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Abstract

The chromatic polynomial, PΓ(x) of a graph Γ, is a polynomial that when
evaluated at a positive integer k, is the number of proper k colorings of the
graph Γ. We can then find the orbital chromatic polynomial OPΓ,G(x) of
a graph Γ and a group G of automorphisms of Γ, which is a polynomial
whose value at a positive integer k is the number of orbits of k-colorings of
a graph Γwhen acted upon by the group G. By considering the roots of the
orbital chromatic and chromatic polynomials, the similarities and differ-
ences of these polynomials is studied. Specifically we work toward proving
a conjecture concerning the gap between the real roots of the chromatic
polynomial and the real roots of the orbital chromatic polynomial.
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Chapter 1

Introduction

This thesis shall focus on chromatic polynomials, orbital chromatic polyno-
mials, and the study of the roots of these polynomials. For a graph Γ, the
chromatic polynomial of Γ denoted PΓ(x), when evaluted at some positive
integer k is the number of proper k-colorings of Γ. Chromatic polynomials
satisfy a deletion-contraction formula, which establishes an inductive rela-
tionshipwhere the chromatic polynomial of a graph can be expressed as the
difference of chromatic polynomials of graphs with fewer edges (Birkhoff
and Lewis, 1946). This fact together with bases cases establishes that chro-
matic polynomials are polynomials (Birkhoff and Lewis, 1946). Chromatic
polynomials were first introduced by Birkhoff as a tool to solve the 4-Color
Conjecture which states,

Problem 1. (Birkhoff, 1912) For any planar graph Γ, the chromatic polynomial of
Γ when evaluated at 4, is greater than 0 (ie PΓ(4) > 0).

WhenBirkhofffirst introduced andused chromatic polynomials he used
methods and techniques which were heavily algebraic. To this day, the
method of studying these polynomials is strongly influenced by the alge-
braic techniques that Birkhoff used.

Although Birkhoff did not succesfully prove the 4-Color Conjecture,
Birkhoff and Lewis (1946) did prove that for a planar graph Γ that PΓ(x) > 0
for x ∈ N and x ≥ 5 . The study of the 4-Color Conjecture and develop-
ment of chromatic polynomials led the mathematical community to have
an interest in the roots of this polynomial, which in turn has led to many
rich and interesting developments. Although planar graphs were the first
to be studied there have been many developments concerning the roots of
chromatic polynomials which were not specific to any type of graph. Sokal
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(2004) proved that the complex roots of chromatic polynomials were dense
in C, while Thomassen (1997) proved, that real chromatic roots are dense
in [ 32

27 ,∞).
While there has been much study of chromatic polynomials, chromatic

polynomials seem to overcount the number of colorings of a graph in some
respects, since it is possible to have two distinct colorings where one color-
ing can be obtained from another by a symmetry of the graph. The orbital
chromatic polynomial of a graph Γ with respect to a group G of automor-
phisms of the graph, denoted OPΓ,G(x), is a way of counting k-colorings
that does not distinguish between two k-colorings if one can be obtained
from the other by an automorphism. We can say thismore rigorously as, the
orbital chromatic polynomial of a graph Γ and a group of automorphisms
of the graph G, denoted OPΓ,G(x), when evaluated at a positive integer
k is the number of G-orbits of proper k-colorings of Γ. In Chapter 2 we
shall define both chromatic and orbital chromatic polynomials, and give
examples of deriving the chromatic and orbital chromatic polynomials for
certain graphs.

The study of the roots of orbital chromatic polynomials was the focus
of a paper written by Cameron and Kayibi (2007) where it was proven that
the real orbital chromatic roots were dense in R. In this same paper the
following problem was posed,

Problem 2. (Cameron and Kayibi, 2007) Are the real roots of OPΓ,G(x) bounded
above by the largest real root of PΓ(x)?

In 2013, Kim, Mun, and Omar (2014), proved that the real roots of
OPΓ,G(x) were not bounded above by real roots of PΓ(x). The focus of this
thesis it towork toward the conjecture posed byKim,Mun, andOmar (2014)
which states,

Conjecture 3. For any N > 0, there exists a graph Γ and an automorphism group
G of Γ for which OPΓ,G(x) has a root at least N larger than the real root of PΓ(x)?



Chapter 2

Introduction to the Orbital and
Chromatic Polynomials

In order to discuss chromatic and orbital chromatic polynomials, we first
need to understand some basics from graph and group theory. Let us begin
by introducing some elementary concepts from graph theory.

Definition 4. A graph Γ = (V , E) is a set V called vertices and a set E called edges
where each edge is a 2-element subset of V .

Generally, when graphs are depicted, the set of vertices are depicted as
points, and lines are drawn to connect two points if they form an edge of
the graph. Consider the example of a graph in Figure 2.1. We see that A,B,
C, D, E, F are the vertices of the graph and {A,B}, {A, C}, {A, E}, {B, C}, {B,
D}, and {C, F} are the edges of the graph. Now that we have defined what a

Figure 2.1 Example graph
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Figure 2.2 The 4-coloring described in Example 8

graph is and given an example, let us consider some definitions concerning
different properties of graphs.

Definition 5. Two vertices in a graph are said to be adjacent if they form an edge.

Definition 6. Given a graph Γ = (V, E) and some vi ∈ V , the degree of vi denoted
de g(vi) is the number of vertices to which vi is adjacent.

Our paper will concern itself with proper graph colorings:

Definition 7. A proper k-coloring of a graph Γ, is a function c : V → {1, ..., k}
such that c(u) , c(v) for any edge {u , v}.
Example 8. We shall construct one of the 4-colorings for the graph from Figure
2.1. The 4 colors which we will use are blue, green, orange and red. We shall begin
by coloring vertex A red. We know that no two adjacent vertices can be colored with
the same color so when we go to color vertex B we know that it cannot be red so we
shall color it green. We then see that vertex C is adjacent to A and B meaning that
it cannot be colored red or green so we shall color it orange. Let us now consider
vertex D, we see that we shall color it blue since its only adjacent to vertex A which
is red. By this same logic we shall color vertices E and F both blue as well. We see
that the coloring we have described can be seen in Figure 2.2.

Now that the concept of a proper k-colorin g has been introduced we
can define the chromatic polynomial.

Definition 9. (Birkhoff, 1912) For a graph Γ and a positive integer k, let PΓ(k)
be the number of proper k-colorings of the graph Γ. We shall refer to this as the
chromatic polynomial.
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a. Γ b. Γ \ {A, B}
Figure 2.3 A graph Γ and Γ \ {A, B}

We have defined PΓ(k) to be the number of k-colorings of a graph Γ. Let
us now compute PΓ(k) for a graph Γ.
Example 10. Let us compute the chromatic polynomial for the graph in Figure
2.1. We shall begin by noting that the vertices A, B, and C are all adjacent to one
another. Without loss of generality we shall begin by counting the number of ways
to color vertex A first. Since vertex A is the first to be colored, there are k different
colors which vertex A could be colored. We shall now consider the number of ways
to color vertex B. We see that vertex B is adjacent to vertex A which we just colored
so there are k − 1 color options independent of the choice of color A for vertex B. Let
us now consider vertex C, we see vertex C is adjacent to both vertex A and vertex B
which have already been colored, so there is k − 2 color choices independent of the
color choices of vertices A and B for this vertex. So, there is k(k − 1)(k − 2) ways to
color these three vertices. Now let us consider the number of ways to color vertices
D , E and F, we see these vertices are each adjacent to one previously colored vertex
so there are k − 1 possible color choices for each of these vertices. We can conclude
that there is a total of k(k − 1)4(k − 2) k-colorings for the given graph. In other
words the chromatic polynomial of the given graph Γ, is PΓ(k) = k(k − 1)4(k − 2).

As mentioned previously PΓ(k) satisfies a deletion-contraction formula.
We shall now define deletion and contraction of edges for graphs.

Definition 11. For a given graph Γ and an edge e from its edge set, Γ \ e called Γ
delete e, is the graph which is created by removing the edge e from the graph Γ.

Figure 2.3 gives an example of a graph Γ and Γ \ e.
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a. Γ b. Γ/{A, B}
Figure 2.4 A graph Γ and Γ/{A, B}

Definition 12. For a given graph Γ and an edge e from its edge set, Γ/e called Γ
contract e, is the graph which is created by removing the edge e from Γ and replacing
the two vertices which were adjacent through e with a single vertex. All vertices
which were adjacent to either of the two vertices will now be adjacent to this new
vertex.

Figure 2.4 gives an example of a graph Γ and Γ/e.

Intuitively it would seem as if there should be some relationship between
PΓ(x), PΓ\e(x) and PΓ/e(x). We see that there is a close relationship between
these chromatic polynomials.

Theorem 13. For a given graph Γ � (V, E) and {u , v} ∈ E,

PΓ(k) � PΓ\{u ,v}(k) − PΓ/{u ,v}(k).

Proof : Let us begin by considering PΓ\{u ,v}(k) for a specific k. We know
that PΓ\{u ,v}(k) will contain all of the colorings that were possible upon Γ
because Γ \ {u , v} is simply Γ with the edge {u , v} deleted. Also note that
PΓ\{u ,v}(k) will contain colorings that PΓ(k) does not. The extra colorings
that are included in Γ \ {u , v} which are not proper colorings of Γ are all
colorings that can be attained since there is no edge between u and v. These
are exactly the set of proper colorings of Γ \ {u , v} where u and v are the
same color. The number of proper colorings of Γ \ {u , v}where u and v are
the same color is the number of proper colorings of Γ/{u , v}. Recall that
Γ/{u , v} is the same as Γ except instead of u and v being represented as
two separate vertices there is a single vertex which was adjacent to all of the
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vertices that are adjacent to u and v. We see that when we are considering
Γ/{u , v} that when we color the vertex which represents the contracted
vertices u and v in Γ, this would be the same as coloring the vertices u and
v the same color in Γ \ {u , v}. So we see that the number of colorings of
Γ \ {u , v} which are not proper k-colorings of Γ is exactly the number of k-
colorings of Γ/{u , v}. In conclusionwe see that for a specific k if we subtract
the number k-colorings of Γ/{u , v} from the number of proper −kcolorings
of Γ \ {u , v} this will give us the number of proper k-colorings of Γ. Thus
proving PΓ(k) � PΓ\{u ,v}(k) − PΓ/{u ,v}(k). �

Theorem 13 allows us to show that PΓ(k) is indeed a polynomial in k.

Theorem 14. The chromatic polynomial is a polynomial.

Proof : We shall prove the chromatic polynomial is a polynomial using
induction on the number of edges. Let us begin by stating our base case.
For our base case, we shall use the case where there are 0 edges, meaning
that we simply have a collection of vertices. Suppose there are m vertices,
where m is a non-negative integer. Since there are no edges each vertex
can be colored any of the k colors so the chromatic polynomial is km , which
is a polynomial. We see that when m � 0 that k0 � 1 which is still a
polynomial, so we see that the chromatic polynomial is still a polynomial
on an empty graph. We can now conclude that the chromatic polynomial is
in fact a polynomial for our base case. We shall nowmake the our inductive
hypothesis,we shall say that for anygraphwith n−1 edges that the chromatic
polynomial is a polynomial. For our inductive step let us now consider the
chromatic polynomial of a graph which contains n edges. We know from
Theorem 13 that the chromatic polynomial of the graph can be written as
the difference of the chromatic polynomial of the graph with some edge e
delete minus the chromatic polynomial of the graph with that same edge
e contracted. We see that both the graph with the edge deleted and the
graph with the edge contracted have n − 1 edges, which from the inductive
hypothesis means that thier chromatic polynomials are polynomials. Since
the chromatic polynomial of our graph with n edges can be written as the
difference of two polynomials we conclude that it is also a polynomial. We
have thus proved that the chromatic polynomial of a graph is a polynomial
using induction. �

From our calculation of the chromatic polynomial we see there are many
colorings which are very similar due to the symmetry of the graph we are
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a. A graph b. A graph with the colorings permuted
by 120◦

Figure 2.5 2 di�erent colorings of the same graph under the chromatic poly-
nomial

considering. Consider the colorings of the graph in Figure 2.5. These two
colorings are different even though one coloring can be attained from the
other by a rotation of the graph by an automorphism. We see that the orbital
chromatic polynomial is away to count the number of k-colorings of a graph
which accounts for the symmetry of the graph. In order to understand the
orbital chromatic polynomial we must first consider some concepts from
group theory.

Let us begin by introducing the idea of a group action.

Definition 15. (Dummit and Foote, 2004) For a group G and a set S, a group
action denoted φg , is a bĳection from S to itself,

φg :S→ S,

with the property that,

φg · (φh · s) � φgh · s ∀g , h ∈ G, ∀s ∈ S.

To help clarify this concept let us consider an example.

Example 16. Let us begin by noting that graphs are abstract mathematical objects
made up of two sets, as defined in Definition 4. For example, let G be the group
generated by, g � (AC)(B), which is a subgroup of the symmetric group on the
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Figure 2.6 Path graph on 3 vertices

symbols {A, B, C}. Throughout this paper we shall be talking about group actions
as being rotations of certain physical representations of graphs, since it provides
a simple way to give good visual examples. Let us now consider the group G
composed of rotations by 180◦. We see that G = {0◦ , 180◦}. Let S be the set of
k-colorings of the path graph on three vertices depicted in Figure 2.6. Let us now
consider the elements of G acting upon our graph. We see that when the identity
element of the group 0◦, acts upon the graph that each k-coloring will remain the
same. When the element of the group which represents rotation by 180◦ acts upon
the graph we see that each coloring will be mapped to another coloring where the
colors given to A and C switch while the color of vertex B stays the same. We see
that we have now completely described the the group actions of our given group G
on the given set.

We see that for a given set that there are different ways to describe
the effects of a group action on that set, one way is by grouping together
different elements of the set by how they behave under the group action.

Definition 17. (Dummit and Foote, 2004) For a group G and a set S on which G
acts, the orbit of an element s ∈ S, denoted Gs, is all of the elements in S to which s
can be sent to under different elements of the group G acting on S. That is,

Gs = {g · s |g ∈ G}.
To help clarify the concept of orbits let us consider the orbits of a specific

set when acted upon by a specific group.

Example 18. Let us consider the orbits of the set of k-colorings of the path graph
on 3 vertices acted upon by the group G generated from 180◦ rotation. In Example
16 we considered all of the group actions of the given group on the given set. For
the group element which is rotation by 0◦, we see this group action will send any
k-coloring to itself. The group element of rotation by 180◦ will send a k-coloring
to another k-coloring which has the same color for vertex B but where the colors
of vertices A and C are flipped. We can then conclude if we are considering a k-
coloring where vertices A and C are the same color that their orbit will include only



10 Introduction to the Orbital and Chromatic Polynomials

that k-coloring because, rotation by 180◦ will return the same k-coloring. However
the orbit of a k-coloring where vertices A and C are not the same color will contain
itself and a k-coloring which has the same color for vertex B but where the colors of
vertices A and C are flipped. We see that we have now described the orbits of all
possible types of elements of our given set.

Let us now consider another definition from group theory.

Definition 19. (Dummit and Foote, 2004) For a group G and a set S on which G
is acting on, for any s ∈ S the stabilizer of s in G denoted Gs is,

Gs � {g ∈ G|g · s � s}.
In other words the stabilizer of s in G, for some fixed s in S is the set of elements of
G such that when those elements act upon the element s, the element s gets sent to
itself.

To help clarify the concept of stabilizers let us consider the stabilizers
related to a given group and set.

Example 20. We shall consider the stabilizers of the k-colorings of the path graph on
3 vertices depicted in Figure 2.6 and the group G of 180◦ rotations, G = {0◦ , 180◦}.
In Example 18 , we showed that for any k-coloring where vertices A and C were
the same color that both rotation by 0◦ and 180◦ would return the same coloring
so we see that the stabilizer of a k-coloring where vertices A and C are the same
color contains both rotation by 0◦ and 180◦. We also found in Example 18, that for
k-colorings where vertices A and C were not the same color that while rotation by 0◦
returned the same coloring that rotation by 180◦ did not. We see that the stabilizer
of a k-coloring where vertices A and C are not the same color contains only rotation
by 0◦. We have now described the stabilizer of all possible types of elements of our
given set.

Burnside’s Lemma describes an interesting relationship between the
number of orbits and stabilizers of a given group acting upon a given set.
But in order to consider Burnside’s Lemmawemust beginwith a definition.

Definition 21. (Dummit and Foote, 2004) Let G be a finite group of permutations
on a set S. For g ∈ G,

fix(g) = {s ∈ S|g · s � s}.
Lemma 22. (Burnside’s Lemma) If G is a finite group of permutations on a set S,
then the number of orbits of G on S is
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1
|G|

∑
g∈G | f ix(g)|.

Proof : Let us begin by noting that if we consider the sum of | f ix(g)| over
all g ∈ G that this sum will be equal to the sum of the stabilizers s over G
for all s ∈ S, since a stabilizer of an element s is an element from the group
g such that g ∗ s � s. We see,∑

g∈G | f ix(g)| � |{gs � s |∀g ∈ G, s ∈ S}| � ∑
s∈S |Gs |

where Gs is the set of all stabilizers of s. From this we can conclude that,∑
g∈G | f ix(g)| � ∑

s∈S |Gs |.
We know that for a given s ∈ S that |Gs ||Gs | = |G| by the Orbit-Stabilizer
theorem. So if we sum all elements of G one orbit at a time we find,∑

g∈G | f ix(g)| � ∑
s∈S |Gs | � |G|∗(number of orbits).

So we find the number of orbits of G on S is,
1
|G|

∑
g∈G | f ix(g)|.

�

Let us now consider the contraction of graphs due to elements of a group
of automorphisms of that graph, we will use this later on, along with other
concepts from group theory to give a formula for the orbital chromatic
polynomial.

Definition 23. Given a graph Γ and a group of automorphisms G of Γ, for g ∈ G,
Γ/g is defined in the following way: find all vertex cycles created by g acting on
Γ, where a vertex cycle is all vertices that a vertex gets mapped to under repeated
actions of g on Γ. Contract all vertices in a vertex cycle to a single vertex. If at
least two elements in the vertex cycle are adjacent we shall instead of contracting
the vertices of that cycle to a vertex instead contract this cycle to a loop.

To help clarify this concept let us now consider an example.

Example 24. Let us consider the vertex cycles of the given Γ in Figure 2.7 created
by rotations by 120◦. We see that there are two cycles that form from these rotations,
(ABC) and (DEF). Notice that D , E and F are not adjacent to one another so they
will be represented as a vertex. Also notice that A, B and C are adjacent to one
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a. Γ b. Γ/120◦

Figure 2.7 A graph Γ and Γ/120◦

another so they will be represented as a loop. Since there are vertices in these two
cycles which are adjacent to one another the loop and vertex are adjacent to one
another. We can see Γ and Γ/120◦ in Figure 2.7.

We see that we can make conclusions about k-colorings of the graph Γ
which is acted upon by a group G from Γ/g where g ∈ G.

Theorem 25. For a graph Γ and a group G of automorphisms of Γ, there exists
a bĳection between the number k-colorings of a graph Γ fixed by g ∈ G and the
number of colorings of Γ/g.

Proof : Let us first consider the number of k-colorings of a graph Γ fixed
by g ∈ G. We see that this is the number of colorings that are the same
when the element g acts upon them. We see that each vertexwithin a vertex
cycle created by g must be colored the same in order for it to be fixed by
g. We see that we can also count the number of colorings of this type in
the following way. First we shall contract each element in a vertex cylce to
a single point since they all must be colored the same color. We will then
notice that if two vertices in a vertex cycle are adjacent that there will be
no possible k-colorings fixed by this g because all vertices in a vertex cycle
must colored the same color in order to be fixed. In order to represent a
vertex cycle which contains adjacent vertices and the inability to have any
k-colorings fixed by this g, if a vertex cycle of this type is present, we shall
contract the vertices in this vertex cycle to a vertex which has an edge from
that vertex to itself. Let it be noted that there will be no possible proper
colorings for a graph which has a vertex with an edge from that vertex to
itself since there will be no way to color this vertex without coloring two
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adjacent vertices the same color, since this vertex is self-adjacent. Let us
now count the number of k-colorings on the graph we just constructed this
will be the same as the number of k-colorings of the graph fixed by g. We
have now found another way to count the number of k-colorings fixed by
g, let it be noted that the new graph we constructed is Γ/g. Thus proving
that there is a bĳection between the number k-colorings of a graph Γ fixed
g ∈ G and the number of colorings of Γ/g since they count the same thing.

�

Now that we have discussed some of the mathematical concepts that are
used to when describing orbital chromatic polynomials, let us now intro-
duce the orbital chromatic polynomial. We shall begin this discussion by
giving a definition of the polynomial that depends upon counting groups
of chromatic polynomials of a given graph.

Definition 26. (Cameron and Kayibi, 2007) For a graph Γ, a group G of automor-
phisms of Γ, and a positive integer k, the orbital chromatic polynomial OPΓ,G(k), is
the number of unique k-colorings of Γ. Where two colorings are equivalent if one
can be obtained from another by an automorphism in G.

To help clarify the concept let us now compute the orbital chromatic
polynomial for the path graph on 3 vertices depicted in Figure 2.6 under
the group of rotations by 180◦.

Example 27. Let us begin by noting that the group of automorphisms of the graph
that we will be using is that composed of rotation by 0◦ and 180◦. We will find
OPΓ,G(k) by dividing up the k-colorings of Γ into different categories which are
similar under 180◦ rotation. We see that there are 2 categories, the first category will
be when A and C are the same color. We see that there are k(k−1) unique colorings
of this type when 180◦ rotaion acts upon these colorings. The second category will
be when A and C are not the same color. Let us now consider this category. If we
were to calculate the number of colorings of this type for the chromatic polynomial,
there would be k(k-1)(k-2) colorings of this type but, we see that if we rotate by 180◦
that we shall obtain a different coloring under the chromatic polynomial. We then
conclude that two colorings where one can be attained from another by rotation by
180◦ will not be unique so we see that there are k(k−1)(k−2)

2 unique colorings of this
type for the given graph and group. So we see that the orbital chromatic polynomial
for the given graph is, OPΓ,G(k) � k(k−1)(k−2)

2 + k(k − 1).
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Althoughwehave given adefinition of the orbital chromatic polynomial, we
can also state a closed form equation for the orbital chromatic polynomial.

Theorem 28. The orbital chromatic polynomial of a graph Γ and a group G is,

OPΓ,G(x) � 1
|G|

∑
g∈G PΓ/g(x).

Proof : From Definition 26 we see that the orbital chromatic polynomial is
the number of orbits of k-colorings of a graph Γ acted upon by a group G,
of automorphisms of the graph. From Theorem 25 we see that the number
of k-colorings of a graph fixed by some element of the group is equivalent
to the chromatic polynomial of Γ/g. We can now apply Burnside’s Lemma
andwe find that the number of orbits of k-colorings of a graph Γ acted upon
by a group G is

1
|G|

∑
g∈G PΓ/g(x),

thus proving,

OPΓ,G(x) � 1
|G|

∑
g∈G PΓ/g(x).

�

We see that Theorem 28 is significant because it allows us to view the
orbital chromatic polynomial as a sum of chromatic polynomials. This
interpretation of the orbital chromatic polynomial allows us to make a
conclusion about its mathematical structure.

Theorem 29. The orbital chromatic polynomial OPΓ,G(k) for a graph Γ, a group
G of automorphisms of Γ, is a polynomial in k.

Proof : From Theorem 28 we see that the orbital chromatic polynomial
can be expressed as a sum of chromatic polynomials multiplied by some
constant. From Theorem 14 we know that chromatic polynomials are poly-
nomials so we see that the orbital chromatic polynomial can be expressed
as a sum polynomials times a constant. We can therefore conclude that the
orbital chromatic polynomial is a polynomial. �



Chapter 3

Orbital vs Chromatic
Polynomial Roots

In this chapter we shall discuss previous work done concerning the roots
of orbital chromatic polynomials and chromatic polynomials. One of the
first things that was of interest to mathematicians who studied of roots of
chromatic polynomials was the density of their roots. Carsten Thomassen,
a mathematician who was interested in chromatic polynomials studied the
density of the roots of the chromatic polynomial in R. In 1997 Thomassen
published an article where he proved the following theorem concerning the
density of the real roots of the chromatic polynomial,

Theorem 30. (Thomassen, 1997) If λ◦ > 32
27 , ε > 0, then there exists a graph G

such that P(G,λ) has a root in (λ◦ − ε, λ◦ + ε).

This means that between any two real numbers greater than 32
27 , there

exists a real root of some chromatic polynomial. This result is important
not only due to its inherent mathematical value, but also because it sparked
an interest in the mathematical community to study the density of the roots
of the orbital chromatic polynomial. Cameron and Kayibi were interested
in the results found by Thomassen and wanted to consider the density of
the roots of the orbital chromatic polynomial, they proved,

Theorem 31. (Cameron and Kayibi, 2007) Orbital chromatic roots are dense in
R.

At the end of their paper Cameron and Kayibi posed a Problem 2. The
answer to this problem leads directly to the problem which we shall be
investigating in this thesis.
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Kim, Mun, and Omar published a paper (2014), in which they showed
a family of counterexamples to the problem stated above. They proved that
the roots of the chromatic polynomial did not provide an upper bound for
the roots of the orbital chromatic polynomial. Let us nowconsider the graph
which Kim, Mun and Omar constructed and used as a counterexample to
the problem posed by Cameron and Kayibi. First Kim, Mun, and Omar
considered the following graphs,

Definition 32. (Kim et al., 2014) Given positive integers n,s, define the graph Kn
to be the complete graph on n vertices, and Ns to be the graph consisting of s isolated
vertices. Define the graph Hn ,s , the join of Kn and Ns , to be the graph obtained by
taking the union of Kn and Ns , and adding an edge between every vertex in Kn and
every vertex in Ns .

AfterHn ,s wasdefined, itwas thenusedalongwith agraphΓ to construct
the graph Γ(n ,s). The family of graphs Γ(n ,s) formed a counter-example to
Problem 2. In order for Γ to be used to construct Γ(n ,s), it had to have the
following properties,

Theorem 33. (Kim et al., 2014) Let Γ be a graph and G be a group of automor-
phisms of Γ. Suppose that the following hold:

1. There is some g ∈ G for which Γ/g contains fewer vertices than any of the
graphs {Γ/h : h ∈ G, h , g}.

2. For the g in part (1), there is some x0 ∈ Z greater than the largest real root of
PΓ(x) such that PΓ/g(x) < 0.

After a graph with the aproppriate properties was selected Γ(n ,s) was con-
structed,

Definition 34. (Kim et al., 2014) Let Γ be a graph with vertex set {v1 , v2 , ..., vk},
and n , s be positive integers. Let H(1)

n ,s ,H
(2)
n ,s , ...,H

(k)
n ,s be k copies of the graph Hn ,s

and choose vertices ui ∈ V(H(i)
n ,s) so that there is an isomorphism from H(i)

n ,s to H( j)
n ,s

sending ui to u j . We construct the graph Γ(n ,s) by starting with Γ, and appending
the k copies of Hn ,s to Γ by identifying the vertices ui and vi for i ∈ {1, 2, ..., k}.

It was then shown for a graph Γ of this type, and the construction described
above that with the correct choice of s that the orbital chromatic polynomial
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a. Γ(1,1)

Figure 3.1 A counterexample found by Kim, Mun and Omar

of Γ(n ,s) would have a root larger than the largest real root of the chromatic
polynomial, proving that the roots of the chromatic polynomial did not
provide an upper bound for the roots of the orbital chromatic polynomial.
Figure 3.1 shows the graph Γ(1,1) which is one in the family of counter
examples given in Kim, Mun, and Omar (2014). At the end of this paper
Conjecture 3 was stated, one of the main focuses of this thesis is to attempt
to prove this conjecture.





Chapter 4

Results

We shall start by outlining a theorem that describes characteristics of graphs
which would be sufficient for refuting Conjecture 3. The work throughout
this chapter relies heavily on the methods that were used by Kim, Mun and
Omar to create a family of counterexamples to Problem 2.

Theorem 35. Let Γ be a graph and G be a group of automorphisms. Suppose the
following hold:

1. The largest real root of PΓ(x) is m.

2. There is some g ∈ G for which Γ/g has less vertices than any of the graphs
{Γ/h : h ∈ G, h , g}.

3. For the g in (2) Γ/g is a complete graph on j vertices where m < j.

4. There exists some x0 > m such that PΓ/g(x0) < 0.

Then one can construct from Γ and G, a graph Γ′ and a group of automorphims of
Γ′, called G’, such that the OPΓ′,G′(x) has a real root that is at least j − 1−m larger
than the largest real root of PΓ(x).

To prove this theorem we shall rely on preliminaries that were created
by Kim, Mun and Omar. Let us begin by recalling the definition of the
family graphs Hn ,s .

Definition 32 (Kim et al., 2014) Let Γ be a graph with vertex set {v1 , v2 , ..., vk},
and n , s be positive integers. Let H(1)

n ,s ,H
(2)
n ,s , ...,H

(k)
n ,s be k copies of the graph Hn ,s

and choose vertices ui ∈ V(H(i)
n ,s) so that there is an isomorphism from H(i)

n ,s to H( j)
n ,s
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sending ui to u j . We construct the graph Γ(n ,s) by starting with Γ, and appending
the k copies of Hn ,s to Γ by identifying the vertices ui and vi for i ∈ {1, 2, ..., k}.

Next we will use the graph construction created by Kim, Mun, and Omar
(2014) in Definition 34, to construct Γ(n ,s).

Definition 34 (Kim et al., 2014) Let Γ be a graph with vertex set {v1 , v2 , ..., vk},
and n , s be positive integers. Let H(1)

n ,s ,H
(2)
n ,s , ...,H

(k)
n ,s be k copies of the graph Hn ,s

and choose vertices ui ∈ V(H(i)
n ,s) so that there is an isomorphism from H(i)

n ,s to H( j)
n ,s

sending ui to u j . We construct the graph Γ(n ,s) by starting with Γ, and appending
the k copies of Hn ,s to Γ by identifying the vertices ui and vi for i ∈ {1, 2, ..., k}.

Now let use the following fact found by Kim, Mun and Omar.

Proposition 36. (Kim et al., 2014) For any graph Γ, and positive integers n,s,

PΓ(n ,s)(x) � ((x − 1) · · · (x − n + 1)(x − n)s)|V(Γ)|PΓ(x)
�

(
PHn ,s (x)

x

) |V(Γ)|
PΓ(x).

Proof (of Prop. 36) Let us begin by calculating the chromatic polynomial
of Hn ,s . We shall begin by coloring the subgraph Kn . We see that the
chromatic polynomial of the subgraph is,

x(x − 1)(x − 2) · · · (x − n + 1).
Nowconsider the subgraph Ns inHn ,s . We see that each one of these vertices
is adjacent to all vertices in Kn so we see that the chromatic polynomial of
the subgraph is,

(x − n)s .

So we see that the chromatic polynomail of Hn ,s is,

x(x − 1)(x − 2) · · · (x − n + 1)(x − n)s .

Now that we have found the chromatic polynomial of Hn ,s let us compute
the chromatic polynomial ofΓ(n ,s). Let us begin by considering the subgraph
Γ of Γ(n ,s). We shall begin by counting the number of colorings of this graph,
we see that the number of colorings of this graph is given by PΓ(x). Now
consider coloring H(i)

n ,s which we know is appended to vi in the subgraph
Γ of Γ(n ,s). We see that the number of ways to color one of the vertices in
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the complete subgraph Kn of H(i)
n ,s has already been counted since we have

already counted the number of ways to color Γ. We will now count the
number of ways to color the other n − 1 vertices in the subgraph Kn , we see
that the chromatic polynomial of the subgraph is,

(x − 1)(x − 2) · · · (x − n + 1).
Now consider the subgraph Ns in H(i)

n ,s we see that each one of these vertices
is adjacent to all vertices in Kn so we see that the chromatic polynomial of
the subgraph is,

(x − n)s .

Now notice that there is a total of |V(Γ)| copies of Hn ,s appended to Γ in
Γ(n ,s). So we see that the chromatic polynomial of Γ(n ,s) is,

PΓ(n ,s)(x) � ((x − 1) · · · (x − n + 1)(x − n)s)|V(Γ)|PΓ(x).
Now notice,

((x − 1) · · · (x − n + 1)(x − n)s) � x(x−1)(x−2)···(x−n+1)(x−n)s

x �
PHn ,s (x)

x .

We can therefore rewrite PΓ(n ,s)(x) as,

PΓ(n ,s)(x) � ((x − 1) · · · (x − n + 1)(x − n)s)|V(Γ)|PΓ(x) �
(

PHn ,s (x)
x

) |V(Γ)|
PΓ(x).

�
We now have all we need to construct the proof of Theorem 35.

Proof (of Thm. 35) Let n and s be postive integers which are arbitrary for
the moment. Construct the graph Γ(n ,s) from Γ and let G(n ,s) be the group
induced by the group G which permutes the vertices of the subgraph Γ of
Γ(n ,s) just as G does, so that if g ∈ G sends vi to v j then H(i)

n ,s gets sent to H( j)
n ,s

via the isomorphism sending vi to v j , where vi and v j are in the subgraph Γ
of Γ(n ,s). We see that there is a natural isomorphimsm between the elements
in G and the elements in G(n ,s), so for and h in G, we denote h(n ,s) to be its
corresponding element in G(n ,s).

Now observe that for any h ∈ G, Γ(n ,s)/h(n ,s) = (Γ/h)(n ,s), and so by
Proposition 36,

PΓ(n ,s)/h(n ,s)(x) � P(Γ/h)(n ,s) �
(

PHn ,s (x)
x

) |V(Γ/h)|
PΓ/h(x)
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We can now write OPΓ(n ,s) ,G(n ,s)(x) as,

OPΓ(n ,s) ,G(n ,s)(x) � 1
|G|

∑
h∈G

(
PHn ,s (x)

x

) |V(Γ/h)|
PΓ/h(x).

Which can then be rewritten as,

1
|G|

(
PHn ,s (x)

x

) |V(Γ/g)| (
PΓ/g(x) +∑

h∈G,h,g

(
PHn ,s (x)

x

) |V(Γ/h)|−|V(Γ/g)|
PΓ/h(x)

)
.

We can now choose appropriate values of n and s to control the roots of
OPΓ(n ,s) ,G(n ,s)(x). First recall our assumptions, that there is some x0 not in
the integers for which PΓ/g(x0) < 0 and that Γ/g is a complete graph on j
vertices. Let us now consider values of x0 that will make our assumption
concerning PΓ/g(x0) true. First notice from our assumptions that we know
Γ/g is a complete graph on j vertices, therefore the chromatic polynomial
of Γ/g will be,

PΓ/g(x) � (x(x − 1)(x − 2) · · · (x − j + 1)(x − j)).
Now notice that if we choose x0 to be some value where j − 1 < x0 < j
then all terms in PΓ/g will be positive except for the last term in the product
meaning that PΓ/g will be negative, we can conclude that for j − 1 < x0 < j,
x0 will satisfy our initial assumption. Now that we have found values for x0
that satisfy our initial assumption, let us consider appropriate choices for
n. For the purposes of our proof we want the term PHn ,s (x)

x , in the expression
for OPΓ(n ,s) ,G(n ,s)(x) to positive when evaluated at x0, for this reason we shall
choose n to be j − 1. We see that this choice of n will make the term

PHn ,s (x0)
x0

positive from the expanded form of PHn ,s (x)
x which was given in Proposition

36 and since we are considering values of x0 where j − 1 < x0 < j. Let us
also notice from the expandeded form of PHn ,s (x)

x given in Proposition 36 that

as we increase the value of s,
PHj,s (x0)

x0
will remain positive and approach 0.

Now consider the fact that PΓ/g(x0) < 0, and that |V(Γ/h)| − |V(Γ/g)| > 0
for all h , g, this implies that we can choose a sufficiently large value
of s that OPΓ(n ,s) ,G(n ,s)(x) < 0. But since limx→∞OPΓ(n ,s) ,G(n ,s)(x) � ∞ by the
Intermediate Value Theoremwe can conclude that OPΓ(n ,s) ,G(n ,s)(x) has a root
larger than x0. We canmake this conclusion because we know j−1 < x0 < j
and the largest real root of PΓ(n ,s) is m, therefore OPΓ(n ,s) ,G(n ,s)(x) must have
at least one real root that is at least j − 1−m larger than the largest real root
of PΓ(n ,s) , thus proving Theorem 35. �
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In order to help find a family of graphs which have the properties
described in Theorem 35, two lists of families of graphs was made. One list
contains families of graphswhere the real roots of the chromatic polynomial
are large and the other list contains families of graphs where the real roots
of the chromatic polynomial are small. If a family of graphs with small
roots no matter number of vertices can be found which also has some
automorphism group which contains an element that causes the graph to
contract to a member of some family of graphs with arbitrarily large roots
this would suffice to prove Conjecture 3.

Families of graphs with small roots.

1. The n-book graph is compoosed of 2n + 2 vertices and is composed
of 2 star graphs each with n leaves, edges are then added between
vertices in the two star graphs if they map to one another (Gallian,
1997). An example of a 3-book graph is shown in Figure 4.1. The
chromatic polynomial of the n-book graph is given by,

Pn−book(x) � (x − 1)x(x2
− 3x + 3)n

(Gallian, 1997). The real roots of the chromatic polynomial of the
n-book graph are 0 and 1. The imaginary roots of the chromatic
polynomial of the n-book graph are not included since Theorem 35 is
only concerned with the real roots.

2. The cycle graph denoted Cn is a graph on n vertices where every
vertex is adjacent to exactly 2 other vertices. An example of a cycle
graph C5 is shown in Figure 4.2. The chromatic polynomial of a cycle
graph on n vertices is given by,

PCn (x) � (x − 1)n + (−1)n(x − 1).
The roots of the cycle graph on n vertices are 0 and 1 if n is even and
0,1 and 2 if n is odd.

3. The n-ladder graph is a graph composed of 2 path graphs on n vertices
where the ith vertex in one path graph is adjacent to the ith vertex in
the other path graph (Rouse Ball and Coxeter, 2010). An example of a
4-ladder graph is shown in Figure 4.3. The chromatic polynomial of
the n-ladder graph is given by,

Pn−ladder(x) � (x − 1)x(x2
− 3x + 3)n−1

(Rouse Ball and Coxeter, 2010).
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Figure 4.1 A 3-book graph

Figure 4.2 A cycle graph on 5 vertices

Figure 4.3 A 4-ladder graph
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Figure 4.4 A 4-centipede graph

Figure 4.5 P3
9

4. The tree graph, is an connected acyclic graph. We see that the chro-
matic polynomial of a tree graph on n vertices is,

Ptree(x) � x(x − 1)n .

The real roots of the chromatic polynomial of the tree graph are 0 and
1. We see that many well-known families of graphs fall within tree
graphs. The following is a list of families of graphswhich are all Trees.

(a) The n-centipede graph is a tree, composed of 2n vertices where
n of the vertices form a path graph on n vertices and each of the
other n vertices is adjacent to exactly 1 vertex in the path graph
(Levit andMandrescu, 2005). An example of a 4-centipede graph
is shown in Figure 4.4.

(b) The path graph on n vertices is a tree, where all but two vertices
are adjacent to exactly 2 other vertices and the other 2 vertices
are adjacent to exactly 1 vertex. An example of a path graph on
3 vertices is given in Figure 4.5.

(c) The star graph on n+1 vertices denoted Sn is a tree with 1 central
vertex and n leaves which are all adjacent to the central vertex.
An example of S4 is given in Figure 4.6.
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Figure 4.6 S4

Figure 4.7 A 4-barbell graph

Families of graphs with large roots.

1. The n-barbell graph is a graph on 2n vertices. The n-barbell graph
is composed two complete graphs on n vertices and then there is an
edge added between some vertex in one of the complete graphs and
some vertex in the other complete graph (Wilf, 1989). An example of
a 4-barbell graph is given in Figure 4.7. The chromatic polynomial of
the n-barbell graph is given by,

Pn−barbell(x) � [x(x−1)···(x−n+2)(x−n+1)]2(x−1)
x

(Wilf, 1989). The roots of the n-barbell graph are, 0,1,2,...,n − 1

2. The complete graph on n vertices denoted Kn , is a graph where each
vertex is adjacent to every other vertex in the graph. An example of a
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Figure 4.8 K4

complete graph on 4 vertices, K4 is given in Figure 4.8. The chromatic
polynomial of Kn is given by,

PKn (x) � x(x − 1) · · · (x − n + 2)(x − n + 1).

The roots Kn are 0,1,2,..,n − 1.

3. The n-sun graph is a graph composed of 2n vertices. n vertices form a
complete graph and then each vertex in the complete graph is adjacent
to 2 of the other n vertices, each of these n vertices is adjacent to exactly
2 vertices within the complete graph (Anitha and Lekshmi, 2008).
An example of 4-sun graph is given in Figure 4.9. The chromatic
polynomial of n-sun graph is given by,

Pn−sun(x) � [x(x − 1) · · · (x − n + 2)(x − n + 1)](x − 2)2

(Anitha and Lekshmi, 2008). The roots the n-sun graph are 0,1,2,..,n−
1.
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Figure 4.9 The 4-sun graph



Chapter 5

Conclusion

The purpose of this thesis was to gain a deeper understanding of chro-
matic and orbital chromatic polynomials along with attempting to prove
Conjecture 3. After gaining a deeper and more thorough understanding
of chromatic and orbital chromatic polynomials, attention was turned to
attempting to prove Conjecture 3. The attempts made in this thesis to prove
Conjecture were based strongly upon the methods that were used by Kim,
Mun, and Omar (2014). The development in this thesis that would lead to
a proof of Conjecture 3 was Theorem 35. Theorem 35 described a family
of graphs and a group of automorphims whose properties were sufficient
to provide an example of graphs that would prove Conjecture 3. Thus far,
a search for the graphs that satisfy the conditions of Thereom 35 has come
up inconclusive. The focus, then turned to trying to find families of graphs
that were similar but did not fit the description of graphs in Theorem 35,
because through this it may be possible to create a less strict set of char-
acteristics than those outlined in Theorem 35, that would still be sufficient
to prove Conjecture 3. However the search for graphs of these types also
proved inconclusive.

If further attempts were to made to either prove or disprove this Conjec-
ture, one of the first things that would be considered is expanding Theorem
35. Theorem 35 would be expanded so that the characteristics needed to
prove Conjecture 3 were more broad and would allow for more graphs to
be found. Along with trying to expand Theorem 35, the method for search-
ing for graphs would be changed. Throughout the time spent searching for
graphs and groups of automorphismwhich had the characteristics outlined
in Theorem 35, a great amount of emphasis was put on first finding graphs
and then evaluating their automorphism. Instead, we propose shifting the
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focus to first trying to find the main attributes of the group of automor-
phisms that are indicative of whether the graph had the properties outlined
in Theorem 35 and then trying to construct graphs whose automorphism
groups had these attributes. Although this thesis did not succeed in ei-
ther proving or disproving Conjecture 3, headway was made and tools in
the form of Theorem 35 were created that will give traction to any future
attempts to prove Conjecture 3.



Bibliography

Anitha, R., and R.S. Lekshmi. 2008. N-sun decomposition of complete,
complete bipartite and some harary graphs. Int J Math Sci 2:33–38.

Birkhoff, G.D. 1912. A determinant formula for the number of ways of
coloring a map. Ann of Math 14(1-4):42–46.

Birkhoff, G.D., andD.C. Lewis. 1946. Chromatic polynomials. Trans Americ
Soc 60(355-451).

Cameron, P.J., and K.K. Kayibi. 2007. Orbital chromatic and flow roots.
Combinatorics, Probability and Computing 16(2):401–407.

Dummit, D.S., and R.M. Foote. 2004. Abstract Algebra. John Wiley and
Sons, 3rd ed.

Gallian, J.A. 1997. A dynamic survey of graph labeling. Electronic Journal
of Combinatorics 1–58.

Kim, D.H., A.H. Mun, and M. Omar. 2014. Chromatic bounds on orbital
chromatic roots. Electronic Journal of Combinatorics 21:4–17.

Levit, V.E., and E. Mandrescu. 2005. The independence polynomial of a
graph—a survey. In Proceedings of the 1st International Conference of Algebraic
Informatics. Aristotle Univ.

Rouse Ball, W.W., and H.S.M. Coxeter. 2010. Mathematical Recreations and
Essays. Dover Publications, 13th ed.

Sokal, A.D. 2004. Chromatic roots are dense in the whole complex plane.
Combin Probab Comput 13(2):221–261.

Thomassen, C. 1997. The zero-free intervals for chromatic polynomials of
graphs. Combinatorics, Probability and Computing 6(4):497–506.



32 Bibliography

Wilf, H.S. 1989. The editor’s corner: The white screen problem. Amer Math
Monthly 96:704–707.


	Claremont Colleges
	Scholarship @ Claremont
	2015

	Chromatic Polynomials and Orbital Chromatic Polynomials and their Roots
	Jazmin Ortiz
	Recommended Citation


	Abstract
	Introduction
	Introduction to the Orbital and Chromatic Polynomials
	Orbital vs Chromatic Polynomial Roots
	Results
	Conclusion
	Bibliography

