma(n+\alpha) \Gamma(n+\alpha)}{\Gamma(n) \Gamma(n+2 \alpha)} .
$$

For $\alpha=1$, this gives

$$
c_{1 n}^{(n)}\left(\xi_{1} \eta_{1}\right)=\frac{n}{n+1}, \quad c_{n n}^{(n)}\left(\xi_{1} \eta_{1}\right)=\frac{1}{n+1},
$$

and inserting this in (25) we obtain

$$
\left|\begin{array}{cc}
1+\frac{1}{n+1} & \frac{n}{n+1} \\
\frac{n}{n+1} & 1+\frac{1}{n+1}
\end{array}\right|=\frac{4}{n+1} .
$$

Since $\operatorname{det} T_{n}\left(\xi_{1} \eta_{1}\right)=n+1$ due to (16), it follows that $\operatorname{det}\left(T_{n}\left(\xi_{1} \eta_{1}\right)+E_{n}\right)=4$ for all $n \geq 2$. Analogously, for $\alpha=2$ we have

$$
c_{1 n}^{(n)}\left(\xi_{2} \eta_{2}\right)=\frac{2 n}{(n+2)(n+3)}, \quad c_{n n}^{(n)}\left(\xi_{2} \eta_{2}\right)=\frac{n(n+1)}{(n+2)(n+3)}
$$

and hence the determinant (25) equals

$$
\left|\begin{array}{cc}
1+\frac{2 n}{(n+2)(n+3)} & \frac{n(n+1)}{(n+2)(n+3)} \\
\frac{n(n+1)}{(n+2)(n+3)} & 1+\frac{2 n}{(n+2)(n+3)}
\end{array}\right|=\frac{12(n+1)^{2}}{(n+2)^{2}(n+3)} .
$$

The determinant $\operatorname{det} T_{n}\left(\xi_{2} \eta_{2}\right)$ is (3) by virtue of (16). Consequently,

$$
\operatorname{det}\left(T_{n}\left(\xi_{2} \eta_{2}\right)+E_{n}\right)=\frac{(n+1)(n+2)^{2}(n+3)}{12} \cdot \frac{12(n+1)^{2}}{(n+2)^{2}(n+3)}=(n+1)^{3}
$$

for $n \geq 2$. Similarly,

$$
\operatorname{det} T_{n}\left(\xi_{3} \eta_{3}\right)=\frac{(n+1)(n+2)^{2}(n+3)^{3}(n+4)^{2}(n+5)}{8640}
$$

for $n \geq 1$ and

$$
\operatorname{det}\left(T_{n}\left(\xi_{3} \eta_{3}\right)+E_{n}\right)=\frac{(n+1)(n+2)^{2}(n+3)\left[(n+2)^{2}+1\right]\left[(n+2)^{2}+2\right]}{360}
$$

for $n \geq 2$.
To treat the case $m_{0} \geq 2$, we need the matrices $S_{j k}^{(n)}$ in (9). Theorem 4.1 provides us with the first and last entries of the first and last columns of $T_{n}^{-1}(a)$. The entries in the four corners $S_{j k}^{(n)}$ of $T_{n}^{-1}(a)$ can therefore be computed with the help of the Gohberg-Sementsul-Trench formula [14, 21. This formula says that if

$$
\left(\begin{array}{c}
x_{1}  \tag{31}\\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{11}^{(n)} \\
\vdots \\
c_{n 1}^{(n)}
\end{array}\right), \quad\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1 n}^{(n)} \\
\vdots \\
c_{n n}^{(n)}
\end{array}\right)
$$

are the first and last columns of $T_{n}^{-1}(a)$ and $x_{1} \neq 0$, then

$$
\begin{align*}
T_{n}^{-1}(a)= & \frac{1}{x_{1}}\left(\begin{array}{ccc}
x_{1} & & \\
\vdots & \ddots & \\
x_{n} & \cdots & x_{1}
\end{array}\right)\left(\begin{array}{ccc}
y_{n} & \cdots & y_{1} \\
& \ddots & \vdots \\
& & y_{1}
\end{array}\right) \\
& -\frac{1}{x_{1}}\left(\begin{array}{ccc}
y_{0} & & \\
\vdots & \ddots & \\
y_{n-1} & \cdots & y_{0}
\end{array}\right)\left(\begin{array}{ccc}
x_{n+1} & \cdots & x_{2} \\
& \ddots & \vdots \\
& & x_{n+1}
\end{array}\right), \tag{32}
\end{align*}
$$

where $x_{n+1}:=0$ and $y_{0}:=0$. A full proof is also in [15, p. 21]. If $S_{j k}^{(n)}$ has a limit $S_{j k}$, then (10) implies that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(T_{n}(a)+E_{n}\right)}{\operatorname{det} T_{n}(a)}=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0  \tag{33}\\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right] .
$$

Example 4.6 Theorem 4.1 applied to $a=\xi_{\alpha} \eta_{\alpha}$ shows that, for fixed $j$,

$$
\begin{align*}
& c_{j 1}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=c_{n-j+1, n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right) \rightarrow c_{j}:=\binom{\alpha+j-2}{j-1},  \tag{34}\\
& c_{j n}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right)=c_{n-j+1,1}^{(n)}\left(\xi_{\alpha} \eta_{\alpha}\right) \rightarrow 0 . \tag{35}
\end{align*}
$$

It follows that $S_{12}^{(n)}$ and $S_{21}^{(n)}$ converge to zero, and formula (32) implies that $S_{11}^{(n)}$ goes to

$$
S_{11}=\frac{1}{c_{1}}\left(\begin{array}{ccc}
c_{1} & & \\
\vdots & \ddots & \\
c_{m_{0}} & \ldots & c_{1}
\end{array}\right)\left(\begin{array}{ccc}
c_{1} & \ldots & c_{m_{0}} \\
& \ddots & \vdots \\
& & c_{1}
\end{array}\right)
$$

Since $T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)$ is symmetric, we see that $S_{22}^{(n)} \rightarrow \widetilde{S}_{11}$. Thus, formula (33) becomes

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)+E_{n}\right)}{\operatorname{det} T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)}=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0  \tag{36}\\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}
\end{array}\right)\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right]
$$

If $m_{0}=1$, then $S_{11}=(1)$, and for the matrix (27) we get

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)+E_{n}\right)}{\operatorname{det} T_{n}\left(\xi_{\alpha} \eta_{\alpha}\right)}=\operatorname{det}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right]=0
$$

This is correct but weaker than (28). Notice that here we used only limits, whereas in order to establish (28) we worked with finer asymptotics. In the case $m_{0}=2$ we have

$$
S_{11}=\left(\begin{array}{cc}
1 & \alpha \\
\alpha & 1+\alpha^{2}
\end{array}\right), \quad \widetilde{S}_{11}=\left(\begin{array}{cc}
1+\alpha^{2} & \alpha \\
\alpha & 1
\end{array}\right)
$$

Theorem 4.1 provides us with error terms in (34) and (35) and thus with finer results in the case where the right-hand side of (36) is zero. However, we will not embark on this issue here.

## 5 General Hermitian Fisher-Hartwig determinants

We first embark on the general case where $a \in L^{1}, a \geq 0$ almost everywhere on $\mathbf{T}$, and $\log a \in L^{1}$. Fisher-Hartwig symbols are a special case and will be considered in the examples at the end of this section. The constant $G(a)$ defined by (11) is a finite and strictly positive real number. Let

$$
\log a(t)=\sum_{k=-\infty}^{\infty}(\log a)_{k} t^{k}, \quad t \in \mathbf{T}
$$

For $|z|<1$, we define

$$
a_{+}(z)=\exp \sum_{k=1}^{\infty}(\log a)_{k} z^{k}
$$

and

$$
a_{+}^{-1}(z)=\exp \left(-\sum_{k=1}^{\infty}(\log a)_{k} z^{k}\right)=\sum_{k=0}^{\infty}\left(a_{+}^{-1}\right)_{k} z^{k}
$$

Simon [20, p. 144] defines the Szegő function associated with $a$ as

$$
D(z)=\exp \left(\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log a\left(e^{i \theta}\right) d \theta\right)=\exp \left(\frac{(\log a)_{0}}{2}+\sum_{k=1}^{\infty}(\log a)_{k} z^{k}\right)
$$

Note that this is just the outer function whose modulus on $\mathbf{T}$ is $|a|^{1 / 2}$. Clearly, $a_{+}(z)=$ $G(a)^{-1 / 2} D(z)$. Our assumptions imply that $T_{n}(a)$ is a positive definite (Hermitian) matrix for every $n \geq 1$. We put $T_{n}^{-1}(a)=\left(c_{j k}^{(n)}\right)_{j, k=1}^{n}$ and abbreviate $c_{j 1}^{(n)}$ to $c_{j}^{(n)}$. Thus, $\left(c_{1}^{(n)}, \ldots, c_{n}^{(n)}\right)^{\top}$ is the first column of $T_{n}^{-1}(a)$.

Theorem 5.1 For each fixed $j \geq 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{j}^{(n)}=\frac{1}{G(a)}\left(a_{+}^{-1}\right)_{j-1}, \quad \lim _{n \rightarrow \infty} c_{n-j+1}^{(n)}=0 \tag{37}
\end{equation*}
$$

Proof. The polynomial

$$
\Phi_{n-1}(z)=\frac{1}{\bar{c}_{1}^{(n)}}\left(\bar{c}_{n}^{(n)}+\cdots+\bar{c}_{2}^{(n)} z^{n-2}+\bar{c}_{1}^{(n)} z^{n-1}\right)
$$

is known as the predictor polynomial of $a$. By virtue of [20, Theorem 1.5.12], it is the $n-1$ st monic orthogonal polynomial on the unit circle $z=e^{i \theta}$ associated with the measure $d \mu(\theta)=\log a\left(e^{i \theta}\right) d \theta /(2 \pi)$. Let $\left\|\Phi_{n-1}\right\|$ be its norm in $L^{2}(\mathbf{T}, d \mu)$ and put

$$
\varphi_{n-1}(z)=\frac{1}{\left\|\Phi_{n-1}\right\|} \Phi_{n-1}(z)=\kappa_{n-1} z^{n-1}+\text { lower order powers. }
$$

Thus, $\varphi_{n-1}(z)=\kappa_{n-1} \Phi_{n-1}(z)$. By [20, Theorem 1.5.11(b)], we have

$$
\kappa_{n-1}^{2}=\prod_{j=0}^{n-2} \frac{1}{1-\left|\alpha_{j}\right|^{2}}=\frac{\operatorname{det} T_{n-1}(a)}{\operatorname{det} T_{n}(a)}=c_{1}^{(n)}
$$

where $\alpha_{0}, \alpha_{1}, \ldots$ are the Verblunsky coefficients, and Szegő's theorem [20, Theorem 2.3.1] says that

$$
\prod_{j=0}^{\infty}\left(1-\left|\alpha_{j}\right|^{2}\right)=G(a)
$$

It follows that $\kappa_{n-1} \rightarrow G(a)^{-1 / 2}$ and $c_{1}^{(n)} \rightarrow 1 / G(a)$. By [20, Theorem 2.4.1(iv)], the polynomials

$$
\varphi_{n-1}^{*}(z)=z^{n-1} \overline{\varphi_{n-1}(1 / \bar{z})}=\frac{\kappa_{n-1}}{c_{1}^{(n)}}\left(c_{1}^{(n)}+\cdots+c_{n}^{(n)} z^{n-1}\right)
$$

converge uniformly on compact subsets of the unit disk $|z|<1$ to the function $D(z)^{-1}=$ $G(a)^{-1 / 2} a_{+}^{-1}(z)$. This implies that the coefficient of $z^{j-1}$ in $\varphi_{n-1}^{*}(z)$ converges to the coefficient of $z^{j-1}$ in $D(z)^{-1}=G(a)^{-1 / 2} a_{+}^{-1}(z)$, that is,

$$
\frac{\kappa_{n-1} c_{j}^{(n)}}{c_{1}^{(n)}} \rightarrow \frac{1}{G(a)^{1 / 2}}\left(a_{+}^{-1}\right)_{j-1}
$$

Taking into account that $\kappa_{n-1} \rightarrow G(a)^{-1 / 2}$ and $c_{1}^{(n)} \rightarrow 1 / G(a)$, we conclude that $c_{j}^{(n)} \rightarrow\left(a_{+}^{-1}\right)_{j-1} / G(a)$.
To prove the second equality of (37), we employ the Szegő recursion

$$
\Phi_{n}(z)=z \Phi_{n-1}(z)-\bar{\alpha}_{n-1} \Phi_{n-1}^{*}(z) ;
$$

see [20, Theorem 1.5.2]. Written out this reads

$$
\begin{aligned}
& \frac{1}{\bar{c}_{1}^{(n+1)}}\left(\bar{c}_{n+1}^{(n+1)}+\cdots+\bar{c}_{1}^{(n+1)} z^{n}\right) \\
& =\frac{z}{\bar{c}_{1}^{(n)}}\left(\bar{c}_{n}^{(n)}+\cdots+\bar{c}_{1}^{(n)} z^{n-1}\right)-\frac{\bar{\alpha}_{n-1}}{c_{1}^{(n)}}\left(c_{1}^{(n)}+\cdots+c_{n}^{(n)} z^{n-1}\right)
\end{aligned}
$$

Comparing the coefficients of $z^{0}$ we obtain

$$
\frac{\bar{c}_{n+1}^{(n+1)}}{\bar{c}_{1}^{(n+1)}}=-\bar{\alpha}_{n-1}
$$

and since $c_{1}^{(n+1)} \rightarrow 1 / G(a)$ and $\alpha_{n-1} \rightarrow 0$, we see that $c_{n+1}^{(n+1)} \rightarrow 0$. Comparison of the coefficients of $z$ gives

$$
\frac{\bar{c}_{n}^{(n+1)}}{\bar{c}_{1}^{(n+1)}}=\frac{\bar{c}_{n}^{(n)}}{\bar{c}_{1}^{(n)}}-\bar{\alpha}_{n-1} \frac{c_{2}^{(n)}}{c_{1}^{(n)}},
$$

and as $c_{1}^{(n)} \rightarrow 1 / G(a), c_{2}^{(n)} \rightarrow\left(a_{+}^{-1}\right)_{1} / G(a), \alpha_{n-1} \rightarrow 0$, and, by what was just proved, $c_{n}^{(n)} \rightarrow 0$, we arrive at the conclusion that $c_{n}^{(n+1)} \rightarrow 0$. Proceeding in this way we successively see that $c_{n-1}^{(n+1)} \rightarrow 0, c_{n-2}^{(n+1)} \rightarrow 0$, etc. This proves the second assertion in (37).

Corollary 5.2 Put

$$
S_{11}=\frac{1}{c_{1}}\left(\begin{array}{ccc}
c_{1} & & \\
\vdots & \ddots & \\
c_{m_{0}} & \ldots & c_{1}
\end{array}\right)\left(\begin{array}{ccc}
\bar{c}_{1} & \ldots & \bar{c}_{m_{0}} \\
& \ddots & \vdots \\
& & \bar{c}_{1}
\end{array}\right) \quad \text { with } \quad c_{j}=\frac{1}{G(a)}\left(a_{+}^{-1}\right)_{j-1}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(T_{n}(a)+E_{n}\right)}{\operatorname{det} T_{n}(a)}=\operatorname{det}\left[\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
S_{11} & 0 \\
0 & \widetilde{S}_{11}^{\top}
\end{array}\right)\left(\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right)\right] .
$$

Proof. Since $T_{n}(a)$ is Hermitian, the columns (31) are

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1}^{(n)} \\
\vdots \\
c_{n}^{(n)}
\end{array}\right), \quad\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
\bar{c}_{n}^{(n)} \\
\vdots \\
\bar{c}_{1}^{(n)}
\end{array}\right)
$$

Combining Theorem 5.1 and formula (32) we see that

$$
\begin{equation*}
\left[S_{11}^{(n)} \rightarrow S_{11}, \quad S_{12}^{(n)} \rightarrow 0, \quad S_{21}^{(n)} \rightarrow 0, \quad S_{22}^{(n)}=\left[\widetilde{S}_{11}^{(n)}\right]^{\top} \rightarrow \widetilde{S}_{11}^{\top}\right. \tag{38}
\end{equation*}
$$

The assertion is therefore immediate from (33).

In [8, p. 690] and [16, Lemma 3.2] it is shown that if $a$ is a (real-valued and nonnegative) trigonometric polynomial, then the norms of $S_{11}^{(n)}, S_{12}^{(n)}, S_{21}^{(n)}, S_{22}^{(n)}$ remain bounded as $n \rightarrow \infty$. From (38) we see that, under the sole assumption that $a \in L^{1}, a \geq 0$ almost everywhere on $\mathbf{T}$, and $\log a \in L^{1}$, these matrices even converge to limits.
The following two examples concern perturbations of Hermitian Fisher-Hartwig matrices.
Example 5.3 Let $a(t)=\xi_{\alpha}(t) \eta_{\alpha}(t) b(t)=|1-t|^{2 \alpha} b(t)$ where $\alpha>-1 / 2$ is a real number and $b$ is a twice continuously differentiable and strictly positive function on the unit circle. Then

$$
\operatorname{det} T_{n}(a) \sim G(b)^{n} n^{\alpha^{2}} E_{*}(a)
$$

with some nonzero constant $E_{*}(a)$; see [2, Lemma 6.47] and [4, Theorem 5.44]. In this case Corollary 5.2 is applicable. We have $c_{j}=\left(\eta_{-\alpha} b_{+}^{-1}\right)_{j-1} / G(b)$ and hence

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\left(b_{+}^{-1}\right)_{1}+\alpha \\
& c_{3}=\left(b_{+}^{-1}\right)_{2}+\left(b_{+}^{-1}\right)_{1} \alpha+\alpha(\alpha+1) / 2
\end{aligned}
$$

and so forth.
For the pure singularity, i.e., when $b(t)$ is identically 1 , we get

$$
c_{1}=1, \quad c_{2}=\alpha, \quad c_{3}=\alpha(\alpha+1) / 2
$$

and $S_{11}$ takes the same form as in Example 4.6.
Example 5.4 Now suppose

$$
a(t)=\left|t_{1}-t\right|^{2 \alpha_{1}} \cdots\left|t_{r}-t\right|^{2 \alpha_{r}} b(t)
$$

where $t_{j}$ are distinct points on $\mathbf{T}, \alpha_{j}$ are real numbers in $(-1 / 2,1 / 2)$, and $b$ is a twice continuously differentiable and strictly positive function on $\mathbf{T}$. This time

$$
\operatorname{det} T_{n}(a)=G(b)^{n} n^{\alpha_{1}^{2}+\cdots+\alpha_{r}^{2}} E_{* *}(a)
$$

with some nonzero constant $E_{* *}(a)$; see [4, Theorem 5.47]. Corollary 5.2 is again applicable. If, for example, $a(t)=\left|t_{1}-t\right|^{2 \alpha_{1}}\left|t_{2}-t\right|^{2 \alpha_{2}}$, then

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{\alpha_{1}}{t_{1}}+\frac{\alpha_{2}}{t_{2}} \\
& c_{3}=\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2 t_{1}^{2}}+\frac{\alpha_{1} \alpha_{2}}{t_{1} t_{2}}+\frac{\alpha_{2}\left(\alpha_{2}+1\right)}{2 t_{2}^{2}} .
\end{aligned}
$$

The values for $c_{j}$ given in Example 5.3 can also be derived from [18, Lemma 1]. Moreover, Theorem 5 of 18, with the surmised correction mentioned above after Corollary 4.4, gives the second term in the asymptotics of $c_{j}^{(n)}$ for symbols as in Example 5.3. In the case of two singularities with the same exponent, that is, for $a(t)=\left|t_{1}-t\right|^{2 \alpha}\left|t_{2}-t\right|^{2 \alpha} b(t)$ with $-1 / 2<\alpha<1 / 2$, which is a special case of Example 5.4. Theorem 7 of 17 says that $c_{j}^{(n)}=\left(a_{+}^{-1}\right)_{j-1} / G(a)+O(1 / n)$, which is stronger than our result $c_{j}^{(n)}=\left(a_{+}^{-1}\right)_{j-1} / G(a)+o(1)$.

## References

[1] A. Böttcher, L. Fukshansky, S. R. Garcia, and H. Maharaj, On lattices generated by finite Abelian groups. Preprint, 2014.
[2] A. Böttcher and B. Silbermann, Invertibility and Asymptotics of Toeplitz Matrices. Akademie-Verlag, Berlin, 1983.
[3] A. Böttcher and B. Silbermann, Toeplitz matrices and determinants with FisherHartwig symbols. J. Funct. Anal. 63, 178-214 (1985).
[4] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices. Universitext, Springer-Verlag, New York, 1999.
[5] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators. Second edition, Springer-Verlag, Berlin, Heidelberg, New York, 2006.
[6] A. Böttcher and H. Widom, Two elementary derivations of the pure FisherHartwig determinant. Integral Equations Operator Theory 53, 593-596 (2005).
[7] P. Deift, A. Its, and I. Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results. Commun. Pure and Appl. Math. 66, 1360-1438 (2013).
[8] F. Di Benedetto, Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices. SIAM J. Sci. Comput. 16, 682-697 (1995).
[9] R. V. Duduchava, The discrete Wiener-Hopf equations. Trudy Tbilis. Matem. Inst. 50, 42-59 (1974) [in Russian].
[10] M. E. Fisher and R. E. Hartwig, Toeplitz determinants - some applications, theorems, and conjectures. Adv. Chem. Phys. 15, 333-353 (1968).
[11] L. Fukshansky and H. Maharaj, Lattices from elliptic curves over finite fields. Finite Fields and Their Applications 28, 67-78 (2014).
[12] I. Gohberg, Toeplitz matrices composed of the Fourier coefficients of piecewise continuous functions. Funktsional. Anal. i Prilozhen. 1, 91-92 (1967) [in Russian].
[13] I. Gohberg and I. A. Feldman, Convolution Equations and Projection Methods for Their Solution. Nauka, Moscow, 1971 [in Russian].
[14] I. Gohberg and A. A. Sementsul, The inversion of finite Toeplitz matrices and their continous analogues. Matem. Issled. 7, 201-223 (1972) [in Russian].
[15] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators. Birkhäuser Verlag, Basel, 1984.
[16] D. Noutsos and P. Vassalos, New band Toeplitz preconditioners for ill-conditioned symmetric positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 23, 728742 (2002).
[17] P. Rambour, Asymptotic of the terms of the Gegenbauer polynomial on the unit circle and applications to the inverse of Toeplitz matrices.arXiv:1310.4685 [math.CA] 17 Oct. 2013.
[18] P. Rambour and A. Seghier, The generalised Dyson circular unitary ensemble: asymptotic distribution of the eigenvalues at the origin of the spectrum. Integral Equations Operator Theory 69, 535-555 (2011).
[19] Min Sha, On the lattices from ellptic curves over finite fields. arXiv:1406.3086v2 [math.NT] 20 June 2014.
[20] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. Amer. Math. Soc., Providence, RI, 2005.
[21] W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Indust. Appl. Math. 12, 515-522 (1964).
A. Böttcher, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany aboettch@mathematik.tu-chemnitz.de
L. Fukshansky, Department of Mathematics, Claremont McKenna College, 850 Columbia Ave, Claremont, CA 91711, USA
lenny@cmc.edu
S. R. Garcia, Department of Mathematics, Pomona College, 610 N. College Ave, Claremont, CA 91711, USA
stephan.garcia@pomona.edu, URL: http://pages.pomona.edu/~sg064747/
H. Maharaj, 8543 Hillside Road, Rancho Cucamonga, CA 91701, USA
hmahara@g.clemson.edu


[^0]:    MSC 2010: Primary 47B35; Secondary 15A15, 15B05
    Keywords: Toeplitz matrix, Toeplitz determinant, Fisher-Hartwig symbol
    Fukshansky acknowledges support by Simons Foundation grant \#279155, Garcia acknowledges support by NSF grant DMS-1265973.

[^1]:    ${ }^{\S}$ The formula was obtained by Duduchava in the case $\gamma+\delta=0$ in his 1974 paper 9. In 1984, Steffen Roch established the formula in the general case. With Roch's permission, it was published in 3] for the first time. See [5, pp. 320-321] for more on the story.

