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0.  INTRODUCTION
Let me be clear about the development in school al-
gebra I wish to track here.  It is exemplified by the
“solution of equations,” as I learned it in my child-
hood around 1938.  Before the era of The New Math,
the setting up of linear and quadratic equations to
model stories of perimeters and areas, and ages of fa-
thers and sons,was generally done in the 9th grade.
Having got an equation with x the unknown — this
having been the hardest part — we would apply some
rules such as that “Equals added to equals are equal”,
or maybe some rituals called “transposition” and “di-
viding through,” to obtain one or more numbers we
called the “solution,” which we then “checked” by
substitution.  If the answer didn’t check, one would
look back for some miscalculation; otherwise we were
done.

Most books — and many teachers, including my own
— made little effort to put into English what we were
doing.  Algebra, it appeared, was a language and lit-
erature of its own, unconnected with words like “if,”
“then,” or “but.”  Its pronouncements did not begin
with capital letters or end in periods.  It was no won-
der that routine calculations like factoring were easy
for us and “story problems” very hard.  What can sto-
ries have to do with algebra?

It will be the purpose of most of what follows to work
through a rather simple problem such as should be
understandable to any beginner in high school alge-
bra, in order to show how putting it into English
makes all the difference between a ritual and an
epiphany.  Not that I advocate a *lesson* along these
lines (it would take some weeks, I should think, and
in part would have to stretch over years), but that I
advocate a *curriculum* along these lines, or, if not a
curriculum, a continuing conversation in algebra
classes that conveys the lesson I hope to illustrate with
this example.

The last few sections concern more sophisticated in-
terpretations of this problem and a very similar one,
which illustrate how mathematics of an unreal sort
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can get used in a real world, and how understanding
of such usage would be impossible without full ap-
preciation of the logic of the simpler versions.

1.  A SIMPLE PROBLEM IN 9TH GRADE ALGEBRA
Here is a typical “story problem” such as might have
been found in high school algebra in 1840 as easily as
in 1997.  Very likely this problem was known (and
solved) in 1997 B.C. as well, in ancient Babylonia.  No
calculators are needed, and only the simplest arith-
metic and algebraic notation enter.

PROBLEM:  A rectangular garden is to have an area of
600 square yards, and its length is to be fifty yards
greater than its width. What are its dimensions?

SOLUTION:  Let x be the length; then x-50 is the width,
and x(x-50) therefore the area.  So:

x(x-50) = 600
x2-50x-600 = 0

(x-60)(x+10) = 0
x = 60
x = -10

Now what?  Well, -10 can’t be the length of a garden,
so the answer must be 60.  We put a circle around the
‘60’ and wrote, if we were meticulous, and the year
was 1938, something like this:

        “CHECK:  Length x = 60
                      w = x-50 = 10
                      60•10 = 600, check.”

In my day we got 10 points for this.  What more is
there to say?

A thoughtful student might wonder where that -10
came from and where it went so suddenly.  “Length
x = 60” we wrote; why not “Length x = -10?” If asked,
the teacher might reply, “Well, that’s not a length, is
it?”  Or, “The length can’t be negative.”  Somewhere
else in the book (fifty years ago; today it is no longer
so) there might have turned up “extraneous roots,”
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i.e. apparent answers to algebraic equations that for
some reason didn’t work; maybe this was such a case.
Perhaps that was why we had to go through “check-
ing the answer.” We will come back to this later on.
For the moment, let us consider the language in which
the above solution was written.  The standard format
appears to be a string of equations without punctua-
tion.  Let us look again at the model “solution” as it
typically appears (verbatim) in the student’s notebook,
and even as printed in many typical textbooks:

Solution:  Let x be the length, so w = x-50, A = x(x-50).
x(x-50) = 600
x2-50x-600 = 0

(x-60)(x+10) = 0
x = 60
x = -10

After the setting-up, “Let x be the length, so...”, there
are no commas, no periods, no words.  The meaning
of “x” was established at the beginning, and the rest
seems to be equations, i.e. sentences so simple that
periods aren’t needed.  But actually it is not clear that
the meaning of x has been established, for all that it
was said to be “the” length, since we seem to end with
a sudden appearance of two answers, one of which
(the negative number) gave little pleasure to either
the textbook or the teacher.  One might ask the teacher,
of these last two lines in the student’s notebook, does
this mean “x = -10 OR x = 60” — or does it mean to
say “x = -10 AND x = 60?” Neither interpretation
seems to fit the idea that “x” had a definition, that is, a
single meaning.

Yet that was the way it began:  “x” was supposed to
represent “length,” a very definite length, a very defi-
nite number: the length of the garden wall, perhaps,
or a prescription for the purchase of lumber.  But isn’t
x also a “variable?”  Maybe it is an “unknown.” Is a
variable or an unknown different from a number?
This isn’t funny. The amount of nonsense that has been
written about “variables” has not only filled volumes,
but has confused generations of both students and
their teachers.  One begins to suspect that the lack of
punctuation and connectives such as “or” and “and,”
in the traditional way of writing the solution to this
problem, are not just abbreviations, but evasions.

2. PLAYING WITH FALSE STATEMENTS
Now, what was that definition of x?  “The length” is

what was written above, as if “the length” of a gar-
den with the given description necessarily existed, or
was unique.  But this is exactly what we are trying to
discover:  Is there such a length?  Maybe there isn’t.
For example, one might ask for the length of the side
of a rectangular garden whose perimeter is 100 yards
and whose area is 1000 square yards.  We can write
equations until blue in the face; we can call its length
x as above, so that 50-x is the width and 50x-x2 its area,
but it should be plain that there is no such rectangle
even before trying to solve the equation 50x-x2=1000.
You simply can’t enclose 1000 square yards in a rect-
angle with only a 100 yard perimeter (try a few
guesses).  Calling the length of such a rectangle “x”
doesn’t make x the name of anything real.  This im-
possibility was undoubtedly known in ancient
Babylonia, and most elaborately analyzed in geomet-
ric language by Euclid.

How can such a problem, as it eventuates in an equa-
tion, be understood in the first place, then?  What right
do we have to say “Let the length of the field be x,”
before we even know there is such an x?  Without a
more careful statement of what we are trying to find
out and how, no amount of “subtracting the same
thing from both sides” and the like will do us a bit of
good, except maybe on multiple-choice exams.  Both
sides of what, for goodness sakes?  An equality be-
tween symbols involving a possibly non-existent num-
ber — or maybe variable — named “x?”  (In my sec-
ond example here, 1000 for area and 100 for perim-
eter, x is a certainly non-existent length, or maybe vari-
able, or place-holder, or unknown, yet it still seems to
have a name, “x,” and an equation to describe its prop-
erties.  Are we permitted to debate the physiology of
unicorns?

One reason for a more careful statement of the prob-
lem is that it will explain some of the wordless,
comma-less, period-less “algebra” that appears in the
middle of the typical solution. Consider:  the textbook
says we have an “axiom” stating that if A and B are
numbers, and if A = B, and if C is some other number,
than A-C = B-C, i.e. “subtracting the same number
from equals yields equals.”  In the solution to the origi-
nal rectangular garden problem above this fact was
used in the following way:

From x(x-50)=600 we derived x(x-50)-600 = 0 by “sub-
tracting 600 from both sides.”  Both sides of what?
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An equation?  Yes, the equation x(x-5) = 600.  We call
it an equation because it has an equals sign in the
middle, but does that make it true?  And, if it isn’t
true, does our axiom still hold?  Indeed, the equation
in question is usually false.  When x = 14.7 it is false;
when x = 435 it is false.  What right have we to sub-
tract 600 from two sides of an “equation” that is usu-
ally false, and then call the result a consequence of
some axiom cribbed from Euclid?

(How that “axiom” got from Euclid into 19th century
algebra books is a story of its own.  Euclid in his axi-
oms did not mean “equals” in the algebraic sense at
all, but was talking about geometric figures, where
by “equal” he meant “congruent” in the first instance,
and then decomposable into pieces congruent piece
by piece, and ultimately even more sophisticated
equivalences than that.  There is also the equality of
ratios to be found in Euclid (Book V), with a defini-
tion of “ratio” hardly anyone remembers today.  Fur-
thermore, the “added to” and “subtracted from”
phrases used by Euclid in his Postulates did not refer
to anything numerical at all.  Modern algebra text-
books tend to forget the origin of these axioms, and
they list them along with corresponding rules for di-
vision and multiplication, too; something that would
have been quite meaningless to Euclid, and which can-
not be made to have meaning in his geometric con-
text.  [Footnote:  See, e.g., Dressler and Keenan’s Inte-
grated Mathematics, Course 1, New York, Amsco School
Publications 1980, p.108:  “Postulate 7: Multiplication
Property of Equality”.])

In their present-day 9th Grade use, these statements
may be called axioms, because of a long tradition cul-
minating in the author’s ignorance, but they are no
more axioms than any other properties of the arith-
metic operations construed as functions or operators.
One might as well call an “axiom” the statement that
if x(x-50) = 600 then log[x(x-50)] = log(600), or
cos[x(x-50)] = cos(600). These statements are, as ap-
plied to “equality of numbers,” nothing more than the
recognition that taking cosines, subtracting 600, etc.
are well-defined operations with unambiguous re-
sults.  It isn’t that two numbers are equal, in these ap-
plications, as that the two algebraic expressions are
intended to be different names for a single number.
In Euclid, “equality” denoted not a mere renaming of
a number, but an equivalence between two genuinely
different geometric entities.)

But this is a digression.  Axiom or not, it is true that if
two symbols represent the same number, subtracting
600 from each will yield two new symbols also repre-
senting the same number, i.e. the original number di-
minished by 600.  Now let us return to the equation
“x(x-5) = 600,” which is almost always a false state-
ment, and see why we have a right to subtract 600
from both sides of it and somehow use the result for a
good purpose.

3. INDUCTIVE AND DEDUCTIVE REASONING
To understand all this we must return to the origins
of algebra, which was brought to Europe in the Middle
Ages by Arabs who themselves had been influenced
by Indians, Babylonians and Greeks many centuries
before that.  The Greeks in the three hundred years
between Socrates and Appollonius of Perga, and
mainly in the unparalleled age of Plato’s Academy,
2400 years ago, had perfected what is now called the
synthetic method in geometry (and a bit of number
theory as well), showing the world how to proceed
from axioms and other known truths to more compli-
cated statements by means of a sequence of airtight
deductions, going from each known truth to the next
by a step whose validity can no more be denied than
the plain evidence of our senses — and even more so,
in that Plato had some doubts about our senses that
he did not entertain about geometry.

Most of human life goes in the other direction: we
humans use experience more than logic.  This use of
experience we call inductive, as opposed to the de-
ductive, or synthetic method.  We see a thing happen
and we look for its cause; if its apparent cause is con-
sistent with what we see, we call that connection a
theory.  And then we use the connection, the theory, as
if deductively (for we can never be as certain of our
scientifically postulated causes as we are of the axi-
oms of geometry) until or unless we find out it was
wrong or not useful.

This method is certainly not Euclidean mathematics,
but it is natural to mankind, and while it has led to
many mistakes it has also given us science.  The use
of experience has been most fruitful of all, as Galileo
explained, when the hypothetical “cause” is linked to
observation, both past and future, and both real and
imagined, by a deductive mathematical argument.
Hence Galileo’s insistence that experience be reduc-
ible to quantities amenable to mathematical method,
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to number and figure, as in Euclid.

The inventors of algebra were faced with problems
that had no counterpart in Euclid’s scheme.  We want
a rectangle whose sides do this and that; how do we
find it?  Can we begin with the ‘known,’ as in Euclid,
whose assertions begin with a given circle, a given
length, a given point, or some hypothesis, and go on
from there?  In the prob-
lem of the rectangular
garden we haven’t been
given anything!  We don’t
know the longer side, the
shorter side, or even if
there can be such sides!  It
looks as if we have been given an area; hmm, some
“gift!”  Area of what?  Can there even be an area such
as we hope to have been ‘given?’  Where do we be-
gin?

4.  THE ANALYTIC METHOD: INDUCTION FOLLOWED BY
DEDUCTION
It begins by guessing.  Nobody can stop us from guess-
ing, after all, and if we guess right we can easily show
the answer is right, by “checking.”  If by some miracle
I could think, “Eureka! 60 by 10 will do it!” I then could
convince any child that this is surely a rectangle of
the desired type.  Of course, I couldn’t convince any-
one immediately that this is the only rectangle that
would do it, and it is hard to see at first how one could
show such a thing, but in fact algebra formalizes the
“method of guessing” in such a way as to answer both
sorts of questions:  (1) Find a number or numbers that
answer the problem, and (2) Show that these are the
only answers there are.

The Arabic method of “algebra” (a word itself of Ara-
bic origin, having to do with taking apart and putting
together) is entirely systematic and convincing, but
accomplished the goals (1) and (2) in the opposite or-
der.  It first finds out the only (possible) answers there
are (or, rather, can be), and then shows them, or it, to
answer the problem in fact.

Instead of starting with the known, as in Euclidean
geometry, let us start with the unknown, BUT PRE-
TEND IT IS KNOWN!  What is unknown?  The length
of the rectangle, for one thing — and, for that matter,
the very existence of such a rectangle.  O.K., we pre-
tend there is such a rectangle and that we know its

length:  we give it a name, “x.”  But remember now, x
is really the pretend length of the pretend rectangle that
we are pretending to know all about, that solves the
problem, if the problem can be solved.  Maybe it can’t.
We are not entitled yet to guarantee the problem can
be solved — we have earlier, above, seen an appar-
ently similar one, that can’t be solved — but we can
pretend this one has a solution.

If the pretend length is x
then the pretend width is
x-50; that’s what the prob-
lem demands.  Some chil-
dren have trouble with a
number like x-50, which

looks more like a ‘problem’ than like a ‘number.’  We
can explain, though, that this is because we don’t ac-
tually know what number x is.  If x were 258 then the
width would be 208, which also could be written
258-50; if the length were 111 the width would be 61,
which also could be written 111-50.  So, if L is the
length, the width is L-50.  In our case we called the
length x; so... “x-50” is the width.  The pretend width.
Then the pretend area of this pretend rectangle is the
product x(x-50), which can be written in the ‘ex-
panded’ form x2-50x if we like, because that’s what
the distributive law says we can do with numbers —
and remember, we are pretending that x and x-50 are
numbers, maybe not known to us, but, we hope,
known to God at least.  Notice that x does not have to
be called a “variable,” or anything else with mystical
import.  It is a number — well — a pretend number.

Now if this pretend rectangle is to be a real one as
demanded in the problem, it must be that its area is
600 square yards, or,  to put our pretenses into an En-
glish sentence:

IF x is the length of a rectangle that can solve our prob-
lem, THEN x2-50x = 600.

This is the key to the whole analytic method, and it is
meaningless if it is not written (or understood) as a
whole sentence, with a very strong “if” at the begin-
ning and a very strong “then” in the middle.  The mere
equation,  x2-50x = 600, is not the statement of the prob-
lem.  It is not even a restatement of the problem; it is
only a part of a longer statement, the one that begins
with “if” and ends with “then.”  In the language of
English grammar, the equation  “x2-50x = 600” is but

Instead of starting with the known, as in Euclidean
geometry, let us start with the unknown, BUT PRE-
TEND IT IS KNOWN!
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a clause in a complex sentence.

A clause, in English grammar, is a statement that
sounds a bit like a sentence itself, since it has a subject
and predicate of its own, but within a sentence it
doesn’t actually say what it sounds as if it is saying.
In a true sentence a clause can nonetheless be false.
“If pigs could fly, then they would have wings.”  This
sentence is true, even though both its clauses happen
to be false.  Such is often the case with sentences of
the “if... then ...” form, which is what most mathemati-
cal sentences sound like.  Of course, some of the
clauses might be true, too.  But we must not confuse
the truth of the sentence with the truth of the clauses.
We can even know certain sentences to be true while
we have no idea whatever whether the clauses in it
are true or not.  We don’t even need to care if the clauses
are true (when taken as if they were sentences of their
own) or not.  Try this one:  “If John is 6 feet tall and
Jim is 5.9 feet tall, then John is taller than Jim.”  Who
John?  Who Jim?  Doesn’t matter; the sentence is true,
even though it says nothing at all about John or Jim, or
even whether they exist.

Thus in our restatement of our problem one need not
ask whether  “x2-50x = 600” is true or false.  It is an
equation, to be sure, a statement that a couple of things
are equal, but, like “John is six feet tall” and “John is
taller than Jim,” it is just part of a true sentence, hav-
ing no truth value of its own, except the knowledge
that IF the opening clause or clauses are true, this one
is, too.

Despite these uncertainties, we have got somewhere;
we have narrowed down the problem.  IF the prob-
lem can be solved, THEN x will have to satisfy the
equation x2-50x = 600.  Very well; next question:  Are
there any numbers x which do in fact satisfy
“x2- 50x = 600?”  To answer this, we go on with “if...
then...” sentences.

If x2-50x = 600 then x2-50x-600 = 0.  Why?  Because
x2-50x really and truly = 600?  NO!  Don’t let a student
believe this for a minute!  We don’t know if that equa-
tion is true (it usually isn’t, remember), or that there
exists even one value of x which would make it true.
What we know is that IF it were true, THEN the sec-
ond statement would also be true.  Subtracting 600
from a certain number, whether it is called x2-50x or is
called 600, can produce only one result, and since we

happen to know the result is 0 when the “certain num-
ber” is called 600, so we also know the result is 0 when
that “certain number” is called x2-50x, provided x2-50x
is another name for 600.

One can say here that “the same quantity subtracted
from equals produce equals,” and that is a common
way to remember the drill, but in logic it doesn’t say
very much, for x2-50x and 600 are not just “equals” in
the sense of Euclid.  x2-50x and 600 are here assumed
to be the same THING, a supposedly “certain num-
ber,” except that one of the descriptions of that num-
ber is more complicated than the other.  OF COURSE
subtracting 600 from a thing is the same as subtract-
ing 600 from that thing!  Only the names are different.
And don’t forget, it is only a pretend equality to be-
gin with, in that we are assuming we are dealing with
a number x, for the moment, that does make x2-50x
that real thing, 600.  Who knows but that we might
not someday find out that there really cannot be any
such number x?

5. A CHAIN OF IMPLICATIONS WITHOUT TRUTH
Now we can apply a rule of logic called “the transi-
tivity of implication.”  There was a time when text-
books made much of this idea, which is really only
common sense which we use every day.  The rule is
this:  If A implies B and if B implies C, then A implies
C.  What are A, B, and C here?  They are not numbers,
they are statements.  The clause “A implies B” is math-
ematical shorthand for the statement “If A, then B,”
and it is sometimes more convenient to use the word
“imply” and its allies than to go through the entire
“if...then...” routine.

In the present case our statements A, B and C are as
follows:

A.  “x is the length of a 600 square yard rectangular
field whose width is 50 yards less than its length;”
B.  “x2-50x = 600;”
C.  “x2-50x-600 = 0.”

Remember, these are merely statements, clauses,
things that look like assertions but are really only parts
of assertions we intend to make seriously.  We have
already established that A implies B, though we wrote
it down in the “If A, then B.” format. “Subtracting 600
from both sides” is the most usual language we use
to justify, in this problem, “B implies C.”  So the tran-
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sitivity of implication, combining the two assertions,
tells us “A implies C,” or “If A, then C;” that is,

IF there is a rectangle answering the conditions of the
problem and x is its length, THEN x2-50x-600 = 0.

Well, now that the idea is plain, that at each step we
are faced with a hypothetical statement and not an
absolute statement, we can speed things up a little,
making our explanations briefer.  We continually use
the transitivity of implication to permit us to “forget”
the intermediate stages of our argument.  Knowing A
implies C permits us to forget all about B from now
on.  B has served its purpose.  Similarly we will soon
be able to forget C, as follows; consider the two clauses:

D.  “For any number x whatsoever,
x2-50x-600 = (x-60)(x+10);” and
E.  “(x-60)(x+10) = 0.”

Statement D is simply a true statement, as everyone
knows and anyone can check using the elementary
rules of arithmetic (the distributive law, etc.).  That D
is true for all real numbers x is not trivial, of course,
and it demands a careful definition of “real number”
before it can be asserted.

(Actually, D is true not only for real numbers, but also
for complex numbers and for many things that are
not numbers at all, provided addition and multipli-
cation are suitably defined for these things among
themselves and between these things and ordinary
numbers.  Square matrices of size 7X7 are an example,
but this is by the way.)

Is E a true statement, like D?  Of course not.  For most
values of x it is false.  What is true is this:  If C is true
(for a certain x), then E is true.  Why?  Because D as-
sures us that the left hand side of C is the same as the
left-hand side of E even though we do not know what x
is, and so if C is true, then E, known to be the same
statement, is also true.

Here is where we stand now:  A implies E.  If there is
a length x that does our job, x satisfies the equation in
E.  From here it is easy.  The product of two numbers
can be zero only if one or both of the numbers is zero.
So, if E is true, then so is F:

F. “x-60 is 0 or x+10 is zero, or both.”

Finally, if x-60 is true, then x = 60 (I won’t repeat the
details about doing the same thing to both sides), and
if x+10 is true then x = -10.  We can discard the “or
both” because we know a single number named x can-
not be both 60 and -10.  But we do have to pay atten-
tion to the “or.”  In other words, F implies G, the state-
ment

G.  “x = 60 or x = -10.”

Combining all the implications in a sort of chain, A
implies B implies C implies E implies F implies G (re-
membering D was merely a truth we used along the
way) we end up with the statement “A implies G”
worded as follows:

If x is the length of a 600 square yard rectangular field
whose width is 50 yards less than x, then x = 60 or
x = -10.”

We see from this statement that we do not yet have
the solution, if any, of the problem; all we know is
that any number which is not 60, and is not -10, will
not solve the problem.  This is rather a limited result,
but it does clear away the underbrush. (Notice that
we have now answered one of the questions about
the original way I quoted a typical solution of this
problem:  The word is “or,” not “and.”)  And the ac-
tual solution is now not far away.  With only two pos-
sible answers, we don’t have to have a flash of inspi-
ration and shout “Eureka!”  We can systematically try
out the two possible solutions.  Try 60:  Then the width
is 10, and since 60•10 is indeed 600 we have a solu-
tion.  Put a circle around it. Ten points?  Not yet; there
might be another answer, since we haven’t yet ex-
cluded -10 by all those implications.  But any fool can
see that -10 can’t be the width of a rectangle of area
600, so we reject -10, as the book said.  There is one
answer, and the answer is 60.

6.  CHECKING THE “SOLUTION”
This last part of the argument, the actual multiplying
out of our candidate answer (x = 60) by the number
fifty less than x, to see if it indeed gives us our area of
600, is called “checking the answer” in most school-
books, and students and sometimes teachers tend to
consider this part a check on whether or not one has
made a numerical error somewhere along the way.
[Footnote: The Dressler and Keenan Integrated Math-
ematics mentioned earlier is but one among many texts
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containing no logical explanation of why one has to
check an answer.  Their typical instruction is “solve,
and check, ...” and they make it appear that if the
“solve” part contains no errors the “check” is super-
erogatory.]  It is true, of course, that if one has made a
numerical error the “checking” step will very likely
uncover it, and this already makes the step valuable,
but the logical function of the “check” is not often men-
tioned.

For another example, the book The Teaching of Junior
High School Algebra, by David Eugene Smith and Wil-
liam David Reeve (Ginn & Co. 1927) was written by
two of the most promi-
nent mathematics educa-
tors of the time, both pro-
fessors of the teaching of
mathematics and each the
author of numerous
books on the subject.  On
page 191, a paragraph
headed The Value of Checking contains this instruction
for future teachers of algebra:

On the whole, however, it is usually better for
a pupil to solve one problem and check the
result than to solve two and not check at all...
(1) he does a piece of work that is ordinarily
quite as good an exercise as the original solu-
tion; and (2) he has the pleasure of being cer-
tain of his result and of his mastery of the
whole situation.

Smith and Reeve thus consider checking to be good
for the student; what they fail to mention, and prob-
ably don’t even have in mind, is that “checking” is in
fact the only genuine proof of the “result” they think
was already in hand.

For in truth, the “result” they refer to (or the results,
in the present case 60 and -10) is only hypothetical un-
til the checking, the real proof, is done.  Otherwise,
-10 is just as good a “result,” having been obtained by
the same means as the 60.  But 60 “checks” in the prob-
lem, while -10 — which solves the equation, to be sure
— fails any check imaginable concerning the area of a
rectangle with such a side length.

The so-called check, simple as it might appear, is re-
ally the deductive proof in the sense of the ancient

Greeks, that our answer is right.  What is a deduc-
tion?  It is an argument that proceeds from something
given to something else we then deduce from it.

In the present case we are now (after all that analysis)
given a length 60 yards to study.  We can actually build
parallel garden walls 60 yards long and the other walls
10 yards long, i.e. fifty less than the length, and com-
pute the area.  Behold!  (The word “Theorem” is an-
cient Greek for the English word “Behold.”) Behold,
the area is 600.  No ifs or buts here. This particular
“theorem” is pretty trivial, but it is a theorem none-
theless:  What is this theorem?  It says that if a field is

60 yards long, and 50
yards less than that in
width, then its area is 600.
That’s all the problem
asked us to show, isn’t it?
And in truth, we didn’t
really know that before
we got to the so-called

“check” of the answer; all we knew earlier was that IF
a field did this and that, its length had to be — if any-
thing! — either 60 or -10.  The “check” is in fact the
solution, while what is usually called the “solution”
is nothing but the narrowing-down of possibilities.

Yet the traditional “solution” did tell us something
else, perhaps equally valuable.  It told us that the num-
ber we did check out by multiplication was the only
one.  Or the only positive one, anyhow, and since we
didn’t want a negative one we now know our solu-
tion is unique.  There is only one set of dimensions
for a garden with the properties demanded.  The
“theorem” given us by our check tells us that 60•10
worked; the other “theorem”, given us by the preced-
ing analysis, told us that only 60•10 could work, un-
less we wanted to get into negative “lengths,” what-
ever that might mean.

For there does remain a nagging question about that
-10. Where did it come from?  Of course it can’t be the
solution to the problem, but it was a solution to the
equation that somehow got into the problem.  If you
diminish -10 by 50 you get -60, and (-10)•(-60)= 600.
If -10  checks in the equation, and the equation ex-
presses the conditions of the problem, maybe there is
some reason for its having turned up there.  Why do
we reject it?  Because we know something about gar-
dens?  What have gardening facts to do with math-

...what they fail to mention, and probably don’t even
have in mind, is that “checking” is in fact the only
genuine proof of the “result” they think was already in
hand.
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ematics?
Suppose we hadn’t been talking about gardens, but
about something we didn’t have so much advance in-
formation about?  How would we have known to re-
ject the “wrong” solution?  How wrong is it?  It checks
in the equation, doesn’t it?

Well, there was a slippery phrase two paragraphs
back: “...the equation expresses the conditions of the
problem...”  That isn’t quite true.  The conditions of
the problem were two:  First that x be a positive num-
ber, since we are looking for the length of the side of a
real garden, built of real fencing in a real city; and
second, that the equation be satisfied.  This is how we
know to reject the -10.  Had we been more careful in

stating the problem, we might have put it thus at the
very outset:  “Find the (positive) length of the side of a
garden...  Then at each step of the narrowing down
part of the solution, well before the “check,” we would
repeat “positive number” before the symbol “x,” e.g.
“Let x be the positive number of the pretend length of
...” and so on.  We would end, “Then the positive num-
ber x must be either 60 or -10,” and it is clear that our
final statement would be “Then x must be 60” (if such
an x exists).  There would be no need to worry further
about the -10, but the check that 60 works would still
be needed as before.

Part II of this article will be published in the next issue of
the Humanistic Mathematics Network Journal.
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