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Some Comments on Multiple Discovery in Mathematics1

Robin M. Whitty

Queen Mary University of London
r.whitty@qmul.ac.uk

Synopsis

Among perhaps many things common to Kuratowski’s Theorem in graph theory,
Reidemeister’s Theorem in topology, and Cook’s Theorem in theoretical com-
puter science is this: all belong to the phenomenon of simultaneous discovery in
mathematics. We are interested to know whether this phenomenon, and its close
cousin repeated discovery, give rise to meaningful questions regarding causes,
trends, categories, etc. With this in view we unearth many more examples, find
some tenuous connections, and draw some tentative conclusions.

The characterisation by forbidden minors of graph planarity, the Rei-
demiester moves in knot theory, and the NP-completeness of satisfiability
are all discoveries of twentieth-century mathematics which occurred twice,
more or less simultaneously, on different sides of the Atlantic. One may enu-
merate similar coincidences to one’s heart’s content. Michael Deakin wrote
about some more in his admirable magazine Function [10], Frank Harary rem-
inisces about a dozen or so in graph theory [25], and there are whole books
on individual instances, such as Hall on Newton–Leibniz [24] and Roquette
on the Brauer–Hasse–Noether Theorem [44].

Mathematics is quintessentially a selfless joint endeavour, in which the
pursuit of knowledge is its own reward. This is not a polite fiction; G.H.
Hardy’s somewhat sour remark [26] “if a mathematician . . . were to tell me
that the driving force in his work had been the desire to benefit humanity,
then I should not believe him (nor should I think the better of him if I did)”

1A version of this paper was read at the 2014 Christmas Meeting of the British Society
for the History of Mathematics.
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nevertheless allows him to rank intellectual curiosity before ambition; and
this ranking is engrained in a mathematician’s upbringing. So simultaneity
of mathematical discovery tends to be tactfully overlooked: disputes about
priority or naming or respective merits are in poor taste. The infamous affair
of Erdős and Selberg’s simultaneous elementary proofs of the Prime Number
Theorem, for instance, although meticulously documented [16], is generally
considered best forgotten. The topologist Joan Birman represented the pro-
fession eloquently in relation to another fuss (over who proved Poincaré’s
Conjecture [38]): “Reading [Nasar’s biography of John Nash], I was proud
of our decency as a community [4].”

To take a less controversial example, Joseph Wedderburn’s “Little Theo-
rem” was proved first, marginally, and proved better by Leonard Dickson [40],
but there is no move to re-brand it Dickson–Wedderburn. Again, it is quite
conceivable that Cauchy was aware of Galois’ marginally prior discovery that
groups whose order is divisible by a particular prime contain subgroups of
this same prime order, it remains Cauchy’s theorem for all that. But there
is pause for thought here: Meo addresses the possibility that Cauchy indeed
knew of but “disqualified” Galois’ ideas on political or religious grounds [35].
The historian of mathematics cannot quite overlook this: curiosity must be
roused, or perhaps heckles raised.

And what are we to make of particularly spectacular examples of simul-
taneity? How could anyone shrug off the appearance, at the same moment
and for the same purpose, but in utterly different cultures, of the Bernoulli
numbers? They were essentially present in Faulhaber’s Formula of 1631,
which itself has a long prehistory in Greece, India, and the Muslim world
[3]. But they became explicit in the work of Jacob Bernoulli, posthumously
published in Eidgenossenschaft Switzerland in 1713 and of Takakazu Seki,
posthumously published in shogun Japan in 1712. Wimmer-Zagier and Za-
gier in [51] examine the possible interactions between such widely separated
mathematical cultures and propose that this is a genuine example of inde-
pendence, and all the more striking because: “Bernoulli numbers constitute
a far more specific discovery [than determinants] that is not an inevitable
consequence of any particular ‘general trend in the science’.”

Repeated discovery is by no means disconnected from its simultaneous
cousin. Historians have declared (c.f. Chapter 2 of [34]) that the Pappus–
Guldin Theorems, relating displacement of centre of mass to surface areas
and volumes of revolution, were independent discoveries by Pappus, around
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300AD, and by early seventeenth century scholars, notably Paul Guldin. At
least an analogy is suggested between the cultural divide separating exact
contemporaries in Europe and Japan, and that separating fellow Europeans
thirteen hundred years distant from each other.

An interesting instance of rediscovery is the classification of semiregular
(aka Archimedean) tilings of the plane: this appears in Chapter 2 of Kepler’s
1619 Harmonices Mundi (in which also appears his third law of planetary mo-
tion), but there have been at least three rediscoveries, the most recent being
simultaneous: in 1905 by the Scottish mathematician Duncan Sommerville (a
near-neighbour and contemporary of Wedderburn) and by the Italian ento-
mologist Alfredo Andreini in 1907. In between there is a French publication
dated 1887 by a Paul Robin whose identity seems obscure, although there
was a chemist of that name active at the time who might legitimately have
been interested in tilings. These rediscoveries might suggest multiple drivers
for geometrical discovery: mathematics, philosophy (in the sense of natural
philosophy), biology, and (maybe) chemistry.

We should be wary of a distinction between rediscovery of a mathematical
theorem and rediscovery of a proof of this same theorem. The “rediscovered”
proof may be different from the original and deliberately so, for a variety of
reasons. Then how we define “different” and how we identify these “rea-
sons” becomes an interesting and important tangential issue, compellingly
and provocatively raised by Dawson in [9].

Several questions are, it would seem, being begged. But they are not,
on the evidence, being answered in a systematic way. We might not expect
anything as impressive as a Poisson model of discovery arrival, as has been
proposed, tongue-in-cheek, by Ken Regan [33], but we could hope for some
kind of frame of reference or some parameters for discussion. Brian Blank,
in his sweeping (and scathing) review of another Newton–Leibniz book, says
“Historians and sociologists of science have long been fascinated with mul-
tiple discoveries . . . Such discoveries are even more noteworthy when they
exemplify the phenomenon of convergence—the intersection of research tra-
jectories that have different initial directions” [5]. What is this “phenomenon
of convergence” (Blank’s emphasis)? Might it suggest a systematic frame-
work in which to compare Newton (astronomicals) vs Leibniz (infinitesimals)
with the Kepler–Robin–Andreini story? Such a framework would be an im-
portant and useful beast, but it appears to be an elusive one. Perhaps it is at
work in Kuhn’s famous examination of the history of energy conversation?
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“What we see . . . is not really the simultaneous discovery of en-
ergy conservation. Rather it is the rapid and often disorderly
emergence of the experimental and conceptual elements from
which that theory was shortly to be compounded” [29].

“Rapid and often disorderly” might very well be said to apply to the emer-
gence of the calculus. But in the mathematical sciences we might perhaps
identify, describe, and account for discoveries at a finer level of granularity,
and consequently more precisely and tidily, by focusing on individual mile-
stones in mathematical progress, theorems and lemmas and their proofs, or
conjectures which eventually acquire proofs.

There is a danger of drawing a false distinction: surely a theorem should
not be isolated from the whole body of theory to which it belongs? Stedall
opens her Very Short Introduction [47] with this very point: a mathematical
theory or theorem cannot be isolated from the times, cultures, and processes
which engendered it; nor may its author be identified, let alone deified: the
history of mathematics should also concern itself with “. . . how, where, and
why mathematics has been practised by people whose names will never ap-
pear in standard histories.” In this view, to even use the phrase “historians
and sociologists of science” is to distinguish falsely. This was also the opinion
of Robert Merton, pioneer of the sociology of science:

“. . . for more than three centuries, there has been an intermittent
mock battle between the advocates of the heroic theory and the
theory of the social determination of discovery in science. In this
conflict truth has often been the major casualty. For want of an
alternative theory, we have been condemned to repeat the false
disjunction between the heroic theory centered on men of genius
and the sociological theory centered on the social determination
of scientific discovery” [36].

The quotation is from Merton’s best known paper on multiple discoveries
in science, the first ten pages of which are concerned with Francis Bacon’s
much earlier contemplations on the same subject; hence the reference to
“three centuries”. To Bacon, Merton attributes the (implicit) identification
of the causes of what he calls “multiples”: “the incremental accumulation
of knowledge, the sustained social interaction between men of science and
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the methodical use of procedures of inquiry.” To which he adds Bacon’s
“Births of Time” thesis: “Once the needed antecedent conditions obtain,
discoveries are offshoots of their time, rather than turning up altogether at
random.” The Baconian view of simultaneity continues to be the prevailing
one. Pickover, for instance, in his popular history [41] might quote Georges
Ifrah’s counter-proposal from The Universal History of Numbers: “The true
explanation lies in . . . the profound unity of culture: the intelligence of
Homo sapiens is universal and its potential is remarkably uniform in all
parts of the world” . But this (and a literary flourish about numbers offering
universal solace in times of turmoil) appear secondary to what must be taken
to be Pickover’s own view: “Most likely, such simultaneous discoveries have
occurred because the time was ripe for such discoveries, given humanity’s
accumulated knowledge at the time the discoveries were made.”

Merton’s investigations drew him to propound what has been called
Merton’s Hypothesis: “the apparently incorrigible hypothesis that singletons,
rather than multiples, are the exception requiring distinctive explanation
and that discoveries in science are, in principle, potential multiples.” But
the “distinctive explanation” is intended, of course, to be a sociological one,
and Merton’s sociology of scientific discovery is most interested in “reward
systems” (indeed, a reprint of his paper [36] appears in his collection The
Sociology of Science [37] within a section called “The reward system of sci-
ence”). Subsequent work, notably Zuckerman’s celebrated analysis of Nobel
prizewinners [52], has given much substance to this system. But while it
might serve to illuminate the Newton–Leibniz spat (or indeed the Bernoulli–
Bernoulli one which arguably prevented Jacob Bernoulli’s work appearing
somewhat before Takakazu Seki’s) it does not appear to offer anything too
tangible to the historically inclined mathematician, who will be more inter-
ested in how mathematicians discover, rather than how they behave. The
historically inclined mathematician may after all, pace Merton and Stedall,
be more intrigued by what can be done at the level of individual theorems,
discovered by clever individuals. Neumann’s examination of the dating of
Cauchy’s Theorem [39] and Stigler’s detective work on Bayes’ Theorem [48]
are two compelling examples.

So, taking a mathematician’s view of history rather than a historian’s
view of mathematics, and hoping to skirt the minefield that is the difference
between the two [15], we return to our opening examples.
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Our first transatlantic example of simultaneous discovery, Kuratowski’s
Theorem, has been comprehensively examined by Kennedy et al. [28] but
rather in the matter of adjudicating on a priority dispute. It is one of the si-
multaneities cited by Harary [25], who endorses Merton’s Hypothesis: “inde-
pendent discovery is probably more the rule than the exception, particularly
in a field which is growing as rapidly as graph theory.” A non-sociological
“distinctive explanation” is certainly offered here: a new and rapidly expand-
ing area in mathematics is likely to attract many clever new researchers, who
are likely to uncover for themselves, independently, a certain subset of basic
truths.

But even more distinctive would be an account which took into consid-
eration what was happening mathematically in Europe and in the US in the
late 1920s. As Chartrand et al. observe [8], Kuratowski’s result concerned
“le problème des courbes gauches en topologies”, while that of its US co-
discoverers, Frink and Smith, self-effacingly reduced to a one-line abstract
in Bulletin of the American Mathematical Society, concerned “Irreducible
non-planar graphs”. Orrin Frink and Paul Althaus Smith both completed
their doctorates in 1926, in modern algebra at Columbia and in topology at
Princeton respectively, but Frink published at the same time a new proof of
a classic 1891 theorem of Julius Petersen on factorisation of regular graphs
of odd degree.

In fact, Kuratowski’s theorem was discovered repeatedly, credit also being
due to L.S. Pontryagin and his teacher P.S. Alexandrov in Moscow, and to
Karl Menger in Vienna, all preoccupied with curves, surfaces, and the like,
although Menger, like Frink, came to the problem of planarity with a graph-
theoretic perspective, having become interested in map colouring and cubic
graphs. Jordan’s theorem on plane curves dates from the 1880s but had been
given what was at the time considered [21] to be its first complete treatment
by Veblen in 1905, a point on a trajectory leading inevitably to planarity of
ensembles of plane curves: this certainly seems to be one of Bacons births
of time. But this is not meant to be a conclusive assertion but rather a
provocative one!

Karl Menger makes an interesting point of contact with our second open-
ing simultaneity: his study of cubic graphs dates from his membership of
“Reidemeister’s Vienna seminar” [28]. Kurt Reidemeister was in Vienna be-
tween 1923 and 1925 and it was there that he was introduced to knot theory
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by Wilhelm Wirtinger. It seems plausible that a consideration of knot invari-
ants (the fundamental group, for example) and questions about equivalence
would combine with the Vienna seminar’s coincidental study of graphs and
maps to supply the necessary impetus for Reidemeister to discover his dia-
grammatic “moves”. For that matter, both the systematic enumeration of
knots and the study of cubic graphs had been pioneered by the same man, Pe-
ter Guthrie Tait, in the 1880s. The simultaneous discovery of Reidemeister’s
theorem by James Waddell Alexander and his Princeton student Garland
Baird Briggs is contrasted epistemologically with Reidemeister’s by Moritz
Epple [12], and seeing their respective diagrams side by side reinforces the
idea that Reidemeister was influenced by graph theory, while Alexander’s
was a more purely algebraical approach. Certainly Alexander belonged to a
“tradition” of topology, founded by Veblen and continued by Lefschetz.

Graph theory is a common thread taking us through the second war,
with its enormous impact on discrete optimisation, to the 1970s by which
time graph algorithms had become a driving force in the study of computa-
tional complexity. The NP-completeness of satisfiability, our final opening
simultaneity, was proved in 1971 by Stephen Cook, then at the University
of Toronto. This was certainly work which was “of its time”: by 1971 Jack
Edmonds was barely seventy miles distant in Waterloo and would have or
could have discovered the same result; the same might be said of Richard
Karp of whom Cook was a very recent Berkeley colleague. Cook moved
to Toronto after falling foul of Berkeley’s tenure “reward system”, so there
is certainly sociological material to hand. Once again, however, there is a
pressing mathematical claim on our attention: something roughly equivalent
to Cook’s Theorem was discovered simultaneously by Leonid Levin, a recent
graduate and student of Kolmogorov, working at the Moscow Institute of In-
formation Transmission; see [32]. A fascinating confluence of mathematical
themes is suggested: combinatorial optimisation developing in post-war USA
and the Soviet Union, wonderfully invoked by Schrijver [45] (a companion
paper [42], by Polyak, in the same journal issue gives a Soviet viewpoint);
the theory of algorithms developing at Harvard (Michael Rabin, Alan Cob-
ham) where Cook studied for his PhD; the Kolmogorov route to complexity
(itself a “multiple”, having been pre-invented by Ray Solomonoff, working
in the US military research sector in the early 1960s, (c.f. page 89 of Li and
Vitányi’s book [31]), not to mention the evolution of computers, computer
programming, the formal theory of languages and artificial intelligence.
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It is missing an opportunity, then, to explain away the simultaneous dis-
covery of Cook’s Theorem as a case of “the time was ripe”. Other simul-
taneities may have less mileage in them, however. The discovery of the
Max-Flow-Min-Cut Theorem of combinatorial optimisation, for example, is
another transatlantic event, reported in a RAND report by Ford and Fulker-
son in 1954 and independently, in a restricted version, by Anton Kotzig in his
doctoral thesis of 1956, in Bratislava. But this is a multiple discovery which
is quite unsurprising given the mathematical and industrial preoccupations
at the time. Indeed, the theorem is also attributed to Claude Shannon and
his colleagues who wrote in 1956 “This theorem may appear almost obvi-
ous on physical grounds and appears to have been accepted without proof
for some time by workers in communication theory” (c.f. page 38 of [1]). It
belongs perhaps to that most vague of categories of multiple discovery, the
“folk theorem”!

Wedderburn’s Little Theorem must in hindsight appear to be equally
inevitable, as a step in the progress of modern algebra. Moreover its co-
discoverers and their colleagues were in close contact with each other. The
main protagonists were all even at the same institution during the critical
period. Parshall’s analysis [40] is surely definitive, although the theorem
itself has had a rich afterlife, acquiring alternative proofs and moonlighting
in projective geometry.

Likewise, the two 1896 simultaneous (non-elementary) proofs of the Prime
Number Theorem were inevitable after 1859 when Riemann set out the game-
plan [13].

Around 1980, Georgy Egorychev and Dmitry Falikman simultaneously
proved the 1926 van der Waerden conjecture on permanents, a surprise at
the time but signaled twenty years earlier by the proof by Marvin Marcus
and Morris Newman of a weaker result. Coincidentally Egorychev and Fa-
likman both used a prior simultaneity from geometry in their proofs, the
Alexandrov–Fenchel inequality of 1936/37!

Thomas Clausen and Karl von-Staudt’s simultaneous 1840 discovery of
their eponymous theorem may also belong to the “unremarkably inevitable”
category, given the ubiquity of the Bernoulli numbers in number theory fol-
lowing Euler, although a little detective work might be done: Clausen’s
contribution is in the form of a 10-line communiqué appearing in Heinrich
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Christian Schumacher’s journal Astronomische Nachrichten, signed “S” (pre-
sumably Schumacher), so it is unclear whether he had a proof. The theorem
is also a 1911 repeat discovery, appearing without proof in Ramanujan’s first
published paper.

Naturally all mathematical discoveries, simultaneous or not, have a story
to tell. The puzzle is to decide if there is a useful way of categorising these
stories, or of extrapolating from them, or of accounting for them! Perhaps
we can hypothesise a few.

Firstly we can identify cases where a simultaneous discovery is stimulated
by an “unlocking idea”. Riemann’s 1859 paper would fall into this category,
as would Marcus and Newman’s result on permanents. The exciting indepen-
dent 2013 advances on small prime gaps of Zhang and Maynard were unlocked
by a breakthrough of Goldston, Pintz, and Yıldırım which came in 2005 after
an almost twenty-year stalemate. Around 2003, no fewer than three inde-
pendent proofs appeared that Moufang loops obey the Lagrange property:
conversely to Cauchy’s theorem, the order of a subgroup (or subloop) must
divide that of its parent group/loop. All these proofs depended on a 70-page
1987 classification theorem of Peter Kleidman.

Unlocking can work in reverse. Michael O’Nan and Leonard Scott in-
dependently proved their classification theorem (the O’Nan–Scott Theorem)
in 1979 as a theorem about maximal subgroups of the symmetric group. It
was quickly harnessed as a way of applying to primitive permutation groups
the (at the time still incomplete) Classification of the Finite Simple Groups
(CFSG). Cameron recounts how “Peter Neumann showed me that most of the
[O’Nan–Scott] theorem is contained in Camille Jordan’s Traité des Substitu-
tions from 1870” [7]. Jordan’s work had been overlooked; perhaps, Cameron
suggests, “the most plausible hypothesis is that, until we had CFSG, the
theorem was not of much use, and was not considered worth pursuing.”

CFSG is more than an “idea” of course—it counts as “big machinery”. In
general it might be proposed that big machinery would act as a deterrent to
simultaneity. CFSG, via the O’Nan–Scott Theorem, led to many conjectures
being resolved. “Low-hanging fruit waiting to be picked”, Cameron calls it
[7]; the circle of those able to do the picking would initially be small and
would coordinate their investigations. If this sounds like a Mertonian reward
system reinforcing itself, then it should be noted that within two years of
O’Nan and Scott’s result, Cameron had written an “entry-level” survey paper
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[6] making the low-hanging fruit accessible to the profession at large! Be that
as it may, there are major results in permutation group theory, proved in the
early 1980s by groups collaborating to exploit O’Nan–Scott, which remain
reliant on CSFG to this day.

In graph theory the first big machinery came in the form of what Lovász
has called “the decomposition paradigm” [30], of which the major example
is the Robertson–Seymour Graph Minors Theorem. As with CFSG, the ma-
chinery was made accessible quite quickly [11], but it seems fair to say that
those extending and using the paradigm to solve deep problems remain a
small and well-coordinated group. Here is an example: a well-known 1977
conjecture of Fiorini and Wilson asserts that every uniquely edge-3-colorable
cubic planar graph on at least four vertices contains a triangle. This conjec-
ture is actually a simultaneity because S. Fisk made the same conjecture at
the same time (see Problem 11 in section I.6 of [14]), but this is unsurprising
since graph colourings were intensively studied at the time (the Four Colour
Theorem was proved in 1976), and anyone at the cutting edge of the subject
might have made this conjecture. What is interesting is that a proof came in
1998 using the decomposition paradigm, constituting the PhD dissertation
of Tom Fowler, a student of Robin Thomas who is a leading exponent of the
paradigm. The proof is long and difficult; it was announced by Thomas in
an overview paper [49] but does not exist outside of Fowler’s dissertation.
Although the proof is computer-assisted, nobody presumably questions its
correctness. But equally, nobody is likely to look for a new proof outside
of the decomposition paradigm, and the chances of a simultaneous proof in
1998 must have been very remote.

Despite a potential trend towards teamwork, especially around instances
of “big machinery”, data spanning the six decades up to the millenium [20] do
not suggest a dramatic recent increase in authors per paper. But beyond “big
machinery”, there is on the horizon an even bigger “threat” to simultane-
ity: the computerised proof. This is foreshadowed by the computer-assisted
proofs of Fowler, and of course of Appel–Haken of “Four colors suffice” fame.
It has come closer with recent formal (as opposed to computer-assisted)
proofs of the Jordan Curve Theorem [22], the Four-Colour Theorem [17],
the Feit–Thompson Theorem of finite group theory [18], the Prime Num-
ber Theorem (both the elementary [2] and non-elementary [27] proofs) and
Kepler’s Conjecture [23].
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Not many professional mathematicians yet take seriously the vision of
Gowers, put forward in 2000 [19], of a time when computers will both dis-
cover and prove all interesting new theorems. But there are certainly eminent
professionals who believe that some parts of mathematics cannot progress
without, at least, formal proof. Voevodsky, for instance, listing recent ex-
amples of human error in algebra, says “It soon became clear that the only
real long-term solution to the problems that I encountered is to start using
computers in the verification of mathematical reasoning” [50].

Even a mathematical world in which, for a theorem to be taken seriously,
its proof had to be certificated as formally checked,2 would be a world in
which mathematical activity would be more regulated, more homogenised,
more expensive. Theorems would be discovered and proved, even more so
than in the “big machinery” scenario, in large, coordinated groups; the pub-
lication [18] describing the proof of Feit–Thompson, for instance, lists no
fewer than fifteen co-authors! The possibility of simultaneous discovery, and
still less of repeated discovery, would surely be sadly diminished.

Having the same effect (but more congenial to the traditionally-minded
mathematician) is the Polymath research initiative in which the Internet is
used to focus, on to a nominated open problem, the skills of hundreds of
mathematicians. The Polymath 8 project, for example, resulted in the publi-
cation [43], under the name D.H.J. Polymath, of significant improvements to
bounds arising from Zhang and Maynard’s small prime gaps breakthrough,
improvements which could hardly have been achieved by one person working
on their own, let alone two such simultaneously.

Mathematicians are curious about how they go about their work, even
if they feel, with G.H. Hardy, that it is an idle curiosity. Simultaneous and
repeated discovery, Merton’s “multiples”, are worth being curious about but
not, for mathematicians, in the spirit of sociology, nor even of social history.
It is more a matter of the solemn observation that “great minds think alike”
leading to the question “why?”, or the observation that “it isn’t worth re-
inventing the wheel” leading to the question “why not?”. Such investigations
can reveal interesting information at the level of clever individuals proving
clever theorems, even if the professional historian might more admire Stedall’s
“. . . how, where, and why . . . ”.

2[46] is a fictional account of just such a future for mathematics.
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These investigations may prove historical in a different sense, however:
simultaneity and rediscovery might be consigned to history if the clever the-
orems are proved not by individuals but by clever teams backed by clever
computer programmers. We might see simultaneous discovery replaced by
races between teams competing to be the first to discover. At this point
Merton’s reward system view of science would indeed apply to mathematics.
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