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FROM NEWSLETTER #1
Dear Colleague, August 3, 1987

This newsletter foliows athree-day Conference to Examine Mathematics as a Humanistic Discipline in Claremont
1986 supported by the Exxon Education Foundation, and a special session at the AMS-MAA meeting in San Antonio
January 1987. A common response of the thirty-six mathematicians at the conference was, “l was startled to see so
many who shared my feelings.”

Two related themes that emerged from the conference were 1) teaching mathematics humanistically, and
2) teaching humanistic mathematics. The first theme sought to place the student more centrally in the position of
inquirer than is generally the case, while at the same time acknowledging the emotional climate of the activity of
leaming mathematics. What students could learn from each other, and how they might better come to understand
mathematics as a meaningful rather than an arbitrary discipline were among the ideas of the first theme.

The second theme was focused less upon the nature of the teaching and learning environment and more upon
the need to reconstruct the curriculum and the discipline of mathematics itself. The reconstruction would relate
mathematical discoveries to personal courage, relate discovery to verification, mathematics to science, truth to utility,
and in general, to relate mathematics to the culture in which it is embedded.

Humanistic dimensions of mathematics discussed at the conference included:

a) An appreciation of the role of intuition, not only in understanding, but in creating concepts that appear in their

finished versions to be “merely technical.”

b) An appreciation for the human dimensions that motivate discovery — competition, cooperation, the urge for

holistic pictures.

¢) Anunderstanding of the value judgments implied in the growth of any discipline. Logic alone never completely

accounts for what is investigated, how it is investigated, and why it is investigated.

d) There is a need for new teaching, leamning formats that will help wean our students from a view of knowledge

as certain, to-be-received.

e) The opportunity for students to think like a mathematician, including a chance to work on tasks of low definition,

to generate new problems and to participate in controversy over mathematical issues.

f) Opportunities for faculty to do research on issues relating to teaching, and to be respected for that area of

research.

This newsletter, also supported by Exxon, is part of an effort to fulfill the hopes of the participants. Others who have
heard about the conferences have enthusiastically joined the effort. The newsletter will help create a network of
mathematicians and others who are interested in sharing their ideas and experiences related to the conference
themes. The network will be a community of support extending over many campuses that will end the isolation that
individuals may feel. There are lots of good ideas, lots of experimentation, and lots of frustration because of isolation
and lack of supponrt. In addition to informally sharing bibliographic references, syllabi, accounts of successes and
failures, . . . , the network might formally support writing, team-teaching, exchanges, conferences, . .. .

Please send references, essays, half-baked ideas, proposals, suggestions, and whatever you think appropriate
for this quarterty newsletter. Also send names of colleagues who should be added to the mailing list. All mail shouid
be addressed to

Alvin White
Department of Mathematics
Harvey Mudd College
Claremont, CA 91711

This issue contains some papers and excerpts of papers that were presented at the conferences.




From THE EDITOR

Alvin White
Harvey Mudd College
Claremont, CA 91711

714/621-8023
714/626-7828
AWHITE@YMIR.BITNET

Humanistic Mathematics is alive and flourishing. The CUNY Mathematics Discussion Group chose Humanistic
Mathematics as the theme of their first meeting of 1989-90. Guest panelists were Anneli Lax (NYU Courant Institute),
Richard Schwartz (College of Staten Island, CUNY), and Leonard Saremsky (La Guardia Community College, CUNY).

Mathematics: A Humanistic Discipline was the title of a conference organized by Mary Sapienza (Newton North
High School) at Emmanuel and Simmons Colleges, Boston 26 April 1990. The second conference — Mathematics:
A Humanistic Perspective was held 25 April 1991. Philip Davis (Brown University) was the keynote speaker.

The Fall-Winter 1990 issue of Mathematics in College published by the CUNY Mathematics Discussion Group
devoted its Forum section to Humanistic Mathematics. Authors are Alvin White, Reuben Hersh, Alan Schoenfeld,
Deborah Hughes Hallet, Solomon Garfunkel, Anneli Lax, Dorothy Buerk and Jorge Perez. Copies are available by
writing to Editor, Mathematics in College, Instructional Resource Center, CUNY, 535 E. 80th Street, New York, NY
10021.

Contributed paper sessions on Humanistic Mathematics in Phoenix 1989 and San Francisco 1991 at the MAA-
AMS meetings each lasted over eight hours. The panel presentation on Humanistic Mathematics in Louisville 1990
attracted a standing room crowd.

The Humanistic Mathematics Network-Movement is sponsoring a Poetry Reading at the annual meetings in
Baltimore 1992. Dan Kalman, Elena Marchisotto and JoAnne Growney are organizing these sessions. See FOCUS
for details. :

As part of the poetic-artistic celebration, calculus text author Louis Leithold and his friend, artist-poet d’Arcy
Hayman will present “The Calculus Virgin.” As indicated inthe short note in this newsletter, Leithold and Hayman each
had a peak experience in the encounter with the other mode of thinking and perceiving.

Fewer people are still asking, “What is Humanistic Mathematics?” More people are doing Humanistic Mathematics
in their research, writing, teaching and organizing (conferences, seminars, etc.). Phil Davis gives a description of
Humanistic Mathematics in Newsletter #5.

In her recollections of Hassler Whitney (1907-1989) in Newsletter #4, Anneli Lax mentioned the report by L.P.
Benezet of an educational experiment on the formal teaching of arithmetic that Hassler distributed widely. With
permission from the Journal of the National Educational Association, Benezet's report is reprinted here in response
to several requests and as a memorial to Hassler Whitney.

The variety of essays in this issue indicates the scope of Humanistic Mathematics. History, philosophy, poetry,
hermeneutics, integrity, teaching, . . ., are all part of the movement. This number of the newsletter is a double issue.
Please send letters, essays, reviews, eic. for inclusion in a future issue.




THE CALCULUS VIRGIN

Louis Leithokd
Author of “The Calculus with Analytic Geometry,” sixth edition, published by Harper Collins.

d'Arcy Hayman, artist and poet, is a former faculty
member of the University of California at Los Angeles
and Columbia University. For twenty years from 1960
through 1980, she was head of the International Arts
Program for the United Nations in Paris.

In March of 1988, my good friend d'Arcy attended as
an observer a seminar | conducted for teachers of ad-
vanced placement cakulus that consisted of a discus-
sion of the theory behind some important calculus topics
as well as techniques of teaching them. | did not encour-
age her presence because she had no background in
mathematics.

Nothing in my many years of teaching calculus had
prepared me for her reaction to the language of calculus
she heard at this seminar. She made associations with
the literary content of this language and brought to the
words the cultural references that have meaningto heras
an arist and world traveler. She.characterized her re-
sponse to the seminar as both passionate and thrilling.
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| was so excited about this revelation that the follow-
ing month | gave a lecture about it to a group of four
hundred calculus teachers at the annual meeting of the
National Council of Teachers of Mathematics. Since then
by popular demand | have repeated this lecture to other
groups of calculus teachers. The enthusiasm generated
by these presentations persuaded d'Arcy to make draw-
ings of images she associates with the vocabulary of
calculus. She has also written an explanation of the
symbolism of each drawing.

In January, 1992 at the annual meeting of the Math-
ematical Association of America in Baltimore | shall
conduct a session describing d'Arcy’s experience at my
seminar. At this session, titled THE CALCULUS VIRGIN,
| will show some of d'Arcy's drawings and read the
accompanying explanations. To quote d'Arcy, “Perhaps
these images will bring you another view of the language
of calculus to illustrate one of the wonderful things you
say in that language: ‘both sides exist.'”




THE TEACHING OF ARITHMETIC |
THE STORY OF AN EXPERIMENT

L. P. Benezet
Superintendent of Schools, Manchester, New Hampshire
Originally published in the November 1835 edition
of The Journal of the National Education Association

In the spring of 1929 the late Frank D. Boynton,
superintendent of schools at Ithaca, New York, and
president of the Department of Superintendence, sent to
a number of his friends and brother superintendents an
article on a modern public-school program. His thesis
was that we are constantly being asked to add new
subjects to the curriculum [safety instruction, health
instruction, thrift instruction, and the like], but that no one
ever suggests that we eliminate anything. His paper
closed with a challenge which seemed to say, “| defy you
to show me how we can cut out any of this material.” One
thinks, of course, of McAndrew's famous simile that the
American elementary-school curriculum s like the attic of
the Jones' house. The Joneses moved into this house
fifty years ago and have never thrown anything away.

| waited a month and then | wrote Boynton an eight-
page letter, telling him what, in my opinion, could be
eliminated from our present curriculum. | quote two
paragraphs:

In the first place, it seems to me that we waste
much time in the elementary schools, wrestling
with stuff that ought to be omitted or postponed
untilthe children are in need of studying it. If 1 had
my way, | would omit arithmetic from the first six
grades. | would allow the children to practise
making change with imitation money, if you wish,
but outside of making change, where does an
eleven-year-old child ever have to use arith-
metic?

| feelthat it is all nonsense to take eight years to
get children thru the ordinary arithmetic assign-
ment of the elementary schools. What possible
needs has a ten-year-old child for a knowledge
of long division? The whole subject of arithmetic
could be postponed until the seventh year of
school, and it could be mastered in two years'
study by any normal child.

Having written the letter, | decided that if this was my
real belief, then | was falling down on the job if | failed to
put it into practise. Atthistime | had been superintendent
in Manchester for five years, and | had aiready been
greatly criticized because | had dropped practically all of
the arithmetic out of the curriculum for the first two grades
and the lower half of the third. In 1924 the enroliment in
the first grade was 20 percent greater than the enroliment
in the second, because, roughly, one-fifth of the children
could not meet the arithmetic requirements for promotion
into the second grade and so were forced to repeat the
year. By 1929 the enroliment of the first grade was no
greater than that of the third.

Meanwhile, | was distressed at the inability of the
average child in our grades to use the English language.
If the children had original ideas, they were very helpless
abouttranslating them into English which could be under-
stood. | went into a certain eighth-grade room one day
and was accompanied by a stenographer who took
down, verbatim, the answers given me by the children. |
was tryingto getthe childrento tellme, in theirown words,
that if you have two fractions with the same numerator,
the one with the smallerdenominatoris the larger. | quote
typical answers.

“The smaller number in fractions is aiways the larg-
est.”

“If the numerators are both the same, and the de-
nominators one is smallerthanthe one, the one thatis the
smaller is the larger.”

“If you had one thing and cut it into pieces the smaller
piece will be the bigger. | meanthe one you could cut the
least pieces in would be the bigger pieces.”

“The denominator that is smallest is the largest.”

“If both numerators are the same number, the smaller
denominator is the largest — the larger — of the two.”

“If you have two fractions and one fraction has the
smallest number at the bottom. it is cut into pieces and
one has the more pieces. If the two fractions are equai,
the bottom number was smaller than what the other one
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in the other fraction. The smallest one has the largest
number of pieces — would have the smallest number of
pieces, but they would be larger than what the ones that
were cut into more pieces.”

The average layman will think that this must have
been a group of half-wits, but | can assure you that it is
typical of the attempts of fourteen-year-old children from
any part of the country to put their ideas into English. The
trouble was not with the children or with the teacher; it
was with the curriculum. If the course of study required
that the children master long division before leaving the
fourth grade and fractions before finishing the fifth, then
the teacher had to spend hours and hours on this work to
the neglect of giving children practise in speaking the
English language. | had tried the same experiment in
schools in Indiana and in Wisconsin with exactly the
same result as in New Hampshire.

in the fall of 1929 | made up my mind to try the
experiment of abandoning all formal instruction in arith-
metic below the seventh grade and concentrating on
teaching the children to read, to reason, and to recite —
my new Three R’'s. And by reciting | did not mean giving
back, verbatim, the words of the teacher or of the text-
book. | meant speaking the English language. | picked
out five rooms — three third grades, one combining the
third and fourth grades, and one fifth grade. | asked the
teachers if they would be willing to try the experiment.
They were young teachers with perhaps an average of
four years' experience. | picked them carefully, but more
carefully than | pickedthe teachers, | selected the schools.
Three of the four schoolhouses involved [two of the
rooms were in the same building] were located in districts
where not one parent in ten spoke English as his mother
tongue. | sent home a notice to the parents and told them
about the experiment that we were going to try, and
asked any of themwho objectedto it to speak to me about
it. 1 had no protests. Of course, | was fairly sure of this
when | sent the notice out. Had | gone into other schools
inthe city where the parents were high schooland college
graduates, | would have had a storm of protest and the
experiment would never have been tried. | had several
talks with the teachers and they entered into the new
scheme with enthusiasm.

The children in these rooms were encouraged to do
agreat deal of oral composition. They reported on books
that they had read, on incidents which they had seen, on
visits that they had made. They told the stories of movies
that they had attended and they made up romances on
the spur of the moment. It was refreshing to go into one
of these rooms. A happy and joyous spirit pervaded
them. The children were no longer under the restraint of
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leaming multiplication tables or struggling with long divi-
sion. They were thoroly [sic] enjoying their hours in
school.

Atthe end of eight months | took a stenographer and
went into every fourth-grade room inthe city. Aswe have
semi-annual promotions, the children who had been in
the advanced third grade at the time of the beginning of
the experiment, were now in the first half of the fourth
grade. The contrast was remarkable. In the traditional
fourth grades when | asked children to tell me what they
had been reading, they were hesitant, embarrassed, and
diffident. Inone fourth grade | could not find a single child
who would admit that he had committed the sin of
reading. | did not have a single volunteer, and when I tried
to draft them, the children stood up, shook their heads,
and sat down again. In the four experimental fourth
grades the children fairly fought for a chance to tell me
what they had been reading. The hour closed, in each
case, with a dozen hands waving inthe air and little faces
crestfallen, because we had not gotten around to hear
what they had to tell.

Forsome years | had noted that the effect of the early
introduction of arithmetic had been to dull and almost
chloroform the child's reasoning faculties. There was a
certain problem which | tried out, not once but a hundred
times, in grades six, seven, and eight. Here is the
problem: “If | can walk a hundred yards in a minute [and
| can], hour many miles can | walk in an hour, keeping up
the same rate of speed?”

In nineteen cases out of twenty the answer given me
would be six thousand, and if | beamed approval and
smiled, the class settled back, well satisfied. But if |
should happen to say, “l see. That means that | could
walk from here to San Francisco and back in an hour”
there would invariably be a laugh and the children would
look foolish.

I, therefore, told the teachers of these experimental
rooms that | would expect them to give the children much
practise in estimating heights, lengths, areas, distances,
and the like. At the end of a year of this kind of work, |
visited the experimental room which had had a combina-
tion of third- and fourth-grade children, who now were
fourth and fifth graders. |drew onthe board a rough map
of the westem end of Lake Ontario, the eastern end of
Lake Ene, and the Niagara River. | askedthemto guess
what it was, and was not surprised when they identified
the location. | then labeled three spots along the river
with the letters “Q,” “NF,” and “B.” They identified Niagara
Falls and Buffalo without any difficulty, but were puzzled
by the “Q." Some thought it was Quebec but others knew




it was not. | finally told them that it was Queenstown. |
then drew a cross section of the falls, showing the hard
layer of rock above and the soft layer eating out under-
neath, and they told me what it was and why it was that
the stone was falling, little by little, from the edge. They
told me how this process was going on. | then made the
statementthatin 1680, whenwhite men hadfirstseenthe
falls, the falls were 2500 feet lower down than they are at
present. | then asked them at what rate the falls were
retreating up-stream. These children, who had had no
formal arithmetic for a year but who had been given
practise in thinking, told me that it was 250 years since
white men had first seen the falls and that, therefore, the
falls were retreating upstream at the rate of ten feet a
year. | then remarked that science had decided that the
falls had originally started at Queenstown, and, indicat-
ing that Queenstown was now ten miles down the river,
| asked them how many years the falls had been retreat-
ing. They told me that if it had taken the falls 250 years
to retreat about a half mile, it would be at the rate of 500
years to the mile, or 5000 years for the retreat from
Queenstown. The map had been drawn so as to show
the distance from Niagara Falls to Buffalo as approxi-
mately twice the distance from Queenstown to Niagara
Falls. Then | asked these children whether they had any
idea how long it would be before the falls would retreat to
Buffalo and drain the lake. They told me that it would not
happen for another ten thousand years. | asked them
how they got that and they told me that the map indicated
that it was twenty miles from Niagara Falls to Buffalo, or
thereabouts, and that this was twice the distance from
Queenstown to Niagara Falls!

It so happened that a few days after this incident |
was visiting a large New England city with five of my
brother superintendents. Our host was interested in my
description of this incident and suggested that | try the
same problem on a fifth grade in one of his schools. With
the other superintendents as audience, | stood before an
advanced fifth grade in what was known as the Demon-
stration School, the school used for practise teaching and
to which visitors were always sent.

The home superintendent: Boys and girls, would you
like to have Superintendent Benezet of Manchester, New
Hampshire, ask you some questions about Niagara
Falls?

The children express pleasure at the idea.

Mr.Benezet: [Drawing a map on the board] Children,
what is this that | have drawn on the blackboard?

Children: The Great Lakes.

Mr. B.: Good. What lakes?

A child: Lake Ontario and Lake Erie.

Mr. B.: Good. What is this river?

Child: The St. Laurence River.

Mr. B.: Thatis really correct. It is the St. Laurence
River. But they call it by a different name here. They call
it the Niagara River. What have you heard in connection
with the Niagara River?

Another child: Niagara Falls are there.

Another child: Niagara Falls are connected with
Niagara River.

Mr. B.: Oh! How are they connected?

Child: The water trickles down the Falls and goes
into the Niagara River.

Mr. B.: | should call that quite a trickle. Have any of
you children seen Niagara Falls?

Three raise their hands.

Mr. B.: How high are the falls? Have you any idea?
Are they higher than this room?

Children: Yes [dubiously].

Mr. B.: Well, how high is this room?

Its height is guessed anywhere from 11 feet to 40
feet. The room is actually about 16 feet high. The
question of the height of the falls is finally dropped.

Mr. B.: Well, never mind how high the falls are. On
this map here | have indicated one spot and marked it
“NF." and another spot and marked it “B.” What does
“NF" mean?

Children: Niagara Falls.

Mr. B.: What does “B" stand for?

Another child: Bay.

Mr. B.: No. Rememberthat Niagara Falls is not only
the name of the Falls, but the name of a city.

Child: Baltimore.

After considerable pause, the home superintendent,
inthe back of the room, tells the class that the name of the
city is also the name of an animal.

Child: Buffalo.

Mr.B.: Yes. Nowthere is anothertown here thatlam
going to mark “Q." It is not Quebec; it is Queenstown.
People who have studied this carefully tell us that once
upon a time the falls were at Queenstown. Tell me now.
What does it mean if | say that | show you the cross
section of an apple?

Class is uncertain.

Mr B.: Suppose that you cut an apple in half with a
knife. What do | show you if | hold up one-half?

Child: Half the apple.

Another child: The core of the apple.
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Third child: The inside of an apple.
Mr. B.: Tellme. Is the word “section™ a new word to
the majority of you?

Enthusiastic chorus of “No.”

Mr.B.: Well, a cross-section of an apple means a cut
right thru an apple. Why have | said this to you?

Meantime he has drawn onthe board a cross-section
of Niagara Falls.

Child: Because that is a cross-section of the falls.

Mr. Benezet now explains the two kinds of rock and
askswhichisthe harder. They finally decide that the rock
above is the harder. He then shows how the undermeath
rock rotted away, and that finally there was a shelf of hard
rock overhanging. This became too heavy and fell off;
and the falls have thereby moved back some ten feet.

Mr. B.: Now, when white men first saw the falls in
1680 [placing this date on the board], the falls were
further down the river than they are now, and it is
estimated that since that time they have moved back
upstream about 2500 feet. Now how long ago was it that
white men first saw the falls?

Child: Four hundred years.

Another child: Two hundred years.

Third child: Three hundred years.

Guesses range anywhere between 110 years and
450 years. One boy says it was about the time that
Columbus sailed to America; another says that it was
about the time of the Pilgrims and the Puritans.

Mr. B.: Well, how are we going to find out?
General bewilderment for a while. Finally:

Child: Take 1930 and subtract it from 1680.
Mr. B.: Fine.

1680
1930

Mr.B.: Now take a look and tell me how many years
that was. See if you can tell me before we subtract it,
figure by figure.

He writes on the blackboard:

Itis to be noted that not one child called attention to
the wrong position of the two sets of figures. They guess
350 years, 200 years, 400 years.

HMN Newsletter #6

Mr. B.. Well, let's subtract it figure by figure.

Child: Zero from 0 equals 0. Three from 8 equals 5.
Nine from € equals 3. Three hundred fifty years is the
answer.

Mr. B.: How many think that 350 years is right?

About two-thirds of the hands go up. Finally two or
three think that it is wrong.

Mr. B.: All right, correct it.
Child: It should have been 9 from 16 equals 7.

Mr. Benezetthereupon puts down 750 forthe answer,
When he asks how many in the room agree that this is
right, practically every hand is raised. By this time the
local superintendent was pacing the door at the rear of
the room and throwing up his hands in dismay at this
showingonthe part of his prize pupils. Afteratime, asMr.
Benezet looks a little puzzled, the children gradually
become a little puzzled also. One little girl, Elsie Miller,
finally comes to the board, reverses the figures, sub-
tracts, and says the answer is 250 years.

Mr. B.: Allright. if the falls have retreated 2500 feet
in 250 years, how many feet a year have the falls moved
upstream?

Child: Two feet.

Mr. Benezetregisters complete satisfaction and asks
how many in the class agree. Practically the whole class
put hands up again.

Mr. B.: Well, has anyone a different answer?
Child: Eight feet.
Another child: Twenty feet.

Finally Elsie Miller again gets up, and says the
answer is ten feet.

Mr. B.: What? Ten feet? [Registering great surprise]

The class, atthis, bursts into a roar of laughter. Elsie
Miller sticks to her answer, and is invited by Mr. Benezet
to come up and prove it. He says that it seems queer that
Elsie is so obstinate when everyone is against her. She
finally proves her point, and Mr. Benezet admits to the
class that all the rest were wrong.

Mr. B.: Now, what fraction of a mile is it that the falls
have retreated during the last 250 years?

Children guess 3/2, 3/4, 2/3, 1/20, 7/8 — everything
except 1/2. The bell for dismissal rings and the session
is over.




It will be noted that the local superintendent gave
them a little hint at the outset, that was not given to the
Manchester children, when he said, “Niagara Falls.”
They were prepared to identify my map. Also, the
Manchester children who had not learned tables but had
talked a great deal about distances and dimensions,
recognized the fact that 2500 feet was about a half a mile,
while the children in the larger city who were fresh from
their tables, had little conception of the distance.

Iwas so delighted with the success of the experiment
so farthat in the fall of 1930 we started six or seven other
rooms along the same line. The formal arithmetic was
dropped and emphasis was placed on English expres-
sion, on reasoning, and estimating of distances.

One day | tried an experiment having to do with
English expression. | hung before a 7-B class a copy of
a painting by Frederick Waugh, representing apolarbear
floating on a small berg of ice. This was a traditionally
taught room in a school where there were very few
children of foreign extraction. | askedthe childrento write
anything which they felt inspired to put down as a result
of seeing the picture. Three-quarters of an hour later |
hung the same picture before another 7-B grade, one of
the experimental groups this time, in a school where not
more than three children in the room came from homes
where English was the language of the parents. | then
called the seventh-grade teachers of the city together
and read themthe ten best papers fromone roomand the
ten best from the other. | asked them if they saw any
difference. One teacher remarked that one group was
about a year and a half or two years ahead of the other
in maturity of expression, and there was general assent
to this statement. | said to the teachers, “Iif | should tell
you that one group came fromthe ‘A’ schooland the other
from the ‘B," from which school would you guess the
better group of papers came?”

“Oh, the ‘A’ school, undoubtedly,” said they, naming
the school whose patrons speak English in their homes.

“Well,” | said, “it was just the other way,” and there
was a murmur of incredulity. Then we analyzed the
papers and counted the number of adjectives used by the
traditionally taught pupils. There were forty all told: nice,
pretty, blue, green, cold, etc. We then counted the
adjectives used by the other group [the number of papers
was approximately the same] and we found 128, includ-
ing magnificent, awe-inspiring, unique, majestic, etc.
The little Greeks, Armenians, Poles, and French-Cana-
dians had far surpassed their English-speaking oppo-
nents.

| next tried a rather similar test. | hung the same
picture — a landscape representing a river scene in the
vicinity of Manchester — before ten different fifth-grade
rooms. Five of them had been brought up under the old
traditional curriculum and five of them were of the experi-
mental group. It was the same story: the experimental
rooms far excelled the others in fluency of expression.
They used words that the others had never heard of.
Nevertheless, when we came to test the papers for
spelling, the poorest of the experimental rooms exactly
tied the record of the best of the traditional groups. The
most surprising result came in a certain room in which
there was housed a 5-B grade and a 5-A. The younger
pupils, the 5-B's, had been brought up under the experi-
mental curriculum, without arithmetic, while the other half
of the room were traditional. The 5-A's made the poorest
record of all the ten groups while the 5-B's, the younger
group, were next to the top. For four months they had
been taught by the same teacher but by different meth-
ods.

Now we were ready to experiment on a much larger
scale. By the fall of 1932 about one-half of the third-,
fourth-, and fifth-grade rooms in the city were working
under the new curriculum. Some of the principals were
alittle dubious and asked permission to postpone formal
arithmetic untilthe beginning of the sixth grade instead of
the beginning of the seventh. Accordingly, permission
was given to four schools to beginthe use of the arithmetic
book with the 6-B grade. About this time Professor Guy
Wilson of Boston University asked permission to test our
program. One of our high school teachers was working
for her master's degree at Boston University and as part
of her work he assigned her the task of giving tests in
arithmetic to 200 sixth grade children in the Manchester
schools. They were divided fairly evenly, 98 from ex-
perimental rooms and 102 from the traditional groups, or
something like that. These were all sixth graders. Half of
them had had no arithmetic until beginning the sixth
grade and the other half had had it thruout [sic] the
course, beginning with the 3-A. In the earlier tests the
traditionally trained people excelled, as was to be ex-
pected, forthe tests involved not reasoning but simply the
manipulation of the four fundamental processes. By the
middle of April, however, all the classes were practically
on a par and when the last test was given in June, it was
one of the experimental groups that led the city. Inother
words these children, by avoiding the early drill on
combinations, tables, and that sort of thing, had been
able, in one year, to attain the level of accomplishment
which the traditionally taught children had reached after
three and one-half years of arithmetical drill.
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THE TEACHING OF ARITHMETIC Il
THE STORY OF AN EXPERIMENT

L. P. Benezet
Superintendent of Schools, Manchester, New Hampshire
Originally published in the December 1935 edition
of The Journal of the National Education Association

This is the second instalment of an article describing
an experiment which has been carried out in Manchester,
New Hampshire, since 1929. In the preceding section,
which appearedinthe NovemberJOURNAL, Mr. Benezet
explained that: In some schools of Manchester, the only
arithmetic in the first six grades was practise in estimating
heights, areas, and the like; formal arithmetic was not
introduced until the seventh grade. In tests given to both
the traditionally and experimentally taught groups, it was
found thatthe latter had been abie inone yearto attain the
level of accomplishment which the traditionally taught
children had reached after three and one-half years of
arithmetic drill. In addition, because the teachers in the
experimental group had had time to concentrate on
teaching the children to “read, reason, and recite,” these
children developed more interest in reading, a better
vocabulary, and greater fluency in expression.

In the fall of 1933 | felt that | was now ready to make
the big plunge. | knew that | could defend my position by
evidence that would satisfy any reasonable person.
Accordingly, a committee of our principals drew up a new
course of study in arithmetic. | would have liked to go the
whole route and drop out all the arithmetic until we
reached the seventh grade, for we had proved, in the
case of four rooms, that this could be done without loss,
but the principals were more cautious than | was and |
realized, too, that | would now have to deal with the
deeply rooted prejudices of the educated portion of our
citizens. Therefore, a compromise was reached. Ac-
cordingly, on September 1, 1933, we handed out the
following course of study in arithmetic:

Grade | — There is no formal instruction in arith-
metic. In connection with the use of readers, and as the
need for it arises, the children are taught to recognize and
read numbers up to 100. This instruction is not con-
centrated into any particular period or time but comes in
incidentally in connection with assignments of the reading
lesson or with reference to certain pages of the text.
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Meanwhile, the children are given a basic idea of
comparison and estimate thru [sic] the understanding of
such contrasting words as: more, less; many, few;
higher, lower; taller, shorter; earlier, later; narrower,
wider; smaller, larger; etc.

As soon as it is practicable the children are taught to
keep count of the date upon the calendar. Holidays and
birthdays, both of members of the class and their friends
and relatives, are noted.

Grade Il — There is no formal instruction in arith-
metic.

The use of comparatives as taught in the first grade
is continued.

The beginning is made in the telling of time. Children
are taught to recognize the hours and half hours.

The recognition of page numbers is continued. The
children are taught to recognize any numbers that they
naturally encounter in the books used in the second
grade. If any book used in this grade contains an index,
the children are taught what it means and how to find the
pages referredto. Childrenwill naturally pick up counting
in the course of games which they play. They will also
easily and without formal instruction learn the meaning of
“half,” “double,” “twice,” or “three times.” The teacher will
not devote any formal instructionto the meaning of these
terms if the children do not pick them up naturally and
incidentally.

To the knowledge of the day of the month already
acquired is added that of the name of the days of the week
and of the months of the year.

The teacher leamns whether the children come in
contact withthe use of money at allin their life outside the
school. If so, the meaning of “penny,” “nickel,” “dime,”
and “dollar” is taught. In similar fashion, and just inci-




dentally, the meaning and relation of “pint™ and “quart”
may be taught.

Grade il — While there is no formal instruction in
arithmetic, as the children come across numbers in the
course of their reading, the teacher explains the signifi-
cance of their value.

Before the year is over the children will be taught that
a “dime” is worth 10 cents, and a “dollar” 10 dimes or 100
cents, a “half dollar" 5 dimes or 50 cents, etc. They will
learn that 4 quarters, or 2 halves, are worth as much as
one dollar.

They add to their knowledge of hours and half hours
the ability to tell time at any particular moment. The first
instruction omits such forms as 10 minutes to 4, or 25
minutes to 3. They are firsttaught to say 3:50; 2:35; etc.
In this connection they are taught that 60 minutes make
one hour.

Itis nowtime, also, forthemto know that 7 days make
aweek andthatittakes 24 hoursto make a day. They are
also taught that there are 12 months in a year and about
30 days in a month.

The instruction in learning to count keeps pace with
the increasing size of the textbooks used and the pages
to which it is necessary to refer. Games bring in the
recognition of numbers. Automobile license numbers
are a help inthis respect. Forexample, the teacher gives
orally the number of a car [of not over four digits] which
most of the children are likely to see, and later asks forthe
identification of the car. Children are encouragedto bring
to class their own house numbers, automobile license
numbers, or telephone numbers and invite the class to
identify them.

The use of comparisons is continued, especially
those involving such relations as “half,” “double,” “three
times,” and the like.

Grade IV — Still there is no formal instruction in
arithmetic.

By means of foot rules and yard sticks, the children
are taught the meaning of inch, foot, and yard. They are
given much practise in estimating the lengths of various
objects in inches, feet, or yards. Each member of the
class, for example, is asked to set down on paper his
estimate of the height of a certain child, or the width of a
window, or the length of the room, and then these
estimates are checked by actual measurement.

The children are taught to read the thermometer and
are given the significance of 32 degrees, 98.6 degrees,
and 212 degrees.

They are introduced to the terms “square inch,”
“square foot,” and “square yard” as units of surface
measure.

With toy money [or real coins, if available] they are
given some practise in making change, in denominations
of 5’'sonly. Allofthis work is done mentally. Any problem
in making change which cannot be soived without putting
figures on paper or on the blackboard is too difficult and
is deferred until the children are older.

Toward the end of the year the children will have
done a great deal of work in estimating areas, distances,
etc., and in checking their estimates by subsequent
measuring. The terms “half mile,” “quarter mile,” and
“mile” are taught and the children are given an idea of
how far these different distances are by actual compari-
sons or distances measured by automobile speedom-
eter.

The table of time, involving seconds, minutes, and
days, is taught before the end of the year. Relation of
pounds and ounces is also taught.

Grade V-B — There still is no formal instruction in
arithmetic except that the children are asked to count by
5's, 10's, 2's, 4's, and 3's. This work is done mentally at
first with no written figures before them, either on paper
or on the blackboard. This leads naturally to the multi-
plicationtables of 5's, 10's, 2's, 4's, and 3's which, in this
order, are given to the children before the end of the
semester.

With toy money, or with real coins if available, the
children practise making change in amounts up to a
dollar, involving, this time, the use of pennies.

The informal work of previous grades in the estimat-
ing of distance, area, time, weights, measure of capacity,
and the like, is continued. The ability to guess and
estimate by games is developed. Each child in the class
writes his estimate before these are checked up by actual
measurement.

The children compare the value of fractions and
discover for themselves that 1/3 is smaller than 1/2 and
greaterthan 1/4; i. e.,that the larger the denominator the
smaller the fraction. This is illustrated concretely or by
pictures.
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Toward the end of the semester the children are
given the book, Practical Problems in Mental Arithmetic,
grade IV. The solution of these problems involves a
knowledge of denominations which the children have not
had and the use of tables and combinations which have
not yet been taught to them. Nevertheless, children with
anatural sense of numbers will be able to give the correct
answers. The teacher will not take time to explain by
formula or tables the solution of any problem to those who
do not grasp it quickly and naturally. The purpose of the
mental arithmetic book is to stimulate quick thinking and
to get children away from the old-time method of using
the fingers to do the work of the head. If some of the
childrendo not grasp the problems easily and quickly, the
teacher simply passes on, knowing that the power to
reason will probably develop in them a year or two
subsequently. The one thing which is avoided is that
children shall get the idea that a fixed method or formula
can be used as a substitute for thinking. The problems
listed under September, October, and November are
covered before the end of the semester.

Grade V-A — The children are askedto count by 6's,
7's, 8's, and 9's. This work is done mentally without
written tables before them, either upon paper or on the
blackboard. After a time this leads naturally to the
multiplicationtables of 6's, 7's, 8's, and 9's. The attention
of the children is called to the fact that in the table of 9's
the second digit is always diminished by one [18, 27, 36,
etc.] and the reason is explained that adding 9 is the
same as adding 10 and taking away 1. In similar fashion
it is shown that adding 8 is the same as adding 10 and
taking away 2, so that in the table of 8's the second digit
of each successive product is 2 less thanthe second digit
of the product above it [48, 56, 64]. In similar fashionit is
shown that adding 7 is the same as adding 10 and taking
away 3. Afterthe tables have been leamed the teacher
makes sure that the children know the products in any
order; i.e., that it is not necessary for the child to start at
the beginning of the table and run thru [sic] until he
reaches the product which he is askedto give. Theylearn
that 2 times 3 is always equal to 3 times 2.

Children are given a little idea about the relative
value of the fractions 1/2, 1/4, 1/5, and 1/10. Concrete
examples assistinthis; e.g., whenthe children remember
that 2 quarters are worth one half dollar, it is easy to show
them that twice 1/4 equals 1/2 or that twice 1/10 equals
1/5.

The problems listed under December to June, inclu-
sive, inthe book Practical Problems in Mental Arithmetic,
grade IV, are covered inthe course of the semester. [fthe
children do not grasp the problem quickly and easily, the
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teacher does not stop to explain the method or prescribe
any formula for solution. Of course as new terms occur
inthe problems [pecks, galions, etc.]the teacherexplains,
incidentally, what they mean.

Grade VI-B [20 fo 25 minutes a day] — At this grade
formal work in arithmetic begins. The first 108 pages of
the Strayer-Upton Arithmetic, book Il are used as a
basis.

The processes of addition, subtraction, multiplica-
tion, and division are taught. Care is taken to avoid purely
mechanical drill. Children are made to understand the
reason for the processes which they use. This is espe-
cially true in the case of subtraction. Problems involving
long numbers which would: confuse them are avoided.
Accuracy is insisted upon from the outset at the expense
of speed or the covering of ground, and where possible
the processes are mental rather than written. Before
starting on aprobleminany one of these fourfundamental
processes, the children are asked to estimate or guess
about what the answer will be and they check their final
result by this preliminary figure. The teacher is careful
not to let the teaching of arithmetic degenerate into
mechanical manipulation without thought.

Fractions and mixed numbers are taught in this
grade. Again care is taken not to confuse the thought of
the children by giving them problems which are too
involved and complicated.

Grade VI-A [25 minutes a day] — The work of this
grade is based upon Chapter |l [pages 109 to 182] of the
Strayer-Upton Arithmetic, book Ill, and the first 50 pages
of book IV.

Multiplication tables and tables of denominate num-
bers, hitherto learned, are reviewed. The teacher keeps
in mind that the objectives to be gained are first of all
reasoning and estimating, rather than mere ease in
manipulation of numbers.

Again, as in the previous grade, the children before
beginning any problem make an estimate [individually]
as to what the answer ought to be and check the final
result by the preliminary guess.

Grade VII-B [25 minutes a day] — The assignment
in the text is the latter part of Strayer-Upton, book IV,
beginning with page 51.

Tables of denominate numbers, including United
States money, found in the rear of book IV are reviewed.
In addition to the table of linear measure, as given, it is




taught that there are 1760 yards in a mile, 880 yards ina
half mile, 440 yards in a quarter mile, etc.

Theteacherwillomit any problems inthe book which,
because of the length of numbers involved, cause the
child in using the four fundamental processes to lose
sight of the reasoning process which, after all, is the main
purpose of the problem.

There is a great deal of work in mental arithmetic,
involving the solution of problems without reference to
paperor blackboard. This is far more important than than
accuracy in the four fundamental processes.

Grade VII-A [30 minutes a day] — The assignment
inthe textis the first one hundred pages of Strayer-Upton,
book V, omitting the following pages: 1-10, 28, 71-77.
Wherever possible the work is done mentally.

Note that most of the pages omitted in this grade
reoccur in book VI.

The practise of estimating the probable answer and
checking the result with this preconceived estimate is
constantly followed.

Again the teachers remember that ability to reason
the problem comectly is far more important than errorless
manipulation of the four fundamental processes.

Grade VIII-B [30 minutes a day] — The assignment
in the test is the latter part of Strayer-Upton, book V,
beginning with page 101 [omitting pages 127-34]and the
first 32 pages of book V1.

The practise of making a preliminary estimate or an
approximation at the answer before attacking the prob-
lem is continued. The ability to guess closely and
promptly what the answer will be is one of the most
important objectives to be gained from the study of
arithmetic.

Tables of denominate numbers are kept fresh in the
minds of the children. The practise of estimating lengths,
heights, and areas of familiar objects and the checking up
by actual measurement is constantly kept up.

Grade Vill-A [30 minutes a day] — The text for the
grade is book VI of the Strayer-Upton series, beginning
with page 35 and omitting the following pages: 36, 46—
8, 57-9, 80-2, 92-3, 104, 158-188, 194, 2034, 206-8.

The work of this grade must necessarily be a sum-
mary of everything that has been leamed in arithmetic,
but, above all, the ability to approximate and estimate in
advance the probable answer is kept as the important
objective.

The children are shown reasons for the various
processes employed; why it is that a correct answer is
obtained in the division of fractions by inverting the
divisor and multiplying, etc. The ability to read problems
intelligently and explain how they should be attacked is
far more important than the ability to add large columns
of figures without an eror.

The teacherwill bear in mind that a great deal of work
in mensuration [pages 88 to 100 inclusive] will be difficult
for some pupils to understand. Of course this work is
really using geometrical formulas without giving the
geometrical reasons why they work, and some children
willbe unable to grasp the meaningof it all. It willbe found
worthwhile to have models in class and to perform
experiments like filling a cylinder with water from 3 times
the contents of a cone of equal base and altitude, etc.

Again as much of the work as possible is done
mentally. Problems are chosen to illustrate principles
and give practise in reasoning rather than practise in the
manipulation of large figures or complicated fractions.
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THE TEACHING OF ARITHMETIC I
THE STORY OF AN EXPERIMENT

L. P. Benezet
Superintendent of Schools, Manchester, New Hampshire
Originally published in the January 1936 edition
of The Journal of the National Education Association

This is the third and final instalment of an article by
Superintendent L. P. Benezet, in which he describes an
experiment in arithmetic in the Manchester, New
Hampshire, schools. The first instalments [November
1935, p 241—4 and December 1935, p 301-3] have
aroused many favorable comments. William McAndrew
calls the material ‘powerful good reading, a scientific
article free of the common dullness of such.” Helen lves
Schermerhorn, of New Jersey, writes that upon returning
to teach in junior high-school after many years in the aduit
education fiekd, she “was appalled at the changes which
hadtaken place, the great number of new activities which
had developed, each good in itself, but nevertheless
cluttering up the time of the children. The weakness in
English seemed inexcusable; too little time had been
given to its mastery. | hope great things from the
influences of Mr. Benezet'’s article.” A letter from C. E.
Birch, superintendent of schools, Lawrence, Kansas,
indicates that the Lawrence schools have been revising
the arithmetic program for the past two years. Mr. Birch
has recommended the discussion in faculty meetings of
the Benezet articles and their possible application in the
light of the local situation.

Is your school making similar use of these articles?
Itwould be an interesting thing to call some of the leading
citizens in your community together around the table and
read the articles to them to see what their attitude would
be.

It must be understood that | knew very well what my
hardest task was ahead. | had to show my more con-
servative teachers what we were trying to do and convert
them to the idea that it could be done. | went into room
after room, day after day, testing, questioning, giving out
examples.

We had visitors. Two Massachusetts superinten-
dents, a superintendent of a large Massachusetts city
with five of his principals, and two instructors in the
Boston Normal School came. They saw what we were
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trying to do and were surprised at the ability to reason and
to talk, shown by children whose minds had not been
chioroformed by the dull, drab memerizing of tables and
combinations. But there were murmurs thruout [sic] the
city. Itfinally broke outin a board meeting. A motion was
made that we throw out the new course of study in
arithmetic and go back to the old. It was defeated by a
vote of nine to four, but a committee of three was
appointed to study the problem carefully. Taking with me
two members of the committee and a stenographer, |
visited four different schools in our own city and three in
a city not thirty miles away.

The most convincing test was in connection with the
problem which | tried out in not less than six different
rooms. Four of these rooms were made up of children
who learned their arithmetic inthe old formalway, whereas
the other two were groups who had beentaught according
to the new method. In every case it was an advanced fifth
grade, within one month of promotion to the 6-B.

| give verbatim accounts of two of these recitations,
the first from a traditional room and the other from one of
the experimental groups. | drew on the board a little
diagram and spoke as follows: “Here is a wooden pole
that is stuck in the mud at the bottom of a pond. There is
some water above the mud and part of the pole sticks up
into the air. One-half of the pole is in the mud; 2/3 of the
rest is in the water; and one foot is sticking out into the
air. Now, how long is the pole?”

First child: “You multiply 1/2 by 2/3 and then you add
one foot to that.”

Second child: “Add one foot and 2/3 and 1/2.7

Third child: “Add the 2/3 and 1/2 first and then add
the one foot.”

Fourth: “Add all of them and see how long the pole

is.
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Next child: “One foot equals /3. Two thirds divided
into 6 equals 3times 2 equals 6. Six and 4 equals 10. Ten
and 3 equals 13 feet.”

You will note that not one child saw the essential
point, that 1/2 the pole was buried in the mud and the
other half of it was above the mud and that 1/3 of this half
equaled one foot. Their only thought was to manipulate
the numbers, hoping that somehow they would get the
right answer. | next asked, “Is there anybody who knows
some way to get the length?”

Next child: “One foot equals 3/3. Two-thirds and
1/2 multiplied by 6.”

My next question was, “Why do you multiply by 62"

The child, making a stab in the dark, said, “Divide."

It may be that he detected in my voice some stress
onthe word “multiply.” Ithen gave them a hint which, had
they been able to reason at all, should have shown them
how to solve the problem. “How much of the pole is above
the mud?” said |. The answer which | had hoped forwas,
of course, “One-half of it is above the mud.”

The first child answered: “One foot and 2/3."

| looked dubious, so the second child said, “One foot
and 1/3."

I then said, “I will change my question. How much of
the pole is in the mud?”

“Two-thirds," said the first child.

“One-half,” said the second.

“One-half,” said the third.

“Then how much of the pole is above the mud,” said
I, thinking that now the answer was plainly indicated as
one-half.

“Two-thirds,” said the next child.

“One foot and 2/3," said the next.

“One-half of the pole is in the mud,” said |. “Now, how
long is the pole 7" and the answers given were “Two feet.”

“One and one-half feet.” “One-half foot.” “One foot.”
“One fool.” “One foot,” and | gave it up.
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| gave the same problem the same week to a fifth
grade in our city which had been brought up under our
new curriculum, with no formal drill in addition, multiplica-
tion, and division of big numbers but with much mental
work in reasoning. | drew the diagram again and said,
“Here is a pond with a rock bottom and mud and water,
with a pole sticking in the mud. One-half of the pole is in
the mud; 2/3 of the rest of the pole is in the water; one
foot of the pole sticks up in the air above the water. How
long is the pole? How would you go to work to do that
problem?”

First child: “You would have to find out how many feet
there are in the mud.”

“And what else?" said |.

Another child: “How many feet in the water and add
them together.”

“How would you go to work and get that?” said | to
another child.

“There are 3 feet in a yard. One yard is in the mud.
Oneyardequals 36inches. If 2/3 ofthe restisinthe water
and one foot in the air [one foot equals twelve inches] the
part in the water is twice the part in the air so that it must
be 2 feet or 24 inches. If there are 3 feet above the mud
and 3 feetin the mud it means that the pole is 6 feetor 72
inches long. Seventy-two inches equals 2 yards.”

It amazed me to see how this child translated all the
measurements into inches. As a matteroffact, to her, the
problemwas so simple and was solved so easily, that she
could notbelieve that she was doing allthat was necessary
in telling me that the pole was 6 feet long. She had to get
it into 72 inches and 2 yards to make it hard enough to
justify my asking such a problem.

The next child went on to say, “One-half of the pole
is inthe mud and 1/2 must be above the mud. If 2/3isin
water, then 2/3 and one foot equals 3 feet, plus the 3 feet
in the mud equals 6 feet.”

The problem seemed very simple to these children
who had been taught to use their heads instead of their
pencils.

The committee reported to the board and the board
acceptedtheirreport, saying thatthe superintendent was
on the right track. They merely suggested that, to quiet
the outcry of some of the parents, the teaching of the
tables should be begun a little earlier in the course.
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The development of the ability to reasonis one of the
big results of the new course of study in arithmetic. Not
long ago, hearing that a complaint had been made by the
mother of a child in a 5-B room, regarding the teaching of
arithmetic, | visited the room with the principal and tried
to discover just what the youngsters could and could not
do. | gave them several problems to test their ability todo
mental arithmetic, and was surprised at the accuracy and
speed with which they answered me. Ithentriedthemon
a problem which involved a little reasoning. | drew a
picture of two faucets and of a pail placed beneath them.
Stating that either one of the faucets could fill the pail
alone in two minutes, | asked how long it would take to fill
it if the two were running at the same time. Confidently
expecting that the children would tell me four minutes, |
was much gratified to receive the answer, one minute,
from three-fourths of the class. | next changed the
problem by stating that | would replace one of the faucets
by a smaller one, which could fill the pail in four minutes.
| then asked about how long it would take to fill the pail,
if the two faucets ran together. A few told me three
minutes, but the great majority guessed between one
minute and two, the popular answer being about a minute
andahalf. | next asked what part of the pail would be filled
at the end of one minute, and the childrentold me, without
any difficulty, that it would be three-quarters full. My next
question was, “How long exactly would it take then, to fill
the pail?” The first child that | called upon gave me the
correct answer, one minute and twenty seconds. The
principal expressed his astonishment and asked me to
try the same problemonthe eighth grade. | did so. These
children, brought up under the old method of formal
arithmetic, did not do nearly as well as did their younger
brothers and sisters.

| have recently tried, in several parts of the city, a test
involving five simple problems. Here it is:

[1] Two boys start out together to race from Manchester
to West Concord, adistance of 20 miles. One makes
4 miles an hour and the other 5 miles an hour. How
long will it be before both have reached West Con-
cord?

[2] Amancanrow4 miles anhourin stillwater. How long
will it take him to row from Hill to Concord [24 miles
one way] and back, if the river flows south at the rate
of 2 miles an hour?

[3] The same man again starts rowing from Hill to
Concord in the spring when the water is high and the
current is twice as swift as it was before. How long
will it now take him to make the round trip?
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[4] Remus can eat a whole watermelon in 10 minutes.
Rastusin 12. | suggest a race between them, giving
each half of a melon. How long will it be before the
melon is entirely gone?

[S] The distance from Bostonto Portland by water is 120
miles. Three steamers leave Boston, simultaneously,
for Portland. One makes the trip in 10 hours, one in
12, and one in 15. How long will it be before all 3
reach Portland?

It looks easy enough, but | advise you to try it. | will
guarantee that high-school seniors, preparing for College
Entrance Board Examinations in Mathematics, will not
average 70 percent. | had some rather ridiculous resutts.
I tried the fourth and fifth examples on a second grade the
other day and had an almost perfect score, while a ninth-
grade class in arithmetic, which had been taught under
the old arithmetical curriculum, made a sorry showing.
Out of twenty-nine in the class only six gave me the
correct answer to problem five.

We have already seen results of our new course of
study. The head of the English Department in our Central
High-school[enroling [sic] 2450 pupils] tells me thatinthe
English classes made up of pupils who entered on
February 1, 1935, there is a fluency and a readiness with
the mother tongue that is surprising. The old-time diffi-
dence is gone. Children are no longer tongue-tied and
unable to put a new idea into words.

| am not surprised. | had expected a report like this.
You will recall the terrible English used in one of our
eighth grade rooms, taken down as it was spoken, which
| have quoted inthe first article. | went into the same room
five years afterwards. The same teacher was in charge,
and some of the children in the room were younger
brothers and sisters of the previous group, but the methods
of teaching had radically changed. Withthe stenographic
report of the previous recitation in my hand, | asked this
latter day group the same questions which | had pro-
pounded five years before to their older brothers and
sisters. | pick out typical answers, and | assure you that
| am not giving you the top of a “deaconed” barrel of

apples.

“When the numerators of any two fractions remain
the same, the fraction with the smaller denominator is the
largest.”

“The principle that we have proved is that the smaller

the denominator gets — no, the larger the denominator
gets, the smaller the fraction.”
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“The larger the denominator is, the smaller the frac-
tion would be if the numerator is the same.”

“The smaller the numerator gets, if the denominator
remains the same, the smaller the fraction is.”

“The larger the denominator gets, the smaller the
fraction will be, provided that the numerator remains the
same.”

“The larger the denominator gets, provided the nu-

merator remains the same, the smaller the fraction be-
comes.”
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I then tried an experiment which to me was the most
conclusive of all. | read from the account in my hand
typical answers which had been given in that same room
five years before [of course they were not told that it was
the same room] and these present-day eighth graders
shouted with laughter at statements which had not pro-
voked a smile five years before. | asked them why they
laughed and they proceeded to pick out the flaws in the
reasoning and choice of words of their predecessors. To
me it was the most heartening sign yet, and a prophecy
of what we may expect when this present eighth grade
shall have become seniors in our high-schools.
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LEIBNIZ — BEYOND THE CALCULUS

Hardy Grant
York University

Leibniz figures in the standard histories of math-
ematics mostly as sharing, with Newton, the main credit
for the first significant formulation of the calculus. That is
appropriate in the sense that there indeed lay his most
vital and enduring contribution to the subject. Butsuch a
focus limits considerably the role of mathematics in
Leibniz' own life and thought. Mathematical consider-
ations also suggested, crystallized, governed in many
pivotal ways the metaphysical system that places him
among the West's supreme philosophers. What follows
is an attempt to outline some features of this broader
picture, to correct the sometime fragmentations in our
estimate of his work, to see his mathematical activity as
a whole.

We can not hope to understand him except against
the background of his age. In particular his famous (or
notorious) optimism, though doubtless grounded partly
inpersonal makeup, had discernible contemporary roots.
His unquestioning faith in the existence and supreme
benevolence of the God of Christianity mirrored a climate
in which atheism was widely equated less with wicked-
ness than with mere stupidity. He lived inthe heady days
when the homely apparatus of the Royal Society's “sooty
empiricks” promised to unlock the last secrets of nature,
and when his great rival Newton brought the universe
itself under the sway of mathematical law. In his time
these advances in physical science, and many of the
great issues of philosophy, remained close enough to
common modes of thought that many inquirers, Leibniz
among them, could address their speculations to duch-
esses and kings — who occasionally joined in the game.
It has been called the “Age of Reason™ and the “Age of
Genius,” but an equally valid tag would be the “Age of
Confidence.” And of course much of the pervasive
euphoria was born of the visible power and promise of
mathematics, its application (as by Galileo and Newton)
1o physical understanding, the conviction (as in Hobbes
and Spinoza) that its methods could bringunprecedented
improvement in other fiekds. Not surprising then that
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Leibniz, himself superbly skilled in mathematics and
steeped (as we shall see) in a view of the subject
calculated to encourage bold extrapolations, yielded to
no one in that exuberant age in his hopes both for the
human understanding of nature and for the scientific
amelioration of social ills.

He came relatively late in life to mathematics —
probably the latest “bloomer” among all the subject’s
most gifted creators. His formal education in mathemat-
ics was slight and superficial; his fundamental work on
the calculus awaited his historic sojourn in Paris (1672—
76), that began when he was already 26 years old. His
earlier training and preoccupations recall the biologists'
old notion that “ontogeny recapitulates phylogeny” —
that the individual's development retraces its species’
evolutionary course. For like the post-medieval western
mind in general, Leibniz came to an awareness of the
power and beauty of mathematics from an immersion in
the modes and vocabulary of scholasticism, behind which
in turn rested the gigantic figure of Aristotle; and Leibniz'
own philosophy retained this imprint to the end. But just
as E. T. Bell declared that the scholastic philosophers
were mathematicians manqués, so Leibniz in his youth
groped instinctively toward mathematical forms and pro-
cedures that his education had not revealed to him. As
a teenager, he told a correspondent, he wondered
whether, “since simple terms or concepts are ordered
through the known categories” (Aristotle’s word for the
basic organizing concepts of all thinking), “one could not
set up categories and ordered series for complex terms
or truths as well . . . at that time | did not know that
mathematical demonstrations were what | was seek-
ing."! The triumphs of his Paris phase “hooked™ him
forever on mathematics, and his mature writings sing its
praises countiess times. Mathematical studies, he de-
clared in 1686, have a twofold use and value, “partly as
an example of more rigorous judgment, partly for the
knowledge of harmony and the idea of beauty.” These
ideals are of course Greek; Leibniz fell in love with the
spirit of Hellenism a century ahead of its “rediscovery” for
the German mind by Winckelmann, Lessing and Goethe.
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Greek oo was Leibniz' conception of the ontological
status, the “reality,” of mathematical concepts and forms.
His unchallengeable place among the subject's “mod-
ern” creators has masked the fact that his own view of it
was profoundly traditional. Mathematics was for him a
colleciion of timeless, necessary truths. These are
binding even on God, who (for example) could not, even
if he wished, create a triangle with an angle sum different
from 180 degrees.® We reach the primary truths and
concepts of mathematics by observation, by induction,
and by the aid of the “natural light,” that higher intuitive
faculty which Aristotle called nous and which Leibniz took
over from a European tradition ranging from Augustine to
Descartes. Thus mathematics, on this ancient view,
describes an idealized but objective order, grounded in
our physical experience. In particular its axioms, so far
from being arbitrary, are exceptionally certain truths,
which are in principle provable — and Leibniz himself
undertook on at least two occasions to demonstrate from
still more basic assumptions the Euclidean postulate that
the whole is greaterthanthe part.* One must stress again
that this whole concepticn of mathematics was standard
already in antiquity, part of the vast corpus of thought
codified for the western heritage by Aristotle and repre-
senting at bottom a kind of enormously intelligent and
deepiy reflective common sense.

It is true that Leibniz, for his part, stood near the
beginning of the eventual replacement of this traditional
view of mathematics by another. That tremendous
change, the transition to a modern mathematics far richer
and stranger but increasingly divorced from experienced
reality and stripped of its claim to absolute truth — non-
Euclidean geometry is the central symbol — is surely the
pivotal watershed in all the subject's long history, a
revolution much more profound even than the rise of
axiomatic and deductive methods in classic Greece. The
17th century debate over the status of infinitesimals
formed one episode in that historic passage, for, as
Leibniz wrote, the se mysterious entities have no counter-
partin“nature,” no validating presence inour experience.
His own response was in part pragmatic: the fruitful use
of infinitesimals in the calculus, he urged, does not
require that these be “real,” nor that the philosophical
dilemmas besetting them be resolved. But he grappled
with those dilemmas himself, and ended by seeing
infinitesimals as consistent with the ancient tradition of
mathematical realism. He linked them explicitly with
other novelties which contemporary mathematicians were
contemplating with diverse degrees of uneasiness —
with imaginary numbers, with dimensions beyond the
third, with “powers whose exponents are not ordinary
[i.e., natural) numbers." Allof these are useful “to shorten
our reasoning,” and may indeed be essential. But they
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are not — he insisted — merely fictions. Demonstrably,
for example,

Y1+Y=-3 +m=f6-.

so that our use of imaginary numbers ultimately returns
lo, is justified by, a foundation in objective reality
(fundamentum in re); and so with our conceptions of the
infinite and of infinitesimals.® Thus even Leibniz' own
groundbreaking work in the calculus wrought no essen-
tial change in his tradition-sanctioned vision of the objec-
tive, Platonist character of mathematical ideas.

And after all, that same perspective was precisely
the necessary condition for the hopes of Leibniz and
others who would extend the methods of mathematics to
other fields. The clarity of mathematical concepts
(infinitesimals notwithstanding), and the rigor of math-
ematical demonstrations, had been paradigmatic in
western thought since Euclid. In Leibniz’ mind math-
ematics joined with religious faith in fostering a concep-
tion of metaphysics and ethics as realms of potentially
sure knowledge, of eternal truths underwritten by God
and accessible to human understanding, and therefore
as naturalcandidates for cultivation-more geometrico. But
like Thomas Hobbes (who as a young man he much
admired) Leibniz regretted that the Euclidean method
had not yet been applied with sufficient zeal and subtlety
outside of its home domain — “we have demonstrations
about the circle, but only conjectures about the soul.” At
one time in his life, he tells us, he tried his own hand at
such metaphysical geometry, in the loftiest of all spiritual
enquiries, the study of God. “l often actually played the
mathematician in theology, incited by the novelty of the
role; | set up definitions and tried to deduce from them
certain elements which were not inferior to those of
Euclid in clarity but far exceeded them in the magnitude
of their consequences."” In such philosophical adven-
tures, he felt, the strict deductive chains characteristic of
geometry are not only possible and appropriate but vital,
lest deep and difficult truths elude our reasoning. In fact
demonstrative rigor is actually more urgent in metaphys-
ics than in mathematics itself, where errors are easier to
detect.®

Hence Leibniz' lifelong goal of a “universal charac-
teristic,” a calculus that would allow the extension of
logical and mathematical reasoning to other fields. He
took his cue, and his hopes, from contemporary algebra,
the still excitingly novel symbolic manipulations pio-
neered above all by Francois Viéte. Without that ex-
ample, wrote Leibniz, he “could hardly have zttained™ his
own more grandiose schemes.® Algebra indeed offered
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the most “beautiful” existing example of the possibilities,
but Leibniz groped toward an “art of combinations” that
would far exceed algebra in power and applicability. He
had the modem insight that algebra is empty of content,
that any calculus is “nothing but operation through char-
acters” and hence can in principle be brought to bear in
very diverse spheres. His “characteristic™ would gener-
alize algebra in the sense in which, in geometry, the
concept of similarity generalizes the concept of equality;
it would be a universal science of forms rather than
merely a calculus of numbers and magnitudes. And just
as algebra operates on arbitrary letters of the aiphabet,
so (Leibniz urged) appropriate combinations and ma-
nipulations of letters can be made to mirror all human
thought. We can even hope to calculate, by tallying such
combinations, “the number of truths which men are able
1o express,” and hence “the size of a work which would
contain all possible human knowledge™'°; here again
speaks the authentic voice of the Age of Confidence. The
universal characteristic would replace confusion of thought
by clarity, and would allow reasoning as exact in meta-
physics or morality as in mathematics. Hence it promised
to end forever the clash of differing opinions, the endless
and futile debates and disagreements, that had chroni-
cally plagued mankind. Leibniz had found a seductive
hint of this last benefit in the Aristotelian logic of his
scholastic training. Caught up in philosophical contro-
versy with another scholar, “I proposed the syllogistic
form, which was agreeable to my opponent. We carried
the matter beyond the twelfth prosyllogism, and, fromthe
time we began this, complaints ceased, and we under-
stood each other, to the advantage of both sides.”! But
afulldevelopmentof the ars combinatoriapromised much
more, held out the hope that the parties to any dispute
whatever might be able to say merely “let us calculate,”
and all contention would be resolved.

It will be obvious that the sine qua non of such
optimism was the certainty that the areas of potential
dispute — metaphysics, politics, ethics, theology, law —
are, like mathematics itself, realms of necessary truth,
which need only be elucidated to convince. To the study
of such truths Leibniz often retumed. A proposition is
“necessary,” by his definition, if its denial is (or entails) a
contradiction. But how, in practice, does one identify
necessary propositions as such? Leibniz’ examples are
always statements of the subject-copula-predicate form
that dominates Aristotelian logic — statements interpret-
able as comparing the memberships of setsorthe ranges
of concepts. A proposition is necessary in Leibniz’ sense
if it can be “resolved,” by analysis of its subject and
predicate, to an “identity” —that is, a statement with the
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property that of the two sets or concepts involved in the
subject and predicate respectively, one can be shown to
contain, by definition, the other. (For example, the
statement “a red rose is a rose” is an identity in this
sense.) Leibniz more than once illustrated his technique
of analyzing necessary propositions with a sentence like
“A duodenary number [i.e., one divisible by 12] is a
qQuatemary number” (i.e., one divisible by 4). Interest-
ingly, the passionate champion of algebraic manipulation
does notprove this with the trivial observationthat m=12n
implies m=4(3n), but undertakes instead a cumbersome
dissection of the ungainly adjectives that define the
respective sets. A duodenary is (by definition) a “binary
binary temary,” hence (by definition) a “quatemary ter-
nary,” hence aquatermary, “q. e.d."'? itisto be noted that
“analysis™ and (equivalently) “resolution™ are in this con-
text technical terms whose meanings stem from the
mathematics and philosophy of classic Greece: they
describe the familiar problem-solving strategy that seeks
to reduce the complex to the simple, the secondary tothe
fundamental, the derived to the axiomatically true.

Now propositions which are not necessary are said
by Leibniz to be “contingent.” They are statements which
can be denied without contradiction, like “Leibniz at-
tended the University of Leipzig." The 17th century's
Scientific Revolution threw into sharp relief the philo-
sophical issues raised by the ubiquitous presence of
such contingent facts in everyday life. How could these
be reconciled withthe deterministic world-view emerging
fromthe new physics? What sense could be made of the
unnecessitated, of the apparently random and acciden-
tal, what scope remained for human choice and freedom,
in a world bound by mathematically provable “laws” (that
powerful metaphorl), in a climate of thought that soon
would evoke the mechanistic philosophy proclaimed by
La Mettrie, the cosmic predestinationism voiced by
Laplace? For his part Leibniz reached a justification of
contingency that could occur only to a mind profoundly
molded by mathematics. The resolution of necessary
propositions, described above, can always be accom-
plished in a finite number of steps. A contingent propo-
sition, by contrast, has the property (according to Leibniz)
that the same sort of analysis does not terminate. Thus
a full understanding of such propositions is beyond
human capacity: we can not perform the infinite se-
quence of reductions which alone would show that the
concept “Leibniz” actually includes attendance at the
University of Leipzig. But God, on the other hand, can
take in the whole of this infinite act of analysis in, so to
say, a single glance. Leibniz’ thought here reflects, no
doubt, the limitless powers ascribed to God by Christian
tradition; but it echoes contemporary mathematics as
well. We recall that in his time mathematicians were
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increasingly comfortable with the “completed” infinite
that had so spooked their Greek predecessors —witness
Newton's famous declaration that our reasoning is “no
less sure” in the context of infinite series than when
applied to finite sums, though in the former case our
minds can not embrace all the terms. Human mathema-
ticians, wrote Leibniz in the same spirit, “even have
demonstrations about infinite series™; how much more
readily, then, are “contingent or infinite truths subject to
the knowledge of God."1®

But his study of contingent propositions drew on
mathematics in another and much more specific way, He
found a wonderfully illuminating analogy in a celebrated
piece of ancient geometry. The “Euclidean algorithm,”in
Euclid's original conception (Elements, VI, 2), sought
the greatest common measure of two magnitudes by the
repeated subtraction of the smaller remaining magnitude
from the larger, a process guaranteed to terminate if the
magnitudes are commensurable —if, to put the matterin
ourterms though not in Euclid’s, the ratio of the measures
of the original magnitudes is a rational number. In the
case of two magnitudes which are notcommensurable —
whose ratio is, for us, irrational — the process of recipro-
cal subtraction does not terminate. This contrast became
for Leibniz the guide and touchstone of his distinction
between necessary and contingent propositions. The
subject and predicate in a necessary proposition are (he
argued) like commensurable magnitudes, in that their
shared range of reference, revealed by a finitary analy-
sis, is like the magnitudes’ greatest common measure,
computed by the Euclidean algorithm; correspondingly,
contingent propositions resemble surds. Leibniz con-
ceded that the analogy is not perfect, for one can calcu-
late the true (irrational) ratio of two incommensurable
magnitudes with arbitrarily small error, whereas no such
narrowing of the gap between human and divine under-
standing of contingent truths is possible. Nevertheless
he rejoiced in having discovered through mathematics
the key to a riddle “which had me perplexed for a long
time; for | did not understand how a predicate could be in
a subject, and yet the proposition would not be a neces-
sary one. But the knowledge of geometry and the
analysis of the infinite Iit this light in me, so that | might
understand how notions too could be resolved to infinity. "4

In such ways — and more tellingly, perhaps, than in
any other mind of which we have record — mathematical
ideas constantly informed and colored Leibniz' entire
vision of the world. Many other thinkers, of course, have
drawn inspiration from the same source; Aristotle, for
one, anticipated Leibniz' way of reaching at every turn for
mathematical illustrations of philosophical arguments,
resorting naturally to the best founded and most richly
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developed science of his age. Butin Leibniz the transfer-
ence of ideas went deeper. For his work on the calculus
put him at the frontier of contemporary advance, and he
brought from mathematics a technical knowledge and
sophistication, a grasp of precise and particular detail,
which he applied in philosophy with a specificity that
remains unique. We cannot know — perhaps Leibniz
himself could not have reconstructed — the full course of
this creative borrowing, the complex interplay of math-
ematical examples and their metaphysical analogues in
the final shaping of his thought. Sometimes, as in his
study of necessary and contingent propositions, math-
ematical considerations might seem merely to have
provided him with a convenient model, that might be
imperfect though deeply suggestive. But often, reading
him — and remembering always his image of mathemat-
ics as a collection of eternal truths, and of concepts
perceived with matchless clarity — one cannot resist the
feeling that he seized on certain of those ideas as not
merely suggesting or confirming metaphysical points but
as offering sure signposts to the very contours of existen-
tial possibility, the very scope and direction of God's
creative design of the worid.

It is fascinating to see how much of his metaphysics
can be expounded in such terms. “In the very origination
of things,” he wrote, “a certain Divine mathematics or
metaphysical mechanics is employed,” which ensured
the maximum production of all desirable things; we see
the same optimizing principle in the operation of nature
even now, in (for example) the fact that “when several
heavy bodies are operating against one another, the
result is that movement which secures the greatest
descent on the whole.”'S In the act of creation, said
Leibniz, God acted “like the greatest geometer, who
prefers the best constructions of problems.” That is to
say, just as a geometer will seek a proof or construction
that combines maximum range and power with supreme
economy of argument, so God, in choosing among the
infinitely many potential orders of existence, opted forthe
one which would yield “the greatest effect” — the maxi-
mum of goodness and happiness — from “the simplest
means.”'® Leibniz lived 100 far in advance of saddle-
point calculus — not to mention the modern theory of
games — to make much mathematically of such “mini-
max" considerations, but they remained basic to the
optimistic tenor of his philosophy. Foronce, indeed, the
catch-phrase that has filtered to popular perception from
the complex thought of a great mind is wholly accurate:
Leibniz really did believe that this is, strictly and abso-
lutely, the best of all possible worlds — whence, of
course, the brilliant, bitter mockery directed against his
system by Voltaire.
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Further details of Leibniz’ cosmic vision were bred or
reinforced by specific features of contemporary analytic
geometry and cakulus — their achievements and their
limitations alike. To him the order detectable in the
universe was like the unity imposed on a plane curve by
asingle algebraic expressionthat describes and governs
all its features. He seems to have shared with at least
some of his fellow analysts a remarkably bullish sense of
the possibilities of curve-fitting; he related that Johann
Hudde claimed the ability to find an algebraic equivalent
for the profile of any human face, and Leibniz himself
agreedthatthis is possible.'” More strikingly still, he held
that, given any set of randomly scattered points in a
plane, one can find a curve “whose notion is constant and
uniform, following a certain rule”—meaning, apparently,
the graph of a continuous function given everywhere by
a single formula — which not merely passes through all
the given points but does so in the order in which they
were laid down. Similarly — and the analogy is of course
made fully explicit — God could fashion a harmonious
universe from any original chaos of potential existents,
for “no way of creating the world can be conceived which
is so disordered that it does not have its own fixed and
determinate order."'®

This mathematically sustained faith in the world's
ultimate rationality and goodness went further still. Un-
deniably, we seem o perceive many irregularities and
inequities in the physical and moral fabric of things.
Likewise (said Leibniz) every curve has points —
singularities, extrema, points of inflection — which seem
to stand out as different from the others. But in fact the
seemingly anomalous nature of such points is shown by
the new calculus to follow from, to conform to, the
“equation or general nature of the whole” curve, which
thus remains, on a broader perspective, “perfectly or-
dered" after all; and similarly for the seeming imperfec-
tions in the world around us.'® And as in the universe as
awhole, so also in our individual lives. All the seemingly
exceptional eventsthat befall us, evenour very births and
deaths, are only, as it were, peaks or valleys or cusps on
the trajectories of ourimmortal souls; they are notoutside
the uniformity of nature, they violate no generallaws.20 In
one especially confident passage Leibniz declared that
the world's overall perfection obtains also in all its smallest
component parts — even asthe shortest-descent property
of the cycloid arc which solves the brachistochrone
problem holds between any two points, however close.?!

As is well known, Leibniz’ philosophy is suffused by
a deep organicism, which saw each of the world’s small-
est parts as related to all of the others through constant
“intercourse” and mutual influence. Itis anideawhich, as
Joseph Needham urged, echoed more vividly the Chi-

HMN Newsletter #6

nese sages whom Leibniz studied than the prevailingly
mechanistic outiook of contemporary Europe. But it
owed something to his mathematics too. We have seen
his belief that to any arbitrary set of points can be fitted a
curve “‘whose notion is constant and uniforn’” (emphasis
here added). Leibniz scarcely knew — or at any rate
scarcely considered — discontinuous functions; and this
prevailing tendency of his mathematics encouraged him
to find, everywhere in nature, continuous passages from
one state of affairs to another. The “Law of Continuity”
became one of the most fruitful guiding principles of his
thought. Ellipses, parabolas and hyperbolas, for ex-
ample, seem from “extemal shape”to be entirely different
from one another, yet we know that in fact each of these
passes into the others by gradations so “intimate™ as to
bar the insertion of any different kind of curve in the
sequence. “Therefore,” said Leibniz, making one of his
grandest leaps, “I think | have good reasons forbelieving™
that in like manner all the world's endlessly varied spe-
cies of organic creatures form a single continuous chain,
“like so many ordinates of the same [continuous'] curve
whose unity does not allow us to place some other
ordinates between two of them because that would be a
mark of disorder and imperfection.”2 This ladder of or-
ganic life is of course the “Great Chain of Being,” a staple
of the western intellectual tradition since the time of Plato
(and the subject, long after Leibniz, of one of the most
absorbing and seminal books ever written on the history
of ideas).2® Leibniz' tendency to find continuities every-
where assured him that “when the essential determina-
tions of one being approximate those of another . . . all
the properties of the former should also gradually ap-
proximate those of the latter" — or, as we should say, any
biological character is a continuous function of position
on the Chain. Certain creatures with unusual traits, like
the “zoophytes” that seem to bridge the plant and animal
kingdoms, may be viewed as occupying, “so to say,” the
Chain’s “regions of inflection or singularity.”24 The Great
Chain of Being was hoary with antiquity when Leibniz
described it, but never before or since was it conceived
in such specifically mathematical terms.

Every particle of matter, said Leibniz, teems with an
infinity of living creatures — a notion that plausibly owed
much to the wonders discovered in his time, by
Leeuwenhoek and others, with the first microscopes. At
the very bottom of the organic hierarchy are the simple
soul-like substancesthat Leibniz called “monads.” Leibniz
used mathematical ideas in wrestling with the notoriously
difficult problem of relating these elementary souls to
physical matter. Material bodies, he proposed, are
aggregates of these substances in precisely the way that
geometrical lines are aggregates of points. A point, that
is to say, is not actually partof a line, for “a part is always
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of the same nature as the whole;" rather, “a line in which
there is a point is a part of a larger line, and similarly “a
soul is not a part of matter, but a body in which there is
such a soulis such a part of matter."?S In Leibniz’ organicist
vision of nature every monad, though absolutely simple
and without parts, has nevertheless a multiplicity of
relations with things outside itself, just as “in a center or
point, in itself perfectly simple, are found an infinity of
angles formed by the lines which meet there.”2®

This survey of the mathematical bases of Leibniz’
thought could be supplemented by other examples. But
no case is here made for the notion that the whole of his
philosophy is so describable. He would have been the
first to scorn such a claim as grotesque, for in fact he
insisted repeatedly that much in nature is not to be
explained by mathematics.2” The present account has
set aside, as not so palpably tied to mathematics, such
fundamental and characteristic of Leibniz’ preoccupa-
tions as the nature of substance, the relation of “efficient”
and “final" causes, the case for immortality, and many
more. | hope only to have shown that the role of
mathematics in shaping his philosophy was very consid-
erable, and that it took surprisingly detailed, crucial and
sophisticated forms. This side of the great philosopher
has been underappreciated — perhaps above all by
mathematicians. To speak of him merely as a co-founder
of the calculus is doubtless to set him correctly in the
history of technical progress — but at the price of a limited
perspective on the whole man and on the splendid
originality and power of his thought.
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AN HISTORICAL APPROACH TO PRECALCULUS AND CALCULUS

Victor J. Katz
Professor of Mathematics
University of the District of Columbia

As a college teacher of mathematics | receive many
new texts each year in precalculus and calculus, each
one trumpeting its virtues and its new ideas. But a study
of the actual material presented shows that not only are
there few new ideas but that chapter for chapter and
almost section for section each such book is a repeat of
every other one. Infact, | amazed my daughter one day
by telling her the titles of the first ten chapters in the
calculus text she was using, without ever having seenthe
book itself. Since all such texts are the same, one could
assume that there is a general agreement in the math-
ematical community that there is one correct way toteach
precalculus and cakculus. With all the conferences and
position papers of the past several years, first on the
desirability of discrete mathematics and more recentlyon
the lean and lively calculus, it appears, however, that
large numbers of faculty members are dissatisfied with
the way these courses are presented. As a matter of fact,
the high failure rate in calculus seems to indicate that
students too are dissatisfied.

As a possible answer to this dissatisfaction, and as
a new way of organizing these two courses, | have
experimented overthe past several years withan historical
approachto both precalculus and calculus —considered
together as a four or five term sequence. Not only does
this approach help integrate the discrete algorithmic
material with the continuous analytic mathematics, since
infact much of the former was developed alongside of the
latter, but it ailso helps to introduce our science and
engineering students to the relationship between math-
ematics and the rest of our culture. As it stands now,
many students are sadly lacking in an awareness of the
place which mathematics occupies in our culture. They
are interested in the mastery of technique to the exclu-
sion of leaming the reasons that the ideas were developed
and the use of mathematics in the world. And without the
!mellectual content behind the mathematical techniques,
it appears that in large measure the students fail to grasp
even the techniques. An historical approach to these
Courses helps to provide a solid motivation forthe learning
of mathematics as it ties together much of the students’
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backgrounds in history and literature with their scientific
studies. It also encourages the student at every stage of
his/her studies to explore the ramifications of scientific
work as it relates to the world around them. And it seems
to me that the prospective scientists and engineers | am
teaching will more than ever need a sense of how their
own highly technical work fits in with the needs of society
as they make decisions which will affect the fate of the
world.

By an historical approach to mathematics teaching,
| do not mean simply giving the historical background for
each separate topic or giving a biographical sketch of the
developers of various ideas. | do mean the organizing of
the desired topics in essentially their historical order of
development. | do mean discussing the historical moti-
vations for the development of each of these topics, both
those within mathematics and those from other fields. |
also mean connecting the development of each of the
mathematical topics with the development of the other
sciences and with the other things which were going on
inthe world. Naturally, | cannot always stick precisely to
the historical record. Many seemingly good ideas led to
dead ends or to methods which are too difficult for the
level of these particular courses. And one should make
use of today's technology of calculators and computers
to perform tedious computations rather than have the
students repeat their ancestors' hand calculations.
Nevertheless, using history as a general guide does
provide an organizing tool for both precalculus and
calculus which helps to motivate the students and shows
them that mathematics has always been an important
part of the overall culture, not only in the West but also in
other parts of the world.

A reasonable question at this point is how we cando
all this when we can barely cover all the material in the
syllabus as it is. | do not have a simple answer to that
question. My experience is that to a large extent, this
historical approach is more time-efficient than a more
standard approach and that the historical connections
drawn help to motivate and excite the students, enabling
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them to do more work independently. Of course, we
cannot neglect the development of technical proficiency
or of problem solving skills. But again, both of these
aspects can be set into the historical context. And if, in
fact, this approach forces us to drop a few topics in the
current syllabus, this will only be in line with current
recommendations in any case.

Let me now describe the mathematics course | have
in mind. Inthe context of the school at which |teach, it is
necessary 1o begin with precalculus material. But it
would not be difficult to begin this course at a later point.
As will be clear, virtually all of the standard precalculus
and cakeulus topics will be dealt with, but often in an order
and a context differing from the standard ones. The
course description will emphasize the novel aspects of
my approach and how it better serves the students than
the usual method.

The course begins with a description of the common
mathematical knowledge of various ancient civilizations,
namely, basic algebra through quadratic equations, ba-
sic geometric formulas, the Pythagorean theorem, and
the calculation of square roots. We discuss the nature of
these ancient societies, the Babylonian, the Egyptian,
the Chinese, and what it means for a certain society to
“know™ mathematical ideas. Who in the society knew
these ideas? Why did they know them? What kinds of
problems did they need to solve? In particular, we
discussthe value of pi. Whatdoes it meanto approximate
the ratio of the circumference of a circle to its diameter
and how good an approximation is necessary? In the
same mode, we also discuss the square root algorithm
and its geometric origins. In this context, an introductory
discussion of the nature of an algorithm is warranted
along with a discussion of accuracy. A review of the
quadratic formula is also useful along with the Chinese
numerical method of solving quadratic equations.

The major change from these ancient civilizations to
the classical Greek in terms of mathematics was in the
introduction of deductive proof. Thus we deal briefly with
the nature of Greek civilization and its differences from
those of Egypt and Babylonia. Then, even though the
students have generally had some course ingeometry, a
discussion of some salient points of Euclid’'s Elementsis
warranted. Among the topics included are the nature of
logical argument and the idea of an axiomatic system, the
basic triangle and parallelogram theorems of Book |, the
circle theorems of Book lll, the construction of the pen-
tagon in Book IV (for its later use in trigonometry), the
similarity results of Book VI, andfinally, Euclid’s result on
the area of a circle from Book XII.
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Curiously, there is no biographical data available on
the author of the world's most famous mathematics text
except a few stories dating from some 700 years later
thanthe time of its writing. Since the text is a compilation
of several different strands of Greek mathematics and
since it was written in Alexandria, a city whose inhabit-
ants came from many different backgrounds, some his-
torians have speculatedthatit was written by acommittee.
Among the possibilities for members of this committee
would be native Africans, Jews, and evenwomen. Though
this particular idea on the authorship of the Elements is
pure speculation, it should be made clear to students that
though certain groups have traditionally been excluded
from mathematical knowledge, there were always indi-
viduals who somehow managed to buck the trend and
make their own contributions. Unfortunately, sometimes
the history books ignore these contributions or possibilities,
denying a sense of “ownership™ to large parts of our
population.

Euclid's work is followed in the course by an introduc-
tion to conic sections in terms of sections of a cone and
in the context of the problem of doubling the cube. |
generally stretch the historical record a bit here and
interpret Apollonius’ work in terms of coordinate geom-
etry as | develop the equations and some of the elementary
properties of these important curves. | also introduce the
beginnings of mathematical physics in the work of
Archimedes, emphasizing in particular the idea of a
mathematical model.

The idea of a model is further developed with the
study of trigonometry, since that subject originated as a
mathematical tool for astronomy, which in turn, in the
Greek world, was based on the two-sphere model of the
universe. Thus | introduce the students to some ideas in
astronomy, using the model having the earth fixed in the
center of the heavens. It is interesting, in fact, to ask the
students for any evidence that the earth is not stationary.
| introduce trigonometry itself in essence as Ptolemy
treated it, though rather than deal with his chords | give
the modern ratio definitions of the sine, cosine, and
tangent. Butthe sum, difference, and half-angle formulas
are done following Ptolemy's geometric proofs and these
are used to begin the actual calculation of values of the
trigonometric functions. The values for 30, 45, and 60
degrees come from simple right triangle geometry, while
those for 36 and 72 degrees come from Euclid's penta-
gon construction. | think it is important for the students
actually to perform some of these calculations them-
selves, so that they learn that the sine function on their
calculator is not magically generated nor does it come
from actually measuring triangles. Among the benefits of
these calculations is an appreciation of interpolation and
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approximation as well as the realization that the sine
function is nearly linear for small angles. In fact, it was
that realization which enabled Ptolemy to complete the
calculation of his table. | even recalculate the sine using
radian measure, since, in effect, radian measure was
used bothin Greece and in India early on. it was realized
that for small angles, using this measure, sine x is very
nearly equal to x itself.

The students naturally use their calculators rather
than the calculated table in applying trigonometry to
solve problems. These problems include not only piane
problems but also spherical ones, since it was the latter
which were most important to the solving of astronomical
problems. With a brief discussion of some astronomical
concepts and the introduction of the important spherical
trigonometry formulas, the students can easily solve
problems such as determining the length of daylighton a
given day at a given location or the exact direction in
which the sun rises or sets.

The next major topic, as we move out of the Greek
period. is that of equation solving. | beginthis sectionwith
a geometric justification of the quadratic formula taken
from the work of the Arab algebraist al-Khwarizmi. (That
is, completing the square means exactly what it says.)
This justification needs a geometric version of the bino-
mial theorem (a+b)? = a + 2ab + b2. Continuing in this
vein, | ask the natural question of how to solve a cubic
equation. There are severai medieval Arab works which
seek to answer this question, although the answers they
give are probably not what students expect. We there-
fore discuss what it means to “solve™ a cubic (or any)
equation. The Chinese inthe thirteenth century certainly
could solve such an equation numerically, while the
Arabs of the same time period knew how to do it geo-
metrically. One interesting method to discuss is that of
al-Tusi, who used techniques related to the calculus to
decide what types of solutions to a cubic were possible.

Tofind analgebraic solution, however,one musttum
to sixteenth century Italy and the story of Tartaglia and
Cardano, a story that should certainly be shared with the
students. The students should also be made awareof the
Renaissance background here and leam why there was
arenewed urge in Europe to do mathematics. Inparticular,
it was often the merchants who brought mathematics
back to Europe through their travels to Africa and Asia. In
any case, the algebraic solution of the cubic begins with
the binomial theorem in degree three and, at least in the
simple cases, is not difficult to understand. | do not give
a complete treatment of cubics, but only enough for the
Students to get the general idea and see why, in the
irreducible case, complex numbers are necessary. Ithen
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can introduce these numbers, as Bombelli did late in the
sixteenth century, and use them in solving not only cubic
but also quadratic equations.

Itis now worthwhile to continue the study of solutions
of equations from other points of view, once the complex-
ity of the cubic and, perhaps, the quartic formulas are
understood. Forexample, | use the work of Descartes to
develop the factor and remainder theorems as well asthe
methods of finding rational solutions to polynomial
equations. I no rational solutions exist, the Chinese
method already discussed, as well as Newton's method,
itself an adaptation of earlier work, can be used to
approximate solutions. So we retumn to the notion of an
algorithm and by using it can explore the idea of con-
vergence. Again, eventhough modem computer software
will enable any polynomial equation to be solved numeri-
cally with the touch of a button, it is always important for
the students to understand how the algorithms built into
the software were developed.

Having already considered the binomial theorem in
the cases n = 2 and n = 3, it is now time to give a more
detailed treatment of combinatorics concentrating onthe
work of Pascal and his medieval Chinese, Arabic, and
European predecessors. First, the binomial theorem for
any positive integral exponent needs to be developed.
Naturally, this is the place to introduce and study the
notion of mathematical induction. A consideration of the
background and motivation for Pascal’s triangle is useful
as an introduction to the ideas of probability and the
calculations of permutations and combinations. A sec-
ond major result is the formula for the sums of powers of
integers. This is often associated with Bemoulli, but the
basic ideas date from somewhat earlier. A third impor-
tantideatreated here is the generalidea of arithmetic and
geometric sequences. These latter provide a gentle
introduction to the idea of an infinite series and its sum,
anideaalready understoodin some sense by Archimedes.

Once we have geometric and arithmetic sequences,
it is time to investigate logarithms. | discuss the scientific
need for logarithms as an aid inthe tedious computations
necessary for the preparation of astronomical tables. So
| also need to discuss the need for such tables in the age
of European exploration and discovery. Inany event, the
relationship between geometric and arithmetic sequences
and the desire to convert multiplication to addition by
using this relationship leads to the necessity for the
choice of a good base. Adapting the ideas of Napier and
Briggs, | show the students why “natural” logarithms as
well as common legarithms were both developed. Infact,
the question of the “naturalness” of natural logarithms
leads via the work of Napier himself to some important
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ideas of differential calculus as well as to the idea of the
exponential function.

Another idea being developed in the 17th century,
through the work of Fermat and Descartes, was that of
analytic geometry. We therefore retum to Apolionius’
conic sections and show algebraically that any quadratic
equation in two variables leads to a conic section. The
important tangent and focal properties of these curves
are then treated as a further introduction to ideas of
calculus. Kepler's laws are then discussed as a con-
tinuation of our earlier notion of a mathematical model.
Of course, whenever one discusses Kepler, one also
must discuss Galileo and the idea that the scientific
success of a particular mathematical model does not
always mean its acceptance. But we also deal with
Galileo as a mathematical physicist as we treat the
motion of projectiles and the general idea of a function.
Though functions have been discussed earlier on an ad
hocbasis, itis here that | make the first attempt to develop
the idea in detail, first in terms of physical phenomena
and then as a purely mathematical idea. Inparticular, we
consider and graph polynomial functions and some easy
rational functions, including one we will use often later,
y = 1/(x+1). And again the idea of a mathematical model
occurs, this time in earthly terms rather than in the
heavens. Finally, the graphs of the logarithm, exponential,
andtrigonometric functions are briefly discussed, leaving
more details to the development of the calculus of these
functions.

Certain calculus ideas having been introduced ear-
lier, itis now time for a detailed discussion, using the work
of Fermat, of the two basic problems of calcuius, areas
and extrema (or tangents). | first solve these two prob-
lems for the curves y = x2 and y = x® and then proceed to
generalize to y = x". For derivatives, | use the binomial
theorem, and for integrals, | use either the material on
Bernoulli numbers or the work on geometric sequences.
In both cases, we need the basic idea of a limit, so an
intuitive discussion of limits is warranted here. The
elementary results on power functions can then be ex-
tended to a procedure for finding derivatives and integrals
of polynomials. Now although Fermat essentially had
these results, he never noticed what Newton did, the
Fundamental Theorem. In any case, we have now
reached the central figure in the scientific revolution. A
statement and at least a sketch of a proof of the Fun-
damental Theorem can now be given, probably in terms
of velocity and distance. In fact, with the right prepara-
tion, the students can “discover” this theorem for them-
selves. But | also discuss to some extent the scientific
revolution itself and Newton's part in it. In particular,
throughout the remainder of the course | deal with some
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of the problems the calculus enabled Newton and others
to solve.

It is at this point in the syllabus that | believe the
historical approach makes its most important contribu-
tion to the study of cakculus, namely the early introduction
of the notion of a power series. Power series were one
of Newton's earliest discoveries in calkulus and one
which he used constantly. Infact, | also note that for the
sine and cosine, power series had been developed even
earlier in India. It is quite effective pedagogically to
introduce series atthe earliest possible moment, namely,
as soon as the basic derivative and integral algorithms
are known and the fundamental theorem is proved.
Power series canthen be used as atheme throughout the
rest of the course. They provide examples of algorithms,
explicit calculations of certain integrals, ideas on the
relationships among various functions, a further intro-
duction to the fundamental idea of convergence, and a
prime example of the method of discovery through
analogy.

As a beginning to the study of power series, we
simply deal with them as generalized polynomials which
we can add, subtract, multiply, and divide. We then
discuss convergence by trying to use power series to
represent functions. In particular, we can think of power
series as generalizing infinite decimal expansions of
numbers. As a first nice example of a power series, |
show the generalization of the binomial theorem to
negative and fractional exponents. | then use this to
calculate square and cube roots, for example. | also note
that, since the power series can be considered as gen-
eralized polynomial functions, we can take the derivative
and anti-derivative term by term.

We do need other technigues in calculus. So we
proceed to the basic approximation theorem, f(x+h) = f(x)
+f'(x)h and then the ideas of Leibniz and his followers, in
particular the idea of a differential. The approximation
theorem gives us straightforward proofs of the product
rule, quotient rule, and chain rule. We can then deal
easily with integration by parts and by substitution. On

the other hand, we canintegrate Y1 —x2 and Y1 + x? by
using power series since the other methods do not apply.
Of course, physical problems, particularly those centered
around Newton's laws of motion, must be dealt with here
now that the basic tools are available. Maximum-minimum
problems are among the more important of these types
of problems.

As in any calculus course, it is now necessary to deal
with the transcendental functions. The natural logarithm
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can be developed as is standard, but is also historically
justified, via the integral of 1/(1+x). But by considering
the power series for that function, we can also get the
series for the logarithm. And this, of course, enables us
to calculate values. The series for the exponential
functioncanthen be developed and discussed byinverting
the series for the logarithm, by Euler's method of using
the binomial theorem, or, perhaps, by solving the differ-
ential equationy'= ky, essentially introduced in the earlier
treatment of these functions. There are many interesting
problems involving the exponential and logarithm func-
tions in early calculus textbooks. It is interesting for
today’s students to see what kinds of problems earlier
students solved, so | show them some from the calkculus
textof Maria Agnesi, probably the best of those before the
works of Euler and evidence that women could and did
study mathematics.

The calculus of the trigonometric functions is devel-
oped via Newton's idea of relating them to arcs of circles.
This leads again to the “naturalness” of radian measure.
Thus | begin with arc length and the definition of the
inverse functions. Again, these are done in terms of
power series. The series for sine, cosine, and tangent
can easily be developed by various methods as can the
basic rules for derivatives. Infact, the latter is best done
by a geometric argument using differentials rather than
via the limit argument commonly used. The power series
representations of eX, sin x, and cos x then provide a
natural question of how these functions are related. The
answer leads into a renewed discussion of complex
numbers and also into a treatment of the hyperbolic
functions. Finally, the notion of simple harmonic motion
and its associated differential equation y" = —ky is dealt
with and shown to result in the trigonometric functions.
Thus the basic periodicity of these functions can be
understood in terms of an important physical idea.

Other types of physical problems are treated in the

process of dealing with various techniques of integration.
Not too much time is spent on the techniques them-
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selves, however, since power series methods are avail-
able to give results and since new computer algebra
systems will generate these results in any case. But we
do need to deal with such ideas as arc length, volume,
and center of gravity and see what integrals are neces-
sary to solve these problems. At the same time, some of
the elementary ideas of differential equations, including
the separation of variables and the integration of exact
equations, are covered in the context of the physical and
mathematical problems which ledto their study inthe first
place.

it is at the end of the one-variable section of the
calculus course that | give a detailed treatment of the
notions of limit and convergence. It is only after the
experience of dealing with these ideas on an intuitive
basis for many months that | can expect the students to
understand their theoretical underpinnings and the use
of epsilons and deltas. After all, the work of Cauchy and
Bolzano occurredfully 150 years afterthat of Newton and
Leibniz.

An historical approach to the study of precaliculus
and calculus canprovide valuable insightsto the students.
With appropriate examples, it can also serve to show that
women and minorities have been involved in mathematics
in the past and can certainly expect to make further
contributions in the future. | am convinced that this
approach to this important segment of mathematics is
better than the current method which, in calculus at least,
begins quite unhistorically, and quite unsuccessfully,
with the abstract notion of a limit. Unfortunately, the
publishers of mathematics texts hesitate to publish a text
which deviates in any major respect from the current
model. Itis therefore not very easy to get new curriculum
ideas out into the mathematics community. Ifthe readers
of this essay try out some of the ideas expressed in it,
however, and exchange their findings, the mathematical
community as a whole may eventually see the benefits of
this approachto the teaching of the most popular courses
in the mathematics curriculum.
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AN ALTERNATIVE APPROACH TO THE HISTORY OF MATHEMATICS

Claudia Henrion
Middiebury College
Middlebury, Vermont 05753

Many scholars have described the value of teaching
the history of mathematics. Some, such as Andre Weil,
argue that studying the history of mathematics is prima-
rity for current or future mathematicians since it can give
us insights into how to tackle contemporary mathematics
problems. Others agree that the history of mathematics
is of particular interest to mathematicians, not so much
for its utilitarian value, but rather for the enrichment one
feels in understanding ones past. Still others argue that
the history of mathematics is of interest to non-mathema-
ticians and mathematicians alike. It is part of our cultural
heritage, and has influenced many other aspects of our
society, therefore we should study the history of math-
ematics, just as we study the history of art or literature. In
this vein, Judith Grabiner, in her article “The Centrality of
Mathematics in the History of Westem Thought," argues
that mathematics has influenced religion, philosophy,
economics, and even the Declaration of Independence.
It would seem, then, that there are many reasons to
include the history of mathematics in a liberal arts under-
graduate curriculum.

However history of mathematics courses are relatively
rare, and when they do exist they are usually housed in
mathematics departments and seen as peripheral to the
core mathematics curriculum. Norare students organizing
massive protests due to the absence of such courses,
which often conjure up images of dull, rote memorization
of big names, dates and theorems, lacking the connec-
tive tissue that would sustain students’ interests. This
article is meant to explore an alternative approach to the
history of mathematics, one that would be of interest to
potential mathematicians and non-mathematicians alike.

History of mathematics courses are more important
today than ever before. As we become aware of the
necessity of recruiting more students to study mathemat-
ics, particularly groups that are traditionally under-rep-
resented, women and minorities, we must look at math-
ematics with new eyes, and with a wider perspective.
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The traditional approach to the history of mathemat-
ics reinforces the alienation that many women and mi-
norities feel about mathematics. They see no people
they can identify with, if indeed they see people at all.
How the questions of mathematics arose, and what the
connections were between mathematics and the larger
culture are often neglected. Someone who is not already
engaged in mathematics is not likely to be inspired by
such a course.

One first step therefore in the re-vision of the history
of mathematics is to look for the participation of women
and minorities. Thisincludes studying the lives of women
such as Hypatia (the little we can find about her), Sofia
Kovalevskaia, Marie Agnesi, Ada Byron Lovelace, Emilie
du Chatelet, and Emmy Noether. Simultaneously, we
can begin our history of mathematics not with the Greeks
but with early Egypt and Babylonia, and, in looking at the
development of mathematics in Africa, consider how our
Western perspective and values influence the way we
evaluate the mathematics of other cultures. But it is not
enough to just add the few women and minority math-
ematicians we can find and think we now have a more
inclusive curriculum. We must continue our inquiry and
investigate why there have been so few women and
minorities to include. To some extent this involves
studying the obstacles that have prevented the entrance
of many people into the world of mathematics. But it also
involves a deeper analysis of what we define as math-
ematics and how this is culturally dependent, as well as
how the values of a culture shape what is considered
important mathematics.

Philip Davis considers some of these issues. He
reminds us of the very useful words of William James,
“The community stagnates without the impulse of the
individual; the impulse dies away without the sympathy of
the community,” and Davis goes on to ask “Is it possible
to write history of mathematics along the lines suggested
by this quotation?" In this article, | discuss the ways in
which we can begin to think about teaching such a history
of mathematics.
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This past Fall, | had an opportunity to teach a history
of mathematics course at Middlebury College as a fresh-
man seminar. Since | had total freedom in designing the
course | decided to structure the course to examine these
questions, in particular the relationship between math-
ematics and its cultural context.

The Body of the Course

The course was divided into three parts, each a
different way of approaching the history of mathematics.
The first part focused on individual mathematicians, the
second on how mathematics has developed in different
cultures and the third focused on one area of mathemat-
ics, namely geometry. The goal of the course was to
have the students grapple withthe fundamental questions
“what do we mean by mathematics?" and “what do we
mean by history?" By taking three different approaches
to the history of mathematics, students began to realize
that answers to these questions are intimately connected
to understanding the relationship between mathematics
and the culture in which it is practiced.

In looking at the lives of individual mathematicians,
we read biographies and autobiographies of selected
people from various times and cultures. One of the first
assignments the students had for the course was to write
their own mathematical autobiography (an informal and
ungraded assignment). This gave me an opportunity to
getto know them better and to get some indication of their
writing skills. It also served as an excellent device for
priming their interest inthe lives of other mathematicians.
They had to think about what aspects of their own
mathematical experience were important and why, and
to begin to think about the extent to which they were
influenced by environmental or cultural factors. It was
natural therefore to investigate the role of mentors,
family, and friends in mathematicians' development.

We considered questions such as who had the
opportunity to pursue mathematics? Why didthey choose
to become mathematicians? What field(s) did they
pursue and why? What kind of contact did they have with
other mathematicians (if any)? How were they received
by the larger community? How did they think about their
work and the nature of mathematics? Who were the
women in mathematics, and in what ways, if any, were
there lives different? What has been the role of institu-
tions (social, political, educational, and religious) in shap-
ing mathematicians' lives and mathematics in general?

We read “The Ideal Mathematician™ from The Math-
eématical Experience which was useful when reading
about the lives of various mathematicians and consider-
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ing the extent to which their lives agreed or disagreed
with the one portrayed in “The Ideal Mathematician.” The
article “The Individual and The Culture” was important in
raising the question of the interplay between the indi-
vidual and society which was a central theme of the
course.

Some articles, for example Koblitz's on Sofia
Kovalevskaia, address the cultural influences directly,
such as the ways in which the early Nihilist movement
opened doors for Kovalevskaia by creating a social
climate in which it was not only acceptable for women to
pursue mathematics and science, but it was seen as a
progressive mission which helped promote liberation for
the people. Andyet atthe sametime it was Kovalevskaia's
very own country, Russia, that denied her access to
higher education and employment, forcing her to go
abroad for both. However, other readings on individual
mathematicians, maintain the traditional split between
mathematician’s lives and the social factors that helped
or hindered them. This made it more challenging for
students to investigate those connections. In some
cases, reading different accounts of a person’s life re-
vealed how much of a vested interest there can be in
describing the mathematician's sources of inspiration, or
vision of mathematics. This was most vivid inthe case of
Ramanujan where Hardy, Berndt, and Ranganatham
present varying points of view on issues such as the role
of intellect versus intuition, the role of religion, ability as
a mathematician, and how a mathematician is to be
judged or evaluated.

The focus in this part of the course was primarily on
well known mathematicians such as Pythagoras, Euclid,
Newton, Leibniz, Euler, Gauss, efc., but in looking at
more contemporary mathematicians students were able
to read about some less famous mathematicians which
gave rise to interesting discussions about “rating” math-
ematicians, and thinking about whose name gets re-
membered and why (for example, why is the Pythagorean
Theorem attributed to Pythagoras when other cultures
such as Babylonia and China seemto have been familiar
with it more than 1,000 years earlier). We looked at the
many factors that contribute to a person pursuing math-
ematics, both the factors that encourage and those that
discourage success. For example, until recently, most
mathematicians came from upperciass backgrounds,
giving them the time and resources to pursue mathemat-
ics. We considered also the similarities and differences
for women in mathematics, the various obstacles they
might encounter (e.g. family or community resistance,
lack of access to educational institutions or professional

societies, intemalizing cultural attitudes that women-

cannot do mathematics, inability to get jobs), and how
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some of them overcame these obstacles. Whenever
possible we tried to examine how the various mathema-
ticians thought about their work and the nature of math-
ematics, and to what extent their philosophy of math-
ematics agreed with their practice of mathematics.

In the second part of the course we compared and
contrasted the mathematics of different cultures. In
particular we looked at periods in the early history of
Babylonian, Egyptian, Chinese, Greek, African, and Is-
lamic mathematics. We tried to see in what ways the
culture might influence the mathematics. What were the
different cultures’ concept of proof, in what ways did that
meet the needs of the society? What was the status of
mathematics in different cultures? What constituted
mathematics inthese societies, for example were art and
music considered branches of mathematics, was there a
focus on geometric or algebraic mathematics, why?
What was considered important mathematics? In what
ways did these cultures influence each other? [See the
essay by Pryor and Pellett at the end of this article].

One of the outcomes of this part of the course was
that students began to see what a variable concept
mathematics is, that it is not something fixed in stone,
defined by some extemal force, but rather a changing,
evolving activity responding to the needs of the culture.
By looking at the connection between mathematics,
music, art, games, elc., students also saw the many ways
mathematics is relevant to their own lives. They began
to see how even such bedrock concepts as mathematical
truth and proof are evolving over time and are culturally
dependent.

Finally in the third part of the course we focused on
one particular area of mathematics, namely geometry.
Since the history of geometry is so old and rich, this part
of the course tied the whole semester together quite
nicely. We looked at the development of geometry from
its early beginnings in Egyptto its formalization in Euclid's
elements to its surprising and profound expansion in the
19th Century with the introduction of non-Euclidean
geometry. We considered what the introduction of non-
Euclidean geometry does to the Euclid myth, and began
to think about other ways of conceiving of the nature of
mathematics. Non-Euclidean geometry retumed us to
the philosophical questions that we grappled with at the
beginning of the course, such as “What is mathematics"
and as such made a wonderful ending to the class.

Central Questions

In the following sections | will elaborate on how we
investigated the fundamental questions that were dis-
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cussed at the beginning of the course but continued to be
central throughout: “what is mathematics” and “what is
history.”

A. “What is Mathematics?”

Before doing any readings, the students wrote a
short informal essay on “What is mathematics?" For
many students this was the first time they had asked this
question, though they had been doing mathematics for
more than twelve years. Is mathematics discovered or
created? If itiscreated, whocreatesit? Arethere ground
rules that everyone agrees on about what constitutes a
proof? We discussed three philosophies of mathemat-
ics, Platonism, Formalism, and Constructivism (see
Snapperin [7]), as students began to formulate theirown
opinion on the nature of mathematics. It was interesting
to see how students' opinions matured (though did not
necessarily change) as the class went on.

We considered the traditional popular answer to the
question “What is mathematics™ that Davis and Hersh
label the “Euclid Myth,” that mathematics is a body of
truths which are derived from a set of self evident truths
(the axioms). The rules of logic, which are chosen to
preserve truth, are used to derive theorems from the
axioms. Such a view of mathematics implies that math-
ematics is certain (since we start out with certain truths,
i.e. the axioms), objective (it does not depend on human
beings since the rules of logic firmly establish what
theorems can be derived) and eternal (since it reflects
truths about the universe, yet is not dependent on sense
experience). This is quite a firm foundation for math-
ematics to rest on. As we went through the course, we
considered whether this is an accurate description of
mathematics over time and in different cultures.

Other questions we explored in discussing “What is
mathematics™ are: Is mathematics a science oranart? In
what ways could it be beautiful? Is it important that it be
useful? How do we decide what is important in math-
ematics? | had the students imagine that they were in
charge of a large funding organization like the National
Science Foundation. They had to think about what
criteria they would use in allocating funds (tackling not
only the question “what is mathematics?,” but also “what
is important mathematics?”). Finally, we discussed the
different metaphors that mathematicians use to describe
mathematics, and what that reveals about their vision of
mathematics, as well as how their vision can affect the
mathematics that they do.
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B. What Is History?

The next major question that must be tackled at the
beginning of the course is “What do we mean by history?"
To introduce this question we did the following exercise
atthe beginning of a class. | had the students write forten
minutes on what happened in Tiannemen Square (any
major event that most of the students knew about would
do). Many students looked rather puzzled, but agreed to
entertain me for such a short period of time. [When |
asked who had heard of Tiannemen Square, all but one
student raised their hands. |told the one student to wait
and he would learn about it momentarily. Laterhetold me
that he had indeed known about Tiannemen Square, but
he couldn't believe that that is what | was referring to
since it had nothing to do with mathematics. He assumed
Tiannemen Square was something like the Pythagorean
square or the golden rectangle!] Then | asked a number
of students to read what they had written. There was a
wide variety of responses. One student who had beento
China and knew quite a bit about its history wrote a long
fairly technical summary of political and military factors
involved inthe tragic event. Another student wrote a very
simple synopsis, “abunch of students were protesting for
democracy at the square. The government sentin tanks
andkilled many of the protestors . ..” Still others took very
different points of view. The point, of course, was to see
how each person could have a very different perspective
of a given historical event. We discussed how 2,000
years from now, one of their sheets of paper might be the
only surviving document of what happened in Tiannemen
Square. In the same way, when we look back 2,000
years to ancient Greece, i is difficult to piece together
what really happened, or the nature of mathematical
activity at the time, or what Pythagoras discovered (if he
did in fact exist) from the little we have to work with. And
the further back we go, the more difficult it is to gather
evidence or information. For this reasonit is important to
take all recorded history with a grain of salt. In addition
to limited records, human bias can also be a major factor
in shaping our image of the past. This becomes particu-
larly clear later in the course in looking at Western
descriptions of African mathematics [see Zaslavsky].

Organization of Class

The class met two days a week, Tuesday and
Thursday for an hour and a half. It was part of the
freshman seminar program which had several advan-
tages. The class size was small (enroliment is limited to
15). The purpose of the freshman seminars is to have
interdisciplinary, discussion oriented classes in which
faculty and students get to know each other well. There
Wwas also some funding to bring in guest speakers. The
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freshman seminars are writing intensive courses, hence
the large amount of writing for the course.

Because this was the first time this seminar was
being offered, and enroliment was not full, we did allow
several upperclassmen to join the class. The benefit of
having these students is that their additional experience
in mathematics made the class much richerfor everyone,
and made for livelier discussions. One thing that became
quite clear from having these older students, is that this
course would be extremely successful as a junior or
senior level course as well, and of course there would be
much more mathematical experience to draw on.

As the syllabus indicates, the course was driven by
questions. One of the major goals of the course was to
have students generate their own questions; this is one
of the most important aspects of leaming and one that is
often neglected in the classroom. Inthe beginning of the
course students were given specific questions such as
“What is Platonism?" or “What is Euclid’s myth?,” but as
the students matured the questions became more open
ended such as “What are the values underiying African
mathematics?" or “What are similarities and ditferences
between ancient Greek and Babylonian mathematics?"
or “What might account for those differences?” As the
course progressed, they came up with more and more
questions of their own.

Assignments

Throughout the course students developed both
their informal and formal writing voice. The informal
voice was developed in journals whichthey kept through-
out the term. The formal voice was used in two research
papers and a finalexam. The journals were an important
part of the course. Students used them to take notes on
the readings, give a brief synopsis of each article, critique
the readings and record theirown questions and thoughts
about the course ingeneral. They served as a vehicle for
leaming how to do close and critical readings. Having
these detailed records not only made class discussions
much better, it was also extremely useful as a reference
for their papers and exams. | would collect them approxi-
mately once a month, and give comments.

The two research papers comresponded to the first
two parts of the course. The first was on atopic pertaining
to mathematical people, the second was on mathematics
indifferent cultures. | encouraged students to find topics
that were of particular interest to them. This was an
opportunity for students to delve more deeply into a topic
we covered in class, or to go in another direction.




The final was the culminating experience of the
course. It involved two parts. The first part was to write
two essays. One was to returnto the original question of
the course “What is mathematics,” and use readings and
discussions to support their position. | was interested to
see how the course had affected their thoughts on this
question. The second essay was “Discuss the ways in
which society can influence mathematics.” This was also
meant to pull the whole course together and to reflect on
the central theme of the course. [See comments in
section on evaluation].

The second component of the final was to create a
History of Mathematics timeline. This was a smashing
success, and | was delighted by the results. Students
were encouraged to be as imaginative as they could in
creating a time line of any form. | wanted them to think
about questions that were very important in the course.
What will they choose to include in the timeline? What
criteria will they use in making their selection? Where will
they begin the timeline, how does this effect the story that
is presented? They were asked to include a written
rationale/explanation for their timeline, addressing these
questions. They were also allowed to work in pairs if they
wanted to.

The projects were indeed quite creative and varied.
Two students made a History of Mathematics video, one
wrote a history of mathematics children’s book, some did
various types of posters and maps. One excellent project
was done by twowomen inthe class. It was a mathemati-
cal quilt. Because it speaks foritself so well, | will include
their essay describing the quilt in this article. | found this
project significant for a number of reasons. We had spent
time in class discussing the metaphors that are used for
mathematics, and how one’'s metaphor influences the
way one approaches mathematics. | found it very inter-
esting that these two students chose the metaphor of a
quift for the history of mathematics. A quilt, being an
archetypically female symbol, was a new way of conceiv-
ing of the history of mathematics, one which lends itself
quite naturally to discussions of relationships: relation-
ships between cultures (corresponding to the different
colors in the quilt), relationships between different time
periods (the positions on the quilt), and relationships
between individual people or facts (represented by a
patch) and the whole matrix of the quilt. |think it is not a
coincidence that this project emerged in a course in
which gender was recognized as a legitimate and signifi-
cant factor of analysis. This created an atmosphere in
which the students could choose a form of expression
that might not have otherwise surfaced, orthat they might
have stifled for fear that it would be inappropriate.
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Evaluation

This article is meant to generate ideas for alternative
ways to approach the history of mathematics. Overall |
thought the course was quite successful and most of the
students seemed to agree. But as always there is
endless room for improvement. One thing that must be
acknowledged from the very start is that this was a kind.
of survey course, though it was not intended as a compre-
hensive survey. Perhaps a more appropriate description
comes from the title of Asger Aaboe’s book “Episodes in
the Early History of Mathematics.” It was meant to give
students a glimpse at the deep and rich history of math-
ematics, but even more importantly to have them begin
to think for themselves about the nature of mathematics,
the evolution of mathematics, and the humanness of
mathematics. My hope was that it would stimulate their
interest in at least some aspect of the history of math-
ematics that they might pursue on their own. And at very
least, that they might begin to see mathematics with new
eyes, as an organic enterprise.

Because there was so much material to cover it was
difficult to do justice to all aspects of the course. The third
part of the course became much shorter than | had first
envisioned. These kinds of balances can be played with
depending on the interests of the students and the
teacher.

In retrospect, | would revise the final so that there
was at most one essay question (the second one). This
is plenty of opportunity to pull the course together, and
allows more time for the timeline projects. | would also
alter some of the readings, delete some, add others. But
those are the kind of changes and decisions that keep
teaching stimulating.

Summary

As the demographics of our society change, we must
be responsive to the changes in our population. The
most notable change in higher educationis the increased
representation of various ethnic groups, and the now
equal representation of women. In all disciplines, it
behooves us to reevaluate how we teach our material,
what we consider important and how we tell the story of
the past.

The first step in opening the world of mathematics to
other people is to find ways to make it more relevant to
their lives. One way to do this is to look to the past to see
how mathematics emerged in different cultures, and
why. What made mathematics relevant to the lives of the
people who developed it? For example, it may be that
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music or art or games are the appropriate vehicles to
introduce mathematical concepts of symmetry and com-
binatorics. If, as Steen suggests, mathematics is the
study of patterns, we must decide where we look for
patterns. Certainly music and art are rich sources of
patterns. Simultaneously, t may be that we need to
emphasize that the concept of proof has evolved over
time, and to a certain extent is culturally dependent.

Most of all we need to emphasize that mathematics
is a process, and to de-emphasize the pervasive image
of mathematics as an extemal, eternal and objective truth
that has little to do with human beings. By seeing the
connections between the lives of individual mathemati-
cians and the mathematics that they (or a culture) pro-
duces, students gain a sense of confidence in their own
ability to use mathematics for their own needs, or to
discover mathematics both as atool and a language that
we use to leam more about the world around us.

OUR MATHEMATICAL QUILT

Kathy Pryor and Anne Pellett

In attempting to determine how to structure our
History of Mathematics time line, we had to face the
awesome task of deciding, from the vast array of events,
peoples and discoveries, which we considered most
important. What we have created is largely a symbolic
work. We have chosen a quilt format because we believe
that, over the centuries, mathematics has developedin a
variety of colors and patterns which, when all pieced
together, constitute its history.

The green diamonds at the center of the quilt repre-
sent the contributions of the ancient Egyptian civilization,
and the red diamonds represent the mathematical ac-
complishments of the Babylonians. We assigned each
culture a separate color, for there is no historical evi-
dence that they ever exchanged mathematical infor-
mation. We did, however, place them side-by-side,
intermingled the hues, because these primitive peoples
both developed their civilizations during the period from
approximately 4000 B. C.-600 B. C. The yellow squares
which surround the diamonds contain some of the math-
ematicians and mathematical accomplishments of the
Greeks from Pythagoras through Euclid. These are
followed by the blue trapezoids which consist of the
mathematical advances of the Muslim and Hindu civiliza-
tions during the period from approximately the 7ththrough
the 12th centuries A. D. We constructed the center in this
fashion in order to show how the developments of each
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separate civilization sprang in some degree from that
which preceded it. For example, the ancient Greeks
gathered rules for the determination of areas and vol-
umes from the Egyptians and advanced the process one
step further by establishing symbolic proofs of these
methods. Likewise, the Muslim civilization acted as the
caretaker for Greek mathematical documents and added
new innovations of its own such as algebra. Both the
Hindu and Muslim cultures were assigned the same color
because they existed geographically, and are said to
have shared mathematical information with each other.

The Egyptian, Babylonian, Greek, Muslim, and Hindu
civilizations were established as the focus of the quilt
because they represent the foundation of the Westem
mathematics with which we are so familiar today, which
has played such an important role in our own personal
mathematical development and in the scientific and
technological advances which have occurred through
the ages.

At each of the four corners of this epicenter is a group
of 5 squares representing a century of “Westemn" (that
associated with Europe and the United States) math-
ematical development. In the upper left hand comer is
the 17thcentury; inthe upper right hand corneris the 18th
century; in the lowerright hand comer is the 19th century;
and inthe lower left hand corner is the 20th century. Each
square withinthese fourdivisions consists of three sheets
of construction paper. The green square represents the
fact that the development belongs to “Western™ math-
ematics, or what we traditionally call “Westem Math-
ematics.” The color of the square immediately on top of
this represents the century (17th century = red; 18th
century = yellow; 19th century = orange; 20th century =
white). Finally, the hue of the topmost square represents
a particular person and his mathematical contribution.
We selected this structure because all of mathematical
history, all of the advances which are made, take their
shape from a unique combination of the advances which
are made, take their shape from a unique combination of
the attitudes and conditions of society during a given
period of time, cultural events, whether positive or nega-
tive, and the special circumstances of each mathemati-
cian's life and work. To chronologically list theorems,
etc., and to simply name their discoverers would fail to
provide an adequate insight into the complex forces
which together culminate in a mathematical advance-
ment.

The manner in which we selected the mathemati-

cians who would represent the various time periods also
had a symbolic intention. Within each century, we chose
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both individuals who are often hailed as the “Great
Mathematicians™ and some “little ones™ whose contribu-
tions the world tends to pass over. For example, in the
19th century, we included Gauss, whose successes in
the field of mathematics still can't be properly estimated,
since he did not publish much of his work during this
lifetime. He was responsible, among other things, for
establishing number theory as an organic branch of
mathematics. At the same time, however, we also
devoted a portion of our quilt to Ada Byron Lovelace, for
she was the first person to detail the process now known
as computer programming, although it is only recently
that she has begun to get the credit she so justly de-
serves. We sought to give a voice to mathematicians
who are not as well known or perhaps are not as well-
esteemed for their work — names that are not on the tip
of the tongue when one is asked 1o list significant math-
ematicians. Although their efforts may not be regarded
as gigantic achievements, they were nevertheless im-
portant because they constituted some sort of advance-
ment, an attempt, however small, to move the field of
mathematics on to greater development, not to allow it to
stagnate. Besides, very often the smaller works ultimately
facilitated the greater discoveries. The black squares
and triangles in the quilt represent those who perhaps
made mathematical innovations or worked diligently to
solve some mathematical enigma, though possibly without
great success, whom the history books don't even
mention. To us, these unknowns are equally valuable as
the knowns, foritis the spirit of all working mathematicians
that keeps the flame of mathematical knowledge burning
brightly into the future.

The squares which are half the color of one century
and half the color of another are used to show that the
mathematical developments which occur in one time
period, ultimately have an impact on the advancements
of later eras. Achievement is not made in a vacuum, but
relies on the knowledge of times long gone by; it is a
cumulative entry.

Finally, the red semi-circles andthe orange triangles
represent the mathematics developed by African and
Chinese civilizations, respectively. We assigned these
cultures a different shape because the mathematics
“invented” by them is not historically believed to be linked
with the progression of traditionally Western mathemat-
ics. Tous, however, their mathematics is significant and
valuable, and should be considered part-and-parcel of
the history of this subject. It widens one's view of what
specifically constitutes mathematics. The skills of pat-
tem recognition and gesture counting, for example, which
the Africans have cultivated and their proficiency in which
we could not equal, show that it is possible to look at math
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from a different perspective. More importantly, by includ-
ing these cultures in our quilt, we wanted to stress that
just because their outlook is alien to ours, that doesn't
mean it is any the less mathematical than our systems of
formalized proof, etc.

Our quilt has been an effort to symbolize the complex
forces at work in the development of mathematics. In-
deed, the history of this subject contains much more than
can be represented by a two-dimensional time line
(L1 | L) Itisastoryofpeopieofallgenders, races,
nationalities, etc., influenced by the times, by their cul-
tures, and by their own unique personalities, striving to
break new ground, to further the cause of mathematics.
The combination of all of these motley patches together
with the ones to be “sewed on"”inthe future (shown by the
black fringe) comprises the history of mathematics. This
is what we have learned and this is what we will take with
use from this course.

HISTORY OF MATHEMATICS
SYLLABUS
FALL 1989 — HENRION
9/12
Toplc:

General introduction to the course.

Assignment:
Hand in math autobiography.

9/14 - 9/19

Topic:
What is mathematics?

Readings:

1) Mathematical Experience, pp. 319-331, 391-399

2) “Three Crises in Mathematics™ by Snapper in Math-
ematics: People, Problems and Results, Vol. 2
[MPP&R, V2]

3) “The Science of Patterns™ by L.A. Steen

4) “A Dialogue on the Applications of Mathematics”
[MPP&R, V1), pp. 255-263

5) “Music of the Spheres” [MPP&R, V1], pp. 61-71

Discussion Questions:

1) Whatdowe mean by mathematics? (What areas are
included?)

2) Is mathematics discovered or created?

3) Ismathematical knowledge certain, i.e. always true?
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4) If you were on an isolated island with other people,
what kind of mathematics would you develop, if any?

5) What is the difference between pure and applied
mathematics?

6) How do we decide what is important mathematics?

7) How do we decide what is true in mathematics?

8) Have the answersto any of these questions changed
over time?

Assignments:

1) BEFORE doing the readings, write a short 1-2 page
essay on “Whatis mathematics?.” Thisisaninformal
essay on your reflections of what mathematics is all
about. There is no right answer, | am interested in
what you think. (DUE: Thursday, September 14)

2) Keep notes on the readings in your journal. Also
write down your thoughts about the discussion
questions in your journal.

9/21

Toplc:
What is history? What is the history of mathematics?

Readings:

1) “History of Mathematics: Why and How?" by Andre
Weil

2) “Reflections on Writing the History of Mathematics”
by Philip Davis

3) “The Centrality of Mathematics in the History of
Western Thought” by Judith Grabiner

Discussion Questions:

1) What is history?

2) What is the history of mathematics?

3) Is there such a thing as true history?

4) How do we decide what counts as important history?

5) Should the history of mathematics be approached
differently than other types of history?

6) What would be interesting to you in the history of
mathematics?

7) Discuss how you would go about looking for evidence
of mathematical activity in an ancient culture. What
would you look for? Where would you look for it?

9/26

NOTE:
Guest Speaker

Topic:
Mathematical People (Introduction)
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Readings:

1) Mathematical Experience : “The Current Individual
and Collective Consciousness,” “The Ideal Math-
ematician,” “The Individual and the Culture.”

2) *“Career and Home Life in the 1880's: The Choices
of Mathematician Sofia Kovalevskaia” by Ann Koblitz
in Uneasy Careers and Intimate Lives.

Discussion Questions:

1) What kinds of people do mathematics (is it possible
to find similarities/themes)?

2) What motivates them (initially, sustains them)?

3) What kinds of family background (does this have
bearing on their work)?

4) Personality. (Does this have bearing on work?)

5) Whatare the social conditions of the time? Does this
effect their work?

6) How did they gain access to mathematics?

7) How do they view the nature of mathematics?

8) To what extent do mathematicians influence each
other, to what extent do they work alone (i.e. role of
the community)?

9) How have answers to these questions changed over
time?

9/28

Toplc:
Early Mathematicians (Pythagoras, Archimedes, Euclid)

Readings:

1) A Short Account of the History of Mathematics by
W.W. Rouse Ball (onreserve in Starr Library). Chap-
ter 2, p. 13-32 (especially material on Pythagoras);
p. 50-77 (especially Euclid and Aristotle).

2) Boyer, Chapter 4 “lonia and the Pythagoreans.”

3) Chapters 7 and 8 of Boyer.

10/3

Topilc:
Mathematicians 17th—-18th Century (Descartes, Newton,
Leibniz, Euler)

Readings:

1) [MPP&R V.1] Newton p. 113-124.

2) “The Life of Leonard Euler” by Rudolph Langer.

3) “Descartes” by Oliver Wendell Holmes.

4) “The Great Mathematicians™ by Darrah.

5) Look through Chapter 19 of Boyer (many of you may
not be familiar with much of the mathematics in this




chapter — that’s okay, just read through what you
can).
6) Boyer, p. 367-371 (Descartes).

10/5

Toplc:
Mathematicians in the 19th-early 20th Century

Readings:

1) [MPP&R, V1] Gauss p. 125-133.

2) Hardy's A Mathematician's Apology (on reserve in
Starr Library) p. 61.

3) [MPP&R V1] Mordell piece of Hardy, p. 155-1589.

4) Ramanujan material.

5) [MPP&R, V1] Hamilton, p. 134-144.

6) [MPP&R, V1] Littlewood, p. 145-154.

10/10

Topic:
Modern Mathematicians 20th Century

Readings:
Choose 3 from Mathematical People (on reserve) —
present one

10/12

Topic:
Women in Mathematics

Readings:
1) Math Equals by Teri Perl
2) Read whole book including summary.

Discussion Questions:

1) Who were the women in math?

2) Why so few?

3) What are the obstacles they have had to overcome
to get into Mathematics and then to stay in?

4) Whatis the role of the larger community in their lives
(support and discouragement)?

S) Are their motivations, sources of support any differ-
ent than the men we've considered?

6) How do they view the nature of mathematics?

7) What do they like about math?

8) Arethere historical periods in which there were more
women doing math? What factors are important?

10/16

Guest Speaker

10/17

Toplc:
Finish up and summary of “People in Mathematics."

10/19

Paper #1 Due
5 minute Presentations on papers

Topic: Mathematics In Different Cultures
10/26-10/31

Toplc:
Early African Mathematics

Readings:

1) Africa Counts by Claudia Zaslavsky — Sections 1 &
2 (p. 1-58), Section 5 (p. 153-196).

2) Zaslavsky, Sections 3 and 4.

11/2

Tople:
Babylonian Mathematics (Ancient Mesopotamia = mod-
ern Iraq)

Readings:

1) Asger Aaboe, Episodes from the Early History of
Mathematics, Chapter 1 (p. 1-33)

2) Boyer, Chapter 3.

11/7

Topic:
Early Egyptian Mathematics

Readings:
1) [MPP&R, V1] p. 3-17.
2) Boyer, Chapter 2.
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11/9

Topic:
Early Greek Mathematics

Readings:
1) [MPP&R, V1] p. 18-27.
2) Boyer, Chapters 4 and 5.

11/14

Topic:
Early Chinese and Indian Mathematics

Readings:
1) [MPP&R, V1] p. 28-37.
2) Boyer, Chapter 12.

11/16

Topic:
Muslim Mathematics

Readings:
1) [MPP&R, V1] p. 38—46.
2) Boyer, Chapter 13

Topic: Non-Euclidean Geometry

11/28

Reading:

Chapter 1 “Euclid’'s Geometry” from Greenberg Euclid-

ean and Non-Euclidean Geometry.

11/30 and 12/5

Readings:

1) Read Chapter 5 (p. 121-129), Chapter 6 (p. 140—
147) from Greenberg.

2) Reread “Non-Euclidean Geometry” from The Math-
ematical Experience by Davis and Hersch.
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Reading.
Read Chapter 8 from Greenberg.

HMN Newsletter #6

BIBLIOGRAPHY

Books:

10.

11.

12.

13.

Aaboe, Asger, Episodes from the Early History of
Mathematics, L.W. Singer, New York, 1964.

Abir-Am, Pnina, and Dorinda Outram, Uneasy Ca-
reers and Intimate Lives: Women in Science, 1789
1978, Rutgers University Press, New Brunswick,
N.J., 1887.

Albers, Donald, and G. L. Alexanderson, Math-
ematical People, Birkhauser, Boston, 1985.

Berggren, J.L., Episodes in the Mathematics of
Medieval Islam, Springer-Verlag, New York, 1986.

Boyer, Carl, A History of Mathematics, Princeton
University Press, Princeton, N.J., 1968.

Campbell, Paul, and Louise Grinstein, eds., Women
of Mathematics: A Bio-Bibliographic Sourcebook,
Greenwood Press, New York, 1987.

Campbell, Douglas, and John Higgins, eds., Math-
ematics: People, Problems, Resuits, Wadsworth
International, Inc., Belmont, California, 1984.

Dauben, Joseph, The History of Mathematics form
Antiquity to the Present. A Selective Bibliography,
Garland Press, New York, 1985.

Davis, Philip, and Reuben Hersh, The Mathematical
Experience, Birkhauser Boston, Cambridge, Ma.,
1981. (Paperback: Boston: Houghton Mifflin, 1982.)

Greenberg, Marvin J., Euclidean and Non-Euclid-
ean Geometry, W.H. Freeman and Co., San Fran-
cisco, 1980.

Hall, Tord, Carl F. Gauss, translated by Albert
Froderverg, The M.L.T. Press, Cambridge, Mass.,
1970.

Hardy, G.H., A Mathematician’'s Apology, The Uni-
versity Press, Cambridge, England, 1940.

Hardy, G.H., Twelve Lectures on Subjects Sug-
gested by His Life and Work, The University Press,

Cambridge, 1940.




15

16.

17.

18.

19.

20.

21,

22.

36

. Kline, Morris, Mathematical Thought from Ancient to

Modern Times, Oxford University Press, Oxford,
1972.

Kline, Morris, Mathematics, The Loss of Certainty,
Oxford University Press, New York, 1980.

Mueller, lan, Coping with Mathematics (The Greek
Way), Morris Fishbein Center for the Study of the
History of Science and Medicine, No. 2, Chicago, lil.,
1880.

Osen, Lynn, Women inMathematics, The MIT Press,
Cambridge, Mass., 1974.

Perl, Teri, Math Equals, Addison-Wesley Publishing
Company, Reading Mass., 1978.

Ranganathan, Shiyali, Ramanujan, The Man and
the Mathematician, Asia Publishing House, New
York, 1967.

Wilder, Raymond, Mathematics as a Cultural Sys-
tem, Pergamon Press, New York, 1981,

Wilder, Raymond, The Evolution of Mathematical
Concepits, : J. Wiley and Sons, New York, 1968.

Zaslavsky, Claudia, Africa Counts: Number and
Pattern in African Culture, Prindle, Wever & Schmidt,
Boston, 1973; paperback, Lawrence Hill, Westport,
Conn., 1979.

Articles:

23.

24.

26.

27.

28.

Berndt, Bruce, C, *“Srinavasa Ramanujan,” The
American Scholar, Vol. 58, No. 2, Spring 1989, pp.
234-244.

Grabiner, Judith, “The Centrality of Mathematics in
the History of Western Thought,” Mathematics
Magazine, Vol. 61, No. 4, Oct. 1988.

. Holmes, Oliver, Wendell, “Descartes” from Calculus

and Analytic Geometry, by George Simmons.
McGraw Hill, 1985.

Langer, Rudioph, “The Life of Leonard Euler,” Scripta
Mathematica, Vol. 3, No. 1 and 2, 1935, Jan. and

April.
Steen, Lynn A., “The Science of Patterns,” Science,
Vol. 240, April 29, 1988.

Weil, Andre, “History of Mathematics: Why and
How," Collected Papers, Vol lll, New York, Springer,
1980.

HMN Newsletter #6




STUDENT SEMINARS ON “FAMOUS EQUATIONS”

Richard G. Montgomery
Southern Oregon State College

Geometry has two great treasures: one is the
theorem of Pythagoras; the other, the division of
a line into extreme and mean ratio. The first we
may compare to a measure of gold; the second
we may name a precious jewel.

— Johannes Kepler [1571-1630]

Treasures often lie obscure in mathematics pro-
grams constrained by rigid syllabi and taxing workloads.
This report describes a practical way for students and
faculty to examine some of the golden threads and
sparkling jewels which are woven into our mathematical
heritage.

Each winter term a small troop digs through the
library stacks for information about famous equations.
These diggers are participants in our Famous Equations
Seminar-course. Eachis looking forthe general lore and
specific features of a personally chosen equation, the
makings of a seminar talk and term paper.

This course is overtly intended to counter the impres-
sion that mathematics somehow sprang full-grown into
the bindings of textbooks; and that the only way to learn
math is to study the text and listen to an instructor.

Credit participants meet once each week for two
hours. The first session emphasizes the collegium
nature of a seminar, puts in a plug for history, and
discusses the broad meaning of “an equation.” During
the next few sessions, faculty talks are presented on a
famous equation or two, providing reasonable models for
the students as they prepare their own presentations.
The student talks follow, one each week. All taks are
opento the public. The final session recaps and gathers
common threads from the series’ talks, and returns to the
Philosophic issues raised in the opening session. It is
also the time for students to exchange final versions of
the papers they have written; each student departing
with an anthology of “famous equations.”
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The theme of “famous equations™ has proven ideal;
it is catchy, permits well-focused individual investiga-
tions, and is nicely comprehensive. As our haliway
poster expounds, “Over the centuries certain ‘truths’
have been discovered and (almost too) neatly packaged
into now famous equations such as:

X +y"=2" -

Q=R [ e dt=1%

1 : e

S i V-E+F=2
1+... A=nr

c=2M C=R[Y-T]

and e™ + 1 = 0. The ideas captured by these germinal
equations are body and soul for much of mathematics.
The struggle to formulate these equations is a tribute to
human persistence in the search for understanding.” A
student tracking down the heritage of any one of these
equations is quickly exposed to the humanistic side of
mathematics evolution.

Novel to many students is the idea that they are
central in the information gathering and sharing process.
A letter to prospective participants sets the cooperative
tone of the series, and the course “Guidelines for Papers
and Talks" pointedly reminds them that their audience is
themselves. The Guidelines also indicate the appropri-
ate mix of lore and rigor, and the expected level of
performance. (A copy of the Guidelines is appended.)

The two-hour meetings allow for an hour talk, a
break, and anopendiscussion about the newly presented
information and earlier talkks. The post-talk discussions
are extremely valuable; into them often pop bits of
information not included in the prepared talkks. And itis
especially during these informal exchanges that partici-
pants come to know and respect one another.
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In conclusion, the seminar-course format recom-
mends itself for several reasons:

(1) Itis practical. Participants readily fit the series into
their schedules, and are able to do much of the
required work well in advance. The instructor needs
to select participants, compile a partial list of possible
equations with a few initial references, give a couple
of talks, and carefully critique eight 15-20 page

papers.

(2) It is adaptable. The level of equations may range
from 1+1=2 to BX = X.

(3) It is immersive. The students together discover
cross-threads of history. (“What, Euler again!™ or
“Your Fibonacci is in my Pascal triangle!”)

(4) Itis self-regulatory. Participants have automatically
striven to do quality papers and talks for the benefit
of their peers.

(5) It is naturally fortifying. It provides genuine (albeit
fledgling) experiences in library research and in
professional writing and speaking.

(6) Itis fun!

Most importantly, the format fosters learning without a
textbook and brings people together for the purpose of
sharing information about a common interest — surely
treasures of humanistic learning.

APPENDIX — Famous Equations
GUIDELINES FOR PAPERS AND TALKS
MATH 399 HONORS: FAMOUS EQUATIONS
WINTER 1987

PAPER
First draft due February 23.
Final paper due March 9.

This is to be an exposition written for your fellow
students. As you write you should imagine the typical
reader to be an upper-division mathematics student with
some ability and curiosity. Your job is to organize,
summarize, and verbalize what you find out about your
equation.

The paper should contain both general lore and
specific features. By “general lore™ we mean such things
as historical appearances, significance at that time and
later, personages involved, and interesting uses. By
“specific features” we mean the statement and details of
interesting theorems, mathematical arguments, unex-
pected applications, variations or generalizations. On
proofs, use your judgement about how much detail
should be included in the text itself. Sometimes the
details are the heart of understanding; other times they
should be relegated to an appendix.

Be sure your paper includes those things which,
when first encountered by you, evoked reactions such
as: “That's neat!,” “Clever!,” “| don't believe it!,” “Hmm...”
or “Curious!”

It is expected that an Honor's paper will conform to
proper English practices. The paper should contain an
introduction and a conclusion. References taggedtothe
text are essential and a briefly annotated bibliography is
very desirable.

The use of ugly sentence construction and sloppy
punctuation are cause for flogging.

You do not need to be flowery with words. It is
important to be direct, uncluttered and clear.

The paper should be 15-20 pages (not counting
appendices and bibliography).

TALK

Yourtalk is anotherway to tell yourfriends about your
equation and its curiosities. It should not be treated as a
quick reading of your paper; it is an entirely different
medium.

Spend some time telling us (the audience) about
your equation and its “general lore.® Then take one
“specific feature” which you found particularly interesting
and sketch details with enough comment and discussion
to illuminate its significance and finer points.

Prepare well ahead of time! Think about what we
(the audience) don't know, then plan a progression to
enlightenus. Once you start yourtalk, treatitas a casual,
but directed, chat with your friends.
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THE HUMAN/COMPUTER INTERFACE: THEIR SIDE OR OURS?

R.S.D. Thomas
St John's College
Winnipeg, Manitoba, Canada R3T 2M5

and

Department of Applied Mathematics
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

The much touted user-friendliness of computers, like
any other aspect of popular culture, has presuppositions
underlying it. In particular, it presupposes that there is a
humarvcomputer interface and that humans are on the
side opposite to the computers. This essay is concerned
with this possibly erroneous presupposition.

Because | can think of no better way to introduce my
subject, | am going to approach it chronologically. Two
things happened to me at the beginning of February that
prompted the considerations | am sharing with you. Let
me tell you about them.

| was shown an examination question that was well
worded but about unfamiliar material. It had to do with
positions on the surface of the earth and the position of
the rising sun on the horizon. The careful wording was
spoiled by the accompanying diagram, which included a
circle apparently representing a sphere. The sphere was
not the surface of the earth, but ratherthe celestial sphere
viewed either from an unnatural position outside it or from
the almost equally impossible position on it opposite the
zenith. The labels ‘equator’ and ‘north pole’ did nothing to
distinguish the diagram from one of the earth. We are all
familiar with badly posed problems, but | was struck
forcefully by this one because | had not posed it badly
myself.

Posing a problem badly is a standard way to make a
problem difficult. It is notorious that problems that prob-
lem solvers are called upon to solve in the so-called real
world are badly posed, but | do not offer this fact as an
excuse for unintentionally making problems hard by
posing them ineptly. Other reasons that one finds diffi-
Culty in interpreting a problem are that the mathematics
orthe area of application is unfamiliar or thatone does not
grasp what the problem states or asks. The student too
canbe inept. It is equally notorious that ‘if Johnny has five
marbles and loses two, how many marbles has Johnny
left?" is more likely to produce an incorrect answer than
S - 2= 2" Even when there is familiarity with the subject
Mmatter and the mathematics, the problem is well posed,
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and the student understands the problem, the hated
‘word problems' are more difficult than five minus two.

My second jolit came from two students appealing
gradesof C and F in an applied-mathematics course. The
student appealing the grade of C enclosed with her
appeal a transcript of her high-school marks. It revealed
steadily and substantially dropping marks in mathemat-
ics and low marks in English. She complained, as did the
student appealing the grade of F, that she had worked
very hard at the mathematics (induction, sequences,
equations, trigonometry, and complex numbers) but that
she had been hindered in obtaining the grade her effort
deserved by her marks on term tests that had not been
fair tests of ‘mathematical principles’ but instead had
required ‘interpretation.’ | am enormously grateful for
these students’ causing me to focus on what precisely
they were complaining of, which was that they — both
native speakers of English — were required to under-
stand a couple of English sentences, see what math-
ematics inthe course was involved, anddo it. Termtests
in other sections of the course, they alleged, asked
questions of a purely computational character, and these
two students felt that they had been disadvantaged by
the disparity in the term tests, having written a common
final examination with the other sections.

These students were insisting — with some asperity
— that it was unfair that | had demanded that they think
as well as caiculate. Not original creative thought, not
even the less original creative thought of problem solv-
ing, but merely the thought of perceiving in some words
an intelligible structure from a small list of intelligible
structures on which they were being tested. They did not
claim that it was not obvious what to do once they
understood what the problems were about. They were
claiming immunity on account of what | called above
‘student ineptness.’ They were claiming as a grievance
that | had asked them to do the translation from Johnny's
marbles to five minus two. This jarred me into considering
seriously whether this was unfair.
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If one takes the process that these students were
unsuccessfully engaged in as being:

(1) extracting an intelligible structure from a context,

(2) calling upon a prior knowledge of that intelligible
structure,

(3) engaging in routine ways of dealing with that struc-
ture,

then one can see one of the differences between teach-
ing applied mathematics and teaching pure mathemat-
ics. In the latter, the structure is foremost and the others
are there for the sake of learning about it; in the former,
the structure is there to supply the necessary framework
for the processes of extraction and solution.” In both
cases, teachingis primarily about the structure, since the
structure is logically prior to its extraction and to ways of
dealing with it. If our tests and examinations test only the
routine ways of performing calculations (3), perhaps
intended to test a knowledge of content (2), but ignore
‘applications’ (1), then we are testing only what the
students will do — after the examination is over — only
by calculator or computer. We will be testing them solely
on what they do not need to do and ignoring what it is
increasingly important that they be able to do if they are
not to be replaced by machines.

My students were complaining that | put them on the
wrong side of the human/computer interface. At least |
did! But | was not being up-front about it, just doing it
automatically because they were my students. You can't
get away from those presuppositions of popular culture.

Having returned now to the human/computer inter-
face, | should say the little | want to say about computers:
my subject is human. Inthe past decade, there has been
a movement to take account of the availability of com-
puters, especially in calculus and especially inthe U.S A.
There has beena ICMI conference onthe topic[1, 7], and
anumber of books have beenwritten that make a gesture
or more toward the fact that some students of calculus
have access 10 a computer. This is inevitable, and with
time it may become more generally not just a marketing
gimmick but something more substantial, as for instance
with David A. Smith’s Interface: Calculus and the com-
puter. Not being in the U.S.A. and not teaching much
calculus, | have been more concerned with getting stu-
dents on top of the capabilities of their pocket calculators
and have been thinking that the availability of computers
is far more significant to algebra than to calculus. It is in
algebra particularly that Jon Barwise [2] has drawn
attention to the problem of Miles, namely ‘that symbolic
mathematics packages may make it even harder for our
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students to understand the meaning of mathematics.’ As
Miles put it [9],

Use of an algebra utility can eliminate the need
to know the words and usage of algebra — the
core of the language of applicable mathematics.
Unquestionably one can persevere in calculus
on this basis — many students already do so
without benefit of algebra utilities. Whether one
can find meaning in doing so is doubtful. Andit is
a serious questionwhether colleges can prosper
without imparting a greater sense of meaning to
their curricula.

Inthe terms | introduced above, computer power renders
one's routine ways of dealing with mathematical structure
possible without knowing that intelligible structure, but
without that knowledge one cannot seek and find the
structures in their non-mathematical contexts. This ren-
ders the structures invisible as well as meaningless.
Applied mathematics becomes impossible to a human
forthe same reason as it is impossible to a computer: the
mathematics has been reduced to software. The human
has slipped across the human/computer interface. | see
this as a danger to be combatted. (On meaning in
mathematics, see [8] and [12].)

On a more humane side, another educational move-
ment has spawned meetings and now a book, Writing to
learn mathematics & science [4]. Both the Humanistic
Mathematics Network and otherorganizations have been
exploring ways of engaging students in the learning of
mathematics, including writing about . Three recent
papers[6, 10, 11] have drawn attention to the benefits —
even if only to their ability to write — of having students
write about what they are doing when they are doing
mathematics. By embedding mathematics in prose a
large step is taken toward making it meaningful and
somethingthat can be recognized outside the classroom.
In the context of teaching mathematics to first-year
engineering students at the University of Manitoba, it
might be possible to combine efforts with their technical-
writing course in a way not wholly unlike Duke University’s
course, Introductory calculus with digital computation,
which, as the title indicates, involves computers, but also
involves weekly lab reports including from one to three
pages of expository writing along with the data and
graphs [6]. The possibility of benefits to both courses —
and ultimately the students — merits investigation.

More universally, my students’ complaint has brought
home to me, as well intentioned things | have read have
not, that we need to encourage the hated interpretation.
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| can fairly claim that | have always done this, and | have
the student complaints to prove it. But | have done it only
on tests and examinations. | have never talked about it,
warned them of it, pressed them to practise it, helped
them with it (except individual difficulties). As Clement
and Konold demonstrate with the scarcely mathematical
problem ([3] adapted from [1 4)),

What day precedes the day aftertomorrow if four
days ago was two days after Wednesday?

the difficulties are enormous even without any math-
ematical complexity at all. In the above taxonomy, diffi-
culties with this are purely student ineptness, and whose
jobis it to help them with it but ours? Not only have | been
remiss in expecting interpretation only under testing
circumstances, but also | have neglected to influence my
colleagues not to pose ftrivially mathematical questions
on their tests and examinations. What | have done has
been seen as my way of doing things and therefore
tolerated (by colleagues) or complained of (by students).
| have now realized that | think that what | have been
doing is right — though far too limited — and 1 am
prepared to defend it. (I am not prepared to defend
wording questions badly.) The terms in which | defend it
are those of the human/computer interface. Itis easierfor
students to respond to keystroking than to the presenta-
tion of what is intelligible but not yet converted into ASCII
codes. Students, like the rest of us humans, prefer what
is easier. But computers respond to keystrokes far more
dependably, powerfully, and quickly than they can; they
cannot compete. What they must learn to do is extract
intelligible structure and frame it in such a way that they
cando the keystroking. Inorderto do this, they need help.

As a first step toward influencing my colleagues, |
have suggested three things that | think | and others
should do:

shun meaningless manipulation,

engage students in verbal expression of meaning,
and

insist that students cope with verbal presentation,

all lo' teach them some mathematics usefully and by
contributing to their education to keep them from slipping
across the human/computer interface.
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* Two quotations from respondents to the survey
reported on in [5] illustrate this.

“Applied departments use math as a tool. An individual
topic is analogous to a hammer perhaps. They wish to
‘hammer’ with it. On the other hand, math departments
often become more interested in its description and
generalization of the ‘hammer’ itself.”

“| cannot take it for granted that [students from calculus]
are able to use their mathematical skills in problem
solving. What appears to be . . . lacking is the ability to
formulate a problem quantitatively and then to solve it
using the tools they leamed in their calculus course.”
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AUGSBURG’S HUMANISTIC CURRICULUM PROJECT

Larry Copes and Beverly Stratton

Summary: The Department of Mathematics at
Augsburg College has embarked on a project to replace
the traditional calculus/linear algebra sequence for
mathematics and science majors with a curriculum more
representative of the ideas and humanistic processes of
mathematics.

Background and goals

This project grew out of several frustrations our
mathematics faculty has had:

+ We are not preparing most lower-division mathemat-
ics students to decide whether or not to become
mathematics majors. They do not become aware of
the breadth of mathematical ideas, and we do not
teach them the logical or creative mathematical
thinking mathematicians use.

= Norare we preparing most lower-division mathemat-
ics students to major in the sciences. We do not give
them a sufficiently deep understanding of the
mathematical conceptsthey do encounter, nordowe
introduce them to the breadth of mathematical topics
now being used in the sciences.

* We are not teaching most lower-division mathemat-
ics students to read mathematics well enough to fill
in these gaps in their mathematical knowledge. Nor
do we teach them to write mathematics even well
enough to communicate their mathematical results

clearly, much less to use writing as a tool for better
thinking.

«  Numerous good, creative mathematics students drop
out of our calculus sequence expressing a personal
distaste for calculus, without realizing how broad the
field of mathematics is.

« After one term, the non-science students in our
“Mathematics for Liberal Arts” course know more
about mathematics than our majors do. They are

more aware of the processes involved in doing
mathematics, and they understand more about the
historical connections between mathematics andthe
rest of culture.

Wewant acurriculumthat alleviates these frustrations,
a curriculum to replace our traditional cakculus/linear
algebra curriculum for prospective mathematics and
science majors.

Whathave we done toward thatend? First, we talked
a lot among ourselves, and with our science colleagues.
We found ourselves in the unusual situation of having an
entire mathematics faculty willing to work at this, and a
science faculty supportive of experimentation in this
direction.

Then, based on our conversations, we drew up a list
of overall goals. We decided that the goals of this project
are that science and mathematics majors

+ achieve a deeper understanding of calculus and
linear algebra concepts than they do now;

« encounter more breadth of mathematical ideas than
the current sequence provides;

« think more logically about mathematics than have
students in recent years;

+ read and write mathematics better than they do now;
and

+ be more aware of the cultural roots and influence of
mathematics.

Then we acted. We applied to the NSF calculus
reform program twice, with negative results. The breadth
of topics in our proposed program means that it is not just
cakulus. So we turned to FIPSE, the “Fund for the
Improvement of Post-Secondary Education.” It's the only
part of the Federal government that we know of that
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prides itself on sponsoring innovative, cutting-edge pro-
grams and on getting them institutionalized.

FIPSE funded a three-year project, starting this past
fall. Most of the support is for released time for four of the
mathematics faculty to prepare the new cumricuium. We're
in the first year of that project, getting ready to teach the
first year of the sequence next year. Next year we'll
prepare the second year of the sequence, and during the
third year of the project we’ll teach both years of the
sequence, prepare teaching materials for others, and
host a dissemination conference. All along we'll be
evaluating the effectiveness of the results.

Implementation

What have we done so far? Firstwe hadto determine
where to start. Should we begin by deciding on the
mathematical topics? How? Should we start with the
current sequence and decide whatto eliminate, or should
we build from scratch? Or should we come up with
particular objectives first? Should we decide on an
overall organizational approach to give continuity to the
courses? Should we each draw up a proposal and then
merge them, or should we work as a group? How should
we make decisions? These were some of the many
questions we had to deal with initially. Some of them are
still being discussed.

Fortunately, FIPSE encourages groups to pay a lot of
attention to process, reasoning that even if our results
don't fit well at another institution, our process might
inform that institution's faculty in designing its own cur-
riculum.

We consciously decided that group ownership of the
project was extremely important, perhaps more impor-
tant than sticking strictly to the details of the proposal we
made to FIPSE. Striking a balance is still difficult,
however.

Helping us gain ownership was our common expe-
rience in teaching our “Mathematics for Liberal Ars”
Course. Working against us were some differences: in
the goals we wanted to stress, in visions of the final
courses, in length of teaching careers, in preferences for
involvement in group work, and in teaching styles. We've
Spent a great deal of time getting to know each other

betterand learning to work with those commonalities and
differences.

s' Through this process we've reached some deci-
ons:
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+  We've come to accept that each of us will take a
different approach to the ideas, some more histori-
cally-based than others, so that we will not be
specifying a single day-by-day sequence, but rather
several.

The disadvantage of this approach is that our list of
topics and the written materials will have to be compatible
with several sequences. The advantages, however, are
that we won't have to come up with a single sequence of
topics with which we all can live, and that the results
should be more widely adaptable.

« We even have some tentative lists of mathematical
topics for the first year. At this point it appears that
about half of the class sessions will be spent on
calculus ideas, with about the scope of (but with more
depth of understanding than) a short calculus course
for non-science majors. The other half will range
through geometry, probability, combinatorics, num-
ber theory, matrices, graph theory, and simple al-
gebraic structures. We expect that the third term will
be a more abstract approach to many of the same
ideas, with more of the calculus details.

Right now we envision aforkinthe road after the third
term. Replacing our differential equations course will be
a course in applied mathematics, including not only
differential equations but also, for example, more of the
vector calculus used by scientists. Forthe more theoreti-
cally-oriented will be a course with more abstraction and
rigor, answering many of the “how do you know you can
do this?" questions that arose earlier in the program.

« Although we've listed traditional categories of topics
above, and we'll be flexible in allowing a variety of
approaches to these topics, none of us expects to
considerthe topics intraditional chunks. We ourselves
are excited about connections among mathematical
ideas, and we want our students to encounter many
of those relationships. So each of expects to inter-
weave the categories in some way.

This spring we plan to gather written materials from
a variety of sources, get permissions to use those mate-
rials, and write a study guide to make connections among
those various materials. We know that we'll have to write
some materials ourselves, but we hope that we won't
have to write too much, at least this year.




A plea for help

This all has been leading up to a plea for help along

three lines:

We want to know of excellent writing, expository and
technical, about any mathematical ideas at all, but
especially those we've listed above. We're very
interested in writing that stresses the mathematical
processes involved in developing ideas, not just the
results.

Along the same lines, we want to know your own
ideas about approaches to mathematical topics that
illustrate how scientists or mathematicians do math-
ematics.

» Finally, are you personally interested in eventually
providing a section or two of a course that would
follow these general ideas? If so, what kinds of
evidence from the evaluation of our program would
it take to convince you, or your department or dean
or whoever, that this approach is worthwhile enough
to try?

To give suggestions or receive more information,
please contact the project director, Lamy Copes, at
Augsburg College, Minneapolis, MN 55454, 612/330-
1064, or through e-mail at copes@augsburg.edu.
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ETHICS IN MATHEMATICS: A REQUEST FOR INFORMATION

Robert P. Webber
Longwood College
Farmville, Virginia 23501

As part of a recent reform of general education,
Longwood College initiated a requirement that all stu-
dents take an ethics course at the junior or senior level.
Each academic department was encouraged to develop
an ethics course designed specifically for its majors. It fell
my lot to design such a course for the Mathematics and
Computer Science Department. This note is an appeal
for help.

My research indicates that a good deal of work has
been done on ethics in computer science. The Associa-
tion for Computing Machinery (ACM) and the Institute of
Electrical and Electronics Engineers (IEEE), the two
major professional organizations, have professionalcodes
of ethics. There is an active professional group, Com-
puter Professionals for Social Responsibility, whose
mission is to develop ways to deal more effectively with
ethical problems. Numerous computer science depart-
ments offer ethics courses, and | have contacted some of
the teachers. Course syllabae, materials, and texts exist.

Very little appears to have been done on ethics in
mathematics. | can find no systematic treatment of the
subject, not even a thorough bibliography. Many pure
mathematicians appear to feel that ethical concerns are
not pertinent to their discipline. | have found little evi-
dence that applied mathematicians have thoughtfully
considered the issues.
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Important ethical considerations do occur in math-
ematics, however. Here are two of which | am aware.
First, should algorithms be patentable? In 1988 BellLabs
was granted a patent on Karmarkar's improved linear
programming method. What are the ethical implications
of patenting such results of mathematical research?
Second, should mathematicians submit to censorship?
What if the censorship were voluntary and inthe interests
of national defense? The National Security Agency posed
this dilemma when it requested researchers in coding
theory to voluntarily submit prepublication versions of
papers to NSA for review.

| am concerned with educating undergraduate math
and computer science majors. | want to design and
implement a course that presents them with ethical
issues they will face as professionals. Do you know of
researchers working in the field of mathematical ethics?
Are there schools that offer such courses? Can you
suggest additional case studies of ethics in mathemat-
ics?

| will appreciate any help you can give me. Please
direct your responses to:

Professor Robert P. Webber

Dept. of Mathematics and Computer Science
Longwood College

Farmville, VA 23901

Telephone (804) 395-2192




HOW MATHEMATICS TEACHERS USE “WRITING TO LEARN”

Susan Hunter
Assistant Professor of English
Harvey Mudd College
Claremont, CA 91711-5990

A Review of Writing to Learn Mathematics and Science, ed. Paul Connolly and Teresa Vilardi
(Teachers College, Columbia University, New York and London: Teachers College Press, 1989) 307 pp., $32.95.

The essays collected in Writing to Learn Mathemat-
ics and Science present new ideas about how teachers
are using writing to enable their students’ conceptual
leaming in mathematics and science classes. Their
students are not merely writing about topics in these
disciplines; instead students are actually writing to learn
mathematics and science. A number of features distin-
guish this book as practical and thought-provoking for
writing teachers like me who'd like to affect our students
beyond the freshman composition classroom, as well as
for those of you who teach mathematics as one of the
humanities. Inthe 23 essays collected here, not compo-
sition specialists, but mathematicians and scientists who
have used it in their classrooms present the pedagogy of
“writingto learn.” Thirteen of the essays are by mathema-
ticians who describe how they have used natural written
language as an integral part of their teaching from the
elementary to the college level. These teachers offer
practical advice and examples of assignments that |
believe you'll want to experiment with in courses at your
institutions. Some assignments may resemble those you
already use, and here you'll read the theories behind why
they work and how they can be made to work even better.
These teachers and their assignments show how the
“writing across the curriculum” movement has affected
mathematics programs across the country.

ABOUT THE EDITORS AND THE BOOK'S
ORGANIZATION

Originating fromthe Institute for Writing and Thinking
at Bard College, and co-edited by the Institute’s director,
Paul Connolly, and associate director, Teresa Vilardi,
each essay in this volume shows how informal writing
can transform passive students into active ones, able to
understand, not copy, ideas conveyed in lectures and
textbooks. Influenced by Bruner, Freire, Polya, and
Vygotsky, these teachers offer practical ways to use
ordinary language to enable conceptual learning in math-
ematics classrooms. Leon Botstein's foreword, Paul
Connolly's introduction, and mathematics professor Bar-
bara Rose's bibliographic essay provide background for
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the six parts of the collection:

1) Defining Problems, Seeing Possibilities

2) Wiriting as Problem Solving

3) Classroom Applications: What Works and How

4) Programmatic Policies and Practices

5) The Context of Learning

6) Responsestothe collectionasawhole fromscholars
Vera John-Steiner and Reuben Hersh.

JOHN DEWEY AND THE POLITICAL AGENDA OF
“WRITING TO LEARN”

The “Foreword: The Ordinary Experience of Lan-
guage,” by Leon Botstein, President of Bard College, is
well worth reading. There Botstein sets the political
agenda for mathematics education as we head into the
21stcentury. He observes that as our passive, customary
daily reliance on various technologies increases in the
closing decades of the twentieth century, “the more
distant and irrelevant the motivation to understand
[mathematics and science] seems to have become” (xiv).
This collection of essays, according to Botstein, goes a
long way toward addressing this dilemma. Botstein
notes how this collection is connected to John Dewey's
appeal in Experience and Education (1938) to the role of
“ordinary experience” in educationbecause these essays
“take language and writing . . . as elements of ‘ordinary
experience’ that can be used to enhance the teaching of
science and mathematics™ (xii).

Further, understanding mathematics and science is
becoming crucial to the enlightened political participation
by all citizens which Dewey espoused. Perhaps the most
grandiloguent claim Botstein makes for this volume fol-
lows here:

The use of ordinary language can help break the
cultural barriers that have prevented minorities
and women from achieving well in proportionate
numbers in these fields. By encouraging moti-
vation and understanding through a method that
connects the subject matter to the pupil's initial
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frames of reference, the pedagogical strategies
outlined in this volume can help rectify the dis-
torted selection process within the school system
through which a minority, mostly white males,
emerges as sufficiently trained to consider ca-
reers in science and mathematics (xvi).

According to Botstein, then, this collection of original
essays rests squarely in the progressive tradition: the
authors combine faith in education with substantive ex-
pertise and the willingness to develop new pedagogical
strategies.

WRITTEN LANGUAGE:
A HEURISTIC OF LEARNING

What do we mean by “writing to leamn,” *natural
language,” and “informal” writing? In the opening essay,
Paul Connolly establishes the theoretical underpinnings
ofinformal writing and “writing to leam”which mathematics
teachers provide examples of in subsequent essays.
Informal writing is done in and out of class to help
students acquire ideas and concepts as theirown. “Written
language becomes. . . an invaluable heuristic of leaming.
It develops students' abilities (to read, define, hypoth-
esize), inculcates methods (of problem solving), increases
knowledge (particularly, metacognitive awareness),
recognizes attitudes, and promotes collaboration™ (11).
For example, focused freewriting allows a student to
begin exploring aterm, issue, or problem. Metacognitive
process writing helps the student to record her own
leaming behavior. Creating problems of his own rather
than just answering others questions draws the student
into the conversation of an expert community.

To give you a glimpse of what is possible in your
classrooms, Il tap the wealth of material from this
collection that shows how informal writing meets cogni-
tive and affective goals and enables theoretical math-
ematical understanding. Some examples I'll discuss
apply the cognitive power of writing to conceptual learning.
Others use journals to develop metacognitive awareness
about the learning process. The contributors to this
volume do not mandate these new approaches but they
do encourage them, not just for non-technical majors but
for the quantitatively adept as well. Still, they realize
writing is not the panacea for all the problems that arise
In teaching mathematics.

CLASSROOM APPLICATIONS: INFORMAL
WRITING ENABLES PROBLEM SOLVING

In *Using Writing to Assist Leaming in College Math-
€matics Classes,” Marcia Birken describes the kinds of
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informal and formal writing her students do at Rochester
Institute of Technology. She claims thatby “. . . having
my students learn mathematics through writing . . . I've
leamed a great deal about students’ mathematical mis-
conceptions, and | can usually pinpoint exactly where
their thinking went wrong and help to redirect it™ (41—42).
Her in-class writing and homework assignments require
students to interpret and analyze answers and to reflect
on concepts. She responds to this writing and gives
credit for it, but she does not grade it. Here's an informal
writing assignment she calls the “Logical Order Question™

S0

R e

Instructions for Sheet 1. Onthis sheet of paper
construct ageometricdesignusingthe six shapes
given above. You must use all of the shapes,
without repeating any shape, and keep their
relative scale. You may tum, translate, rotate,
reflect, or otherwise move the given shapes in
any manner you feel satisfies your artistic de-
sires.

—J

Instructions for Sheet 2. Onthis sheet of paper
write down, in English, the steps that are neces-
sary to create your design. No drawing should
take place on this sheet of paper — only instruc-
tions given in English sentences. Be explicit
enough that someone else can follow your in-
structions and recreate your artistic masterpiece.
(43)

Birken does grade essay questions on exams like
this one that she asks in Calculus Il: “We have just
finished studying the Fundamental Theorem of Calculus.
Wirite one to two paragraphs explaining why this theorem
is so named and how it links the indefinite integral
(antiderivative) and the definite integral” (44).

At Southern Connecticut State University and Colby
College, William P. Berlinghoff helped non-technical
majors to do “Locally Original Mathematics Through
Writing." He has transformed such writing assignments

as “Write about a famous mathematician or mathemati-

cal event” or “Report on an article® to emphasize the
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“ ... process of solving a particular problem or examining
a particular mathematical object, a problem or object
assigned to that student alone™ (89). For example, to
develop a mathematical way of thinking among non-
science students, Beringhoff assigned a mathematical
research paper on numbers that involved original re-
search and collaboration with the teacher. His students
searched for patterns of numbers from a table they had
made while they were learning prime factorization. The
papers they wrote were descriptions of their investiga-
tions.

Sandra Keith from St. Cloud University writes about
how “Exploring Mathematics in Writing™ helps students
become “explainers,” “proponents,” not merely “answer-
ers” (146). Her students engage in exploratory writing
assignments to assess their confusion, to anticipate new
material, to learn how 1o negotiate what they understand
in small groups. In one assignment Keith asks her
studentsto integrate their reading and writing by rewriting
an explanation in their textbooks which is difficult to
understand. Unlike journal or process writing, her as-
signments introduce the idea of context and audience for
writing. For example, students produce a “crib sheet” for
a friend who is behind in the course or write the author of
their book a critique of a section in a chapter.

One of the most persuasive cases for writing to learn
is made in this volume by Arthur B. Powell and his student
Jose A. Lopez. They report a case study for “Writing as
a Vehicle to Learn Mathematics . . . " in Developmental
Mathematics | at Rutgers University's Newark College of
Arts and Sciences. Like many students in college today,
the students in this course thought of mathematics as an
“abstruse symbol system™ and a “fixed body of knowl-
edge whose secrets will not be revealed” (161). To
promote critical reflection on mathematical experiences,
Powell asked students to write daily in journals about any
topic or questions related to their leamning the math inthe
course and to the way they felt about it — a learning log.
As you'll see from the excerpts of Jose Lopez's journal
that Powell includes in this essay, the entries moved from
summaries of class to personal reflection on learning
math. They also revealed to Powell misconceptions and
gaps in Lopez's understanding.

THE CONTEXT OF LEARNING

In Pant V of Writing to Learn Mathematics and Sci-
ence, AnneliLax and the late Hassler Whitney are among
those who claim that if mathematics education is to
support risk, invite experiment, and allow error, students
must be encouraged to use their own language to form

their own understanding of mathematical concepts. This
section of the volume is concerned less with techniques
and assignments than with a philosophy of leaming that
recognizes the needto change what continues to happen
in most math programs today.

In “On Preserving the Union of Numbers and Words:
The Story of an Experiment,” writing teacher Erika Duncan
describes the benefits of combining math and writing
which she and mathematics professor Anneli Lax discov-
ered. On their way toward designing a math course for
New York University freshmen who were not expected to
be very good at math, Duncan and Lax held to their

. . . shared belief that, as different as our disci-
plines might appear on the surface, in both, one
must not think of fixed methods for finding the
solutions to a given problem, but rather one must
leam to conceptualize a wide variety of converg-
ing and diverging possibilities, forever being
refined as each student let her or his own begin-
nings shape and set up logical boundaries for
each new forward-reaching step (232).

Duncan and Lax encouraged oral discussion and col-
laboration which allowed students to hear the process of
solving problems from “the first spoken conceptionto the
present stage” (242). Students’ mathematical autobiog-
raphies revealed their individual problem-solving meth-
ods. A composition about the virtues and drawbacks of
open-endedness and imaging in math and writing ledone
of their students to the following reflection — a reflection
which captures the shared message of all the essays in
the volume:

Open-endedness has the connotation of some-
thing being incomplete and therefore not fin-
ished. But open-endedness can also mean that
there is space left for further questioning and
stimulation of thought. . .. Images can be placed
in people’s minds, but will they incite a person to
search for or create other images? (246)

I'mconvinced by the testimony of these mathematics
teachers and their students that had “writing to leam”
been used in the mathematics classrooms of the '60's, |
still might not be in a technical field today, but | would
certainly be a mathematically literate citizen. As awriting
specialist, | am encouraged that the math and science
teachers who contributed to Writing to Learn Mathemat-
ics and Science believe all students can leam math-
ematical ways of thinking.
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MATHEMATICS AND PHILOSOPHY:
THE STORY OF A MISUNDERSTANDING

Gian-Carlo Rota
Professor of Mathematics and Philosophy, MIT
Author’'s address:
Prof. Gian-Carlo Rota
2-351, Mathematics Department, MIT
Cambridge, Massachusetts 02139, USA

We shall argue that the attempt carried out by certain
philosophers in this century to parrot the language, the
method, and the results of mathematics has done harm
to philosophy. Such an attempt results from a misunder-
standing of both mathematics and philosophy, and has
done ham to both subjects.

1. The Double Life of Mathematics

Are mathematical ideas invented or discovered?
This question has been repeatedly posed by philoso-
phers through the ages, and will probably be with us
forever. We shall not be concemed with the answer.
What matters is that by asking the question, we ac-
knowledge the fact that mathematics has been leading a
double life.

In the first of its lives, mathematics deals with facts
like any other science. It is a fact that the aftitudes of a
triangle meet at a point, it is a fact that there are only
seventeen kinds of symmetry in the plane, itis a fact that
there are only five non-linear differential equations with
fixed singularities, it is a fact that every finite group of odd
order is solvable. The work of a mathematician consists
in dealing with these facts in various ways. When
mathematicians talk to each other, they tell the facts of
mathematics. In their research work, mathematicians
study the facts of mathematics with a taxonomic zeal
similar to that of the botanist who studies the properties
of some rare plant.

The facts of mathematics are as useful as the facts
of any other science. No matter how abstruse they may
appear at first, sooner or later they find their way back to
Practical applications. The facts of group theory, for
example, may appear abstract and remote, but the
Practical applications of group theory have been numer-
Ous, and they have occurred in ways that no one might
have anticipated. The facts of today's mathematics are
the springboard for the science of tomorrow.
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In its second life, mathematics deals with proofs. A
mathematical theory begins with definitions, and derives
its results from clearty agreed upon rules of inference.
Every fact of mathematics must be ensconced in an
axiomatic theory and formally provedif it is to be accepted
as true. Axiomatic exposition is indispensable in math-
ematics, because the fact of mathematics, unlike the
facts of physics, are not amenable to experimental veri-
fication.

The axiomatic method of mathematics is one of the
great achievements of our culture. However, it is only a
method. Whereas the facts of mathematics, once dis-
covered, will never change, the methed by which these
facts are verified has changed many times in the past,
and it would be foolhardy not to expect that it will not
change again at some future date.

2. The Double Life of Phllosophy

The success of mathematics in leading a double life
has long beenthe envy of philosophy, another field which
also is blessed — or maybe we should say cursed — to
live in two worlds, but which has not been quite as
comfortable with its double life.

Inthe first of its lives, philosophy sets to itself the task
of telling us how to look at the world. Philosophy is
effective at correcting and redirecting our thinking. It
helps us do away with glaring prejudices and unwar-
ranted assumptions. Philosophy lays bare contradic-
tions that we would rather avoid facing up to. Philosophi-
cal descriptions make us aware of phenomena that lie at
the other end of the spectrum of rationality, phenomena
which science will not and cannot deal with.

The assertions of philosophy are less reliable than

the assertions of mathematics, but they run deeper into
the roots of our existence.

49




The philosophical assertions of today will be part of
the commeon sense of tomomow.

Inits second life, philkosophy, like mathematics, relies
on a method of argumentation that seems to follow the
rules of some logic or other. But the method of philo-
sophical reasoning, unlike the method of mathematical
reasoning, has never been clearly agreed upon by phi-
losophers, and much philosophical discussion since the
beginnings in Greece has been spent on discussions of
method. Philosophy's relationship with Goddess Reason
is closer to a forced cohabitation than to the romantic
liaison that has always existed between Goddess Rea-
son and mathematics.

The assertions of philosophy are tentative and par-
tial. It is not even clear what it is that philosophy deals
with. It used to be said that philosophy was “purely
speculative,” and this used to be an expression of praise.
But lately the word “speculative” has become a Bad
Word.

Philosophical arguments are emotion-laden to a
greater degree than mathematical arguments. Philoso-
phy is often written in a style which is more reminiscent
of a shameful admission than of a dispassionate de-
scription. Behind every question of philosophy there
lurks a gnar of unacknowledged emotional cravings
which act as powerful motivation for conclusions inwhich
reason plays at best a supporting role. To bring such
hidden emotional cravings out into the open, as phi-
losophers have felt it their duty to do, is to call for trouble.
Philosophical disclosures are frequently met with the
anger that we reserve for the betrayal of our family
secrets.

This confused state of affairs makes philosophical
reasoning more difficult, butfar more rewarding. Although
philosophical arguments are blended with emotion, al-
though philosophy seldom reaches a firm conclusion,
although the method of philosophy has never been
clearly agreed upon, nonetheless, the assertions of phi-
losophy, tentative and pantial as they are, come far closer
tothe truth of our existence thanthe proofs of mathematics.

3. The Loss of Autonomy
Philosophers of all times, beginning with Thales and
Socrates, have suffered from the recurring suspicions

about the soundness of their work, and have responded
to them as best they could.
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The latest reaction against the criticism of philosophy
began aroundthe turn of the century and is still very much
with us.

Today's philosophers (not all of them, fortunately)
have become great believers in mathematization. They
have rewritten Galileo’s famous sentence to read “The
great book of philosophy is written in the language of
mathematics.”

“Mathematics calls attention to itself,” wrote Jack
Schwartz in a famous paper on another kind of misunder-
standing. Philosophers in this century have sutfered
more than ever from the dictatorship of definitiveness.
The illusion of the final answer, what two thousand years
of Western philosophy had failed to accomplish, was
thought in this century to have come at last within reach
by the slavish imitation of mathematics.

Mathematizing philosophers have claimed that phi-
losophy should be made factual and precise. They have
given guidelines to philosophical argument which are
based upon mathematical logic. They have contended
that the eternal riddles of philosophy can be definitively
solved by pure reasoning, unencumbered by the weight
of history. Confident in their faith in the power of pure
thought, they have cut allties to the past, onthe claimthat
the messages of past philosophers are now “obsolete.”

Mathematizing philosophers will agree that tradi-
tional philosophical reasoning is radically different from
mathematical reasoning. But this difference, rather than
being viewed as strong evidence for the heterogeneity of
philosophy and mathematics, is taken instead as a rea-
son for doing away with non-mathematical philosophy
altogether.

In one area of philosophy the program of mathema-
tization has succeeded. Logic is nowadays no longer a
part of philosophy. Under the name of mathematical
logic, it is now a successful and respected branch of
mathematics, one that has found substantial practical
applications incomputer science, more so than any other
branch of mathematics.

But logic has become mathematical at a price. Math-
ematical logic has given up all claims to give a foundation
to mathematics. Very few logicians of our day believe
any longer that mathematical logic has anything to do
with the way we think.

Mathematicians are therefore mystified by the spec-
tacle of philosophers pretending to re-inject philosophi-
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cal sense into the language of mathematical logic. A
hygienic cleansing of every trace of philosophical refer-
ence had been the price of admission of logic into the
mathematical fold. Mathematical logic is now just another
branch of mathematics, like topology and probability.
The philosophical aspects of mathematical logic are
qualitatively no different from the philosophical aspects
of topology or the theory of functions, aside from a
curious terminology which, by an accident of chance
going back to Leibinz's reading of Sudrez, goes back to
the Middle Ages.

The fake-philosophical terminology of mathematical
logic has misled philosophers into believing that math-
ematical logic deals with the truth in the philosophical
sense. Butthis is a mistake. Mathematical logic does not
deal with the truth, but only with the game of truth. The
snobbish symbol-dropping one finds nowadays in
philosophical papers raises eyebrows among math-
ematicians. It is as if you were at the grocery store and
you watched someone trying to pay his bill with Monopoly
money.

4. Mathematics and Philosophy: Success and

Failure

By all accounts, mathematics is the most successful
intellectual undertaking of mankind. Every problem of
mathematics gets solved, sooner or later. Once it is
solved, a mathematical problem is forever finished: no
later event will disprove a correct solution. As mathemat-
ics progresses, problems that were once difficult become
easy enough to be assigned to schoolboys. Thus,
Euclidean geometry is now taught in the second year of
high school. Similarly, the mathematics that mathema-
ticians of my generation have learned in graduate school
has now descended to the undergraduate level, and the
time is not far when it may be taught in the high schools.

Not only is every mathematical problem solved, but
eventually, every mathematical problem is proved trivial.
The quest for ultimate triviality is characteristic of the
mathematical enterprise.

Whenwe look at the problems of philosophy, another
picture emerges. Philosophy can be described as the
study of afew problems whose statements have changed
little since the Greeks: the mind-body problem, or the
problem or reality, to recall only two. A dispassionate
look atthe history of philosophy discloses two contradictory
features: first, these problems have in no way been
Solved, nor are they likely to be solved as long as
Philosophy survives; second, every philosopher who has
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ever worked on any of these problems has proposed his
own “definitive solution,” which have been invariably
rejected as false by his successors.

Such crushing historical evidence forces us to the
conclusion that these two paradoxical features must be
an inescapable concomitant of the philosophical enter-
prise. Failure to conclude has been an outstanding
characteristic of philosophy throughout its history.

Philosophers of the past have repeatedly stressed
the essential role of failure in philosophy. José Ortegay
Gasset, for example, used to describe philosophy as “a
constant shipwreck.” However, the fear of failure did not
stop him or any other philosopher from doing philosophy.

Philosophers’ failure to reach any kind of agreement
does not make their writings any less relevant to the
problems of ourday. We reread with interest the mutually
contradictory theories of mind that Plato, Aristotle, Kant,
and Comte have bequeathed to us, and we find their
opinions timely and enlightening, even in problems of
artificial intelligence.

Unfortunately, the latter-day mathematizers of phi-
losophy are unable to face up to the inevitability of failure.
Borrowing fromthe world of business, they have embraced
the ideal of success. Philosophy had betterbe successful,
or else is should be given up, like any business.

5. The Myth of Precision

Since mathematical concepts are precise, and since
mathematics has been successful, they mistakenly infer
that philosophy would be better off if it dealt with precise
concepts and unequivocal statements. Philosophy will
have a better chance at being successful, if it becomes
precise.

The prejudice that a concept must be precisely
defined in order to be meaningful, or that an argument
must be precisely stated in order to make sense, is one
of the most insidious of the Twentieth Century. The best
known expression of this prejudice appears at the end of
Ludwig Wittgenstein's Tractatus, and the author’s later
work, in particular the Philosophical Investigations, is a
loud and repeated retraction of his earlier gaffe.

Looked at from the vantage point of ordinary experi-
ence, the ideal of precision appears preposterous. Our
everyday reasoning is not precise, yet it is effective.
Nature itself, fromthe cosmos to the gene, is approximate
and inaccurate.
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The concepts of philosophy are among the least
precise. The mind, perception, memory, cognition, are
words that do not have any fixed or clear meaning. Yet,
they do have meaning. We misunderstandthese concepts
when we force themto be precise. To use animage due
to Wittgenstein, philosophical concepts are like the winding
streets of an old city, which we must accept as they are,
and which we must familiarize ourselves with by strolling
through them, while admiring their historical heritage.
Like a Carpathian dictator, the advocates of precision
would raze the city to the ground and replace it with a
straight and wide Avenue of Precision.

The ideal of precision in philosophy has its rootsin a
misunderstanding of the notion of rigor. It has not
occurred to our mathematizing philosophers that phi-
losophy might be endowed with its own kind of rigor, a
rigor that philosophers should dispassionately describe
and codify, as mathematicians did with their own kind of
rigor a long time ago. Bewitched as they are by the
success of mathematics, they remain enslaved by the
prejudice that the only possible rigoris that of mathematics,
and that philosophy has no choice but to imitate it.

6. The Misunderstanding of the Axiomatic Method

The facts of mathematics are verified and presented
by the axiomatic method. One must guard, however,
against confusing the presentation of mathematics with
the content of mathematics. An axiomatic presentation
of a mathematical fact differs from the fact that is being
presented as medicine differs fromfoog. Itis true that this
particular medicine is necessary to keep the mathema-
tician at a safe distance from the self-delusions of the
mind. Nonetheless, understanding mathematics means
being able to forget the medicine, and to enjoy the food.
Confusing mathematics with the axiomatic method for its
presentation is as preposterous as confusing the music
of John Sebastian Bach with the the techniques for
counterpoint in the Baroque age.

This is not, however, the opinion held by our
mathematizing philosophers. They are convinced that
the axiomatic method is a basic instrument for discovery.
They mistakenly believe that mathematicians use the
axiomatic method in solving problems and proving
theorems. To the misunderstanding of the role of the
method they have added the absurd pretension that this
presumed method should be adopted in philosophy.
Systematically confusing food with medicine, they have
pretended to replace the food of philosophical thought
with the medicine of axiomatics.
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This mistake betrays the philosophers’ pessimistic
view of their own field. Unable or afraid as they are of
singling out, describing and analyzing the structure of
philosophical reasoning, they seek help from the proven
technique of another field, a field that is the object of their
envy and veneration. Secretly disbelieving in the power
of autonomous philosophical reasoning to arrive at the
truth, they have surrendered to a slavish and superficial
imitation of the truth of mathematics.

The negative opinion that many philosophers hokd of
their own field has caused damage to philosophy. The
mathematician's contempt at the philosopher's exag-
gerated estimation of a method of mathematical exposition
feeds back onto philosophers' inferiority complex, and
further decreases the philosophers' confidence.

7. “Define your terms!”

This oldinjunction has become a platitude in everyday
discussions. What could be healthier than a clear
statement, right at the beginning, of what it is that we are
talking about? Doesn’t mathematics start with definitions
and then develop the properties of the objects that have
been defined, by an admirable and inexorable logic?

Salutary as this injunction may be in mathematics, it
has had disastrous consequences when carried over to
philosophy. Whereas mathematics starts with a defini-
tion, philosophy ends with a definition. A clear statement
of what it is we are talking about is not only missing in
philosophy; such a statement would be the end of all
philosophy. If we could define our terms, then we would
dispense with philosophical argument.

Actually, the “define yourterms” imperative is deeply
flawed in more than one way. While reading a formal
mathematical argument, we are given to believe that the
“undefined terms,” or the “basic definitions™ have been
whimsically chosen out of a variety of possibilities.
Mathematicians take mischievous pleasure in faking the
arbitrariness of definition. In actual fact, no mathematical
definition is arbitrary. The theorems of mathematics
motivate the definitions as much as the definitions mo-
tivate the theorems. A good definition is “justified” by the
theorems one can prove with it, just like the proof of a
theorem is “justified” by appealing to previously given
definition.

There is thus a hidden circularity in formal math-

ematical exposition. The theorems are proved starting
with definitions, but the definitions themselves are moti»
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vated by the theorems that we have previously decided
ought to be right.

Instead of focusing on this strange circularity, phi-
losophers have pretended it does not exist, as if the
axiomatic method, proceeding linearly from definition to
theorem, were endowed with a definitiveness which is
instead, as every mathematician knows, a subtle fakery
to be debunked.

Perform the following thought experiment. Suppose
that you are given two formal presentations of the same
mathematical theory. The definitions of the first pre-
sentation are the theorems of the second, and vice-
versa. This situation frequently occurs in mathematics.
Which of the two presentations makes the theory “true?”
Neither, evidently. What we have is two presentations of
the same theory.

This thought experiment shows that mathematical
truth is not brought into being by a formal presentation.
Rather, formal presentation is only a technique for dis-
playing mathematical truth. The truth of a mathematical
theory is distinct from the correctness of any axiomatic
method that may be chosen for the presentation of the
theory.

Mathematizing philosophers have missed this dis-
tinction.

8. The Appeal to Psychology

What will happen to the philosopher who insists on
precise statements and clear definitions? Realizing after
futile trials that philosophy resists such a treatment, said
philosopher will proclaim that most problems previously
thought to belong to philosophy are heretofore to be
excluded from consideration. He will claim that they are
“meaningless,” or at best that they can be settled by an
analysis of their statements that will eventually show
them to be vacuous.

This is not an exaggeration. The classical problems
of philosophy have become forbidden topics in many
philosophy departments. The mere mention of one such
problem by a graduate student or by a junior colleague
will resultin raised eyebrows, followed by severe penalties.
Inthis dictatorial regime, we have witnessed the shrinking
of philosophical activity to animpoverished problématique,
mainly dealing with language.

In order to justify their neglect of most the oid and
Substantial questions of philosophy, our mathematizing
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philosophers have resorted to the ruse of claiming that
many questions formerly thought to be philosophical are
instead “purely psychological,” and that they should be
dealt with in the psychology department.

If the psychology department of any university were
to consider only one tenth of the problems that philoso-
phers are pawning off on them, then psychology would
without question be the most fascinating of all subjects.
Maybe it is. But the fact is that psychologists have no
intention of dealing with problems abandoned by phi-
losophers who have been derelict in their duties.

One cannot do away with problems by decree. The
classical problems of philosophy are now coming back
with a vengeance in the forefront of science. Forexample,
the Kantian problem of the conditions of possibility of
vision, after years of neglect, is now again rearing its old
head in brain science.

Experimental psychology, neurophysiology and
computer science may turn out to be the best friends of
traditional philosophy. The awesome complexities of the
phenomena that are being studied in these sciences
have convinced scientists (well in advance of the philo-
sophical establishment) that progress science will crucially
depend on philosophical research of the most classical
vein.

9. The Reductionist Concept of the Mind

What does a mathematician do when trying to work
on a mathematical problem? An adequate description of
this event might take a thick volume. We shall be content
with recalling an old saying, probably going back to the
mathematician George Pdlya: “Few mathematical
problems are ever solved directly.”

Every mathematician will agree that an important
step in solving a mathematical problem, perhaps the
mostimportant step, consists in analyzing other attempts,
either attempts that have been previously carried out or
else attempts that one imagines might have beencarried
out, with a view to discovering how such “previous”
attempts were misled. In short, no mathematician will
ever dream of attacking a substantial mathematical
problem without first becoming acquainted with the his-
tory of the problem, whether the real history or an ideal
history that a gifted mathematician might reconstruct.
The solution of a mathematical problem goes hand-in-
hand with the discovery of the inadequacy of previous
attempts, with the enthusiasm that sees through and
does away with layers of irrelevancies inherited from the
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past which cloud the real nature of the problem. In
philosophical terms, a mathematician who solves a
problem cannot avoid facing up to the historicity of the
problem. Mathematics is nothing if not a historical
subject par excellence .

Every philosopher since Heraclitus has stressed
with striking uniformity the lesson that all thought is
constitutively historical. Until, that is, our mathematizing
philosophers came along, claiming that the mind is
nothing but a complex thinking machine, not to be poliuted
by the inconclusive ramblings of bygone ages. Historical
thought has been dealt a coup de grace by those who
today occupy some of the chairs of our philosophy
departments. Graduate school requirements inthe history
of philosophy have beendropped, togetherwithlanguage
requirements, and intheir place we find required courses
in mathematical logic.

It is important to single out the myth that underlies
such drastic revision of the concept of mind. It the myth
that believes the mind to be a mechanical device. This
myth that has beenrepeatedly and successfully attacked
by the best philosophers of our time (Husserl, John
Dewey, Wittgenstein, Austin, Ryle, to name only a few).

According to this myth, the process of reasoning is
viewed as the functioning of a vending machine which, by
setting into motion a complex mechanism reminiscent of
those we saw in Charlie Chaplin's film Modern Times,
grinds out solutions to problems, like so many Hershey
bars. Believers in the theory of the mind as a vending
machine will rate human beings according by “degrees”
of intelligence, the more intelligent ones being those
endowed with bigger and better gears in their brains, as
can of course be verified by administering 1.Q. tests.

Philosophers believing in the mechanistic myth be-
lieve that the solution of a problem is obtained in just one
way: by thinking hard about it. They will go as far as
asserting that acquaintance with previous contributions
to a problem may bias the well-geared mind. A blank
mind, they believe, is better geared up to initiate the
solution process than an informed mind.

This outrageous proposition originates from a mis-
conception of how mathematicians work. Our
mathematizing philosophers behave like failed math-
ematicians. They gape at working mathematicians in
wide-eyed admiration, like movie fans gaping at posters
of Joan Crawford and Bette Davis. Mathematicians are
superminds who turn out solutions of one problem after
another by dint of pure brain power, simply by staring at
a blank piece of paper in intense concentration.
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The myth of the vending machine that grinds solu-
tions out of nothing may perhaps appropriately describe
the way to solve the linguistic puzzles of today's impov-
erished philosophy, but this myth is far off the mark in
describing the work of mathematicians, or any other
serious work.

The fundamental error is one of reductionism. The
process of the working of the mind, which may be of
interest to physicians but is of no interest to mathemati-
cians, is confused with the progress of thought that is
required in the solution of any problem.

This catastrophic misunderstanding of the nature of
knowledge is the heritage of one hundred-odd years of
pseudo-mathematization of philosophy.

10. The lllusion of Definitiveness

The results of mathematics are definitive. No one will
ever improve on a sorting algorithm which has been
proved best possible. No one will ever discover a new
finite simple group, now that the list has beendrawn, after
a century of research. Mathematics is forever.

We could classify the sciences by how close their
results come to being definitive. At the top of the list we
would find the sciences of lesser philosophical interest,
such as mechanics, organic chemistry, botany. At the
bottom of the list we would find the more philosophically
inclined sciences, such as cosmology and evolutionary

biology.

The old problems of philosophy, such as mind and
matter, reality, perception, are least likely to have “solu-
tions.” In fact, we would be hard put to spell out what
might be acceptable as a “solution.” The term “solution”
is borrowed from mathematics, and tacitly presupposes
an analogy between problems of philosophy and prob-
lems of mathematics that is seriously misleading. Per-
haps the use of the word “problem” in philosophy raised
expectations that philosophy could not fuffill.

Philosophers of our day go one step farther in their
mis-analogies between philosophy and mathematics.
Driven by a misplaced belief in definitiveness measured
in terms of problems solved, and realizing the futility of
any attempt to produce definitive solutions to any of the
classical problems, they have hadto change the problems.
And where do they think to have found problems worthy
of them? Why, in the world of facts!
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Science deals with facts. Whatever it is that tradi-
tional philosophy deals with, it is not facts in the scientific
sense. Therefore, traditional philosophy is worthiess.

This syllogism, wrong on several counts, is predi-
cated on the assumption that no statement is of any
value, unless itis a statement of fact. Instead of realizing
the absurdity of this assumption, philosophers have
swallowed it, hook, line and sinker, and have busied
themselves in making their living on facts.

But previous philosophers had never been equipped
to deal directly with facts, nor had they ever considered
facts to be any of their business. Nobody turns to
philosophy to learn facts. Facts are the domain of
science, not of philosophy. And s0, a new slogan had to
be coined: philosophy should be dealing with facts.

This “should” comes at the end of a long line of other
“should’s.” Philosophy shouldbe precise, it shouldfollow
the rules of mathematical logic, it shoulddefine its terms
carefully, it shouldignore the lessons of the past, it should
be successful at solving its problems, it should produce
definitive solutions.

“Pigs should fly,” as the old saying goes.
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But what is the standing of such “should’s,” flatly
negated as they are by two thousand years of philoso-
phy? Are we to believe the not so subtle insinuation that
the royal road to right reasoning will at last be found if we
follow these imperatives?

There is a more plausible explanation of this barrage
of should’s. The reality we live in is constituted by myriad
contradictions, which traditional philosophy has taken
pains to describe with courageous realism. But contra-
diction cannot be confronted by minds who have put their
salvation in axiomatics. The real world is filled with
absences, with absurdities, with abnormalities, with ab-
errances, with abominations, with abuses, with
Abgrund. But our latter-day philosophers are not con-
cerned with facing up to these unpleasant features of the
world, nor, to be sure, to any real features whatsoever.
They would rather tell us what the world should be like.
They find it saferto escape from distasteful description of
what is into pointiess prescription of what isn. Like
ostriches with their heads inthe ground, they will meet the
fate of those who refuse to acknowledge the lessons of
the past and to meet the challenge of our difficult present:
increasing irrelevance followed by eventual extinction.
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MATHEMATICS: CONTRIBUTIONS BY WOMEN

Jacqueline M. Dewar
Department of Mathematics
Loyola Marymount University
Los Angeles, CA 80045
(213) 338-5106

Summary

Neither history nor a liberal arts education gives
much recognition to mathematicians — regardless of
their sex. Therefore itis not surprising that women have
had almost no recognition in a field where men have had
so little. It has been argued that this helps perpetuate the
impression that math is a male domain. To combat this
myth the author has developed a course for liberal arts
students that includes the study of the biographies of 12—
14 women mathematicians and of mathematical topics
related to their work. In addition, math anxiety, math
avoidance and sex-related differences in mathematics
leaming are investigated. At Loyola Marymount Univer-
sity this course can count toward the science core cur-
riculum requirement or as a core course in the women's
studies program. This paper will describe the course and
provide information, resources, and an annotated bibli-
ography useful for making students more aware of
women's contributions to mathematics.

Neither history nor a liberal arts education gives
much recognition to mathematicians — regardless of
their sex. College students taking calculus can rarely
identify Gauss, Cauchy, Euler, or Hilbert, although they
are mathematical equivalents to Tolstoy, Beethoven,
Rembrandt, Darwin, and Freud. Very few mathemati-
cians have fame comparable to that of their counterparts
in other disciplines. Usually, when asked to name some
famous mathematicians, college calculus students can
only manage to recall 2 or 3 of Einstein, Euclid, Pascal,
and Newton. Therefore it is not surprising that women
have had aimost no recognitionin a fieldwhere menhave
had so little.

There are a number of women who have made
substantial contributions in mathematics. Yet they are
rarely mentioned in history of math texts. Often when
they are mentioned, it is for their non-mathematical
activities which involved famous men. That so few
women receive credit for their accomplishments in math
helps perpetuate the myth that math is a male domain,
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To combat this myth, the author developed a college
level course for liberal arts students that includes the
study of the biographies of 9 women mathematicians
born before the twentieth century and 4 twentieth century
women mathematicians along with mathematical activi-
ties related to their work. The course fuffills a science
core requirement for liberal arts students and is a recog-
nized elective for the women's studies program. It is
designed to:

(1) give non-science majors a new insight into math-
ematics as a creative art and science;

(2) give students some experience of the kinds of inves-
tigations that make mathematics so fascinating to
mathematicians;

(3) improve attitudes towards mathematics;

(4) change the impression that math is a male domain.

The course, entitled Mathematics: Contributions by
Women, alternates math activities with readings of the
biographies of women mathematicians and discussions
of the causes of math anxiety and math avoidance.
Through activities students survey a broad range of
topics in mathematics, including conic sections, func-
tions, limits, velocity, Venn diagrams, the cycloid curve,
finite differences, modular arithmetic, and groups. (See
the Appendix for a more complete list of the mathematical
topics covered.) The presentations are given at a level
requiring minimal math background. In addition, through
readings and discussion, students examine questions,
such as:

Why are so few women mathematicians known?

Can one delineate common experiences in the
lives of womenwho have been successful in
a stereotypically male field such as math-
ematics?

Are males better at math than females are?

Do males like math better than females do?

Has math education and counseling been differ-

ent for females?
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The course has been advertised as being a good
choice for anyone who feels insecure with mathematics
and usually attracts 2 or 3 re-entry women in a class of
20-25.

The workload is substantial: homework and weekly
quizzes on mathematical content; 2 papers; 2 hour
exams and a final exam; and a special project. The
special project, chosen by the student in consultatior
with the instructor, involves one of the following: re-
searching a mathematicaltopic, such as how honey bees
navigate by polar coordinates; undertaking a program of
study to improve basic math skills or decrease math
anxiety; or reporting on psychological or sociological
aspects of math avoidance or math anxiety.

There are two factors that make teaching this course
difficult. One is that selecting interesting mathematical
topics and presenting them at a level accessible to a
group of students with a wide range of mathematical
backgrounds is a challenge. The other has to do with the
one or two males who enroll. It is not easy to get them
truly engaged in the discussions.

Perhaps because of its challenges, there can be
great satistaction in teaching this course. Through the
discussions, papers, and the selection and work on the
special projects, the instructor gets acquainted with stu-
dents on a more personal level than is usual in a typical
mathematics class. The students also appear to benefit
from this deeper involvement as is evidenced by the
following quotes from evaluations. “l have enjoyed the
class tremendously. Now, | don't hate math anymore like
| did when | entered college.” “I'm not as afraid and seem
more relaxed taking math related exams.” “I think now
that anyone can learn to do math — it just takes some
longer.” “i feel that | have learned to appreciate the
advances that have been made.”

Try to imagine getting comments like these from
students at the end of a traditional calculus class!
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APPENDIX

(The numbers in parentheses refer to the attached bibli-
ography.)

0. The Problems of Math Anxiety and Math Avoidance
(9, 11, 34, 35)

I. Hypatia370415A.D. (17, 24, 27) (Greek mathema-
tician, inventor, philosopher, teacher, textbook au-
thor)

A. Related mathematical topics

1. Conic sections as the intersection of a plane
and a cone. (27)

2. Conic sections as paths of points subject to
certain distance conditions. (27)

3. Diophantine equations: How many ways
can you make change for a dollar using
nickels, dimes, and quarters? (23, 27)

Il.  Emile du Chatelet 1760-1749 (8, 21, 24, 27)
(Expositor of Newton'’s Principia)
A. Related mathematical topics
1. Function machines (27)
2. Velocity — average and instantaneous (27)
3. Limit concept (27)

Ill. Maria Agnesi 1718-1799 (24, 27)
(Translator, textbook author, servant of the poor)
A. Related mathematical topics
1. Cartesian coordinate system (27)
2. Symmetry and graphing (27)
3. Wiich of Agnesi curve (10, 27)

IV. Sophie Germaine 1776—1831 (24, 27)
(Researcher in number theory and mathematical
physics, winner of grand prize in French Academy of
Science Contest)

A. Related mathematical topics
1. Number bases
2. Clock arithmetic (27)
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3. Minimal surfaces — Soap film demonstra-  VIIl.Grace Chisolm Young 18681944 (27)

tion (23, 27) (First woman to receive a formal doctorate in any
4. Related geometric constructions (27) subject in Europe, geometer, textbook author)
A. Related mathematics topics
V. Mary Somerville 1780—-1872 (24, 26, 27) (Popular 1. Paper-folding approach to geometry (37)
science writer) 2. Binary number system and “mind reading
A. Related mathematical topics cards” (27)
1. Cycloid curve (2, 10, 27) 3. Regular polyhedra (23)
4. Euler's formula (23)
VI. Ada Byron Lovelace 1815-1852 (22, 27, 32)
(“Mother” of computer programming) IX. Emmy Noether 1882-1935 (3, 7, 16, 24, 27)
A. Related mathematical topics (“Mother” of modern algebra)
1. Functions (27) A. Related mathematical topics
2. Difference Tables (27) 1. Groups (27)
3. Applications to various puzzles (27) 2. Flexagons (25)
VIl. Sonya Kovaleskaya 1850-1891 (5, 13, 18, 20,24,  X. Other Twentieth Century and Living Women Math-
27, 29) (Researcher in applied mathematics, recipi- ematicians (1,4, 6, 12, 14, 15, 28, 29, 31, 33, 36, 38)
ent of Prix Bordin by French Academy of Science, Lenore Blum (28)
autobiographer) Grace Hopper (38)
A. Related mathematical topics Cathleen Morawetz (19)
1. Infinite sequences (27) Mina Rees (6)
2. Geometric series (27) Julia Robinson (30)
3. Chain letters Mary Ellen Rudin (1)

Chariotte Angas Scott (15)
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MATHEMATICS AND POETRY: ISOLATED OR INTEGRATED?

People Don't Want to Study Mathematics:
Some liluminations on the Status Quo and How to Change It

JoAnne S. Growney
Department of Mathematics and Computer Science
Bloomsburg University, Bloomsburg, PA 17815

Mathematics Subject Classification number: 00A99

Basic Premise: All Life is Art.

.. .the whole universe was a work of art created
by some Supreme Artist, in the way of artists, out
of material that was practically nothing, . . . a
method which, as children sometimes instinc-
tively feel, is a kind of creative art.

— Havelock Ellis, The Dance of Life

Every child is an artist. The problem is how to
remain an artist once he grows up.
— Pablo Picasso

Observation 1A: Mathematics is a major Art Form.
Observation 1B: Poetry is a major Art Form.
Observation 1C: Mathematics and poetry are similar.

Observation 2: Major Art Forms in a culture each give
clues to the key aspects of the culture as a whole.

Observation 3: Inthe United States today, people reject
both mathematics and poetry as true Art Forms, i.e.,
as aspects of the Essence of Life.

Unsolved Problem: How to convince people that
mathematics can be vital in their lives.

Partial Answers: slow down; open up; allow silence;
open up; allow inconsistency; open up.

Is truth (a) logical or (b) episodic; is it (¢) consistent
or (d) inconsistent? Readers who strongly prefer (a) to
(b) and (c) to (d) may dislike the manner of this article,
outlined above. Herein | do not present a logical argu-
ment but an eclectic collection of statements, sometimes
unsubstantiated yet real, sometimes contradictory, yetin
their very contradictoriness hinting at truth. Consider, if
you will, their bearing on a very large problem that faces
mathematicians today: few people wish to study our
subject in depth and succeed us as mathematicians and,
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moreover, few people want to study our subject at all,
perhaps paying lip-service to the value of “quantitative
literacy” but seeing no genuine benefit in it for them-
selves.

Some months ago | began an investigation into the
similarities between mathematics and poetry, hoping to
gain insights that would help me to reach reluctant
students — English majors, elementary education ma-
jors, majors in studio art, and other assorted math-
avoiders—who enrollin Math 101 (“Mathematical Think-
ing") at Bloomsburg University because they must fulfil a
“quantitative reasoning™ requirement to graduate. By
pointing out analogies between mathematics and poetry,
| would help students to see the beauty and power of
mathematics. Thatinvestigation continues; this article is
a by-product.

All life is art

Concerning this basic premise, there is little that |
wish to say. It is a point of view that one may adopt or
reject. However, as you read on, you will be more ready
to consider my words if you can temporarily envision life
as art: as a painting, a poem, a theory, or a dance —
fashioned by the self, responsive both to the inner spirit
and the outer world, striving for beauty while expressing
old truths and new insights. Gathered in Appendix A are
a variety of quotations that refer to the nature and
purposes of art and artists, of mathematics and poetry.
Severalofthe cited references address the basic premise
at length.

Whether mathematics is, like poetry, a major At
Form may deserve debate, but this article will avoid that
controversy. There are significant similarities between
mathematics and poetry. Consider:

Both mathematics and poetry are abstract lan-
guages that practitioners use in an attempt to
express truth precisely and concisely.
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Both mathematicians and poets identify key ideas
and express them symbolically. A poet may, for
example, use deep water to symbolize death
and its surrounding mysteries. A mathematician
uses the derivative to symbolize arate of change
and its surrounding mysteries.

Both mathematics and poetry are feared and
shunned by most of the populace:

they have no meaning,
no relevance,
no usefulness.

Both mathematicians and poets are often re-
garded as isolated and peculiar.

Which has the greater beauty, the greater sym-
metry, a sonnet or the expansion of a binomial?
Dante’s Divine Comedy or Pascal's triangle?
Have we any more or any less wonder when we
contemplate the convergence of the infinite se-
ries

1+-1—+_1_+...+
ol 0%

.217+...

than when we envision “a host of golden daffo-
dils?” Was Lord Byron thinking of mathematics
or poetry when he wrote:

The power of
Thought — the magic of the mind.

The search for truth that pervades both math-
ematics and poetry gives each an uplifting qual-
ity. In the words of Sir Francis Bacon, ‘No
pleasure is comparable to the standing uponthe
vantage ground of truth.”

Mathematics and poetry are more than their
objects of formula or stanza, proof or poem.
Each has become a mind — not just a product of
mind but a mind on its own — a mind that
approaches omniscience as an ideal. Each
goes on with endless invention, hungry and
restless for more.

Appendix B contains a list of quotations in which a
key word — mathematics or poetry or mathematician or
Poetor a variation of one of these — has been left out. If
You do not use the name of a quotation’s authoras acilue,
youwillfind difficulty in deciding whether itis mathematics
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or poetry to which the quotation refers. Upon all of this
evidence, then, let us rest the hypothesis that mathemat-
ics and poetry are fundamentally similar.

Is mathematics, like poetry, property (today, as well
as in the past) one of the Humanities?

A powerful argument for this placement of math-
ematics is given by Cassius J. Keyser [7]. He
points out that the identification of mathematics
with science is too limiting: we are thinking not
of mathematics but of its application to a particu-
lar subject matter. Mathematics, after all, is a
way of thinking; it has an individuality of its own.
Mathematics discloses the essential nature of
man by revealing, more than any other subject,
man’s ability to pass on achievements of one
generation to the next, providing living capital for
the production of ever-greater achievements.
Mathematics is a guide to human life in its role as
a keeper of ideals: number systems, geom-
etries, logical thinking — these and more are
ideals that are kept by mathematics and guide
human life. Mathematics also sheds light on the
nature of an ideal: like a mathematical limit, it
can be approached by an endless sequence of
closerand closerapproximations andyet (unless
it is a specious ideal) is incapable of actually
being attained.

Art forms are culture clues

Any major Art Form produced by a culture is a
valuable clue to the key aspects of the culture. Keyser
illustrates the application of this idea by using mathemat-
ics to identify significant differences between the Greek,
or Classical, Culture and the Modem, or Western Culture
[7]. The Greek mathematics was finite and bound to the
concrete. Numbers were positive integers and were
bound to geometric things; they counted finite groups of
objects or were the lengths of line segments. Geometry
was a highly developed study of the properties of finite
figures but was not an exploration of Space. This is in
accord with the Classicists’ lack of consideration of
perspective in their arts of painting, city planning, and
garden designing. Their mathematics was functioniess:
objects without relations. Likewise, their physics was
nothing but statics; their music had rhythm and melody
but no harmony. Modem mathematics, on the other
hand, is dynamic, relational, and includes the infinite. We
can see similar characteristics in modemn science, drama,
religion, art, . . .
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Next, let us consider the role of poetry in our culture
and to use this information for clues about mathematics.

Today, both mathematics and poetry are rejected

I think that one possible definition of our modern
culture is that it is one in which nine-tenths of our
intellectuals can't read any poetry.

— Randall Jarrell

Formost Americans, poetry is notvital, and they may
scoff, “Why should it be?” Likewise, most envision no
benefit from knowing mathematics. The people we meet
at social gatherings are not interested in talking about our
subject. Mathematics is not popular and eventhose who
like it frequently see it as non-useful. Few people see
value in mathematics beyond the arithmetic of the check-
book. Despairingly smaller numbers of Americanschoose
it as a field for graduate study and a career.

The unpopularity of poetry is similar to that of math-
ematics. Although some of us have sought and found
poets whose work inspires us, members of the general
public find little time for poetry, and place little value on
the role it might play in a full and happy life.

If we were to speak to poets and to learn of their
distress about the exclusion of their art, how would we
advise them to connect with essentiality once again?
How would we react to their claims that it was our early
schooling — and not the present nature of poets and
poems — that had turned us off to poetry? How would
they react to our complaints that we find much of modern
poetry without meaning: we cannot understand or ap-
proach poetry directly; a teacher or reviewer must go
between as a translator. How would they or we explain
the lack of status accorded to the new voices in poetry —
the black voices, the female voices, the third world voices
— many of whose words are not shared with large
audiences, whose works are “minor™ poetry, perhaps
only because theirimages are different and because they
speak with simplicity and clarity.

As | write, | can hear echoes of friends’ voices
scoffing at these comparisons between mathematics
ard poetry and atthe view that both are vitalto human life:

One-third of them scoff at the notion that poetry
ought to be as useful as mathematics. (I use
“useful” broadly: that which inspires or gives
pleasure is “useful.”)

One-third of this first third actually use
some mathematics. :

A different one-third scoff at the notion that
mathematics ought to be as useful as poetry:
poetry, after all, appeals to the emotions, making
it real, whereas mathematics is merely a mind-
game.

One-third of this second third actually
read poetry as a habit, at least once a
month. Some of them even write poetry
although they would not calithemselves
“poets” for that is an elitist designation.

Left over are a final one-third who scoff at both
mathematics and poetry — both are abstract,
esoteric; neither applies to the real world.

For the time being, ignore the scoffing. Imagine, if
you will, that you are willing to be convinced of the
hypothesis that poetry is a vital source of the energy and
insight that give meaning to daily life; merely allow
yourself to ever-so-slightly consider this notion and to
accept it only if sufficient reason is given. What evidence
would you require?

Here, then, is a full statement of our question: What
evidence would you require before you would accept the
hypothesis that poetry is vital for the full living of daily life ?
Would you require changes in schooling, in the attitudes
of teachers? Might they show you tools for experiencing
poetry directly rather than first trying to transiate it into
prose? Would you wish to see demonstration of how
others use poetry as a guide and find it significant?
Would you wish to find poetry readily available in the
popular media? Woukl you like to be able to approach
good poetry directly and to discover its beauty and
meaning on your own, without the aid of a teacher-
translator? Would you like to be shown how poetry is a
process and not just a product?

Suppose we now have a few criteria for poetry and
poets. Turn them around toward mathematics. If math-
ematics and mathematicians met these same criteria,
mightn’t people find them also vital?

Convincing people that mathematics Is vital

When | apply my own criteria for acceptance of
poetry as vital to the problem of convincing people that
mathematics is vital, | come up with the following:

SLOW DOWN

Many voices have said,
we must slow down,
we must allow time to let students learn,
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Forces seemingly beyond our control make this
change a difficult one to implement, and our
course syllabi are packed with long lists of topics
that must be covered to prepare students for
other courses that offer more of the same. Too
many of our students do not see mathematics as
a process as well as a product. Might we not
envision mathematics as rather like the complex
mind of a friend. If we would consider how we get
to know a friend, how we come to understand the
depths of that other, we see a suggestion for how
one may learn mathematics. Facts and tech-
niques are not sufficient; context and meaning
must accompany them.

As George Cobb observes in[3], “the more attention
you pay to technique, the less you have left for meaning

. To learn technique quickly, you have to treat it
abstractly; context and meaning just get in the way and
slow you down.”

Howard Nemerov in “Poetry and Meaning,” an essay
included in [10], characterizes poetry as “getting some-
thing right in language.” He goes on to express his
observation that there has been in poetry in this century
“a slow collapse inthe idea of meaning which progressed
simultaneously with an imposing acceleration of the rate
at which knowledge was accumulated . . . the slow
collapse in the idea of meaning . . . did not happen in
poetry alone. It happened even more conspicuously and
at about the same time in physics, in painting, in music.
The whole world suddenly became frightfully hard to
understand.”

If speed and emphasis on technique drive out mean-
ing, then it is clear that if we want to bring meaning back,
to mathematics or to poetry, we must slow down.

Slowness is beauty.
— Auguste Rodin

open up

In general the teacher of mathematics has been
the high priest of an occult ritual, the keeper in
many senses of an esoteric doctrine which only
his superiors or predecessors have understood.

— Scott Buchanan [1], 35.

How do mathematicians react to remarks like those
of Buchanan? Do some show scom forthose who cannot
or will not appreciated the beauty of pure mathematics?
Do some level contempt at those who have not the
discipline to master obscurities? Does laughter deride
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the unfortunate student who dares to wonder, “When are
we going to use this?" Sometimes the unpopularity of
mathematics is taken by mathematicians to suggest that
there are deficiencies in others but not in themselves. s
it possible that ourdissatisfied customers (i.e., our reluctant
students) are correct: they have not been given sufficient
evidence that our product is worthy.

In[4], inan essay entitled “The Ideal Mathematician,”
Philip Davis and Reuben Hersh endeavor to describe the
most mathematician-like mathematician:

He rests his faith on rigorous proof . . . He is
labeled by his field, by how much he publishes .
. . He finds it difficult to establish meaningful
conversation with that large portion of humanity
that has never heard of [his research topic] . . .
His writing follows an unbreakable convention:
to conceal any sign that the author or the in-
tended reader is a human being . . .

Is this Davis-Hersh creature an attractive one? How
can the general public appreciate mathematics if it
emerges from such sterility?

William Benjamin Smith — scholar, poet, mathema-
tician and master teacher — wrote “The Merman and the
Seraph,” a poem that won the Poet Lore competition of
1906. In it he sings sadly of the separation between the
Merman — perhaps a mathematician, isolated in his
sterile world of thought, and separated from beauty, from
feeling and desire — and an angel or Seraph, who
represents the world of whatsoever is good. Here arethe
opening stanzas of Smith's poem, reviewed by Keyser in

(7.
THE MERMAN AND THE SERAPH

Deep the sunless seas amid,

Far from Man, from Angel hid,
Where the soundless tides are rolled
Over Ocean's treasure-hold,

With dragon eye and heart of stone,
The ancient Merman mused alone.

And aye his arrowed Thought he wings
Straight at the inmost core of things —

As mirrored in his Magic glass

The lightning-footed Ages pass, —

And knows nor joy nor earth’s distress,

But broods on Everlastingness.

“Thoughts that love not, thoughts that hate not,

Thoughts that Age and Change await not,




All unfeeling,

All revealing,

Scorning height's and depth’s concealing,
These be mine — and these alone!" —
Saith the Merman'’s heart of stone.

As the poem unfolds, the Merman dreams of a
beautiful angel who visits him, offering love and all that is
good. Too soon she is driven to retreat, to leave him in
his dark world of sterile thought.

Along with his consideration of Smith's poem, Keyser
expresses his concemn about “the narrow canalising of
theirmental energies” which he sees as prevalentamong
mathematicians. He introduces his concerns with a
quote from David Swing, noted Chicago clergyman and
author:

Men trained in a profession come by degrees
into the profession’s channel, and flow only in
one direction, and always between the same
banks. The master of a learned profession at last
becomes its slave. He who follows faithfully any
calling comes at length to wear a soul of that
calling's shape . . . We are all clay in the hands
of that potter which is called a pursuit. A pursuit
is seldom anocean of water; it is more commonly
a canal.

Although Swing believed that the lawyer was least
likely to escape the influence of his pursuit, Keyser gave
this honor to “those who addict themselves long and
assiduously to the study and teaching of mathematics.”
He wondered if this is why the world in general regards
mathematicians as a bit peculiar, admirable for their
intelligence and knowledge, but very narrow in their
interests and feelings. While “canalising™ is not a bad or
wrong choice for any individual, its prevalence in a
profession may cause the professionto be unattractive to
newcomers. Inshort, canalising by mathematicians may
cause students not to be attracted to mathematics.

One of Keyser's antidotes to canalising in his own life
was the reading and rereading of The Dance of Life by
Havelock Ellis [6]. He ranked Ellis’s book “among those
rare ones that are to be honored and revered as eman-
cipators of the human mind.” Keyser's compares math-
ematics to the art and natural human activity of dancing
and, by so doing, enriches his conception of the nature of
mathematics. f our students would see mathematics as
a dance, i.e., as an art in which freedom of expression
joins with responsiveness to surroundings and to disci-
plined training to create beauty, how might they respond
differently?
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Cecil Day-Lewis, professor of poetry at Oxford, in his
1951 inaugural address, The Poet's Task, offered the
following views:

Describing the present position of poetry:

. . . poetry is not primarily a vehicle of extrinsic
truth but the generator of a kind of truth peculiar
to itself.

.... the function of poetry as a game with words
[looms] larger than its function as a search for
truth, and the tendency be toward pure poetry.

Day-Lewis asserted:

Poetry has a moral function; it has the duty to
give pleasure. A poet has a duty to love and to
praise, to be serious and honest, to be dissatis-
fied with past attempts and alive to what the
future holds.

Atask that is badly needed forthe poet to take up
today is to incline our hearts toward what is
lovable and admirable in mankind.

If poetry is a culture clue that reveals some truth
about the nature of mathematics, then we might take the
words of Day-Lewis to heart: it is badly needed for the
mathematicianto take as his or hertask to point mankind
toward what is lovable and admirable. Consider what
great satisfaction we feel when one of our students
experiences direct pleasure from mathematical thinking;
let us get greedy for more of this feeling.

That the poet's task is shared by the mathematician
is a conviction that is found in[12], in the writings of David
Eugene Smith, American mathematician and a president
of the Mathematical Association of America (1920).

... the call of mathematics is something beyond
the physical; it is the call of the soul, precisely as
inthe case of music, of painting, and of other fine
arts, or of science, or of letters. Itis this call that
must be answered if mathematics, the fine arts,
the sciences, and letters are to advance and
make the world a better place in which each
succeeding generation is to play its part in the
progress of the race.

The call of mathematics is, then, to our physical
well being, and this is always recognized; but it
is also to our spiritual well-being, and this we
must not fail to recognize if our labors are not to
be in vain.
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allow silence

Many mathematicians are good teachers. Our stu-
dents like us, like ourclasses, and seemtolearnalot. But
the facts remain that many Americans are quantitatively
illiterate and eschew mathematical thinking, that too few
of our students go on to become mathematicians. Per-
haps good teaching needs to change.

The poet Howard Nemerov has some thought-pro-
voking suggestions about teaching [10]; he, of course, is
referring to teaching poetry but, if we consider mathemat-
ics in its role as a language, his ideas apply to teaching
mathematics as well.

The method | suspect we all use exclusively, or
almost so, may be called analytic, and has to do
broadly with finding out the meanings of poems;
if one wanted to be critical of that method one
could call it, as a friend of mine did, ‘how to turn
poems into prose,’ . ..

The method | am going to propose as the
complement to the first is both simple and diffi-
cult, though | hope not impossible. It has to do
less with teaching poetry'thanwith ‘being taught

by poetry' . ..

In short, giventhat poetry is a language, our way
of showing pupils how to deal with it is to trans-
late it out of that language into our own more
familiarone. Suppose, however, anotherobject,
the one we ordinarily have in studying any lan-
guage: to learnto speak it, and at last to learn to
think in it.

It is not hard to see why we teach as we do,
analytically; and seeing to sympathize with our
plight. For the teacher, as Ezra Pound tersely
defined him, is a man who must talk for an hour.

For if you have to talk for an hour, you concen-
trate naturally enough on what is sayable . . .

In conclusion, | stress once again that | amtrying
to picture our situation, not to criticize it. For the
first move of the understanding ought to be the
silent contemplation of what is, and of how it got
to be the way it is. No doubt the teacher of
English will always be ‘a man who must talk for
an hour.' But if his talk is really to do its work, if
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his pupils are truly to become possessed of
some sense of what poetry is and why it is, his
speech itself will have to contain much silence.

Nemerov has observed[10] that an implicit message
often is given by the teacher of poetry who translates
poetry for students; this message is, “Look how sensitive
| am.” One key difference between the teacher of math-
ematics and the poetry teacher is that the former's
irnplicit message is likely to be, instead, “Look how smart
| am!” We will not have got it right until the implicit
message to our students is, “Look how smart you are!”

Dorothy Buerk has written of some high school
students who have contemplated mathematics in a direct
and personal way. Consider the following response of a
student in an advanced placement mathematics course,
when asked to complete the phrase, “For me math is like
al. .2l

Forme mathis kind of like an incredible book that
you have to read through an infinite number of
times. Thefirsttime you getthe generalidea, but
until you reach the end you really have no idea
what's goingoninrelationto anythingelse. Each
successive reading brings out more meaning
and...

Thomas Rishel [11] encourages his students to use
their intuitive knowledge of geometry to help them to
understand a difficult poem without the aid of a teacher-
translator. He gives them Wallace Stevens' poem, “The
Idea of Order at Key West,” and asks them to complete
the following assignment:

Read the poem through thoroughly twice.

Afterthe second reading, underline any geomet-
ric words you find, especially concentrating on
the penultimate stanza.

Then, perhaps in a group, draw a picture based
on the geometric words chosen.

Finally, considerwhat the picture may have todo
with the poem’s final stanza.

Rishel's assignment not only provides students with
a framework for letting a poem speak to them; it also
allows them to discover something of the aesthetic na-
ture of geometry.
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open up
OUTWITTED

He drew a circle that shut me out —
Heretic, rebel, a thing to flout.
But Love and | had the wit to win:
We drew a circle that took him in!
— Edwin Markham

Two of my three best teachers from graduate school
were women,; the third was a Japanese man. Among the
most successful mathematics teachers are Jaime
Escalante (Los Angeles high school teacher made fa-
mous by the movie, “Stand and Deliver”) who is Hispanic
and Clarence F. Stephens (under whose leadership the
State University of New York at Potsdam has a highly
successful mathematics program) who is black. Are
gender, race, or ethnic background relevant in these
cases? Perhaps so.

Perhaps the traditional moki of mathematician as
researcher — who cares not a fig about the connections
of his theories to the humanities, who worries not about
his pedagogy — needs to be recast. Our own initiation
into the mysteries and magic of mathematics may have
involved the same tough challenges to the intellect that
we now provide for our followers:

the details are left to the student; |

all mathematics has applications —itisupto you
to find them;

all knowledge is interrelated — discover these
interrelationships for yourself, or accept this
on faith.

Even though we learned joyously under these circum-
stances, today is not yesterday and we may have par-
ticipated in a narrowing specialization that has prepared
us poorly to reach new adherents. Moreover, those who
have achieved the highest status in the elitist group of
mathematicians may be the least-well- prepared to aid in
reform.

Frequently listed among our best teachers but sel-
dom among our most respected researchers, are hu-
manists, members of minority groups andwomen. WHY?

In over 4000 categories of mathematics recognized
in the list of Mathematics Subject Classification Num-
bers, none except 00A99, “Miscellaneous Topics,” cov-
ers mathematics education or mathematics as Art. WHY?
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OPEN UP, YOU GUYS! A bright future for math-
ematics may depend on enlarging the definitions of
“mathematics™ and “mathematician.” f we will enlarge
the boundaries of the class of mathematicians to include
teachers at all levels, students of all cultures, math
hobbyists, and anyone who will admit to a liking for
mathematics, then perhaps we can start to see ways to
work together to reestablish mathematics to a preemi-
nence it deserves.

allow Inconsistency

If your views differ from mine, must one of us be
wrong? May we not both be correct, even though we see
things differently? Is it not a long-standing tradition in
mathematical thought to embrace paradox as a goad to
understanding, rebuilding ideas to encompass apparent
inconsistencies?

For example, even though we see that when we
crowd course syllabi with more topics and the result is
less student learning, must consistency prevent us from
experimenting with the paradoxical “less is more™?

What other inconsistencies can we entertain? Can
we allow ourselves to consider the value of the opposite
of each of our current attitudes and practices? What
about mathematics as a humanistic subject as well as a
scientific one? What about applications of mathematics
to poetry as well as to practical projects? What about
mathematics as a way to advance brotherhood as well as
technology? What about an inclusive definition of “math-
ematician” rather than an exclusive one?

No man bathes twice in the same stream . . .
— Heraclitus

The man who consistently — as he fondly sup-
poses ‘logically’' —clings to an unchanging opin-
ion is suspended from a hook which has ceased
to exist ... We change, and the world change,
in accordance with the underlying organization,
and inconsistency, so conditioned by truth to the
whole, becomes the higher consistency of life.
— H. Havelock Eliis

open up

Allow that mathematics is an Art and a humanistic
endeavor. Perhaps it is also a garden: this thought iS
suggested to me by “Poetry” by Marianne Moore. Here
is a fragment of it; the poem in full [8] deserves your
reading.
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... things are important not because a high-
sounding interpretation can be put upon
them but because they are useful . . .

. . the same thing may be said for all of us,
that we do not admire what we cannot
understand . . .

. . [Not until we] can present for inspection,
imaginary gardens with real toads in them,
shall we have it.

APPENDIX A

What is MATHEMATICS?
What Is POETRY? What Is ART?
What Is the role of the MATHEMATICIAN?
The POET? The ARTIST?

The artist has a special task and duty: the task of
reminding men of their humanity and the prom-
ise of their creativity.

— Lewis Mumford

Wherever there is number, there is beauty.
— Proclus

The useful and the beautiful are never sepa-
rated.
— Periander

This, therefore, is mathematics: she reminds
you of the invisible form of the soul; she gives life
to her own discoveries; she awakens the mind
and purifies the intellect; she brings light to our
intrinsic ideas; she abolishes oblivion and igno-
rance which are ours by birth.

— Proclus

It is true that a mathematician, who is not some-
what of a poet, will never be a perfect math-
ematician.

— Weierstrass

On poetry and geometric truth,

And their high privilege of lasting life,

From all internal injury exempt,

| mused:; upon these chiefly: and at length,

My senses yielding to the suliry air,

sleep seized me, and | passed into a dream.

— Wordsworth

The Prelude, Book 5

Does it not seem as if Algebra has attained to the
dignity of a fine art, in which the workman has a
free hand to develop his conceptions, as in a
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musical theme or a subject for painting? It has
reached a point in which every properly devel-
oped algebraic composition, like a skillful land-
scape, is expected 1o suggest the notion of an
infinite distance lying beyond the limits of the
canvas.

— J. J. Sylvester

We do not listen with the best regard to the
verses of a man who is only a poet, nor to his
problems if he is only an algebraist; but if a man
is at once acquainted with the geometric founda-
tion of things and with their festal splendor, his
poetry is exact and his arithmetic musical.

— R. W. Emerson

The true spirit of delight, the exaltation, the
sense of being more than man, which is the
touchstone of the highest excellence, is to be
found in mathematics as surely as in poetry.
— Bertrand Russell

Itis with mathematics not otherwise than it is with
music, painting or poetry. Anyone can become
a lawyer, doctor or chemist, and as such may
succeed well, provided he is clever and industri-
ous, but not everyone can become a painter, or
a musician, or a mathematician: general clever-
ness and industry alone count here for nothing.

— P. J. Moebius

When you can measure what you are speaking
about, and express itin numbers, then you know
something about it; but when you cannot mea-
sure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfac-
tory kind.

— Lord Kelvin

Man is the measure of all things.
— Protagoras

While you and | have lips and voices which are
kissing and to sing with who cares if some one-
eyed son-of-a-bitch invents an instrument to
measure spring with.

— @. e. cummings

Mathematicians do not study objects, but rela-
tions among objects; they are indifferent to the
replacement of objects by others as long as
relations do not change. Matter is not important,
only form interests them.

— Henri Poincare
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The poet's vocation . . . is to discover for use what
Shelley called ‘the hitherto unapprehended rela-
tions' between things.

— C. Day-Lewis

The aim of art is to represent not the outward
appearance of things, but their inward signifi-
cance.
— Aristotle
APPENDIX B

Are MATHEMATICS and POETRY
fundamentally simllar?

If you doubt their intrinsic similarity, consider the
following quotations. In each of the following, the key
word (mathematics or poetry or mathematicianor poetor
a variation of one of these terms) has been left out,
although the name of the author may provide a give-away
clue. Can you guess which art form is being described in
each case? The missing words are supplied at the end
of the quotations.

(1) is the art of uniting pleasure with truth.

— Samuel Johnson
(2) To think the thinkable — that is the '8
aim.

— Cassius J. Keyser

(3) All ___[is] putting the infinite within the finite.

— Robert Browning
(4) The moving power of invention is not
reasoning but imagination.

— A. DeMorgan

(5) When you read and understand :
comprehending its reach and formal meanings,
then you master chaos a little.

— Stephen Spender

(6)

practice absolute freedom.
— Henry Adams

(9) The merit of , in its wildest forms, still
consists in its truth; truth conveyed to the under-
standing, not directly by words, but circuitously
by means of imaginative associations, which
serve as conductors.

— T. B. Macaulay

(10) It is a safe rule to apply that, whena _or
philosophical author writes with a misty profun-
dity, he is talking nonsense.

— A. N. Whitehead

(11) is a habit.

— C. Day-Lewis

(12)...in _youdon'tunderstand things, you
just get used to them.
— John von Neumann

(13) ___are allwho love—who feel great truths.
And tell them.

— P. J. Bailey

Festus

(14) The is perfect only in so far as he is
a perfect being, in so far as he perceives the
beauty of truth; only then will his work be thor-
ough, transparent, comprehensive, pure, clear,
attractive, and even elegant.

— Goethe

(15) . . . [Inthese days] the functionof ___as
agame . .. [looms] larger than its function as a
search for truth . . .

— C. Day-Lewis

(16) A thorough advocate in a just cause, a
penetrating facing the starry heavens, both alike
bear the semblance of divinity.

— Goethe

(17) is getting something right in language.
— Howard Nemerov

(7) | think that one possible definition of our
modern culture is that it is one in which nine-
tenths of our intellectuals can't read any -

— Randall Jarrell

(8) Do notimagine that ___is hard and crabbed,
and repulsive to common sense. Itis merely the
etherealization of common sense.

— Lord Kelvin

The words missing are: (1) Poetry, (2) mathemati-
cian, (3) poetry, (4) mathematical, (5) a poem, (6) Math-
ematicians, (7) poetry, (8) mathematics, (S) poetry, (10)
mathematician, (11) Poetry, (12) mathematics, (13) Po-
ets, (14) mathematician, (15) poetry, (16) mathemati-
cian, (17) Poetry.
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ULTIMATELY, MATHEMATICS IS POETRY

Alfred Warrinnier
Dep. of Mathematics K.U. Leuven
Celestijnenlaan 2008
B-3030 Heverlee
Belgium

In the fall of 1987 | got in touch with the animator of
the European Poetry Festival." We discussed the possi-
bility of editing a volume of poems. He, being himself the
son of a famous professor of physics at the University of
Leuven, was not surprised to meet a mathematicianin his
office. Why not? Because the interaction between
poetry and science, although a difficult one to discuss,
often occurs in western culture. We mention for the
moment only a few mathematician-poets: Blaise Pascal,
Lewis Carroll, Alexander Solzhenitzyn, Raymond
Queneau. (Lastyear, Prof. D. J. Uherka of North Dakota
lectured on Solzhenitzyn as a mathematician.)

Mathematics intrigues the artist and gives rise to
artistic creativity: remember Salvador Dali with his Cor-
pus Hypercubes, trying to represent the fourth dimen-
sion. Take for instance the hypercube movie of Thomas
Banchoff, its striking simplicity and amazement: a fine
moment of mathematical poetry. If it is easy to enumer-
ate a lot of events in which artists and scientists realize in
a moment of godliness exact or abstract science and art,
it is quite new to try to describe what is exactly going on
when bridging these two verges of our culture. One does
not even know how mathematical or artistic creativity is
physiologically generated (Although some progress has
been made recently, see ! for further references.)

But first, | would like to tell you the story of a beautiful
encounter between mathematics and poetry.

1. The story of a mathematical-poetical-pictorial
encounter

The story begins with my editor, E. Van Itterbeek.
Faced with the possibility of editing the poetry of a
mathematician, he suggested that | look around for some
pictorial work related to mathematics. In this context we
have at our disposal an illuminating example: Maurice
Escher, the Dutch graphic artist, “discovered™ by math-
ematicians as the geometer Coxeter who encouraged
him in his continuous search for forms (the M&bius-strip),
transformations and symmetries (the wallpaper symme-
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tries and the space symmetries, the crystallographic
groups) and even new mathematicalresults fromthe field
of p-adic numbers, non-euclidean geometry and analy-
sis.2 But nowadays one can hardly speak of originality
when using again Escher's work as an illustration of
poetry. Fortunately, in the Mathematical Intelligencer? |
discovered an article on the Russian geometer and
graphic artist Anatole Fomenko. His drawings and criti-
cal remarks on the interplay between his mathematical
and graphical work completely corresponded with my
own work in mathematics and poetry. | began a corre-
spondence which eventually led to his sending me al-
most one hundred photographs of his drawings to illus-
trate my poeticalwork with. | sent hima copy of the book*
and a delightful mathematical encounter was realized
Not only was | delighted by the material fact of our
contact, but, most importantly also, by the great similarity
between his “mathematical fantasy™ and the images, the
symbolism, the use of mathematical ideas and language
is my work, as, for example in my opening poem.

Ik herinner me de cirkels

die samen-klinken

tot een ring

Banneling

die herbronning

in het innerlijke van de cirkel vindt

(Translated by R. Leigh-Loohuizen:)

| remember the circles
harmonizing

inaring

Exile

finding a resource

in the internal of the circle

This poem is illustrated with a drawing by Fomenko
which could suggest exactly the same ideas. So, without
a pre-arranged collaboration or a subsequent revision in
the direction of his art, | was able 1o link his pictorial art
with my poems. We both use the circle as the material-
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narr buiten expanderen

in de kronkels

van de losse lijn

langs de kegel omvezeld
dein ik uit

om in oneindigheid
begin en eind
zorgvuidig te vergeten

(Translated by R. Leigh-Loohuizen:)

Metamorphosis of the circle

| am imprisoned in
the closed-ness
of the circular line

without a beginning
| endlessly develop
the continuous sense

senselessly clasping
the open-ness
in a curved line

the dream:
splitting myself
liberating the middle
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ization of ideas like perfection, loneliness, a mathemati- without a radius
cal grail. transforming into a spiral
turning inward
Metamofose van de cirkel expanding outward
In de geslotenheid in the coils
van de cirkellijn of the loose line
lig ik gevangen frayed around the cone
| am swaying out
zonder begin
ontgin ik eindeloos in order to carefully
de doorlopende zin forget in infinity
beginning and end
omknel zinkoos
in kromme lijn A mathematical theorem can be a poetical muse:
het open zijn
Jordan'’s theorem. A simple closed curve
de droom divides the plane in two regions.
mezelf doorsnijden
van het midden bevrijden
zonder straal
omvormen tot spiraal
naar binnen draaien
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Proof

loose lines
originated
in my mind

where infinite
forces converge
to the point of uncertainties

know:

unity for the circle
is simple

unity is love

and that this plane
breaks into two parts
inseparably

united

inevitably alien

next to each other

linked by

the thinnest circular being.

(Translated by R. Leigh-Loohuizen.)

Hereafter, we shall further investigate the question of
parallelism between mathematics and poetry. After an
historical exploration (an endless task, abbreviated here
to some milestones) we shall, inthe company of Hermann
Broch, describe the mechanism of mathematical and
poetical creation. Next we will examine how mathemat-
ics can interact directly with poetry (the Oulipo experi-
ences). We will end with some ideas of Paul Valéry, who
realized the synthesis of scientific and artistic creativity in
his work.

2. Poetry and mathematics: some examples in the
history of science

There is a multitude of mathematicians producing
remarkable verses and there are many poets and writers
who are obsessed by mathematical thought. Let us take
acloser look at some of them. Foralong list of names and
poems we refer to the excellent anthology, Poems of
Science.®

One can start with the Babylonian mathematicians,
engraving on clay tablets their startling theorems, with
nothing less than the first proof of the Pythagorean
theorem in the following “poetical form™:
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V2

(If we take the side of the square as unity we find the

irrational number Y2 onthe diagonal, if we take half of the
diagonal as unity then the side represents the same

number Y2.)

Or one can read in Plato the truly marvellous story of
Menon and his slave to whom Socrates taught (in what
was certainly an almost perfect example of mathematical
teaching) a mathematical theorem in a language that |

call poetical (justlike the drawing of Y2 .) Euclidtoo, inthe
formulations of his definitions, axioms, and theorems
used a highly poetical language, e.g. a point is what has
no parts, a line is a breadthless length, a straight line is
a line which lies evenly with the points on itself.

The history of science and thought contains plenty of
examples of poetical expressions. The main reason for
this is that, as pointed out by Peter Hilton,® a single
mathematical invention can lead many times to a really
profound and original astonishment. The creator, first
and thus most intensely, has the sensation of having
solved the problem, the joy of discovering a new theo-
rem.

But every perceptive reader makes the same discov-
ery. He can even develop the results and obtain new
theorems: he can, better maybe than the original inven-
tor, link the novelty to old and new theories. In this, | see
a great parallelism with poetry where the reader of the
poem has so often the impression that this poem was
written specially for him, if not by him. The reader

appropriates the poem.

Of course, we mostly meet geometers and astrono-
mers on the ever-moving borderline between science,
mysticism, and poetry. Letus always remember Giordano
Bruno (1548-1600) who was perhaps the first to declare
that the universe was infinite and to foresee the principle
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of relativity. He did it in a poem: “De immenso et
innumerabilibus™ where we find, see E. Maor?2p. 198, a
mixture of spiritualism and sound reasoning like:

The One Infinite is perfect; simply and of itself
nothing can be greater or better than it. This is
the one Whole everywhere, God, universal na-
ture. Naught but the infinite can be a perfect
image and refiection thereof, for the finite is
imperfect.

Another geometer-alchemist-mystic was John Dee
from whom we retain the beautiful mathematical poem
(or hermetic geometry, translated from J. Dee by C. E.
Josten’):

«  the first and simplest manifestation and representa-
tion of things, non-existent as well as latent in the
folds of Nature, happens by means of the straight line
and the circle;

« yet the circle cannot be artificially produced without
the straight line, nor can the straight line be produced
without the point.

In the Catholic tradition, | found a wonderful poem of
St. John of the Cross (1542-1591) — in a French
translation of Cyprian of the Nativity discovered by Paul
Valéry — beginning with the stanza:

Je pénétrai ou je ne savais

et je demeurai ne sachant
toute science dépassant
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(Translated:)

I enter where | did not know
and remained ignorant
all science surpassed.®

This poem is a text, a programme, which serves as a
symbolic illustration for his theological ideas. | rediscov-
ered some reflections of the power of symbolism in the
magic poetry of the Irish poet W. B. Yeats (1865-1939)
who claimed: ... “That this great spirit and this great
memory can be evoked by symbols.”

Interest in algebra and in the power of symbols is of
course one of the aspects of the Romantic art in the
nineteenth century. We read inthe Fragments of Novalis®
(1772-1801) aphorisms like:

Algebra is poetry. Each science becomes po-
etry.

The number system is the model of a true sym-
bolic language. Our letters should become
numbers, our language arithmetic.

Could God reveal himselfin mathematics, just as
in every other form of knowledge?

The influence of mathematics (and physics) on po-
etry beganinthe post-Newtonian age when writers found
rationality, mathematical order, symbols, etc. to be more
important than the emotions of man. Famous in this light
is the sentence Alexander Pope intended as an epitaph
for Newton's tomb in Westminster Abbey:

Nature and nature's laws lay hid in night
God said, “Let Newton be,"” and au was light.1°

An account of Newton's influence on poetry can be
found in Kline’s Mathematics in Western Cuiture.'® itwas
accepted that language was a kind of mathematical
system (just like physics). But as a result poetry became
so cold and mechanical that the rebellion of the nine-
teenth century Romantic poets followed quite naturally.
However, progress in mathematics, especially the devel-
opment of non-Euclidean geometry and the mastering of
infinity, remained a passionate attraction for writers and
poets. A complete discussion of this can be found in E.
Maor's book.22

Novalis in his Fragments® links art and science in a
surprising way:

I=notl. Thisis the highestprinciple of all art, and
all science.
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We cite another poem of Novalis where he links knowl-
edge and consciousness:

Consciousness is a being outside being in being.

Consciousness is thus an image of being in
being.

Needs to clarify images. Signs. Theory of
signs.?

Let me end this part of my essay with a twentieth
century mathematician-poet-artist: Alexander Zinoviev,
born in 1922 in Russia. Zinoviev was professor at the
University of Moscow. He is a logician, specializing in
model theory. He wrote a lot of books on mathematical
logic, e.g. Philosophical Problems of Many-Valued Logic;
Quantoren, Médalitdten, Paradoxien; Foundation of the
Logical Theory of Scientific Knowledge; etc. He is the
author of a remarkable novel translated in French under
the title Les hauteurs béantes.'" The book describes
Stalinistic society and it is a diatribe against the homoge-
neous world and the programmed social machine. It
takes the form of a platonic dialogue and a graphic poem
about the ultimate end.

The history of science and thought is full of such
examples of poetical effusions. There must be a paral-
lelism between mathematical thinking and poetical cre-
ation. In the following section we shall try to unveil this
mystery.

3. Contemporary thinkers and writers on the rela-
tion between mathematics and poetry

Hermann Broch (1886-1951)

F. Le Lionnais, writing on the beauty of mathematics
in Les grands courants de la pensée mathématique,'?
frequently uses poetry to illustrate and emphasize his
ideas. He cites Novalis (“Algebra is poetry”), but also
Henri Michaux who claims that he cannot represent the
beauty of mathematics: “Ce qu'il y a de plus intéressant
dans ce pays, on ne le voit pas” (The most interesting in
this country cannot be seen.). This statement illustrates
how difficult it is to discover the poetical idea concealed
in mathematics. With Hermann Broch'3 as explained by
Hannah Ahrendt'4 in her illuminating introduction to the
essays of Broch, | believe that there is a close link
between poetry and mathematics. This link was present
in the personality of Broch. In fact, every creator often
agonizes between his logico-mathematical and poetico-
visionarytalents. These two poles of the creative person-
ality can be closed by the third side of a Peircean
Triangle:
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personality

action (in politics)

This graph is a good description of Broch’s person-
ality, attracted as he always was by mathematics. Influ-
enced by the Wiener Kreis** he even tried to find a
Systemregulating nature, completely determined by group
theory. In his view, not only geometry but all activities of
the mind could be regulated by algebraic structures. In
fact, in Hermann Broch's vision, poetry and science
should be seen as the same kind of activity: both recreate
the world by a removal of the frontiers of knowledge. He
asks for poetry to become full of knowledge, for knowl-
edge to become full of vision. However, Broch also pays
attention o the latent tension between creativity in art
and knowledge in science. He describes this in his
powerful The Death of Virgil. H. Broch developed a
theory of knowledge in which mathematics play a central
role.

There is one constant in the theory: the human
being, carrier of knowledge and vision, the intellectual.
Forthis person, only the act can create the very moment
when the ability to create poetry meets the knowledge to
handie science. We give an example of a mathematical
formulation stimulating with poetical power an act of
knowledge and insight: the windrose of Hermann Broch.
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Qulipo (Ouvroir de littérature potentielle -
Workshop for Potential Literature)?516

In the early sixties a remarkable experiment took
place in Paris and Western Europe. A group, composed
of writers, artists and mainly mathematicians, was formed
around people like Frangois Le Lionnais — editor of Les
grands courants de la pensée mathématique (1348),
containing the first non-technical paper of Nicolas
Bourbaki, an introduction by Paul Valéry and so on —
Raymond Queneau and several mathematicians (Claude
Berge, Nico Kuiper, etc.). The aim of the group was to
produce literature, especially poetry, with the aid of
mathematics. They searchedforprocedures, techniques,
potentially productive structures, often directly inspired
by science and mathematics. Oulipo had something of a
secret society that was in reality a serious workshop
producing many publications and trying out a multitude of
experimentations. In fact, their position in the cultural
landscape of France became stronger and stronger
during the last decade. They have had a real influence
in literature (George Perec, Italo Calvino, Jacques
Roubaud), in semiotics (structuralism) as well as in
mathematics and science (Schutzenberger and his pal-
indromes or the theory of free structures, information
theory and algorithmic poems).

In this context, the word “potential” is important.
Oulipo is empirical and tries to liberate new possibilities
from existing mathematical objects, structures and tech-
niques. Here are a few examples of its findings:

1° Applications to poetry of some surprising properties
of the Mobius strip: write a poem onone side of a slip
of paper; write a second one on the back side of the
paper; construct the Modbius strip and realize a new
poem this way.

2° The introduction of mathematical expressions in
literature: set, class, € (is an element of), < (in-
clusion), Y (union), M (intersection), \ (complemen-
tation), etc. There is a volume of poems by J.
Roubaud entitled € ; andwe have discovered abook
by Gaston Compeére, a Belgian poet, in which each
poem is illustrated and introduced by one of Euclid’s
theorem.

3° The use of permutations in literature. Combinatorial
structures are widely employed in the attempts of the
QOulipo-members to create new forms of poetry.
Example: “Cent mille milliards de poémes” by R.
Queneau; try to find ten poems of fourteen verses in
such a way that each verse can be replaced by one
of the nine corresponding verses: you obtain 1014
poems. We came across the beautiful poem “Oeufs
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de Paques” by Stéphane Mallarmé'7: each verse
was written on an egg numbered so that one could
rebuild the poem.

1. Paques apporte ses voeux
2. Toivaine ne le déjoue
3. Au seul rouge de ces oeufs
4. Que se colore ta joue.

Only four even permutations (123 4,214 3,
3412,4321) are retained. Why?

The Oulipo people (R. Queneau, together with
Frangois Le Lionnais and J. Roubaud, was certainly the
driving force of the group) discovered also the sextine of
the troubadour Arnaut Daniel and tried to generalize this
to a quentine, constructed by using the rule: a word
ending verse p (or in place p), p < /2, where n is the
number of strophes in the poem, and the number of
verses in the strophe, is put in place 2p and a word in
place p, p > /2, comes to the place 2n + 1 — 2p.

Northrop Frye said it like this: “Both literature and
mathematics proceed from postulates, not facts.”

The Oulipo experiment in mathematico-literature is,
of course, of high interest, often very enjoyable, and it
puts new forms and surprisingly new viewpoints to old
facts. Because of the highly technical aspect of its work,
we can consider Oulipo as a primitive system of knowl-
edge. The poetical act is, in general, absent from its
work. Butreading |. Calvino and G. Perec (his La vie mode
d'emploi'® is largely based on techniques elaborated by
Oulipo), we now see that this kind of work can create the
conditions that lead to an absolute system. The novel of
G. Perec, entirely deductive and written within a fixed
structural framework, is an example of this.

The work of R. Thom and E. C. Zeeman, two math-
ematicians, well-known as the fathers of catastrophe
theory, is related to the Oulipo doctrine. In René Thom's
book, Stabilité structurelle et morphogénése,'® a com-
pletely new approach to the explanation of the phenom-
ena of acquisition of knowledge is explored. Thom
shows how global regularities can be envisaged as
geometric structures ina many-dimensional space. These
forms have their own dynamics: and each form of life can
be described in dynamic mathematical models. Thom
was influenced by the English scientist D’Arcy Thomson?®
famous for his book On Growth and Form, from which
Thom quotes:

The waves of the sea, the little ripples on the
shore, the sweeping curve of the sanding bay
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between the headlands, the outline of the hills,
the shape of the clouds, all these are so many
rwgs ofform, so many problems of morphology

According to this theory, events in nature, in social or
cultural life, in biology or any other science, in literature,
etc. occur in points of catastrophe which can be studied
by means of singularities of functions. Zeeman and
Thom can describe in this way the splitting of a cell, the
working of the brain, certain light phenomena, etc. Thus
a highly poetical image of science was created using
mathematical language as the vehicle of thought.

We can see a poem as a form endowed with its own
dynamic; this form can change as a pure form (by
techniques similar to the one of Oulipo), giving rise to
different new poems; the poem also changes in form
(and content) from one reader to the other, and has its
own life! Poetry belongs to the field of structural morpho-
genesis of Thom: more, poems are themselves morpho-
genesis:

Pour nous autres Grecs
Toutes choses sont formes.
(For us, the Greek
All things are forms.)
— P. Valéry

Fire is in rest when changing. Fire is changing
while in rest.
— Heraclitus

Paul Valéry (1871-1945):
The Synthesis of Sclence and Literature

In his famous Cahiers,2! twenty-nine volumes writ-
tenbetween 1894 and 1945, andthe Variété Ito V,2! Paul
Valéry exposes the power of the mind and the force of
language. The interplay between science and literature
plays a special role in the development of his ideas. We
quote:

It is remarkable that mathematics has in com-
mon with poetry and music the fact that the idea
(le fond) becomes the act of the form: the truth
depends on formal conditions.2’

What poetry and mathematics has in common is said
here loud and clear. Mathematics works around ideas —
problems or paradigms, e.g. the twenty-three problems
of Hilbert, the continuum hypothesis and its relations to
the Zermelo-Fraenkel axioms, a property of lines in the
plane, the conjecture of Goldbach, etc. The mathemati-
cian, faced with his creative work, has to make a formal-

76

ism: some definitions, a system of axioms (satisfying
conditions, creating new objects and so on), some nice
examples, a few new theorems. Once these ingredients
are found, the mathematician, guided by an idea, can put
his formalismtowork. The poetalso has his raw material:
the language (le langage ordinaire), the form of his poem
(e.g. a sonnet), also called the space of the poem, the
rhyme and rhythm, the examples, the metaphors and so
on. Now by means of his idea the poet canforce the form
onto his idea.

Paul Valéry, in his essay “Poésie etpensée abstraite,”
Variété V, made a profound analysis of the possible
contradiction between poetry and the abstract idea.
There is no such contradiction, Valéry claims. In fact,
poetry and science are complementary sides of anintel-
lect motivated by the attempt to understand all the
problems of man.

Valéry's main hope was that a mechanics of thinking
would exist, using mathematics as formalism (see again
H. Broch: the only knowledge is the logico-mathematical
knowledge). Inthe case of poetry, Paul Valéry described
how a number (he was very intrigued by the Pythagorean
idea of number) came firstin his mind and how afterwards
a poem was based on this number (determining the
number of syllables in a verse and the rhythm). He also
claimed that analogies were more important than meta-
phors in poetry. For him, analogies were comparisons
based on the structure allowing a certain type of reason-
ing, i.e. functional analogies. Metaphors and analogies
are particular cases of general transformations: their
general group (group in the mathematical sense) is the
“nervous system.”

Valéry was very unhappy with the distinction be-
tween the so-called “esprit géométrique” (geometrical
thought) and “esprit de finesse” (poetical thought), made
by Blaise Pascal.2® If suchways of thinking existed there
had to be a bridge between them, Valéry claimed: 1°
“esprit géomeétrique” is dangerous because the geom-
eter cannot study what he cannot define: he also auto-
matically follows certain ways of thinking and has a
tendency to always replace terms by values; 2° “espritde
finesse” is dangerous because it is reasoning by means
of rather loose notions or badly defined items (emotions!).

The bridge consists of a sacred moment: 1° the
geometer looks for a definition (or for a deep insight!) and
wants to pass fromimagination to structure and form; this
is the moment of poetry: he has to choose, to delete, to
adapt, to force the concrete towards the abstract, he has
to engage his whole being; only after this, his formalism,
guided by imagination and idea, can move into results
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using transformations of this formalism; 2° sometimes
the poet wants to construct!

The geometer is the one who sees in a problemorin
a situation what can be rendered by a system of defini-
tions, axioms, symbols, operations, etc. inorderto obtain
results about the problem or situation which are straight-
forward, clear and proved — hence acceptable to others.
The artist disposes of the means of expressions offered
by the form of his art and of the subject (idea); but he
disposes of form and idea as long and as freely as he
wants. The goal of his art is the comespondence, the
suggestion. Inspiration is for him a strong excitement
directly caused by the object-subject relation of his art.
But this object-subject situation (which causes and is the
cause of artistic activity) is as free as possible, excited
during the creation by profound knowledge of the means
of expression as well as by the passionate desire to bring
this knowledge alive.

Afterword

We are living in a time of bulkheads, in a society
splintered into the many “holy chapels.” Bridge-builders,
like Paul Valéry, are solitary and scarce. It has become
suspect o look over the wall. | believe in a renewed
renaissance, neither because we want to adore the god
of others, nor because we do not recognize our own god.
Our god is the hidden treasure in our heart. This is the
content of the following “Psaume” of Paul Valéry:

Tu n'adoreras pas les dieux des autres:

(Mais prends garde de te tromper sur le tien!)

Tu connaitras le Tien a sa simplicité

Il ne te propogera pas des énigmes vides

Il ne s'entourera pas d'éternité

Il sort de toi comme tu sors de ton sommeil

Comme la fleur et le parfum sortent de Ja terre
confuse et du fumier qui se décompose, il
sort quelquefois de ta vie, un peu de Lui et
une idée de son énergie.

Cache ton dieu. Que ce dieu soit ton trésor —
que ton trésor soit ton dieu.
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Group of philosophers and scientists formed around
Moritz Schlick inthe twenties, amongst which people
like K. Godel, K. Reidemeister and later R. Camnap
and A. Tarski. They promoted a new philosophy of
science, called neo-positivism or logical positivism,
characterised by the idea that theology and meta-
physics are imperfect modes of knowledge and that
only rigorous reasoning is valuable.




THE HERMENEUTICS OF MATHEMATICAL MODELING

David Tudor
Mathematics Department
Bradley University
Peoria, lllinois

I. Introduction

Mathematics is a language. Those who speak this
language frequently use it to describe the world around
them. As in any language, signs (words, symbols,
signifiers) are created to represent those objects of
discussion in the language [20,23]. Depending on the
existence of physical referents for the signs created,
points of view may fall into two broad categories. There
are those who believe philosophically that, physical ref-
erents are not necessary, that the only meaningful dis-
course in the language is through the signs and their
relationships to one another. These are the “pure
mathematicians” (or, one may call them “structuralists”).
On the other hand, the non-structuralists, or “applied
mathematicians,” attempt to construct a “symbolic order”
or sub-language of mathematics which, ideally, would be
a perfect representation of some physical (“real world”)
phenomenon. This representation would be “perfect™in
the sense that every change in the “real workd™ would be
reflected by a corresponding change in the “symbolic
world" and vice versa. Inotherwords, the transformation
relating the “real world" to the “symbolic world” would be
explicitly known. This does not seem likely to occur. Yet,
the predictive power and pragmatic application of
mathematics has produced undeniable results in science
and technology. The objective, then, of the applied
mathematician is to minimize, in some way, the dis-
crepancy between the behavior of the symbolusedin the
symbolic world and that of the object represented in the
real world. In other words, applied mathematics is
constantly evolving towards pure mathematics because
the ultimate goal ofthe formeris to ignore the discrepancy
between sign and referent and to exist solely within the
realm of the symbolic worid.

This essay investigates some of the historical and
philosophical background of the division between pure
and applied mathematics. The “symbolic order” con-
structed by the pure mathematician and used by the
applied mathematician to describe the “real world™ is
called a mathematical model. The nature, interpretation
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and limitations of the mathematical model are also dis-
cussed. An illustration of the means used by applied
mathematicians todrive the above mentioned evolutionary
processtoward pure mathematics is given. This process,
the “modeling cycle," is presented as a response to the
“hermeneutic circle” of applied mathematics. The term
“hermeneutic circle” (borrowed fromthe theory of literature
[8,9]) refers to the dilemma that, before a model is
developed, one must know the important factors con-
tributing to the phenomenon under investigation but, in
order to know these factors, one should first develop a
model.

It is hoped that a better understanding of the objec-
tives and limitations of the use of mathematical models
will contribute to the increased acceptance of them as a
means of providing additional information and perspec-
tives in areas of research traditionally considered “non-
quantitative.” The crucial factor in this understanding is
the analysis of the connection between philosophy and
theory, pragmatism and application.

Il. History and Theory

Plato is seen by many as one of the major figures
contributing to the logocentric nature of western phi-
losophy. Logocentrism sets forth the premise that there
is adivision betweenword andthought [21, p165ff]. Plato
was consistent in maintaining this dichotomy and in the
Republic, applied it to his view of mathematics:

.. . those who deal with geometrics and calcu-
lations . . . take forgranted. . .things cognate...
in each field of inquiry; assuming these things to
be known, they make them hypotheses, and . . .
setting out from these hypotheses, they go at
once throughthe remainderof the argumentuntil
they arrive with perfect consistency atthe goalto
which their inquiry was directed. . . . although
they use visible figures and argue about them,
they are not thinking about these figures but of
those things which the figures represent.
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(Strictly adhering to Platonic belief, the constructs of
mathematics represent “disembodied eternal forms,” or
“archetypes” which are perceived only by the intellect.)
For subsequent philosophers also, this was the prevail-
ing view in mathematics — it always “represented™ some-
thing. Mathematicians were constructing a language
with which they could describe the world around them.
This description was accomplished through what is today
called a “mathematical model.”

There are two general categories of models, iconic
and symbolic[7]. An iconic model is one that is intended
to resemble in some way the object modeled. A “model”
train would be an example. Although the determination
of “iconic” versus “symbolic” is often controversial, aroad
map or a schematic diagram of some electrical circuit
may also be considered to be an iconic model. A
symbolic model is one that is not iconic. This type of
model often takes the form of some kind of equation
whose variables represent some quantities in nature.
Descartes introduced the association of iconic and
symbolic models in modern mathematics. He represented
algebraic relations between variables in a geometric
“Cartesian coordinate system” (the type of coordinate
system used in road maps). Thus an explicitly demon-
strable relationship between the iconic and symbolic
model contributed greatly to the facility with which later
models could be built and analyzed.

The distinction “pure” and “applied” mathematics did
not exist until the second half of the 19th century. Until
then, the manipulation of the symbols of mathematics
was simply a necessary part of the use of the “symbolic
order” used to describe the non-mathematical world.
Indeed, there was no need to study pure mathematics of
itself until inconsistencies in certain predictions based on
interpretations of the mathematics forced the consider-
ation of the logical foundations of mathematics itself.

Thus, atthe end of the 19th and beginning of the 20th
centuries, about the time that Ferdinand de Saussure
was searching to define the basic “signs™ and “values” or
“significations” of linguistics [20], Bertrand Russell and
other philosophers and mathematicians were attempting
to reduce language (and hence mathematics) to a fun-
damental classofirreducible objects, thus generating the
entire spectrum of valid claims concerning the “language”
[22, 23]. In mathematics this meant that for each area, a
set of axioms was sought from which all valid theorems
may be deduced. This property of a set of axioms is
called “completeness.” Perhaps a more desirable prop-
erty of a set of axioms is that they be “consistent.” This
means that one must not be able to prove the validity of
a proposition and its negation from the given axioms.
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Hilbert, Russell and Whitehead (see [22]) believed
wholeheartedly in the possibility of establishing such
axiomatic systems and spent a tremendous effort in
attempting it. Kurt Gddel, in his article “Uber formal
unentscheidbare Satze der Principia Mathematica und
verwandter Systeme 1,” [11, 16] finally settled the ques-
tion in a most unsettling way. He first restricted his
attention to the set of integers, that is, the usual whole
numbers of arithmetic 0, £1, 2. He then proved that for
this most primitive “‘world” the axiomatic method has
inherent limitations in the following sense. If the axiomatic
system is complete, then it will be inconsistent and if the
system is restricted enough to be consistent, then there
are propositions conceming the integers which cannot
be proven from this consistent system. Since an incon-
sistent system is entirely unpalatable to the mathemati-
cian, consistent axiomatic systems are used at the ex-
pense of completeness. Thus the working mathemati-
cian is fully aware that there are most likely questions
which may be asked but may not be resolved from within
the system.

Russell had already happened upon what is now
called “Russell's Paradox™ [22, p124-125, p153] which
foreshadowed Gddel's discovery. The most popular
form of this paradox is to consider a barber in a town who
shaves everyone who does not shave himself. Doesthe
barbershave himself? Now, if the barber shaves himself,
then he must be one of those who don't shave themselves.
Therefore, he doesn't shave himself. On the other hand,
if he doesn't shave himself, then he is one of those whom
the barber shaves, so he must shave himself. Eitherway
we answer, we arrive at a contradiction. In Set Theory,
Russell's Paradox takes the following form: Let S be the
set of all sets which are not elements of themselves. Is
S an element of itself?

Thus, one of the most important consequences of
the 19th and 20th century developments in the logical
foundations of mathematics is that it is possible to prove
the impossibility of proving something. Russell noted
the impact of such an advance on philosophical discourse:
“Those philosophers who have adopted the methods
derived from logical analysis can argue with one another,
not in the old aimless way, but cooperatively, so that both
sides can concur as to the outcome.” This, of course,
refers to the “conditional” nature of modem mathematics
(both pure and applied), which Russell [18] humorously
expresses thus:

We star, in pure mathematics, fromcertainrules
of inference, by which we can infer that if one
proposition is true, then so is some other
proposition. These rules of inference constitute




the major part of the principles of formal logic.
We then take any hypothesis that seems
amusing, and deduce its consequences. |f our
hypothesis is about anything, and not about
some one or more particular things, then our
deductions constitute mathematics. Thus math-
ematics may be defined as the subject in which
we never know what we are talking about, nor
whether what we are saying is true.

Having examined some of the historical background
and theoretical limitations of mathematics (and hence its
applications), we address, inthe next section some of the
responses to the problems arising from the theory.

lll. Pragmatism and Hermeneutics of Mathematical
Modeling

Suppose one wishes to investigate some aspectof a
particular field of inquiry and employs mathematics as a
part of the analysis used to carry out the study. Variables
(signs) are created which represent entities (referents).
The method is to establish the behavior of the signs and
make conclusions about them. Since mathematical
symbols are not the objects they represent, the question
then is in what way one could in applied mathematics
assert that “only the behavior of the signs need be
understood™? The answer is inthe degree of association
between sign and referent. In other words, a perfect
association would mean that “events” taking place in the
model would be perfectly reflected in the object or phe-
nomenon being modeled and vice versa. Thus, the
axioms governing the mathematical order would obtain
for the model. This association and the degree of it are
the two major goals (and problems) of mathematical
modeling. The “pragmatic solution” to the problem of
creating the association must, of course, begin with the
construction of the model. One uses mathematics — or
any method of analysis, for that matter — in order to
understand something. So, in order to buikd a math-
ematical model, one decides first what the most influential
factors goveming the observed phenomenon actually
are. One then represents them as variables and builds
the model. But, in order to decide upon these “most
influential factors® one must already understand the
“observed phenomenon.” The achievement of this un-
derstanding is, however, the original reason for building
the mathematical model. This is a problem in general
hermeneutics, the theory of interpretation which in liter-
ary terms Abrams [1] defines as “a formulation of the
procedures and principles involved in getting at the
meaning of all written texts.” In discussing the theory of
understanding texts, Dilthey labeled the problem of not

80

understanding the whole without understanding its
component parts and not understanding the parts with-
out understanding the whole, the “hermeneutic circle™ [1,
p84]. Thus, anyone including mathematics as part of the
process of understanding is confronted with the “math-
ematical hermeneutic circle” introduced above: how can
the object of investigation be understood without a model,
and how can a model be built without understanding the
object already?

Dilthey [5,6] and, more specifically, Gadamer [8,9]
advocated an approach to overcome the problem of the
hermeneutic circle and, interestingly, mathematicians
have arrived at the analogous “solution™ in their own
context. Gadamer's solution was that one establishes a
“dialogue™ between the “pre-understanding™ brought to
the text being read and the ideas expressed by the text
itself. The readermustthen modify the “preunderstanding”
using a synthesis of the new ideas of the text and the “old
understanding.” Thus, one builds to an understanding of
a given text through the spiraling process of reading,
dialogue (comparison) and synthesis of ideas.

The analogous situation in applied mathematics is
the “modeling cycle” [13]. The investigator observes the
“natural phenomenon™ and conjectures what the most
significant factors affecting the observed behavior and
the relationships among these variables are. A model is
then developed, which can include virtually any object or
technique considered to be within the realm of math-
ematics. Forthe sake of argument, we may assume the
model takes the form of some kind of equation (this is
usually the case, but not always). Then the model must
be analyzed mathematically. This is the “pure”or“abstract”
stage of the process. After a “solution” to the equation is
obtained or the mathematical analysis has been other-
wise completed the resulis are compared to the actual
observations. This is part of the measurement of the
association between sign and referent. If this compari-
son reveals that the representation is not adequate, then
more observations must be made and also more con-
jectures as to the missing “important factors.” Then the
existing model is usually modified to improve the ap-
proximation to (association with) the observations. The
process then continues until the researcher is satisfied
that the representation is sufficient for the intended
purpose. Ideally, the association between sign and
referent would become “perfect,” consistent with the
rigors of the axiomatics of pure mathematics. However,
if such a perfect correlation were possible, we would still
be faced with the problem of the incompleteness of the
axiomatic system. That is to say, it is possible that
questions may be asked that cannot be answered from
within the system itself. While the modeling cycle is a
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pragmatic answer to the problem of obtaining functional
representations of physical systems, the problem of
incompletenessis a limitation of the use of mathematics.

Despite the limitations, there are many attractive
features of the mathematical modeling method. Since
mathematicians have chosen to forego completeness in
favorof consistency, results derived fromthe mathematics
itself cannot be contradictory. The variables and relations
of mathematics, i.e. the vocabulary, is free of connotation.
Nageland Newman [16, p12] attribute this to the fact that
“the validity of mathematical demonstrations is grounded
in the structure of statements, rather thanin the nature of
aparticular subject matter.” Implicit in this view is that the
variables, their relations and the means of analysis are
clearly and unambiguously defined. In other words, with
a mathematical model one may create an idealized world
in which all variables and factors influencing them are
known and fully controlled. The point of view taken then
is that if some particular behavior is observed in the
idealized world, then one cannot exclude the possibility
of it occurring inthe “real”workd and possibly for the same
reasons. This can and will be expressed more strongly
dependingonthe degree ofthe sign-referent association.
In many cases, there is a way of measuring the extent of
this association. This measurement is based on the
simple fact that models have a certain predictive power.
Thus, in many instances one may compare the predic-
tions of the model with subsequent occurrences in the
“world of referents” and formulate a sense of confidence
or no confidence in the ability of the idealized world to
reflect this behavior. Besides being predictive, models
may indicate further areas of research, reveal funda-
mentals of the underlying dynamical processes observed
(subject to the degree of sign/referent association), or,in
some cases, discover previously unknown relationships
between variables. Finally, a great advantage of math-
ematics is that its results are reproducible. Thatisto say,
if two investigators accept the same axiomatic system
and the same hypotheses conceming the phenomenon
in question, both will obtain the same results. This is
Russell's observation about “philosophers” arguing from
“methods derived from logical analysis." The modelers
or philosophers may argue about axiomatic systems or
hypotheses but once these are fixed, so are the results.

IV, lllustration

To make the ideas discussed inthe previous sections
more concrete, consider the following examples from
epidemiology. Among the first models of this type are
those constructed by Kermack and McKendrick [15]. The
book by Bailey [3] treats such equations but is also a

HMN Newsietter #6

comprehensive introduction to the subject matter with an
extensive bibliography. The models presented here are
from Hethcote [12]. They were selected for several
reasons. First, they are from a field of investigation in
which the analytic tool of mathematics has not yet been
fully accepted. Second, they do invoive typical modeling
techniques. Third, they are qualitative in the sense that,
while they involve parameters which cannot be measured
(or have not yet been measured), they nevertheless may
indicate significant characteristics of epidemics.

The objective of mathematical modeling in epidemi-
ology is understanding better the dynamic factors influ-
encing the spread and/or maintenance of acommunicable
disease throughout a population. This information may
be usefulindesigning strategies for reducing the incidence
of the disease or eliminating it altogether. Indeed, much
mathematical research is now being done to understand
the dynamics of AIDS. (See Jacquez. et. al.[14], and the
references there.)

Itis easy to posit many factors which could contribute
to the transmission of a disease. For example, some
diseases are incurable, some the body will eventually
overcome; some confer immunity, some don't; some are
preventable by immunization, others must runtheircourse.
Many diseases are transmitted from person to person,
some from animalto person or vice versa and some even
travel from person to animal to person. Sometimes it is
possible for a person to be a carrier of the disease, i.e. to
transmit the disease without demonstrating the symptoms.
The population dynamics may also play arole. Individuals
may enter or leave a population through birth and death
or through emigration or immigration. The age of indi-
viduals in the population could be important as well as the
presence and interference of other diseases. Sexual
promiscuity could be important (even outside the context
of epidemiology). Geographic location and spread among
numerous other factors may affect the disease.

To “break into” the modeling cycle, many simplifying
assumptions must be made. It may be validly arguedthat
these assumptions are too restrictive to provide a real-
istic representation of the transmission of disease, but it
must be kept in mind that this is simply the first step in the
process. Theintentisto improve the initial models. Atthe
outset, the following definitions and assumptions will
then be made:

1) A susceptibleis an individual who does not have the
disease in question but is capable of contracting it.
The setof all susceptiblesis the susceptible class. The
fraction of the population that is susceptible is called
the susceptible fraction and at time t will be denoted
by S(t);
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2)

3)

4)

5)

6)

7)

8)

8)
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An infective is an individual who has and is actively
transmitting the disease or at least contacting other
individuals sufficiently to transmit the disease.
Definitions for infective class, infective fraction and
I({t) are analogous to those above;

A removed is an individual who, by any means
(immunity, inoculation, isolation) is not invoived in
the susceptible-infective interaction. The removed
class and fraction and R(t) are also defined as above.

Each individual in the population must be in one of
the three classes described above. Thus, S(t) + I(t)
+R(t)=1forallt.

Diseases will be classified by the epidemiological
states through which an individual passes in the
course of the disease. Thus, an Sl disease is one
inwhich the susceptible becomes infective and never
recovers. Herpes simplex is an example. An SIS
disease is one that can be cured, but confers no
immunity. Anexample is gonorrhea. A disease that
confers permanent immunity is an SIR disease.
Measles is such a disease.

A contactis any interaction between an infective and
any other individual in the population that is sufficient
to transmit the disease if the other individual is
susceptible. The contact rate, A, is the average
number of contacts per unit time per infective. We
will assume that the contact rate is constant.

The population size, N, will be assumed to be large
and constant. This assumption is largely math-
ematically motivated. It allows a tractable model to
be developed. It is, however, bioclogically defensible
if the disease is to be studied over a relatively short
period of time.

The population is assumed to be homogeneously
mixing . This means that the probability of any two
individuals coming in contact with one another is the
same. This is admittedly restrictive, but again, a
tractable model is then possible. This restriction can
then be removed by considering the population to be
composed of several homogeneously mixing sub-
populations, so the difficulty may be overcome.

The susceptible-infective interaction is assumed to
follow the “law of mass action” from physics. This
means that the rate of loss from the susceptible class
(gain in the infective class) is proportional to the
product of the susceptible and infective fractions.
This is perhaps made clearer by the following devel-

opment: NS(t) is the actual number of susceptibles.
(NS(t))" is simply the mathematical notation for the
rate of change per unit time of the number of
susceptibles. Each infective contacts A individuals
per unit time and there are NI(t) infectives, so a total
of ANI(t) individuals are being contacted per unit
time. However, not all those contacted are suscep-
tible. In fact, only S(t) (the susceptible fraction) are
susceptible, so the rate of loss from the susceptible
class due to the susceptible-infective interaction is
given by —ANI(t)S(t).

10) Recovery from the disease will be assumed to follow
the “law of exponential growth and decay.” That is,
the rate of loss from the infective class due to
recovery is proportional to the size of the class. This
is the same assumption made in radioactive decay
or, in another context, the calkulation of interest
compounded continuously (at 5.5% interest com-
pounded continuously, the rate of change of the
amount of money is .055 x Amount, or A" = .055A).
The principle involved is that the rate of growth or
decay is proportional to the amount present. Thus,
the rate of loss from the infective class due to
recovery is given by —yNI(t). yis called the recovery
rate (it is analogous to the .055 above).

Assumptions 6 through 10 are debatable. They do,
however, allow a model to be created. Noting that
(NS(1))", (NI(t))", (NR(t))" represent the rates of change
per unit time of the numbers of susceptibles, infectives
and removeds respectively, the model becomes the
following system of equations:
(NS(t))” = —ANI(t)S(t)
(NI)” = ANI@BS(H) — yNI()
(NR(t))" = yNI(t)

and  NS(0) + NI(0) + NR(0) =N, NI(0)>0

We will not actually do a detailed analysis of this
system of equations; it is presented only for the sake of
discussion and illustration. Notice that the individuals
leaving the susceptible class (first equation) go into the
infective class (second equation) and those leaving the
infective class (second equation) go into the removed
class. The last equation simply says that initially (t=0)
everyone in the population falls into one of the three
categories andthat we do have some infectives (NI(0)>0).
Notice also that i) all variables are explicitly defined, ii) all
relationships between the variables are demonstrated,
and iii) the only dynamic factors involved are the sus-
ceptible/infective interaction and recovery. Although the
mathematical analysis is not pertinent to the present
study, we can see from the following mathematical cal-
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culations that the model is inadequate for certain dis-
eases, and hence by refining the model, we will illustrate
the modeling cycle. Notice that if the disease is in an
endemic equilibrium, thatisto say, has stabilized at some
persistent level inthe community, then the rate of change
of NS(t) and NI(t) must be zero. This yields, from the
second equation, that

0= AlS -yl

Factoring out the common factor of |, we obtain the
equation 0 = I(AS —7). So, either | =0 and the disease
dies out (no infectives), or 120 inwhichcase AS —y must
be zero, so S =v/A. If thisisthe case, then —ANIS cannot
be zero, so the rate of change of the number of susceptibles
cannot be zero and we would not be at an equilibrium.
This is a contradiction. Therefore, the only possibility is
that at equilibrium | = 0. The disease dies out. This is
unsatisfactory based on physical observations. Measles
is an SIR disease and therefore should have these
dynamic characteristics, but has shown no tendency to
die out. To follow the modeling cycle then, we must make
new conjectures as to the important dynamical factors
determining the spread of the disease. Since a disease
following explicitly the old assumptions would eventually
“run its course™ and die out, perhaps the introduction of
new individuals into the population would replenish the
depleted pool of susceptibles. Following through on this
conjecture we make the assumptions:

11) Births and deaths occur at the same rate, a (expo-
nential growth and decay as above). Note that the
assumption of exponential growth in all cases in
which it is assumed is also subject of “verification”
through the comparison phase of the modeling cycle.

12) There are no disease-related deaths. So, deaths
occur at the same rate in each class.

13) Birthrate equals deathrate. This is a mathematical
assumption to guarantee thatthe population remains
constant; and

14) All newbomns are susceptible. Since maternal anti-
bodies confer temporary immunity, a “newborn” is
defined to be a child of 12-15 months.

Building on the old model, the new model becomes
(NS(t))" = =ANIt)S(t) + aN - aNS(1)
(NIt))" = A()S(t) — ¥NIt) — aNI(t)

(NR(t))" = yNI) — aNR(t)
NS(0) + NI(0) + NR(0) = N
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The infectious contact number , o, is defined to be
the average number of contacts per infective per infec-
tious period. The analysis of the new model yields that
o =N(y+a)andthe result that if ¢ >1, then the disease
remains in the population. This seems to give a more
realistic prediction of the behavior of the disease thanthe
original model. One conclusion that may be drawn from
this is that the “vital dynamics™ (births and deaths) are
important in creating the behavior in the model that is
actually observed in human populations. it then may be
the case that the introduction of new susceptibles into the
populationis essential inthe transmission characteristics
of some diseases. There are, of course, many questions
and objections that may be raised, among which are:

1) Why shouldthe contact rate be constant? Inschools,
for example, winter contact rates should be much
higher than summer contact rates.

2) Thedisease may be affected by spatial (geographic)
spread.

3) What happens if the population size is allowed to
vary?

4) How might the effect of immunization programs be
studied?

5) Is the assumption of homogeneous mixing too se-
vere?

6) What aboutthe effects of immigration and emigration?

Most of these questions can and have been ad-
dressed by researchers in this area. Many interesting
possibilities for explanations of the occurrence and
transmission of communicable diseases have been
suggested along with indications of areas of investigation
not considered before the introduction of the modeling
method — another benefit of the modeling approach.

V. Conclusion

If the language of mathematics is considered as a
symbolic order with a very precisely defined syntax
(axiomatic system), the distinction between pure and
applied mathematics may be drawn through the treatment
of sign versus referent. Pure mathematics considers the
symbolic order itself as the subject of investigation, thus
referents are not necessary. Applied mathematics, on
the other hand, must deal with referents, and through an
association which always seems to be imperfect.




The goal of applied mathematics is to become “pure”
in the sense of working toward a perfect association
between sign and referent so that the syntax of pure
mathematics may be applied and only the signs need to
be analyzed. The problem in the realm of pure math-
ematics is that it cannot solve all problems that may arise.
Itis incomplete. Acceptingthis, the applied mathematician
nevertheless works toward the goal of the perfect asso-
ciation through the modeling cycle — a process designed
to understand the phenomenonto which the mathematics
is being applied. The interpretation of the results obtained
through a mathematical model must be taken in the
sense that, if a certain behavior of the model is observed,
one cannot exclude the possibility of it occurring in the
observed phenomenon and possibly forthe same reasons.

The illustration of the modeling cycle in epidemiology
showed how conjectures about the dynamical factors
affecting the spread of infectious disease could be rep-
resented by equations. Thus, a system of signs was
developed to analyze the behavior of physical referents.
First the equations proved to be inadequate, but upon
improvement, “behaved”wellwhile revealing an additional
factor (vital dynamics) not initially considered.

Now, one may think that modeling is very fruitful in
those areas of inquiry to which it is applicable but leaves
the guestion of identification of these areas open. The
identification question may also be approached through
the philosophy presented here. Are there phenomena so
complex that they cannot be analyzed through the
mathematical method? This must be rephrased (gen-
eralized) to ask whether there are phenomena so com-
plex that they cannot be understood by human beings.
The answer is “probably.” However, the mere factthat a
subject is being investigated at all is admissionthat those
carrying out the investigation believe that some under-
standing may be achieved. The most pertinent response
to the question posed above is that the “sufficient”
complexity of the phenomenon in question cannot be
determined a priori. In this sense, the modeling cycle
could actually result in the conciusion that the math-
ematical method is inadequate for the problem at hand.
But this in itself would be a significant contribution to the
understanding of the phenomenon (if only to under-
standing its complexity). The major resuit of our study is
that mathematical modeling may be considered as a
particular form of philosophical discourse and as such
should not be discounted as an approach to understand-
ing.

There are special cases in which the “validity” of a

particular model in science has been “proven.” The
connotation of the word “proven” in this case means that
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the model has “pragmatic validity.” For example, predic-
tions of chemical reactions based on present atomic
theory are very consistently correct. The question of
whether matter actually is made up of atoms then be-
comes irrelevant. We have a model and a high degree of
association between model and observations. The first
atomic theories however were not entirely adequate.
The model has undergone many changes in recent
decades. Inone sense, the modeling cycle assumes that
models are accepted only until they are “refined” or
“replaced.” As situations arise in which a model has
been reformulated, the “new™ model replaces the old,
thus guararnteeing the evolution of the field in aconstructive
direction.

In those areas under mathematical investigation
where the “pragmatic validity™ has yet to be proven or
where a controversy exists concerning mathematical
applications at all, modeling must be consideredto be the
type of philosophical discourse mentioned above. Inthis
light, the boundaries betweenthose traditional “sciences”
and the “non-quantitative™ subjects have been identified
and they are vague. If the argument against the math-
ematical method is that it cannot provide us with “truth,”
then we must reject any means of discourse, since none
yet have succeeded in providing “truth.” On the other
hand, as a form of discourse, the conclusions from the
argumentation are always subject to human interpreta-
tion, acceptance or rejection.
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ON TEACHING IN THE MATHEMATICAL SCIENCES

James M. Cargal
Mathematics Department
Troy State University in Montgomery
P.O. Drawer 4418
Montgomery, AL 36103

There are a thousand rules on how to teach math-
ematics well. Some teachers tend to absorb these rules
naturally and otherteachers can'tunderstand them at all.

However, rules can be irrelevant. There are a few
teachers, virtuosos of the classroom, who violate the
most basic rules and teach brilliantly. More often, there
are teachers who have what seems fo be excellent
technique but fail to teach even adequately. The reason
for all of this is that teaching mathematics (and to some
extent all teaching) is an interpersonal skill and not
merely a matter of disseminating knowledge.

Teaching mathematics means to communicate
mathematics from teacher to students. Teaching is
communication, and it is largely a social skill.

This point is not trite but rather profound, as so many
would-be teachers do not understand it. It is infact quite
common — an everyday occurrence — for a class to be
taught or lecture to be given without one individual in the
audience knowing at allwhat the teacher is talking about.
This is why | am not addressing the difficult question of
how do we tell a good teacherfrom a bad one. There are
many teachersthatare notborderline. These areteachers
of whom no student can say anything good. Under-
graduates, graduates, D-students, A-students; they all
condemn the teacher. And amazingly, nearly every
university department in the country (of any size) hasone
or more teachers of this quality. Teachers who commu-
nicate with no one at all are largely a phenomena of the
mathematical sciences, and are a primary reason that
mathematics and mathematical reasoning is so poorly
integrated into our society at large. Teachers like these
make the mediocre teachers look good.

The Personal Side of Teaching

The most important aspect of teaching as commu-
nication is that communication with students is a two-way
process. To teach effectively you need to gauge accu-
rately what is being digested and what isn't. A crude way
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to do this, when you are unsure, is by giving an
unannounced quiz (which doesn't have to count). The
besttool, when lecturing, for judging the students is body
language: faces and eyes. This is the window to the
student, and if you do not know how to use it, you teach
at a disadvantage. When you ask the students if they
understand a certain point, their faces will give more
information than their voices. At first their faces will not
necessarily reveal much. The first week, students tend
to regard certain questions as rhetorical. However, when
they realize that you are genuinely concerned with their
understanding (just as many teachers are not) they
loosenup and itisthen that their faces become revealing.
It is this technique of watching faces that enables the
teacher to set the proper pace.

It is incumbent in all of this that you are teaching the
majority of your students. Again, teaching is communi-
cation and to maximize communication, you teach to as
many students as you can. In many classes there are
students who go into the course knowing much of the
material. Many teachers invariably identify these students
as their good students. However, with these students
there is less communication, since it has taken place for
them already. They should be taking another class!
Similarly, there are students whose background is so
deficient that they also should be in another class.
However, when we say that a student’s background is
deficient, we mean that it is deficient with respect to the
class at large. As arule, virtually none of the students will
have mastered the prerequisites to the degree that you
feel that they should have. This is a basic law of the
universe, that falls right behind Newton's laws of motion:
The students never know what they are supposed (o
know. The exceptions are generally those students we
have just encountered who already know the material of
the course as well as the prerequisites. They should be
taking another class and leaming new material. With
respect to the class atlarge, how much of the prerequisite
material you review is a matter of judgment. It is nearly
always wise to reiterate some of that material, but is
inappropriate to spend much time on it.
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Teaching Style

Pedagogical studies and treatises on teaching tend
to concentrate on technique and style. However, these
things should be entirely subordinate to communication.
Style will not turn a bad teacher into a good one or vice
versa. Infact, it is almost irrelevant to good teaching.

A unique style of teaching mathematics is due to R.
L. Moore and is known as the Texas school of teaching.
Althoughthis style is worth study, itis notin itself a subject
for this essay. Moore used his style with great success
and it has been used by his “descendants™ and their
“descendants” (Moore's descendantsare the peoplewho
received Ph.D.'s under him). The Texas school of
teaching has been the subject of much attention includ-
ing documentary films. it is clear that he was an inspi-
rational teacher. Many teachers slavishly follow the
precepts of Moore's teaching method to the letter. Yet
remarkably often they achieve the precise opposite re-
suft. R. L. Moore would have been a great teacher had
he used any style at all. Conversely, and unfortunately,
no style will turn a bad teacher into a good one. Tobe a
good teacher, it is necessary to be sensitive to other
people as humanbeings. Thisis particularly true with the
Texas school of teaching.

That style will not tum a bad teacher into a good one,
has a corollary with respect to the incorporation of
computers into mathematics instruction. Yes, computers
can enhance math education at all levels, from preschool
tfrough graduate school. However, the successful in-
tegration of computers into education will never obviate
the need for competent instructors unless the need for
instructors is eliminated altogether.

Developmental Psychology

There is an order by which students learn material. |
do not mean the tautological order; for example, one
must study what aderivative is before studying differential
equations. That muchis trivial. | am referring to a couple
of psychological truths. The first psychological truth is
that students need to learn concepts in an ordered
manner. Unfortunately, there are individual differences
here, but some generalities hold. Most people learn from
the specific to the general. One studies the real number
line before one studies fields. At first, the student
understands fields as generalizations of the reals.
Eventually, the perspective changes. The scholar thinks
in terms of fields, and sees the real number line as a
specific case. And it is precisely at this point that many
teachers make a critical mistake. Because this latter
point of view has become clearer for them, many math-
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ematics teachers teach abstractions before they teach
specifics. The mistake is this: people learn mathematics
in a different order than which they (later) come to
understand it!

The second psychological truth is that students need
to learn material in a paced manner. That is, some
material needs to be digested before new material is
leamed. Thisistrue at severallevels. Atthe macro level,
we don't go straight from the definition of the derivative to
differential equations. At the micro level, | have seen a
teacher severely undermine his effectiveness, simply by
not pausing enough during his lectures. Lectures canbe
like (well-told) jokes: you need to pause for a beat or two.
Here againthe besttool for judging pace is body language.
Many students seem to light up when anidea sinks in. If
the ideaisn't sinking in everywhere, you needto reiterate.
If the idea is sinking in nowhere, you probably need to
back up. It is a tragedy that so many teachers will
continue when no one at all is absorbing anything.

Motivation

The foremost tool for teaching mathematics is mo-
tivation. Generally, the less advanced the students are,
the more the need for motivation. Conversely, a char-
acteristic of strong students and professionals isthatthey
find their own motivation. Frequently, a proof does not
motivate a theorem. The student wants to know where
the theorem came from. For example, Lagrange Multi-
pliers are usually explained with a proof that is largely
algebraic. But the insight for the technique comes from
a simple picture (and undoubtedly it was this picture that
inspired Lagrange). Pictures tend to motivate betterthan
does algebra, but not always. Since textbooks too
frequently fail to provide motivation, it is the job of the
lecturer to provide this motivation. It is generally supplied
in the form of pictures, examples, or simply an indication
of the where the topic is heading. Many teachers more
or less write a textbook on the board. However, students
nearly always prefer a textbook in hand; the teacher
exists to supplement the book.

Homework

At all levels, to leam mathematics, it is necessary to
do mathematics. Most students understand this, but
elementary students in particular do not have the disci-
pline to do mathematics without “encouragement.” | find
that most of them appreciate a little coercion. Here | am
going to deviate from the usual pattem of this essay, and
| will tell you what | personally have found to work in
assigning homework.
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When | have a grader, | assign homework at the end
of each lecture on the basis of what | cover that day (and
how well the students handle it). | collect homework at
the beginning of each class and go over the problems on
the board. | ask my grader to give me total scores at the
end of the semester, standardized to some preset
maximum, say 50 points. This should work out to be
about 10% to 15% of the total grade. It should count little
enough that a missed assignment will make littie differ-
ence (and little hassle). On the other hand, homework
should count enough that a student that consistently
does not do the homework loses a letter grade. Both of
these points are impressed on the students so that they
feel compelled to do the homewaork, but it is not a matter
for hysteria. Also they are more or less free to copy
homework on the principal that what they gain on the
homework, they more than lose on the tests. |tell the
students that the purpose of the homework is to prepare
them for the tesis. | often use old test problems for
homework. This mitigates against any advantage some
students attain by having old tests in their possession.
Also, students are very much interested in old test
problems. In fact, if you run off copies of old test pages
to hand out as homework, you cannot keep the students
from doing the problems. | favor certain homework
problems as being particularly pedagogical and tend to
give similar homework problems from one semester to
another. However as a matter of basic ethics, | have
never given any test twice.

If | do not have a grader, | am inclined to give a quiz
each week. Frequent quizzes will motivate students to
do their homework, since that is how they study for the
quiz. Ifindquizzes muchquickerto grade than homework.

Textbooks

As a rule students prefer courses that are textbook
oriented, and they are keenly interested in having a text
thatthey canread and understand. Giventhe abundance
of texts in most areas the instructor's job is to wade
through a sea of mediocre texts and retrieve the excep-
tional text. However, not all texts are at least mediocre.
There are not only poorly written texts published, but
even major publishers will publish incompetent texts.
These texts occur at all levels and in late editions. That
such texts get selected is shameful. However, many
teachers will favor a poorly written text. Such texts are
often like computer manuals: you can only understand
them if you already know the material. Clearly, such a
text will be readable to the teacher but will be frustrating
and nearly useless to the student. That teachers will
insist upon using bad textbooks (when good ones are
available) is an indictment of their sensitivity to the
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students' needs. There are many rationales for this
behavior, but not one of them is any good.

The state of calkculus education is an indicator of all
mathematics education. High school calculus is most
often awasted year; it almost never prepares the student
forthe second semester of college calkculus. We willonly
concern ourselves here with college calculus.

Current calculus texts are incredibly alike. This is
demonstrated in awonderful review — essay actually —
by Underwood Dudley [American Mathematical Monthly,
Vol 95, November 1988]. Anyone interested in calculus
texts should readthis essay. (See also Professor Dudley's
review of three calculus texts, to appear in The UMAP
Journal probably in 1890, Vol 11, no. 2). Calculus texts
tend to be fartoo long and fartoo formal. Remember, we
are talking about college freshmen. Most of them do not
understand proofs, and they are not yet ready for long
proofs. Which brings me to an important digression.
Proofs are not something you either understand or not. It
takes practice to learn to understand proofs, and as with
leaming most things, one should start out with the simple
and work up to the more complex. This is an ongoing
process requiring the entire undergraduate four years.
Deita epsilon proofs are difficult for freshmen. Yes, the
Students need to be exposed to delta epsilon arguments,
but it is a mistake to over-emphasize it (for example with
choose-the-epsilon-as-a-function-of-deilta problems).
Time is important; with exposure now, the same students
will find delta epsilon proofs easy when they are juniors.
It is a mistake to emphasize formalism in freshman
calculus. Doing so actually gets in the way of teaching
the many difficult concepts of basic calculus. Current
calculus texts do a bad job of teaching calculus. For an
example of what a calculus texts should be, see the text
by Gilbert Strang [to be published in 1990 by Wellesley-
Cambridge Press]). Professor Strang's text features
some material which is current, but many of the other
sections, such as the material on trigonometry, could
have been written two hundred years ago, but likely has
never beenwrittenas well. 1think Strang’s textis the best
calculus text since Courant’s first calculus text and possibly
since Euler’s (eighteenth century) text.

Preparation

The key to a good lecture is organization. The
teacher should gointo the classroomintending to expound
on one or two ikleas. He (or she) should have a prede-
termined sequence of points. These pointsare illustrated
by examples. The teacher should also be aware of the
examples in the text. Sometimes it is sufficient to tell the
students that a point is illustrated by a particular example
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in the text. Yet the teacher should be prepared to be
flexible. A well-prepared lecture is like a flow chart. The
actual words are supplied during the lecture and are not
preparedbeforeghand. A lecture should appear somewhat
spontaneous.

Lectures

Lectures are a framework for the course. This is
where you put your organizing into action. You motivate
what is in the text, and you order the material. For
example, given ten formulas, probably two are more
important than others. Typically, | remember only a few
formulas out of any group and | remember how to derive
the others from what | have memorized. It is very
appropriate for the lecturer to share with the students his
(or her) mnemonic devices (at this point the students
need these devices more than the teacher does). The
teacher in effect structures the course throughthe lecturing
process. Again, it is not the lecturer's job to provide
another book onthe board. Not only is that inappropriate,
but it is a waste of the lecturing environment. The primary
purpose of the board should be for emphasis and enu-
meration. The lecturer simultaneously augments the text
and incorporates it into the lecture. (Don't get me wrong,
I've been forced many times to teach without a text, orto
make minimal use of my text, but except for advanced
graduate courses, this is usually not desirable.)

The War of the Students and the Teachers

Bad students abound. By bad students | do not mean
slow learners, but the lazy and the rude (a good teacher
needs to know how to deal with rude students without
letting them have an adverse affect on his style —
however that is beyond this essay). But given a class of
thirty students you should have a fair sample of most
basic humancharacteristics. Unless aclass requirement
is that the students have been convicted of violent
felonies, every class should contain some good students.
This is true even at the weakest schools. You just have
to open your eyes and look.
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A student has a class on Monday and Thursday
evenings. One day the instructor says that he can’t make
the following Thursday, and class will be held on Friday
instead. Two students object that they have confiicts.
“Tough”™ he says, if you want to come to class, you will
attendon Friday. Fortunately, the administration cancels
the class.

So what is unusual about the preceding story? Ab-
solutely nothing. It is merely the most recent story of its
type that | have heard. Too many teachers regard the
students as the enemy. Students do not have real
ilinesses or deaths in the family. Or as in the story, they
do not deserve the common decency ordinarily accorded
to human beings.

Teachers control the teaching environment. A good
teacher should be able to handle the bad apples, but
students are completely vuinerable to bad teachers. This
is true at all levels, but becomes absolutely critical at the
graduate level and especially the Ph.D. level. More then
one Ph.D. student has blown four years or more down the
drain because he has offended a professor.

As we are going into the 1990's, students are paying
more and more in tuition and other education expenses
and getting less and less in retum. Do you remember
ever seeing the following notice?: XYZ University rec-
ognizes that Professor Gick's class was not properly
taught. All academic records related to that course are
being deleted. Please find enclosed a refund of your
tuition along with interest.

Teaching well is not simple. There are many difficult
issues to address such as philosophy oftesting, philosophy
of grading, and so on. However, these issues only
become relevant given some competence to begin with.
If the teacher does not understand the basics of human
communication, then chances are that he is not going to
appreciate the fine points of lecturing.
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MATHEMATICS, TRUTH AND INTEGRITY

Peter Hitton
Department of Mathematical Sciences
State University of New York at Binghamton
Binghamton, New York 13901

Some years ago there was a scandal at the Institute
for Advanced Study at Princeton. It was proposed to
appoint a certain social scientist to permanent member-
ship, but the recommendations for him were ambiguous
to say the least, ranging from strong approval to con-
temptuous dismissal. Certain leading mathematicians at
the Institute led the campaign to ensure that this individual
was not appointed. The story was featured in the New
York Times, and many mathematicians, reading the
account, fell to wondering if the work of a mathematician,
rather than a social scientist, could have received such
widely divergent judgments. Our strong belief is that this
coulkdn't have happened.

More recently, we have witnessed the (successiul)
campaign of Serge Lang (see Chronicle of Higher Edu-
cation, February 3, 1988, p. B4) against the election of a
certain Professor Huntington to the National Academy of
Sciences. Huntington is a social scientist who had
invented certain equations relating to such quantities as
‘satisfaction indices’, designed to provide insight into the
state of contemporary society. Lang argued that math-
ematics was being misused; the dispute was carried
further in the columns of The Mathematical Intelligencer
by Neal Koblitz and Herbert Simon, acting as surrogates
for the main protagonists (see the Winter, Spring, and
Summer issues of 1988); and, once again, mathemati-
cians asked themselves whether there could be such
utterly conflicting views about the work of a leading
mathematician. Once again, too, we concluded that
there could not.

Why do we distinguish in this way between math-
ematics and the social sciences? It is because we
believe that there is an objective aspect to an assess-
ment of the quality of a piece of mathematics which — it
seems to us and evidently to others — is not necessarily
present in the assessment of research in the social
sciences, so that peerevaluation of mathematicalresearch
at least has the potential to be fair and reliable.! There
may be disagreements about the relative standing of
different areas of mathematics (e.g., algebra vs. analy-
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Jean Pedersen
Department of Mathematics
University of Santa Clara
Santa Clara, California 95053

sis, hard analysis vs. soft analysis, point set topology vs.
algebraic topology, algebraic topology vs. geometric
topology, and so on) but, within a given branch, there is
general agreement as to who are the giants and what are
their major contributions. Of the Fields Medalists with
whose work we are familiar — suffice it to name Atiyah,
Serre, Thom, Kodaira, Thompson, Donaldson, Freedman,
Novikov, Grothendieck, Smale — there is absolutely no
doubt of their eminence and of the seminal significance
of their work and the stimulation which it currently affords.
Inthis respect the Fiekds Medals differ from Nobel Prizes,
which are usually awarded long after the relevant work
was done, and where there are often strong disputes
over the merits of the laureates and over certain singular
omissions. Itis anopen secret that Graham Greene has
been passed over for the Literature Prize because of the
prejudice of a member of the selection committee, while
the award of the Peace Prize to Henry Kissinger and Le
Duc Tho continues to strike most reasonable people as
utterly ludicrous.

Lysenko was able to fool a lot of people, including
even some biologists, into believing that he had revived
Michurinism and demonstrated the inheritance of ac-
quired characteristics. By contrast, we claim that there
can be no successful chicanery in mathematics; proofs
must be clear and convincing, results must be applicable.
There can be no conspiracy to believe something which
is ideologically acceptable or socially convenient, such
as the Nazi ‘theories' of racial superiority. It is true that
there has been controversy over the proof of the 4-color
theorem by Appel, Haken and Koch; but the question at
issue is not ‘Is it true?' or ‘Is it important?’ but ‘Has it been
proved?’

There has also been controversy in connection with
the development of fractal geometry — the reader is
again referred to The Mathematical Intelligencer to get
the flavor of this juicy dispute (see the Fall, 1989, issue)
— and, at first sight, this may appear to concern the
quality of the mathematics. We claim, however, that this
appearance s illusory. Inreality, what is in question is not
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the quality of the mathematics in the theory of fractals but
whether there is a distinctive mathematical theory of
fractals, distinguishable from a theory derivable from
classical function theory. Inherent in the controversy,
therefore, is a disagreement over who has priority for
discovering the undoubtedly important Mandelbrot set.
Such questions of priority, in their turn, inevitably raise
ethical issues.

These examples serve, in fact, to reinforce our
conviction that there is an inescapable ethical compo-
nent to mathematics as a human activity. Truth and
integrity play a key role in mathematical research and
publication — one of us (PH) recalls Henry Whitehead's
advice, which for him was a principle, never to accept in
your own work a result which you could not yourself
prove. Of course, this precept has a practical value, since
one does notwishto actas achannelforthe transmission
of error; but Henry's basic point is that one must take
responsibility for what one publishes. It is its relation to
truth and to the integrity of its practitioners which is the
humanistic aspect of mathematics which we wish to
stress in this essay. We thus find ourselves in strong
disagreement with the views of our friend and colleague
Reuben Hersh [He] who denies that pure mathematics
has an ethical component.

Before developing our theme, we should stress that
we are not speaking of the ethical or humanistic aspects
of teaching mathematics.2 Our concern is with the hu-
manistic aspects of mathematics itself. On the other
hand, neither we nor Hersh would deny that all teaching
of mathematics provides the opportunity — indeed, we
would say, the obligation — to bring to our students’
attention the ethical commitment which the proper prac-
tice of mathematics requires. This obligation, deriving as
it does from the nature of mathematics itself, does fall
within our purview. We regard it as especially urgent to
emphasize it in view of the fact that, for easily compre-
hensible reasons, it is so often neglected. Let it therefore
receive our immediate attention.

COMMUNICATING ETHICAL
VALUES TO STUDENTS

We believe that most of the difficulty encountered by
our students in trying to learn mathematics at the univer-
sity level stems from the fact that they have never seen
any real mathematics before. They have been ‘taught
mathematics' in such a way that they don't recognize its
relationship to the real world and don't understand that it
is much more thanmerely agame. They don't realize that
the symbols they write must mean something and that
that something should always make sense; they don't
understand that there is an unbridgeable gap between
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truth and falsehood in mathematics, not a mere con-
tinuum of meaningless statements. They don' realize
that each statement they write down should follow logi-
cally from its predecessor; and they don't appreciate why
an argument is not complete unless every step does in
fact follow from the previous one. In a word, they do not
appreciate the integrity of the subject — but this is
scarcely their fault. Their experience has left them
blissfully unaware of the fact that mathematics involves
any question of integrity at all!

Crucial to any attempt to repair this situation is the
understanding that the students are not to blame for it.
When they reach the university they find themselves in
the position of desperately trying to learn material for
which they have not been suitably prepared. The re-
sponse of students to their pre-college mathematics
education® is, we believe, perfectly natural and should
have been expected. All too often, that education has
consisted of being given, each day, the rule of the day,
followed by a set of exercises for which this rule produces
an answer (that may, for odd numbered problems, be
looked up in the back of their textbook!). We claim that
students who have been taught mathematics in this
catechistic way have been doubly cheated. They have
not been given the opportunity to learn what mathematics
really is, and they are not able to use what they have
supposedly learnt.

For obvious reasons — at least to anyone who either
appreciates or uses mathematics — we believe that it is
absolutely essential that the teaching of mathematics, at
all levels, should embody Henry Whitehead's emphasis
on understanding what you use. This has a very impor-
tant long-term practical aspect in that what students
understand they will continue to have at their disposal.
Even though some details of a mathematical result may
fade over time, if one really understands the undertying
principles then it is very likely that one will be able to
reconstruct the desired result when it is needed.* We
believe an equally important, and more immediate, con-
sequence is that students who are taught mathematics
for understanding (even at the expense of speed) will
have a much better opportunity to leamn — and so to
appreciate — the real nature of mathematical thinking
and hence, as we have said, to make the ethical com-
mitment which the proper practice of mathematics re-
quires. A devotion to the pursuit of truth, in all its aspects,
would bring students, and teachers, closer to an under-
standing of the essential content of a mathematical
statement. Thus, for example, they would understand
that not all wrong answers are equally wrong, and that
being able to recognize whether or not an answer is
plausible is much more important than memeorizing
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meaningless formulas long enough to pass a test.
However, herein lies a severe practical problem.

We believe that mathematics, when practiced prop-
erly by students, should incorporate the ethical commit-
ment inherent in mathematics itself. But to achieve this
is difficult. Students naturally want to make good grades.
They have been systematically programmed to become
successful grade-grubbers. We cannot change their need
for good grades — and even if we could it might not be
desirable — but we can change the way we test and the
way we grade.

We can give credit to the student who recognizes an
answer is wrong, says so, and explains why the answer
is not a reasonable one. Moreover, recognizing that an
answer is unreasonable is itself a sign of a maturing
awareness of an important feature of mathematics itself.
It is a sad fact that most people do not realize that it is
periectly possible to know something is wrong without
knowing what the correct answer is. If they had learned,
and understood, the technique of casting out nines (see
[HP]) to check an arithmetic calculation, they would
thereafter fully appreciate the fact that one can, in some
situations, know for certain that a calculation cannot be
correct. They would also realize that if the check “works”,
that doesn't guarantee that the calculation is correct.

We can also give credit to the student who begins a
proof, knows how it should end and admits that the in-
tervening steps are missing; so much the better, of
course, if the student also states the nature of what
should be filled in. But we would not give credit to the
student who puts in a few steps at the beginning and just
before the end, hoping the instructor won't notice that
there is a gap in the middle. We believe that this kind of
behavior, which we would call fundamentally dishonor-
able, should be strongly discouraged, and that students
should be made aware of the fact that there is an internal
structure to mathematics that should not be violated. By
giving the student credit for the correct thinking he or she
does, we encourage both honesty and effective math-
ematical thinking.

THE ETHICS OF MATHEMATICS
IN EVERYDAY LIFE

If we are right in asserting that the pursuit of math-
ematics has an inescapable ethical content, should not
that moral component transfer itself to other aspects of
our lives, professional and personal? Should we not be
more consciously aware of this moral component? Should
we not extend our respect for truth and our concern for
the probity of our research to some of our other activities?

g2

We claim that we often do —to our serious disadvan-
tage as advocates and opinion-formers! Let us elabo-
rate.

* Itis afeature of our professional work to distinguish
sharply between what we know well and the rest of
mathematics. Thus, in particular, we are very well
aware of our areas of ignorance; this awareness is,
indeed, as an important criterion of the educated
person. Unfortunately, such awareness is all too
often absent among those who exert an influence on
public opinion; unfortunately, too, it is no advantage
if one wishes to popularize one's cause, since a
confession of ignorance is usually taken — quite
errongously — to be an admission of incompetence.
How many politicians today admit their ignorance of
European history?

* Wearenaturally liberal at atime when extreme views
tend to command more support. We live in an age of
single-issue fanatics (to borrow Bernard Levin's vivid
phrase); mathematicians should find such fanati-
cism very distasteful, if not impossible.

« Mathematicians are opposed to the use of force, as
it is not possible to establish a theorem by intimida-
tion of the sceptics, or by the demonstration of
superior strength. It is thus offensive to their sense
of proper order in the universe that disputes should
be resolved by means which pay no heed to the
worthiness of the cause.

«  Since rational thought, and hence reasonableness,
are our research method, we tend to see the other
person’'s point of view. Such reasonableness is
scarcely conducive to the evocation of fanatical
support — one does not persuade people to man (or
woman) the barricades by arguing that one's point of
view is in certain clearly defined respects superior to
that of the enemy.

= We tend to believe in the reasonableness of others,
especially of those with whom we are in dispute or
whose opinions we wish to influence. This belief is,
unfortunately, naive and often mistaken. In such
caseswe are at a serious disadvantage and are likely
to be completely outmaneuvered.

However, we do have some conspicuous successes
to our credit. As we have said, our awareness of the
existence, within our store of knowledge, of significant
areas of ignorance often causes us to be unduly reluctant
to participate in deliberations which range over a broad
front (university mathematicians are all too rarely active
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on university-wide committees); but some of us, while
retaining our intellectual integrity and honesty — indeed,
largely because we bring those qualities to bear — are
outstandingly effective in public office. Let us cite two
enormously successful university presidents, John
Kemeny and Paul Olum, and the man who constitutes for
us the supreme vindication of our argument, the Polish
mathematician Janusz Onyckiewicz, sometime spokes-
man for Solidarity and later Deputy Minister of Defence in
the Solidarity government of Mazowiecki.

Of course we do not deny that there are
counterexamples to our claim that the discipline of math-
ematics imposes standards of integrity and truthfulness
on its practitioners which should inform their activities
outside mathematics — the name of Ludwig Bieberbach
comes all too readily to mind. We must emphasize that
we are only asserting that everyday life offers scope for
the exercise of virtues which should have been developed
by activities devotedto the understanding of mathematics
and research in mathematics. But human frailty is a
factor whose strength and ubiquity we recognize.

COLOPHON

We believe that we do a disservice both to math-
ematics and to education by failing to insist as teachers,
explicitly but, of course, not constantly, on the potential
role of mathematics in the development of character and
morals. For the proper — and, hence, the successful —
pursuit of mathematics requires a dedication to truth and
integrity. We should always be modest in our claims for
ourselves as mathematicians — but there is every rea-
sonforus not to be modest in ourclaims forthe vast ambit
of mathematics itself.
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ENDNOTES

'One must express oneself cautiously. The impressionis
widespread that peer evaluation of NSF research pro-
posals exemplifies the dictum, “You scratch my back, I'll
scratch yours.'

2We were surprised that the great majority of papers
contributed to the Symposium on Mathematics and Hu-
manism at the Winter meeting of the AMS in Louisville in
January, 1990, were concerned with teaching and not
with mathematics itself.

3It would be more accurate to describe it as training,
rather than education. Unfortunately it is usually not even
good training.

“4In the very short term understanding can bring disad-
vantages because the time required to reconstruct an

argument is almost certain to be greater than that required
simply to regurgitate a formula leamed by rote.
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MATHEMATICS FOR LIFE AND SOCIETY

Miriam Lipschutz-Yevick
Retired Associate Professor
Rutgers
The State University, Newark N.J. 07102

ABSTRACT

A course (3 credit) by the title above was developed
and taught to adult evening students as an alternative to
a Basic Skills and Elementary Algebra remedial course.
Quantitative concepts were acquired by extracting these
from concrete social, economic and political problems of
direct interest to the students. Applications considered
were, forinstance: The Consumer Price Index; Optimizing
mass transit fares; Estimating world food and energy
production; Population growth and extinction; Keynesian
muttiplier effect etc.

The student body of University College, Rutgers at
Newark, where | taught for some 25 odd years consisted
of adult evening students of many different backgrounds
and of all ages. Many were minority women who would
getupat5 a.m. to cookdinner, cleanthe house and send
the kids off to school. They came to class after a day's
work and then returned home to do their homework. As
mothersthey saw to it that their children did wellin school.
One of my students between her and her husband's,
raised twelve children all of whom were in high school or
college. They were remarkable people all!

Approximately two thirds of the students received a
failing grade in mathematics orwithdrew. Apoor education
in the lower schools, accumulated anxiety and a lack of
conviction that mathematical skills were of much benefit
to their lives, combined to create a block towards
achievement in the required remedial mathematics
courses. To make matters worse, for a part of the twenty
odd years that | taught these courses (I nearly always
taught a remedial math course per semester), the New
Math fad raged and textbooks demanded long theoreti-
calargumentsto “prove”the validity of the most elementary
algebraic manipulations — while doing little to enhance
the students’ ability and confidence in applying quantita-
tive skills.

“What use is all this mathematics to us? Why do we
have to learn about these x’s and y's?" they complained.
| argued in vain that a quantitative insight into social and
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economic problems and data is essential to each citizen,
if he is not to be deceived by the powers-that-be in our
present day society.

| decided to try a novel approach. Under a grant from
the Rutgers Educational Development Foundation | de-
veloped a course entitied MATHEMATICS FOR LIFE
AND SOCIETY. Concrete practical problems in the
social, economic and political domain of direct interest to
the students were presented; clusters of applicable
mathematical skills and concepts were extracted in the
process of solving these. The intention was to make the
mathematics sufficiently simple so that the students
could learn and see its use simultaneously.

Topics covered in the course of one semester were
Estimation and Powers of Ten; Variables; Linear Equa-
tions and Systems of Equations; Relation Notation;
Functions and Graphs; Mathematical Trees; Combina-
tions and Permutations.

Our first class consisted of a pep talk. |told a story
of a bailiff at King Arthur's court who used Roman
numerals to tally the taxes collected. He was deposed
and beheaded by the King in favor of a “mathematical
genius” like one of my students, who used decimal
notation to perform the same task in no time flat. In the
same vein, skills accessible to many today — such as
solving complex problems with the use of computer
programs — were accessible only to a highly trained
mathematician some thirty years ago. An ordinary pro-
grammer secretly using a computer would be a “math-
ematical genius” in the mathematician’s opinion.

This pep talk led to a review of decimal notation. The
use of a familiar skill eased the students into the course
and recalled power of ten notation.

We followed up with a preliminary discussion of the
Consumer Price Index and proceeded to “stretch” this
socioeconomic construct to cover many mathematical
concepts. (it has been said that “one can stretch a word
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to cover the world.”) A perusal of the C. P. |. table from
its inception in 1913 until today showed how ratios, rates
of change, percentages, proportions can be extracted
from the numbers of the table to reveal the economic
pulse of various time periods. (Why, forinstance, was the
rate of change small in World War |l as compared to
World War 1? Because of price controls!). The concept
of base year calls for the use of variables and formulas.
The purchasing power of the dollar marks the notion of
reciprocal, by which we shall learn to divide fractions. A
compilation of the consumer basket prices overthe years
appears as a matrix. The total cost of the basket,
calculated by weighted items, introduces the summation
notation. The presentation of data in units of one thou-
sand or a million justifies the introduction of scientific
notation and the estimation with powers of ten. The
shifting nature of individual and national priorities in
assembling the items in the basket lends meaning to the
mathematics of combinations and permutations. Finally
a historical discussion of the C. P. |. alerts us to the
importance of quantitative data in the functioning of
modern society.

The course now moved back and forth between the
qualitative and the quantitative, precipitating the math-
ematics — not necessarily in sequential order of topics,
but rather introducing and returning to whatever skill was
relevant — from the applications rather than vice-versa
as is usually done.

SOME EXAMPLES
An application of Powers of Ten and Quadratic Functions

The following excerpt of a letter which appeared in
the Bergen Record under the rubric Port Authority needs
a Math Lesson, is an example of how these concepts
were introduced in class:

... We used the technique of Powers of Ten to
estimate the total of tolls collected at rush hour
daily and yearly on the George Washington
Bridge. We considered the number of cars
passing through a toll booth per hour, multiplied
by the number of toll collectors. We arrived at a
figure of some $42 million per year. This esti-
mate — when checked against the not easily
available Port Authority data was some $8 mil-
lion short. Assuming an average salary per toll
booth collector of $30,000 a year for 300 employ-
ees - this would absorb less than a fifth of the $50
million. Maintenance surely does not absorb the
other $40 million. . .
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Another technique, that of finding the maximum
point of a parabola, was employed to determine
the optimum fare in a situation where every
increase diminishes the number of consumers
(demand under free competition). We foundthat
beyond this maximum increases were counter-
productive and diminished the total revenue.
Perhaps it would behoove the directors of the
Port Authority to study this simple theory. . .

Another Application of Powers of Ten

On the basis of a personal experience of a burglary
in the City of New York and some available data, an
estimate was made of the total yearly loot collected by
burglars inthe City. Onthe assumptionthat 1in 7 of such
crimes result inincarceration, it was found on the basis of
an estimate with powers of ten that it would be consider-
ably cheaper to disburse the average take at break-ins
directly to the perpetrators.

Variables

The much feared x's and y's were introduced via
tracing the progressive symbolization leadingtoincreased
abstraction in the history of writing:

Symbol Pictograph, Ideograph, Syllabary, Let-
ter, Pronoun, Variable, Rebus

Domain Concrete Idea, Object, Word, Sound,
Consonant,Vowel, Name of Object or Per-
son, Natural Number

We introduced the notion of substitution through
considering the pronoun as a variable:

She was a physicist who won the Nobel Prize.

Domain: all women physicists.

She was the first woman physicist to win the
Nobel Prize.

Unique solution: Eve Curie.

From here on we clarify:

X is an even number.
Domain: all numbers.
2x =4

Unique solution: x = 2.

Relation and Function Notation were introduced via
pairings such as (Husband, Wife), (State, Capital),
(Corporation, Rank), (Capital, Interest, Retumn). The
representation in this notation of complex interrelations
between many variables such as, say, the money allocated
to education, child health care, housing, prison con-
struction etc. teaches how to view social problems in a
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more abstract quantitative framework. Relations were
formalized similarly to link taxation and investment poli-
cies to the quality of life and the competitive position of
the U. S. etc.

A social vs. private cost benefit matrix to analyze the
effect of the repealed catastrophic health bill was com-

puted.

Numerical Functions and their Graphs were singled
out as special cases of relations.
Polynomials were exemplified by:

The linear relation betweenyield per acre vs. amount
of fertilizer applied in various regions of the worid. The
slope marks the productivity rate; the intercept the original
level of agricultural production.

Calculating the optimum fare so as to yield the
highest revenue to a mass transit line was used as a
vehicle to discuss quadratic functions.

The dependency ratio, i.e. the ratio of wage earners
to the total population — a quantity on which Social
Security budget projections are based — was approxi-
mated with a third degree polynomial.

Powers of Ten once again were applied to compare
items in the National Budget and to focus on the order of
magnitude of military expenditures. The principle of
exponential growth and the graph of the exponential
function were then related to the growth of military
expenditures and world population. The negative ex-
ponential function was applied to animal population ex-
tinction (blue whales). Step functions were made
meaningful via population pyramids in various geo-
graphical and time periods.

Periodic functions appeared in cyclical fluctuations
ingrain production and the ensuing populationin Western
Europe in the period 1660-1860; and in relation to
predator and prey population data.

The concept of mathematical tree precipitated from
the principle of “Each one Teach Two" applied to wipe out
illiteracy:; similarly it applied to the conclusion that “we are
all one human family” in tracing back the tree of genera-
tions some 2,000 years. The multiplier effect was simi-
larly discussed in relation to the Keynesian Multiplier and
the Social Spending Dividend as applied to the Head
Start Program. Quoting once again from a letter to the
Bergen Record entitled The Social Spending Dividend:
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When Franklin Delano Roosevelt was inaugu-
rated as president in 1933, he sought the advice
of Alexander Sachs of Lehamnn Brothers on
how tofight the depression. Sachs, following the
Keynesian theory of pump-priming, suggested
that every dollar spent by the federal govern-
ment on public works would multiply through
increased economic activity, jobs, and incomes
and eventually produce more than enough tax
revenue to cover the initial outlay.

... The Head Start program, which makes early
childhood education available to disadvantaged
children, by contrast has proven itself to be a
self-multiplying and self-liquidating subsidy. The
program started in 1965, has served and aver-
age of 500,000 three and four yearolds ayear—
at an average cost of $2,500. The total cost of
the program has been on the order of $13 billion.

it has reliably been estimated that for every
$1.00 invested in this program, the savings to
society in expenditures for health, remedial edu-
cation and crime related activities multiplies to
some $4.75.

This suggests that we calculate the dividends
produced by socially useful projects, as they
multiply and generate their own returns over the
long term. Such a model of accounting could
profitably be appliedto, say, subsidized housing,
in preventive health care, and job training of
unemployed youth . . . .

Combinations and Permutations revealed the huge
number of alternative ways of arranging our national
priorities. Or the number of alternative sibling configu-
rations in a four child family. Or the number of dances
based on the nine fundamental movements of the belly
dance. Orthe huge variety of phenotypes resulting from
the combinations in various groups of some twenty odd
amino acids in the genotype’s proteins.

The students were asked to write a term paper
applying some of the skills learned. Topics of papers
were, for instance: Election Campaign Financing,
Gambling, Divorce: How does it relate to Juvenile Delin-
quency?, Owning an Apartment Building, Running a
University.

Students performed distinctly better than in the stan-
dard remedial courses and quite a few went on to more
advanced mathematics courses. The level of enthusi-
asm in the course was very high.
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Below are some typical comments:

Most of the class had afear of math, like I did, and
Prof. Yevick was able, over a few classes, to rid
us of that very real feeling. Within a few weeks
| was able to argue political questions using
concepts | had leamned in class. | could not only
read, but understand the graphs used in the New
York Times. Within ten minutes in a class one
night, lwas able to prove that every personinthe
world can be fed by using available land. The list
can go on and on. The point is that | am more
secure in my political choices, stock options and
general interactions. | even used what Prof.
Yevick taught me in a sermon in my church. . .

| found the course to be arefreshing change from
other math courses | took. Thus far I've taken
Algebra, Probability and Statistics and Calculus
and all of them seemed so irrelevant to the worid.
This course taught math from a practical stand-
point . . . | might not have gone through college
hating math so much and having anxieties about
the topic when it was mentioned.

Math for Life studies has equipped me with
excellent math skills, technical expertise in prob-
lem solving, and the capacity to successiully
leam other higher mathematic principles. Alge-
bra, analytic geometry, statistics and other
mathematical principles were creatively pre-
sented in class. After learning these principles
they were applied to many areas of daily living,
increasing our value and understanding of math

. . . Presently | am studying pre-calculus and
maintaining a B+ grade in this course. Many of
the concepts and skills learned in the Math for
Life course enabled me to do well and expand
my math education . . .

In conclusion, | hope that a new and continuing
student body will be given the opportunity | had
to see afantastic view of the world of mathemat-
S ..

Chapters from my manuscript Mathematics for the
Billions and supplementary class notes and exercises
written by me were used as class materials. (This
manuscript is looking for a publisher.)

Mathematics for lifewas abolished as a course offer-
ingwhen University College was merged into the Rutgers
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Day College. |am interested in disseminating the methods
and materials of this course by collaborating with others
engaged in similarundertakings or by talking to teachers.
The (copyrighted) manuscript is presently in Xeroxed
form. If there is a sufficient demand, it could be put into a
cheaper format for distribution.

To end, let me quote from Lancelot Hogben's best
seller Mathematics for the Million:

Fruitful progress can and will be made in solving
the economic and political problems of the day
when a large number of people will be thinking
together about the same thing.

This course is based onthe belief thatto do so people
must understand the basic quantitative tools with which
to think these problems through.

ADDENDUM
MATHEMATICS AS A CONSCIOUSNESS RAISER
STREET MATHEMATICS

On the two nights when | returned from the meetings
in San Francisco, | neglected to take off my badge. Iwas
addressed on both occasions on the subject of math:
once by an adult student of nursing on the trolley car; by
a cab driver the other time. The future nurse — an A

student except for math — worried about how to master .

the subject which she liked in spite of her struggles with
it. The cab driver had just spent the evening working
fractions with his son and discussed excitedly how the
subject fascinated him, even though it was difficult.

| told my students in the Math For Life And Society
course to think about mathematics when driving home
from class, before going to sleep, while scrubbing floors
or cooking dinner as | did very often. | told them that the
benefits of such thinking extend beyond solving some
particular math problem. The half hour a day, say, spent
removed from pressing day-to-day concems and the
sudden flash of insight revealing the solution to a prob-
lem, help gain a broader perspective and activate clear
thinking. The concentration enriches one’s inner life and
enhances one's general self-confidence. i, so to say,
develops another thinking cap with which to view one’s
personal problems in @ more abstract and social context.

During the latter half of the last century in Westemn
Europe as well as during the Depression years here and
there, free evening lectures for working people by aca-
demic volunteers or others were quite common. | per-
sonally am familiar with the cultural revival brought by
Hans Polak, the founder of the Dutch Diamant Werkers
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Bond, the diamond workers' union, to an impoverished
and brutalized proletariat. He developed —among other
things — an intense interest in Opera. The singing of
arias became an accompaniment to the grinding of
polishing wheels and their musical expertise increased
the self-respect of the workers.

The philosopher, Susanne Langer in her book Mind.
An Essay on Human Feeling, wrote that the human brain
evolved in such a way as to have an independent need
for self-assertion. This hunger of the mind feeds on
imagination and action. Why not try mathematics to feed
this hunger?

There is a lot of appetite for math out there in the
streets, as one finds out soon enough in casual conver-
sations about the subject. (“| wish | had learned more
math.” “l was never good at math because the teacher
didn't make it clear,” etc.) Perhaps we could appease
some of this hunger by teaching relevant math on street
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comers orotherplaces. (Bring a placard saying perhaps:
“Powers of Ten Explained Tonight To Help You See Our
Budget Priorities™) and bringing along enough “tutors™ to
help those who wish to understand. Nor let us forget the
work we might do with even little children. | have seen a
change in self-esteem in a five year old black boy to
whom | taught addition during a long train ride. We could
involve ourselves in Head Start programs and so help
grow a generation of mathematically competent minority
children.

If a large number of people are “to think together
about the same thing," as stated by Lancelot Hogben, we
can do no better than to help them acquire the tools and
thereby the self-confidence to do so.

Let's rap mathematics. Mathematical conscious-

ness raising can stir the imagination and free people's
pleasure in and courage to think.
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