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Abstract

At the intersection of algebraic geometry, number theory, and combina-
torics, an interesting problem is counting points on an algebraic curve over
a finite field. When specialized to the case of elliptic curves, this question
leads to a surprising connection with a particular family of graphs. In this
document, we present some of the underlying theory and then summarize
recent results concerning the aforementioned relationship between elliptic
curves and graphs. A few results are additionally further elucidated by
theory that was omitted in their original presentation.
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Chapter 1

Background

1.1 Symmetric Functions

Our approach to the enumeration of points on curves is closely tied to the
theory of symmetric functions. We therefore develop a bit of this theory so
thatwe candiscuss the enumeration of points in a naturally suited language.

Definition 1.1. A homogeneous symmetric function of degree n is a formal power
series

f (x) �
∑
α

cαxα

where α � (α1 , α2 , . . .) runs over all sequences of nonnegative integers whose sum
is n, cα is a scalar, and xα represents the monomial xα1

1 xα2
2 · · · . Furthermore,

f (xσ(1) , xσ(2) , . . .) � f (x1 , x2 , . . .) for every permutation σ of the positive integers.

It is important to note that, despite their name, symmetric functions
shouldbe regardedaspurely formal power series andnot as actual functions
to be evaluated. The set of all homogeneous symmetric functions of degree
n is denoted byΛn , and the direct sumΛ � Λ0

⊕Λ1
⊕ · · · is called the algebra

of symmetric functions. We now describe three important generators of Λ
and their relation to one another.

Definition 1.2. For each positive integer k, we define the elementary symmetric
function

ek �

∑
i1<···<ik

xi1 · · · xik , k ≥ 1 (with e0 � 1).

In words, ek is the sum of all distinct products of k distinct variables.



2 Background

Definition 1.3. For each positive integer k, we define the complete symmetric
function

hk �

∑
i1≤···≤ik

xi1 · · · xik , k ≥ 1 (with h0 � 1).

Inwords, hk is the sum of all distinct products of k not-necessarily distinct variables.

In both types of symmetric functions, the number of actual variables
has not been specified. Also note the similarity between the two formal
definitions; their relationship is quite analogous to the reciprocity between
choose and multi-choose. In fact, taking the two symmetric functions in n
variables and evaluating at x1 � · · · � xn � 1, we obtain

ek(1, . . . , 1) �
∑

i1<···<ik

1 �

(
n
k

)
hk(1, . . . , 1) �

∑
i1≤···≤ik

1 �

((
n
k

))
� (−1)k

(
−n
k

)
.

We expand upon this a bit further.

Proposition 1.1. Define the endomorphism ω : Λ → Λ by ω(en) � hn 1. Then
ω is an involution, i.e. ω2 is the identity automorphism.

Proof. Define the auxiliary power series

E(t) �
∑
n≥0

en tn , H(t) �
∑
n≥0

hn tn .

Since the en contain products of distinct variables, and the hn products of
not-necessarily distinct variables, we can rewrite these series as

E(t) �
∏

i

(1 + xi t), H(t) �
∏

i

1
1 − xi t

.

For H(t)we have used the closed form expression for a geometric series. It
is then clear that E(t)H(−t) � 1, hence we can equate coefficients and apply
ω to obtain

0 �

n∑
k�0

(−1)n−k hkω(hn−k) � (−1)n
n∑

k�0

(−1)n−kω(hk)hn−k .

1The elementary symmetric functions generate Λ as an algebra, so this does in fact fully
define an endomorphism. (For a proof of this, see Stanley (2001).)
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The last step involved reindexing the summation k → n − k, i.e. reversing
the summation limits. Now consider n � 0; it follows that ω(h0) � 1 � e0.
Consequently, by equating further coefficients the result follows inductively.
�

This result generalizes the special case
�n

k

�
→ (−1)k�

−n
k

�
corresponding

to ek(1, . . . , 1)→ hk(1, . . . , 1) seen above. We now introduce one more class
of symmetric functions.

Definition 1.4. For each positive integer k, we define the power sum symmetric
function

pk �

∑
i

xk
i , k ≥ 1 (with p0 � 1).

Like the homogeneous and elementary symmetric functions, the power
sum symmetric functions also generateΛ. However, it is often convenient to
work with a linear basis for Λ. This brings us to the following proposition.

Proposition 1.2. Recall that a partition λ of a positive integer n is a positive
sequence (λ1 , . . . , λk) where ∑i λi � n. Let Par :�

⋃
n≥0 Par(n), i.e. the set of all

partitions of all positive integers. Then

{hλ � hλ1 · · · hλk }, {eλ � eλ1 · · · eλk }, {pλ � pλ1 · · · pλk };

λ � (λ1 , . . . , λk) ∈ Par
are each additive bases for Λ.

See Stanley (2001) for a proof.

1.1.1 Plethysm

Definition 1.5. Let f ∈ Λ be the sum of monomials
∑

i≥0 xαi . The plethysm g[ f ]
is defined as

g[ f ] � g(xα1 , xα2 , . . .).
Although this appears to depend on the order that the monomials of f

are summed, the operation is in fact well defined because g is symmetric,
hence any reordering of the terms in f yield the same result. The plethysm
g[ f ] is sometimes written as f ◦ g, because in certain contexts the opera-
tion really is composition. We will not use that notation. In general, the
plethystic expression g[ f ] is only defined when the number of monomials
in f equals the number of variables in g.
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Example 1.1. Consider the power symmetric function pk and the arbitrary sym-
metric function f from definition 1.5. Then

f [pk] � f (xk
1 , x

k
2 , . . .) �

∑
i≥0

xαi k � pk[ f ].

It is clear that

(a f + b g)[h] � a f [h] + b g[h] and
( f g)[h] � f [h] · g[h],

so with example 1.1 we can define the plethysm for any functions by using
the power sum symmetric basis. In particular, if g �

∑
λ cλpλ where the cλ

are scalars, then

g[ f ] �
∑
λ

cλpλ[ f ] �
∑
λ

cλ
`(λ)∏
i�1

f (xλ1
1 , x

λ2
2 , . . .).

1.2 The Zeta Function of a Curve

To study the numbers Ns of points on a curve C over the finite field Fqs , we
consider the generating function

∑
s≥1 Ns us . As with the case of symmetric

functions, we will deal with these as formal power series.

Definition 1.6. The zeta function of a curve C is given by the series

ZC(u) � exp *
,

∞∑
s�1

Ns us

s
+
-
,

where we are using the identity exp(u) � ∑
s≥0 us/s!.

Although the zeta function essentially encodes the same information as∑
s≥1 Ns us , it turns out that the zeta function is more convenient to work

with.

Example 1.2. Consider the circle at infinity in the finite projective plane, i.e. z � 0.
By definition, this is the set of points (x , y , 0) ∈ P2(Fqs ), and the number of such
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points equals the number of points in P1(Fqs ). Therefore Ns � qs + 1, so

∞∑
s�1

Ns us

s
�

∞∑
s�1

(qs + 1)us

s

� *
,

∞∑
s�1

us

s
+
-
+ *

,

∞∑
s�1

qs us

s
+
-

� − ln(1 − u) − ln(1 − qu)
� − ln((1 − u)(1 − qu)).

The third line follows from the identity
∑

s≥1 ws/s � − ln(1 − w). Hence

Zz(u) � 1
(1 − u)(1 − qu) .

Akey feature of this function is that it is rationalwith integer coefficients.
This leads us to an important theorem regarding the enumeration of points
on elliptic curves.

Theorem 1.1. (Weil) Let f (x , y , z) ∈ Fqs [x , y , z] be a nonzero, nonsingular
homogeneous polynomial. Then

Z f (u) � P(u)
(1 − u)(1 − qu)

where P(u) is a polynomial with integer coefficients, with degree equaling twice the
genus of the curve, and P(0) � 1.

Recall that a polynomial is nonsingular if the curve it defines has a
unique tangent line at every point, and also that the genus of a curve is
defined as g �

1
2 (d − 1)(d − 2).

Corollary. If E is an elliptic curve, then

ZE(u) � 1 − (α1 + α2)u + α1α2u2

(1 − u)(1 − qu) .





Chapter 2

Enumerating Points on Elliptic
Curves

Amotivating result for our forthcoming investigation is that, for an algebraic
curve of genus g, the number of points over the finite fields Fq , Fq2 , . . . , Fq g

is sufficient data to determine the number of points over any higher field
extension. This leads one to question how exactly the points over these
higher field extensions relate to those over the first g. In the remaining
discussion we will focus on the case g � 1.

2.1 Preliminary Results

In the background sectionwehave alreadybegun to touchupon the enumer-
ation of points on algebraic curves. Combining definition 1.6with the corol-
laryof theorem1.1, it is seenbyequating coefficients thatNk � 1+qk

−αk
1−α

k
2.

Or, in plethystic notation, Nk � pk[1+q−α1−α2]. Since the case k � 1 yields
the relation α1 + α2 � 1+ q −N1, it follows that q and N1 fully determine all
Nk .

Theorem 2.1 (Garsia).

Nk �

k∑
i�1

(−1)i−1Pi ,k(q)N i
1

where the Pi ,k are polynomials with positive integer coefficients.

The Pi ,k in fact relate directly to wheel graphs and their spanning trees.
In particular, the quantity 1 + qk

− Nk can be shown to satisfy the same
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recurrence relation as a generalization of the Lucas numbers. A bĳection is
then established between the generalized Lucas numbers and the spanning
trees of a wheel graph. See Musiker (2007) for details.

Other aspects of the zeta function yield combinatorial identities as well.
For instance, using the symmetric function identity

exp *
,

∑
k≥1

pk uk

k
+
-
�

1∑
k≥0(−1)k ek uk

and the fact that Nk � pk[1 + q − α1 − α2], we can write the zeta function as

ZE(u) � 1∑
k≥0(−1)kEk uk

where Ek � ek[1 + q − α1 − α2]. It turns out that the Ek can be obtained by
evaluating a bivariate polynomial generalization of the Fibonacci numbers
at the point (q ,−N1). So like the Nk , the Ek also have a natural formula in
terms of q and N1. A proof of this is also given in Musiker (2007). Lastly,
consider the symmetric function identity

exp *
,

∑
k≥1

pk uk

k
+
-
�

∑
k≥0

hk uk .

Following the above reasoning, the zeta function has yet another form

ZE(u) �
∑
k≥0

Hk uk

where Hk � hk[1 + q − α1 − α2].

2.2 (q , t)-Wheel Graphs

As mentioned above, the equation in Theorem 2.1 leads to a connection
with wheel graphs. We define the (q , t)-wheel graph on k + 1 vertices
by the following construction. Begin with the cycle graph on k vertices,
with edges directed counter-clockwise. Then include an additional central
vertex, which is attached by t bidirectional spokes to each rim vertex. Lastly,
attach q clockwise edges between each pair of adjacent rim vertices. This
construction will be denoted by Wk(q , t). See Fig. 2.1 for an example.

With this construction, Theorem 2.1 may be restated very cleanly.
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Figure 2.1 The (q , t)-wheel graph W6(3, 2) and two directed spanning trees
with central roots.

Theorem 2.2. Let Wk(q , t) denote the number of directed spanning trees of
Wk(q , t) with all edges directed towards the central vertex. Then

Nk � −Wk(q ,−N1).
The expression −Wk(q ,−N1) does not admit the same enumerative in-

terpretation as given above, because it would refer to a graph containing
negative numbers of edges. This result is in similar spirit to a theorem due
to R.P. Stanley, which gives a combinatorial interpretation to the evalua-
tion of a graph’s chromatic polynomial on negative integers. In particular,
|χ(−1)| equals the number of acyclic orientations of the graph. See Stanley
(1972) for details.

In light of the generating function identities obtained in section 2.1,
Theorem 2.2 suggests an analogous investigation of the generating function

Wq ,t(u) � exp *
,

∞∑
k�1

Wk(q , t)uk

u
+
-
.

Using Theorem 2.2 and the corollary of Theorem 1.1,

Wq ,N1(u) � 1

exp
(∑
∞

k�1
Nk |N1→−N1 uk

u

)
�

(1 − u)(1 − qu)
1 − (1 + q + N1)u + qu2

where in the second step Nk is to be viewed as a function of N1. Factoring the
denominator as 1− (1+ q + N1)u + qu2 � (1− β1u)(1− β2u), we can expand
the generating function as a product of two geometric series. Matching
coefficients then yields

Wk(q ,N1) � (−1)k
+ (−q)k

+ βk
1 + β

k
2 � pk[−1 − q + β1 + β2];
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note the similarity compared to Nk � pk[1+q−α1−α2]. The samegenerating
function identities used in section 2.1 can also be applied to express Ek and
Hk in terms of this “alphabet” −1 − q + β1 + β2. The results are compiled in
the following table.

Elliptic Curves (q , t)-Wheel Graphs

Exponential generating function 1−(1+q−N1)u+qu2

(1−u)(1−qu)
(1−u)(1−qu)

1−(1+q+N1)u+qu2

Alphabet 1 + q − α1 − α2 −1 − q + β1 + β2

Nk (Wk for wheel graphs) pk[1 + q − α1 − α2] pk[1 + q − α1 − α2]
Hk hk[1 + q − α1 − α2] (−1)k−1ek[1 + q − α1 − α2]
Ek ek[1 + q − α1 − α2] (−1)k hk[1 + q − α1 − α2]



Chapter 3

Elliptic Curves and Critical
Groups of Wheel Graphs

The previous chapter connected elliptic curves to wheel graphs by equating
their numbers of points and spanning trees, respectively. Recall, however,
that to establish this equivalence we had to construct “graphs” with neg-
ative numbers of edges. Thus the most basic description using a vertex
set and edge set does not apply, but matrix representations are perfectly
admissible. This chapter is largely devoted to the relation between these
matrix representations and elliptic curves.

3.1 Elliptic Curve Hierarchy

Several key properties of elliptic curves have analogous statements concern-
ing critical groups (as yet undefined) of wheel graphs. These properties of
elliptic curves are now briefly described.

Let E be an elliptic curve (over an unspecified field) and q � pk for some
prime p and positive integer k. Recall that there is an inclusion of fields

Fq ⊂ Fqk1 ⊂ Fqk2 ⊂ · · · ⊂ Fp

whenever the divisibilities ki |ki+1 hold, andwhere Fp is the algebraic closure
of Fq . This implies a subgroup series

E(Fq) ⊂ E(Fqk1 ) ⊂ E(Fqk2 ) ⊂ · · · ⊂ E(Fp)
with the same divisibility constraints ki |ki+1. One more important feature
is the Frobenius endomorphism φ : x 7→ xq , which is an element of (and in



12 Elliptic Curves and Critical Groups of Wheel Graphs

fact generates) the Galois group Gal(Fq`/Fq). Since φ must fix the ground
field, extending this map to act on points by φ : P � (x , y) 7→ (xq , yq) has
the property that

φk(P) � P if and only if P ∈ E(Fqk ).
In other words, each group E(Fqk ) can be defined by ker(1 − φk). See
Silverman (2009) for a more detailed discussion.

3.2 Critical Groups

Let G � (V, E) be a (possibly) directed graph, A(G) be the usual adjacency
matrix of G, and ∆(G) be the diagonal matrix such that ∆(G)vv is the out-
degree of vertex v. (∆(G) is usually referred to as the degree matrix of G.)
The Laplacian is defined as Q(G) � ∆(G) − A(G).
Definition 3.1. The critical group K (G) of a graph G is the cokernel of the
transpose of the Laplacian Q(G) acting on Z|V |:

K (G) :� coker Q(G)T � Z|V |/Q(G)TZ|V | .

The dual critical group of G is similarly defined to beK ∗(G) :� coker Q(G).
Definition 3.2. The reduced critical group K(G) of G is the torsion subgroup of
K (G). Similarly, the reduced dual critical group K∗(G) is the torsion subgroup of
K
∗(G).
The relationship between a graph and the structure of its critical group

is, in general, not well understood. There exist, however, well-behaved
examples. See Biggs (1999) for a complete classification in the case of simple
wheel graphs.

Definition 3.3. Let G � (V, E) be a digraph and π � (π1 , . . . , πp) be an ordered
partition ofV . The partitionπ is said to be equitable forG if there exist nonnegative
integers Fi j and Ri j for all 1 ≤ i , j ≤ p such that every vertex in πi is the initial
vertex of exactly Fi j edges having terminal vertices in π j , and every vertex in π j is
the terminal vertex of exactly Ri j edges with initial vertex in πi .

Definition 3.4. Let G be a digraph and π be an equitable partition of G. The
quotient of G by π, denoted G/π, is the graph whose adjacency matrix is given by
Fi j .
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Figure 3.1 A digraph (le�) and its quotient (right) by an equitable partition
marked by vertex color.

Figure 3.1 illustrates an example of a directed graph and its quotient by
an equitable partition. Not surprisingly, the critical groups of a graph and
one of its quotients are related. The following theorem makes this precise.

Theorem 3.1 (Wagner). Let G � (V, E) be a strongly connected graph and
π � {π1 , . . . , πp} be an equitable partition of G. Then there exists a natural
injective homomorphism ψ : K (G/π) → K (G) given by ψ(x) � Px, where P is
the V × {1, . . . , p} matrix with entries

Pvi �



1 if v ∈ πi ,

0 if v < πi .

The restriction of ψ to the torsion subgroup ψ
�
tor : K(G/π) → K(G) is also

injective.

Under the hypotheses of Theorem 3.1, K (G/π) may be regarded as a
subgroup ofK (G) with the inclusion ψ.

3.3 Critical Groups of (q , t)-Wheel Graphs

Throughout this section, we will denote K(Wk(q , t)) by K(k , q , t). Our gen-
eral aim is to map properties of the sequence {K(k , q , t)}k≥1 onto those of
elliptic curves given above.

In Musiker (2009), Musiker defines the critical group of a wheel graph
using not the Laplacian Q, but the reduced Laplacian Q0 obtained by delet-
ing the row and column corresponding to the central vertex. This structure
is manifestly not the critical group of any graph, but is in fact isomorphic to
the reduced critical group.
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Proposition 3.1. The “critical group” defined using the reduced Laplacian Q0 of
a wheel graph Wk(q , t) is isomorphic to the reduced critical group K(k , q , t).

coker(QT
0 (Wk(q , t))) � K(k , q , t).

Proof. For awheel graphWk(q , t), the Laplacian is given by the (k+1)×(k+1)
matrix

Q �



1 + q + t −q 0 · · · 0 −1 −t
−1 1 + q + t −q 0 · · · 0 −t
· · · · · · · · · · · · · · · · · · −t
0 · · · −1 1 + q + t −q 0 −t
0 · · · 0 −1 1 + q + t −q −t
−q 0 · · · 0 −1 1 + q + t −t
−t −t −t · · · −t −t kt



,

where the last row and column correspond to the central vertex. By adding
the first k rows to the last row, and then the first k columns to the last
column, we obtain the matrix

Q′ �



1 + q + t −q 0 · · · 0 −1 0
−1 1 + q + t −q 0 · · · 0 0
· · · · · · · · · · · · · · · · · · 0
0 · · · −1 1 + q + t −q 0 0
0 · · · 0 −1 1 + q + t −q 0
−q 0 · · · 0 −1 1 + q + t 0
0 0 0 · · · 0 0 0



.

SinceQ andQ′ are relatedby invertiblematrices, coker(QT) � coker(Q′T).
Note also that the image of Q′T is isomorphic to the image of QT

0 , the only
formal difference being the presence of a zero in the last entry of every
element in Im Q′T . It follows that coker(Q′T) � coker(QT

0 ) ⊕ Z, thus

K (Wk(q , t)) � coker(QT
0 ) ⊕ Z.

In Musiker (2009) it is shown that coker(QT
0 ) has finite order, and therefore

must be isomorphic to the reduced critical group. �

Proposition 3.2. Let E be an elliptic curve and Nk be the number of points of E
over the finite field Fqk . Then Theorem 2.2 is equivalent to Nk � |K(k , q ,−N1)|.
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Figure 3.2 A wheel graph K(12, 0, 1) (le�) and its quotient K(3, 0, 1) (right)
by a partition using l � 3 parts marked by color.

Proof. The Matrix-Tree theorem tells us that for a connected, undirected
graph G, the order of K(G) equals the number of spanning trees of G. A
slight extension of this theorem shows that for a digraph G and reduced
Laplacian Qv(G) obtained by deleting the row and column associated with
vertex v, the order of coker(QT

v ) is equal to the number of directed spanning
trees of G with sink v.

From Prop. 3.1 it follows that | coker(QT
0 )| � |K(k , q , t)|, and then sub-

stituting t → −N1 yields the desired result. �

Wenow turn our attention to the structure of {K(k , q , t)}k≥1 itself. Recall
Theorem 3.1, which provides an injective homomorphism between critical
groups whenever one of their associated graphs is a quotient of the other.
There are in fact very natural equitable partitions on wheel graphs; in
particular, if l divides the number of rim vertices k, then we can form parts
bywalking around the rim and repeatedly counting off to l so that each part
contains k/l vertices. The hub vertex comprises its own part. Taking the
quotient by this partition yields another wheel graph with l rim vertices.
See Figure 3.2 for an example.

This implies the existence of an injective homomorphism

ψk2 ,k1 : K(k1 , q , t)→ K(k2 , q , t)
whenever k1 divides k2. As mentioned above, we may thus view K(k1 , q , t)
as a subgroup of K(k2 , q , t) when k1 | k2. This is the exact partial ordering
as given for elliptic curves, where E(Fqk

1
) ≤ E(Fqk

2
) precisely when k1 | k2.
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By definition of themap ψ given in Theorem 3.1, we have ψk3 ,k2 ◦ψk2 ,k1 �

ψk3 ,k1 . Therefore we can form the direct limit

K(q , t) :� lim
−→

k≥1
{K(k , q , t)}

so that every critical group K(k , q , t) may be naturally identified with a
subgroup of K(q , t). This direct limit is analogous to the field Fp . Closer ex-
amination of themaps ψk2 ,k1 reveals that they simply repeat the input vector
k2/k1 times. One is then lead to view K(q , t) as the set of all periodic vectors
w � (. . . , w−1 , w0 , w1 , . . .), so that the subgroup of K(q , t) isomorphic to
K(k , q , t) is all the vectors of period k.

Define the shift map ρ : K(q , t)→ K(q , t) by
ρ(. . . , wi−1 , wi ,wi+1 , . . .) � (. . . , wi−2 , wi−1 , wi , . . .).

Then a theorem due to Musiker states that for all k ≥ 1, q ≥ 0, and t ≥ 1,

K(k , q , t) � Ker(1 − ρk).
The results of this chapter are summarized by the following correspon-

dences:

K(k , q , t) ←→ E(Fqk )
K(q , t) ←→ E(Fp)

Frobenius map π ←→ shift map ρ

where K(k1 , q , t) ≤ K(k2 , q , t) if and only if E(Fqk1 ) ≤ E(Fqk2 ), and K(k , q , t) ≤
K(q , t), E(Fqk ) ≤ E(Fp) for all k ≥ 1.

The reader may be left wondering what can be said regarding the inter-
nal structure of K(k , q , t) as compared to that of E(Fqk ). We end the chapter
with a theorem addressing a only special case of this question, albeit in a
very satisfying way.

Theorem 3.2. Let E be an elliptic curve with endomorphism ring End(E) � Z[π],
where π is the Frobenius map. As before, N1 � |E(Fq)|. Then

E(Fqk ) � K(k , q ,−N1).
For a proof of this, see Musiker (2009).
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