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Abstract

Mathematical modeling of population dynamics can provide novel insight
to the growth and dispersal patterns for a variety of species populations,
and has become vital to the preservation of biodiversity on a global-scale.
These growth and dispersal stages can be modeled using integrodifference
equations that are discrete in time and continuous in space. Previous stud-
ies have identified metrics that can determine whether a given species will
persist or go extinct under certain model parameters. However, a need
for computational tools to compute these metrics has limited the scope and
analysis withinmany of these studies. We aim to create computational tools
that facilitate numerical explorations for a number of associated integrod-
ifference equations, allowing modelers to explore results using a selection
of models under a robust parameter set.
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Chapter 1

Chapter 1: Introduction

1.1 Motivation & Background

The concept of population persistence is important with respect to the
maintenance of biodiversity. Biodiversity is characterized by the variety
of species and forms of life that inhabit a particular ecosystem. Preserving
biodiversity is pertinent to humans for many reasons including the pro-
duction of pharmaceuticals, sustenance, and aesthetics (Pearce 1991). Yet
today, many would agree that environmental changes pose serious threats
to biodiversity, manifested primarily in habitat loss and degradation (Dirzo
and Raven 2003, Wilcove et al. 1998).

Mathematical models can predict the impact of such environmental
change on the persistence of species population (Van Kirk and Lewis 1997,
Jacobsen et al. 2014). Predictive measures of population dynamics are im-
perative in aiding conservation ecologists to take proper action to protect
and preserve species vulnerable to extinction. Mathematical models often
consider the species’ means of growth and reproduction, given they seek
to make quantitative assessments about a population’s ability to persist un-
der certain conditions. Yet, mathematical models differentiate themselves
from one another based on the parameters and variables of interest, with
the flexibility to numerically investigate both stochastic and deterministic
processes.

Integrodifference models, in particular, have recently been used to ana-
lyze species which reproduce and spread in discrete time intervals across
a finite domain (Van Kirk and Lewis 1997, Jacobsen et al. 2014). Inte-
grodifference equations, a blend of difference and integral equations, allow
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modelers to consider growth and dispersion in stages, dividing time into
a period when growth is the population’s primary function and a period
when movement from one location to another becomes the population’s
primary function. This stage-based behavior is very realistic for several or-
ganisms, and integrodifference equations are highly versatile in their abil-
ity to exploit the recurrence relationship between the temporal and spatial
properties of a population to predict the size and distributions of subse-
quent generations. Many mathematical and theoretical ecologists utilize
this versatility to create integrodifference population equations which can
model the growth and spread of a population affected by various changes
to their habitat.

Organisms that are free-swimming in their juvenile/seed stages and
sessile, or fixed in position, in their adult stages living in river ecosystems
are an example of a community that can bemodeled using integrodifference
equations. Integrodifferencemodels provide a better understanding of how
factors, such as unidirectional stream flow, affect the physical environment
and the population that inhabits it (Lutscher, Pachepsky, and Lewis 2010,
Jacobsen andMcAdams 2014). The southern bull-kelp ofNewZealand is an
example of a species that can be generalized as exhibiting separate growth
and dispersal stages, which the model assumes to be continuous in space
and occurring within fixed-time intervals. The unidirectional flow of the
river both alters the physical environment and the dispersal patterns of the
bull-kelp, limiting dispersion to one direction (Collins, Fraser, Ashcroft and
Waters 2010).

Figure 1.1 Southern Bull-Kelp of New Zealand
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A given population’s growth pattern can be modeled with knowledge
of the initial population’s density. In this case, growth can be treated as
independent of space, depending only on the population density. The
movement and activity associated with dispersion is modeled using a dis-
persal kernel. Dispersal kernels are used to patternize a dispersal event
fixed within a bounded, habitable domain (Lutscher, Pachepsky, and Lewis
2010, Van Kirk and Lewis 1997, Jacobsen et al. 2014). A great degree
of flexibility in integrodifference equations is derived from the dispersal
kernel, which can be extended to consider either fixed, cyclic/periodic, or
entirely random kernels. In the case of bull-kelp, using these discrete-time,
continuous-space integrodifference equations, with dispersal kernels mod-
eling the population’smovement under the influence of unidirectional flow,
has helped garner insight regarding the conditions in which the population
will persist or desist (Collins, Fraser, Ashcroft and Waters 2010, Jacobsen et
al. 2014).

The analysis of mathematical models for the quantitative assessment of
population dynamics is important to ecologists and conservationists who
would like to understand how factors such as disease, resource limita-
tions, and climate change can impact populations over time (Jacobsen and
McAdams 2014, Dirzo and Raven 2003, Wilcove et al. 1998). While nu-
merous models have been constructed for the analysis of various ecological
scenarios (Lutscher, Pachepsky, and Lewis 2010, Van Kirk and Lewis 1997,
Jacobsen et al. 2014), many of these models are similar enough such that
only single variables and/or parameters are created or modified to pro-
duce the variant model. Often, ecologists often use the same model to
assess different scenarios. Yet, a comprehensive tool, which exploits these
similarities by allowing modelers to define variables and parameters, does
not exist. This project aims to create the computational tools necessary
to conduct numerical exploration of integrodifference equations, allowing
modelers to explore results using a selection of models under a robust pa-
rameter set. We hope mathematicians and ecologists alike will use this tool
to produce and examine simulated predictions of associated integrodiffer-
ence equations modeling relevant ecosystems.
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1.2 Integrodifference Models and Dispersal Kernels

Integrodifference equations have been shown to accurately predict popula-
tion dynamics for species with separate growth and dispersal stages (Kot
and Schaffer, 1986; Van Kirk and Lewis, 1997). An integrodifference equa-
tionmodels the population as continuous in space (the habitat) and discrete
in time (the dispersal event). If we consider a population nt(x) distributed
over a boundeddomainΩ at time t, we canmodel the successive population
nt+1(x) as

nt+1(x) �
∫
Ω

K(x , y) f (nt(y))dy (1.1)

where f is a nonnegative, time-independent function which models the
growth dynamics and K(x , y) is the dispersal kernel. The dispersal kernel
models the probability density associated with a given organism starting at
position y and settling at position x in a dispersal event. The computational
tools we develop seek to explore integrodifference equations derived with
similar motivations in modeling population dynamics, which take on this
generic form.

Consider a population of aquatic insects in a streamwhere the larvae of
these insects reside within the stream’s benthos. These larvae periodically
leap into the water column, where they fall subject to the flow of the stream.
Lutscher, Pachepsky, and Lewis derived an expression for the dispersal
kernel from a differential equation by considering individual movements
through means of diffusion and advective flow, along with a constant set-
tling rate for this biological system. The model assumes a given organism
starts at an initial position, moves through a defined region by advective
flow with Brownian motion, and resettles after being displaced. The mod-
elers choose Brownian motion as a first approximation to variations in the
flow of water. If we denote the density of these moving organisms with
z(x , t), then the change in density with respect to time is then given by

zt � Dzxx − vzx − αz , (1.2)

where D is the diffusion coefficient, v is the advection velocity, and α is the
settling rate.

Given these parameters, Lutscher, Pachepsky, and Lewis conclude the
dispersal kernel k(x) satisfies

k(x) �
∫
∞

0
αz(x , t)dt . (1.3)
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If we integrate Equation 1.2 over 0 ≤ t ≤ ∞, we find that∫
∞

0
zt dt � z(x ,∞) − z(x , 0) � −z(x , 0) .

Since lim
t→∞

z(x , t) � 0, we obtain

− zt � D
∫
∞

0
zxx dt − v

∫
∞

0
zx dt − α

∫
∞

0
z dt . (1.4)

We choose z(x , 0) � δ0(x−y) as the initial conditionbasedon the assumption
that a given organism starts at y at time t � 0. The expression for the
dispersal kernel can now be plugged into Equation 1.4

− δ0 �
D
α

(∫
∞

0
αz(x , t)dt

)
xx
−

v
α

(∫
∞

0
αz(x , t)dt

)
x
−

∫
∞

0
αz(x , t)dt (1.5)

which, recalling Equation 1.3, can be written as the ordinary differential
equation

− δ �
D
α

kxx −
v
α

kx − k . (1.6)

Solving this ODE with asymptotic boundary conditions

lim
|x |→∞

z � 0 and
∫
∞

−∞

K(x) dx � 1 (1.7)

yields the solution

k(x) �



Aea1 |x−y | , x < 0
Aea2 |x−y | , x ≥ 0

(1.8)

where

a1,2 �
v
2D
±

√
v2

4D2 +
α
D

(1.9)

and
A �

a1a2
a2 − a1

�
α

√

v2 + 4αD
. (1.10)

Figures 1.2 and 1.3 show sample plots of the resulting dispersal kernels.
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Figure 1.2 An example of a symmetric Laplace kernel at y = 0. This represent
the probability density for an organisms that starts at y � 0 and settles at x
following a dispersal event

Figure 1.3 An example of an asymmetric Laplace kernel at y = 0
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Dispersal kernels model various forms of biological dispersal and there-
fore can be expressed in a multitude of ways. For the dispersal kernel
K(x , y), the kernel models the probability density of an individual, which
starts at y settling at position x along a bounded domain Ω. When we
integrate the kernel over the span of the domain, this evaluates to the prob-
ability distribution for a population that was initially uniformly distributed
over the domain. A dispersal kernel often has parameters that reflect factors
associated with the environment contained in the domain.

For example, consider a habitat where the organisms containedwithin it
experience unidirectional flow (e.g., wind, river flow) which skews the dis-
persion. With advective flow influencing the dispersal event, Equation 1.7
gives the asymmetric Laplace kernel for cases where v , 0, as seen in Figure
1.3. When v � 0, the dispersal kernel simplifies to the symmetric Laplace
kernel, as seen inFigure 1.3. Figure 1.3 is asymmetricallydistributed around
the theoretical initial position with an apparent negative skew, where Fig-
ure 1.2, which assumes no unidirectional flow, is symmetrically distributed
around the initial position y � 0.
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1.3 Population Growth Models and The Asymptotic
Growth Rate

In Equation 1.1, we allow population growth dynamics to be modeled by
a nonnegative, density-dependent growth function f (nt). These functions
can be expressed with respect to the maximum per capita growth rate such
that f (nt) � g(nt(x)) · nt(x). Common growth functions of this variety
include the Beverton-Holt (1957) model and the Ricker (1954) model. The
Beverton-Holt model

f (nt) � rnt

1 + (r − 1)nt/K
(1.11)

and the Ricker model

f (nt) � nt · exp
[
r
(
1 −

nt

K

)]
(1.12)

both contain scalar parameters associated with the rate of proliferation in a
given population, r, and the community’s carrying capacity, K.

Figure 1.4 Sample Beverton-Holt growth function for r = 2 and K = 6.

Figure 1.5 Sample Ricker growth function for r = 2 and K = 4.
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The Beverton-Holt and Ricker’s model are known to achieve maximum
per capita growth rate at arbitrarily low densities, increasing with decreas-
ing population density (van Kirk and Lewis 1997). We can linearize ex-
pressions for f under the assumption that the maximum per capita growth
rate is found locally as n → 0 for f ′, analogous to capturing the first order
term of the Taylor expansion for the nonlinear system as the variable of
interest approaches 0. In particular, for the integrodifference model we will
consider the linearization about n � 0, replacing f (nt) with f ′(0) · nt (note
that we assume f (0) � 0 for all our growth models).

Linearization is a key technique to understanding whether a given pop-
ulation will persist or go extinct, as modelers can then derive an asymptotic
growth factor. This asymptotic growth factor often necessitates numerical
simulations of themodel to uncover for a given parameter set. Themodel in
its nonlinear form is known to be difficult to numerically simulate. Similar
to analyzing a nonlinear system of differential equations using the eigen-
data of the associated Jacobian, we can use linear stability analysis for the
integrodifference model to gain a desired understanding of an infinite di-
mensional system for which the state of the system is given by a function
rather than a vector.

We will invoke some key definitions necessary for the linear stability
analysis of our system. First, let X be a normed vector space with norm
|| · ||. An operator T : X → X is completely continuous if T is continuous
and if B ⊂ X is bounded, then T(B) is compact. An operator T is Frechet
differentiable at x if there exist a linear operator L such that

lim
y→0

||T(x + y) − T(x) − L(y)||
||y || � 0.

Lastly, The spectral radius of T is defined as the supremum of the absolute
values of the eigenvalues of T, or by Gelfand’s formula,

ρ(A) � lim
k→∞

||Tk ||1/k .

With these definitions, we derive a constant associated with the long-
term behavior of the system representing the population’s response to
growth and dispersal events for fixed and random kernels, which we will
refer to as the asymptotic growth rate. The asymptotic growth rate is based
on some critical assumptions made in the linear analysis of the equilib-
rium solution for Equation 1.1. When linearizing about the trivial solution
n � 0 for fixed kernels, Van Kirk and Lewis (1997) have shown there exists



10 Chapter 1: Introduction

a principal eigenvalue which serves as the asymptotic growth rate for the
nonlinearmodel. While effective for assessing systemsmodeled using fixed
kernels, we also hold interest in systems modeled using random kernel, for
which no such eigenvalue exists. However, Jacobsen, Jin, and Lewis (2014)
showed for models using random kernels there exists an analog to this
principal eigenvalue that we denote using Λ.

If we let
T (nt) �

∫
Ω

K(x , y) f (nt(y))dy , (1.13)

then T is a nonlinear operator that maps from L2(Ω) into L2(Ω) and is
completely continuous. The equilibrium solution for the nonlinear model
can be expressed as the fixed point equation

n∗ � T n∗. (1.14)

Another property of T is that it is Frechet differentiable, and its Frechet
derivativeL is a completely continuous linear operator. The Frechet deriva-
tion, or linearization, of Equation 1.13 at the trivial state n∗ � 0 is defined
by

L(nt) �
∫
Ω

K(x , y) f ′(0) nt(y)dy. (1.15)

To analyze the local stability of the fixed point ofT , we examine the spectral
radius of the Frechet derivative L at n∗. If the spectral radius of the Frechet
derivative, ρ(T ′(n∗)) > 1, the equilibrium solution is unstable. Instability,
in this case, is indicative of the action of a source, suggesting the given
populationwillmove away from the zero solution towards n∗ andultimately
persist. If ρ(T ′(n∗)) < 1, the equilibrium solution is locally stable and
moves towards the zero solution, implying the population will be unable to
outgrow the diminishing effects of dispersal.

For fixed kernels, ρ(T ′) is the principal eigenvalue of the operator L.
For time-dependent models, we show there exists a constant Λ that plays
the same role as ρ(T ′) in determining a threshold parameter. To make the
growth rate and dispersal kernel time-dependent, we consider Equation 1.1
as

nt+1(x) � Ft(nt)(x) �
∫
Ω

Kt(x , y) ft(nt(y))dy , (1.16)

where ft and Kt are dependent on time step t, allowing integrodifference
models to also explore the behavior of systemswith cyclic or randomgrowth
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and dispersal patterns. If {αt}t≥0 is a set of independent identically dis-
tributed random variables from a set representing the range of various
plausible environmental conditions, then we can rewrite Equation 1.16 as

nt+1(x) � Fαt (nt)(x) �
∫
Ω

Kαt (x , y) fαt (nt(y))dy. (1.17)

In Jacobsen, Jin, and Lewis (2014), several assumptions are made about
Kαt and fαt to move towards the conclusion on the asymptotic growth rate
being derived from the linearization of Equation 1.17. The average growth
rate of the population over the first t time steps can be expressed as

Avg. growth rate over first t steps �


∫
Ω

nt(x)dx∫
Ω

n0(x)dx



1/t

. (1.18)

The parameter Λ is defined by taking the limit of this average as t →∞

Λ :� lim
t→∞



∫
Ω

nt(x)dx∫
Ω

n0(x)dx



1/t

. (1.19)

Equation 1.19 can be simplified to

Λ :� lim
t→∞

[∫
Ω

nt(x)dx
]1/t

, (1.20)

as originally described in Jacobsen, Jin, Lewis (2014) with a proof of the
limit’s existence and independence from how the initial population dis-
tribution function is defined. This value Λ behaves similar to a principal
eigenvalue as it is also associated with the long-term behavior of the system
representing the population’s response to growth and dispersion. Jacob-
sen, Jin, and Lewis demonstrated that if Λ > 1, the population will persist,
but if Λ < 1, the population will go extinct. Consequently, the tool we’ve
developed will allow modelers to numerically simulate integrodifference
population models, and in particular, explore cases regarding population
persistence involving randomdispersal kernels that have yet to be examined
in great detail.





Chapter 2

Chapter 2: A
MATLAB/Simulink Tool for
Exploring Integrodifference
Population Models

2.1 Design and Implementation

In this section, we offer a detailed look into the design, construction, and
utility of the computational tools developed for the numerical exploration
of integrodifference population model in MATLAB. Figure 2.1 provides a
depiction of this tool to illustrate its appearance and various features.

Figure 2.1 Complete GUI with embedded axes and parameter inputs for in-
teractive simulations of population dynamics
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We have developed a computational tool which explores the behavior of
integrodifference equations as described in Chapter 1. The current version
of the tool packages a set of MATLAB functions based on the models de-
fined in Jacobsen et al., 2014 within an interactive, user-friendly GUI for the
MATLAB/Simulink environment. The GUI divides inputs into three main
subsections: "Basic Input Parameters", and "Population Growth Model",
and "Velocity (Advection) Parameters". Basic input parameters includes
the diffusion coefficient, the settling rate, the length of the bounded do-
main, the number of generations to simulate, and the shape of the initial
population distribution. The diffusion coefficient D is a constant associated
with the degree of randomness at which the organisms of interest diffuse
through a medium. The settling rate β reflects the frequency at which an
organism settles at a particular location. These terms shape the appearance
of the dispersal kernel and thus its impact on the shape of the population
distribution at the following time step. In the absence of advection, the
average dispersal distance is given by

a �

√
β

D

in one-dimension. The length of this one-dimensional space in considera-
tion is input as the parameter Ω. The last two input parameters the user is
responsible for deciding on are the number of generations/time steps they
would like to simulate, and the distribution of the initial population. The
simulation tool currently supports selecting either a normal or uniform dis-
tribution, supported by MATLAB’s built-in continuous probability density
functions.

The user is also able to select the growth model they would like to
use from the "Population Growth Model" section. Currently supported
growth models are the Beverton-Holt and Ricker’s model, discussed in
Chapter 1.3. The user can also choose to use a scalar value to influence
growth dynamics. For example, if the user intends to analyze how various
parameters contribute to the dispersal success function, as discussed by van
Kirk and Lewis, the user would select the "Scalar" growth model, and set
r � 1. Likewise, if the user was interested in a scenario where the resulting
population doubled every generation, then the user would set r � 2.

The last set of parameters the user is responsible for are the advection-
related parameters. The user is able to input a velocity value, simulating a
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constant rate of unidirectional advectionwithin the habitat. The user is also
able to simulate randomness within a habitat by seeding random velocities
based on a probability distribution. The shape of the dispersal kernel at
each time step, as mentioned in Chapter 1.2 is given by

k(x) �



Aea1 |x−y | , x < 0
Aea2 |x−y | , x ≥ 0

where

a1,2 �
v
2D
±

√
v2

4D2 +
α
D
.

By seeding random velocities, the dispersal kernel is redefined at each
time step reflecting the magnitude that the randomly-seeded advection
velocity has on the corresponding dispersal event. Note that when v �

0, the equation above simplifies to the mean dispersal distance a �

√
β
D .

This feature is particularly interesting because integrodifference models
considering randomkernels are difficult to analytically solve. This tool gives
modelers the capability to numerically explore integrodifferencepopulation
models using random kernels.

Simulations of population dynamicswith nonlinear growthmodels and
random dispersal kernels are made possible by numerical integration and
one-dimensional data interpolation in MATLAB. The dispersal kernel, the
per capita growth function, and the population distribution are defined
as function handles, and the product of those three function handles is
numerically integrated using the built-in integral function. Following this
integration, the result is an array of values. This array of values are treated
as a set of query points to interpolate a function, which we use to define
the population distribution following the simulated growth and dispersal
event, in order to perform the calculations for subsequent time steps. These
actions are contained within the main for-loop running for the number of
generations as specifiedby theusers anddominate the runtimeperformance
of this tool. All prompted parameters are used to define these function
handles, and therefore default values are put in as placeholders for which
the user can change to explore unique growth and dispersal scenarios. All
instantiated variables that can be defined prior to use are preallocated to
prevent dynamic resizing of data structures in order to optimize runtime.
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Figure 2.2 Dialog box prompting users for parameter inputs resulting in the
initial population distribution, the functioning dispersal kernel, and the popu-
lation distribution at the final time step in one figure window

Another function contained within this tool utilizes a dialogue box to
prompt the user to input values for key model parameters, including the
diffusion coefficient, the settling rate, advection velocity, the length of the
boundeddomain, and the number of time steps/generations the userwould
like to simulate. Based on these inputs, the function produces a graph of
the dispersal kernel. The dispersal kernel is currently defined as it is in
Equation 1.8. The main function also prompts the user to provide the name
(without the .m extension) of the function the user has created to define the
initial population distribution. This function is plotted to provide a visual
of nt(x) at the 0th time step. The main function simulates one or more
dispersal event using Equation 1.8, and the third plot produced is nt(x), at
the time step t.
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2.2 Key Insight and Discussion

This tool enables users to analyze the generational growth and dispersion
dynamics of populations defined under a variety of distributions. For
any predefined distribution, this tool is able to calculate the population
distribution after a single time step or after several time steps.

For example, in examining Figure 2.3 and 2.4, we can immediately
distinguish the two plots by their difference in shape and scale along the
vertical axis. Analyzing these figures and others createdwith various initial
parameters offers the user an in-depth look at the dispersal success function
defined by van Kirk and Lewis (1997). We can also examine different, user
definedpopulationdistributions andanalyze the resultingdistribution after
numerous dispersal events, as we show with Figures 2.5 - 2.11.

Figure 2.3 Uniformly distributed population following a single dispersal
event, exemplifying thedispersal success functionas seen invanKirkandLewis
(1997)
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Figure 2.4 Uniformly distributed population following 10 dispersal events

Figure 2.5 Normally distributed population following a dispersal event with
advection velocity set to 0
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Figure 2.6 Normally distributed population following a dispersal event with
advection velocity set to 0.6

Figure 2.7 Uniformly distributed population following a dispersal event with
advection velocity set to 0.6



20 Chapter 2: A MATLAB/Simulink Tool for Exploring Integrodifference Population
Models

Figure 2.8 Confined uniformly distributed population following a dispersal
event

Figure 2.8 - 2.11 defines a uniform population distribution within a
smaller confined region of the bounded domain. These figures could be
seen as a simulation of the dispersion of organisms that were systematically
introduced to adefinedpatch in the boundedhabitat of interest. Going from
nt(x) � 1 to nt(x) � 2, and then to nt(x) � 5, after the fifth dispersal event, it
appears the population has become normally distributed, and thereforewill
assume the flattened distribution seen in Figure 2.4. In Figure 2.11, under
the influence of asymmetric dispersion, we see the distribution begins to
assume a negative skew similar to Figure 2.6.
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Figure 2.9 Confined uniformly distributed population following two disper-
sal events

Figure 2.10 Confined uniformly distributed population following five disper-
sal events
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Figure 2.11 Confined uniformly distributed population following two disper-
sal events with advection velocity set to 0.6

One of the primary purposes for developing this tool is to simulate pop-
ulation dynamics, which may suggest a particular population’s tendency
towards persistence or extinction. The population depicted in Figure 2.12
tends to extinction as the model lacks a function incorporating growth (i.e.,
per capita growth � 1). Populations that disperse without growth face ex-
tinctionswithin their boundedhabitat as portions of thepopulationflowout
of the domain or die out. Previous studies which sought to examine pop-
ulation dynamics by integrodifference equations used analytical solutions
which invoked the results of Equation 1.15 and these studies required fixed
kernels. Under the same construction as Equation 1.15, we can simulate the
long-term behavior of the system by simulating iterative calculations of Λ,
as displayed in Figure 2.12.



Key Insight and Discussion 23

Figure 2.12 Asymptotic growth rate of initially uniformly distributed popula-
tion with no growth

Figure 2.13 Histogram and distribution fit of Λ values for 30 simulations
of population dynamics for a uniformly distributed population using Ricker’s
growthmodel and random velocity based on a lognormal distribution
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Figure 2.14 Population dynamics a�er five time steps for uniformly dis-
tributed population using Ricker’s growth model and random velocity based
on a lognormal distribution

Figure 2.15 Population dynamics a�er twenty time steps for uniformly dis-
tributed population using Ricker’s growth model and random velocity based
on a lognormal distribution
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Figure 2.16 Population dynamics a�er thirty time steps for uniformly dis-
tributedpopulation containedwithin a larger boundeddomain usingBeverton
Holt’s growthmodel under no advection

Figure 2.17 Population dynamics a�er thirty time steps for uniformly dis-
tributedpopulationusingnonlinear Ricker’s growthmodel under no advection

Figure 2.18 Population dynamics a�er thirty time steps for uniformly dis-
tributed population using linearized form of Ricker’s growth model based on
f ′(0) under no advection
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Another purpose for developing this tool is to enable modelers to nu-
merically uncover model solutions that were previously unexplored. We
examine the numerically estimated values for Λ in 30 runs simulating pop-
ulation dynamics starting with a uniformly distributed population, with
growth defined by Ricker’s model and dispersion generationally defined
by random advection based on a lognormal distribution. We allowed each
simulation to reach 100 time steps. On average, these simulation converged
to a lambda value of 0.4660 ± 0.0538, and appears to be convergence in ac-
cordance to a normal distribution centered around that mean with a slight
right skew (Figure 2.13). In Figure 2.14 and 2.15, a population was also
modeled using random dispersal kernels to provide a more realistic sim-
ulation of the stochastic nature of unidirectional advection in stream-like
environments. In Figure 2.14 - 2.16, population dynamics were simulated
using integrodifference equations containing nonlinear growth. Figure 2.18
allows the user to compare the population dynamics using the linearized
growth model, but holding constant the initial distribution and all other
parameter settings of Figure 2.17. All of these cases have yet to be well
explored by mathematicians and ecologists alike.
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Chapter 3: Conclusion

In conclusion, we have developed a tool for the exploration of numerical
solutions to complex integrodifference populationdynamics. Wehave stud-
ied the tool’s ability to assess various scenarios, ranging from the dispersal
success function with no advection to population models with nonlinear
growth and random kernels. We have illustrated the possibility of simi-
lar long-term behavior between linearized and nonlinear models. We also
briefly examined the convergent behavior of Λ for population models us-
ing random kernels. All in all, integrodifference population models show
tremendous ability and versatility in analyzing species population with
discrete growth and dispersal stages. This tool allows users to explore a
robust set of more realistic population models and maintains the capacity
to be further developed for examining even more intriguing population
models, with the ultimate goal of assisting ecologists in the preservation of
biodiversity and the conservation of biological communities.

3.1 Future Work

The performance of the tool can be further optimized in a number of ways.
Using the tic− toc stopwatch timer tomeasure performance based on inter-
nal time expenditure, 30 runs of 300 generation using the default parameters
for a population that was initially uniformly distributed with growth and
dispersion based on a linearized model and random dispersal kernels took
an average of 54.9777 ± 9.0349. The fastest run lasted 43.6460 seconds and
the slowest run lasted 72.0865 seconds.

When applying and analyzing the MATLAB performance profiler, the
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highest performance cost was found in conducting the integration using
MATLAB’s built-in numerical integration function. It makes a call to MAT-
LAB’s codetools’ functionhintsfunc.m that consumes 42.3 percent of themain
callback function’s performance time. Built-in functions can be more op-
timally used by considering good programming practices, such as preal-
location, vectorization, and modular programming. Preallocation involves
predefining the maximum amount of space to an array to circumvent dy-
namic resizing, which slows performance. Vectorization involves avoiding
loops if amethod or operation can be applied to a vector of objects or values.
While preallocation and vectorization was considered and utilized in the
process of coding this application, those means of optimization along with
modular programming can be used to a greater extent to enhance perfor-
mance. MATLAB also provides a parallel computing toolbox, which would
enable optimal multi-core processing that has yet be explored.

The tool has yet to be used for significantly exploring questions regard-
ing random kernels, nonlinear versus linear growth models, or domains
outside of one-dimension space. Using this tool to explore such scenarios
should offer new insight relating to integrodifference population models,
and shifts the modeling paradigm closer and closer to modeling the reality
observed in nature.



Source Code

Available for download at:

https://github.com/kendama/ipm_gui
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