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Abstract

Adinkras and arithmetical graphs have divergent origins. In the spirit of
Feynman diagrams, adinkras encode representations of supersymmetry al-
gebras as graphs with additional structures. Arithmetical graphs, on the
other hand, arise in algebraic geometry, and give an arithmetical structure
to a graph. In this thesis, we will interpret adinkras as arithmetical graphs
and see what can be learned.

Our work consists of three main strands. First, we investigate arithmetical
structures on the underlying graph of an adinkra in the specific case where
the underlying graph is a hypercube. We classify all such arithmetical struc-
tures and compute some of the corresponding volumes and linear ranks.

Second, we consider the case of a reduced arithmetical graph structure on
the hypercube and explore the wealth of relationships that exist between
its linear rank and several notions of genus that appear in the literature on
graph theory and adinkras.

Third, we studymodifications of the definition of an arithmetical graph that
incorporate some of the properties of an adinkra, such as the vertex height
assignment or the edge dashing. To this end, we introduce the directed
arithmetical graph and the dashed arithmetical graph. We then explore
properties of thesemodifications in an attempt to see if our definitionsmake
sense, answering questions such as whether the volume is still an integer
and whether there are still only finitely many arithmetical structures on a
given graph.
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Chapter 1

Introduction

Adinkras encode representations of supersymmetry algebras as graphswith
additional properties. In this way, they convert representation theoretic
problemsarising inphysics to combinatorial problems. Arithmetical graphs
arise in algebraic geometry. In this thesis, we aim to interpret adinkras as
arithmetical graphs.

1.1 Background on Adinkras

We first give a definition of an adinkra. There are many equivalent defini-
tions of an adinkra. Ours combines ideas from Naples (2009) and Zhang
(2014) to create a definition suited to our purposes.

An adinkra has three levels of structure: its graph theoretic properties,
its coloring properties, and its dashing and ranking. A graph with the
graph theoretic properties of an adrinkra is called an (adinkra) topology.
A topology with the coloring properties of an adinkra is called a chromo-
topology. A chromotopology with the dashing and ranking properties of
an adinkra is called an adinkra. We elaborate in the following definitions.

Definition 1. An (adinkra) topology G is graph with the following properties:

• G is finite.

• G is simple.

• G is connected.

• G is bipartite.
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• G is regular, that is, there exists a number n such that each vertex is incident
to exactly n edges. (In this case, G is called n-regular.)

Definition 2. A chromotopology is a topology G with the following additional
structures:

• Suppose G is n−regular. The edges of G are colored such that each vertex is
incident to an edge of each of the colors 1, . . . , n.

• Every pair of edge colors {i , j} incident to a single vertex is part of a 4-cycle
where the colors alternate between i and j.

Definition 3. An adinkra is a chromotopology G with the following additional
structures:

• There exists a way to assign directions to the edges of G such than on the
corresponding directed graph G

′ it is possible to define a height assignment
h : V(G′)→ N such that h(i) � h( j) + 1 if i j ∈ E(G′). (Note that i j is the
directed edge from i to j.)

• There is a dashing function d : E(G)→ {1,−1}. We called an edge i j where
d(i j) � 1 a solid edge and an edge i j where d(i j) � −1 a dashed edge. The
dashing function creates an odd dashing, which means that in every 2-colored
4-cycle, either 1 or 3 of the edges is dashed.

Figure 1.1 An example of an adinkra.

Given an adinkra topology, when is it possible to color it such that it
becomes a chromotopology? Given a chromotopology, when is it possible
to assign heights and dashing so that it becomes an adinkra? We will
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now describe the general theory. These questions are answered in terms of
taking quotients of hypercubes by linear codes. We first define these terms.
Definitions are adapted from Zhang (2014).

Definition 4. A n-bitstring is a vector in Zn
2 . The weight of a bitstring is the

number of entries that are 1. An (n,k)-linear binary code (abbreviated here as
code) is a k−dimensional subspace in Zn

2 of bitstrings. A code is even if each
bitstring in the code has even weight and doubly even if each bitstring has weight
divisible by 4.

Definition 5. The n-dimensional hypercube is the graph G where V(G) is the
set of n-bitstrings (that is, the numbers from 0 to 2n−1 written in binary) and E(G)
consists of those pairs of vertices that differ in exactly one bit.

Note that the hypercube fulfills the graph theoretic properties necessary
to be an adinkra topology. We call it the n-cubical topology, notated In .
For use in future definitions and theorems, we consider a particular edge
coloring of the hypercube that gives a chromotopology.

Definition 6. The n-cubical chromotopology In
c is In with the following col-

oring: If two vertices differ at bit i, color the edge between them with the color
i.

Taking a quotient may result in amultigraph (that is, a graphwith loops
or multiple edges), so we must generalize our definitions in the following
way before we can define quotients.

Definition 7. A pretopology is a n-regular finite connected multigraph. A
prechromotopology is a generalization of a chromotopology where the corre-
sponding graph can be a pretopology rather than just a topology.

We now explain what it means to take the graph quotient of In by the
code L. This material comes from (Zhang, 2014: Section 4.2).

Let L ⊂ Zn
2 be a linear code. Then the quotient Zn

2/L is a Z2-subspace.
We define a map pL which sends In

c to a prechromotopology which we
call the graph quotient In

c /L: Label the vertices of In
c /L by the equivalence

classes of Zn
2/L. Define pL(v) to be the image of a vertex v ∈ V(In

c ) under
the quotient Zn

2/L. Let there be an edge in In
c /L of color i between pL(v)

and pL(w) in In/L if there is at least one edge with color i of with endpoints
v
′

∈ p−1
L (v) and w

′

∈ p−1
L (w).

The following three theorems provide a complete answer to our ques-
tions about which structures underlie adinkras.



4 Introduction

Theorem 1. (Zhang, 2014: Theorem 4.3) A structure is a prechromotopology if
and only if it is a quotient In

c /L for some code L.

Theorem 2. (Zhang, 2014: Theorem 4.4) A structure is a chromotopology if and
only if it is a quotient In

c /L for some even code L with no bitstring of weight 2.

Theorem 3. (Doran et al., 2008: Theorem 4.1) It is possible to give the structure of
an adinkra to a chromotopology if and only if it is a quotient In

c /L for some doubly
even code L.

1.2 Background on Arithmetical Graphs

The notion of an arithmetical graph was defined by Dino Lorenzini in 1989.
The concept arose in the study of degenerating curves, and the underlying
algebraic geometry motivates the definition.

We now give a definition of an arithmetical graph and of linear rank and
volume, two characteristics of an arithmetical graph. We also state a few
theorems that are essential for our study of adinkras as arithmetical graphs.

Definition 8. Lorenzini (1989) Let G be a connected graph with n vertices. Let A
be the adjacency matrix of G. Let D be a diagonal matrix where the diagonal entries
di are positive integers. Let M � D −A. Let R be a vector RT � [r1 , . . . , rn] such
that the ri are positive integers and gcd(r1 , . . . , rn) � 1 and MR � 0. We call
(G,M, R) an arithmetical graph, and say that (M, R) defines an arithmetical
structure on G.

Lorenzini defines the volume of an arithmetical graph, and proves that
it is an integer, though a priori it is only a rational number as a vertex may
have degree one.

Definition 9. Lorenzini (1989) Let (G,M, R) be an arithmetical graph, where vi
are the vertices of G and deg(vi) is the degree of vi . The volume v of (G,M, R) is
defined as v �

∏n
i�1 rdeg(vi)−2

i .

Theorem 4. (Lorenzini, 1989: Theorem 4.10) The volume of an arithmetical graph
is an integer.

Another important property of an arithmetical graph is linear rank.
Linear rank serves as an analogue of genus, and is closely related to the first
Betti number of a graph. Lorenzini shows that the linear rank is always
an integer. Lorenzini also shows that the linear rank of a graph is always
greater than or equal to its first Betti number.
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Definition 10. Let G be a graph. The first Betti number of G is defined by

β � |E(G)| − |V(G)| + 1.

Definition 11. Lorenzini (1989) The linear rank g0 of an arithmetical graph
(G,M, R) is defined by 2g0 − 2 �

∑n
i�1 ri(deg(vi) − 2).

Lemma 1. Lorenzini (1989) The linear rank of an arithmetical graph is an integer.

Proof. Let ci , j be an entry in the adjacencymatrix and ri an entry in the vector
R. The linear rank g0 is defined by 2g0 − 2 �

∑n
q�1 rq(cq ,q − 2), so it will be

an integer if
∑n

q�1 rq cq ,q is even. A number is equivalent mod 2 to its square,
so
∑n

i�1 ci ,i r2
i ≡
∑n

i�1 ci ,i ri mod 2. Since MR � 0, we have (RT)MR � 0, so∑n
i�1 ci ,i r2

i �
∑

i, j ci , j ri r j . Since M is symmetric,
∑

i, j ci , j ri r j � 2
∑

i< j ci , j ri r j .
Thus

∑n
i�1 ci ,i r2

i is even, so
∑n

i�1 ci ,i ri is even. Therefore the linear rank is an
integer. �

Theorem 5. Lorenzini (1989) For any arithmetical graph, we have g0 ≥ β.

The fact that g0 ≥ β is stated explicitly in the introduction of Loren-
zini (1989), but assembling a proof requires combining various theorems
throughout the paper.

Lastly, we note that there are only finitely many arithmetical graph
structures on any given graph.

Theorem 6. (Lemma 1.6 of Lorenzini, 1989) Given a connected graph G, there
exist only finitely many M, R such that (G,M, R) is an arithmetical graph.





Chapter 2

The Hypercube as an
Arithmetical Graph

We aim to interpret adinkras as arithmetical graphs, and learnwhat proper-
ties adinkras have as arithmetical graphs, such as what claims can be made
about the volume or linear rank of an adinkra. In Chapter 4, we discuss how
to incorporate some of the extra-graphical properties of an adinkra, such as
the dashing of the edges or the heights assigned to the vertices, into the data
of an arithmetical graph. For now, we consider only the underlying graph
of an adinkra. We restrict to the case where the underlying graph is an
n-dimensional hypercube for some n, noting that as previously described
in Theorems 1,2, and 3, all adinkras can be obtained as a graph quotient of
a hypercube by a code.

Our aim in this section is to classify all arithmetical graphs on the n-
dimensional hypercube. We start by explicitly proving a classification of all
arithmetical graphs on the 2-dimensional hypercube. We then present an
algorithm that constructs a classification of all arithmetical graphs of the
n-dimensional hypercube for general n. We also compute the volumes and
linear ranks of adinkras with hypercubes as underlying graphs.

2.1 2-Dimensional Hypercube

Theorem 7. The following is a complete list of vectors R that form arithmetical
graph structures on the 2-dimensional hypercube with adjacency matrix
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A �

*...
,

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

+///
-

.

[1, 1, 1, 1][1, 1, 1, 2] [1, 1, 2, 1][1, 1, 2, 3] [1, 1, 3, 2][1, 2, 1, 1]
[1, 2, 1, 3][1, 2, 2, 1] [1, 2, 3, 5][1, 2, 4, 3] [1, 3, 1, 2][1, 3, 2, 5]
[1, 3, 3, 2][1, 4, 2, 3] [2, 1, 1, 1][2, 1, 1, 2] [2, 1, 3, 1][2, 1, 3, 4]
[2, 1, 5, 3][2, 3, 1, 1] [2, 3, 1, 4][2, 3, 3, 1] [2, 5, 1, 3][3, 1, 2, 1]
[3, 1, 2, 3][3, 1, 5, 2] [3, 2, 1, 1][3, 2, 1, 3] [3, 2, 4, 1][3, 4, 2, 1]
[3, 5, 1, 2][4, 1, 3, 2] [4, 3, 1, 2][5, 2, 3, 1] [5, 3, 2, 1]

1

2

4

3

Figure 2.1 The graph for Theorem 7.

Proof. Let G be the 2-dimensional hypercube. We find M, R that define an
arithmetical structure on G. Since MR � 0, we have

*...
,

d1 −1 0 −1
−1 d2 −1 0
0 −1 d3 −1
−1 0 −1 d4

+///
-

*...
,

r1
r2
r3
r4

+///
-

�

*...
,

d1r1 − r2 − r4
−r1 + d2r2 − r3
−r2 + d3r3 − r4
−r1 − r3 + d4r4

+///
-

�

*...
,

0
0
0
0

+///
-

.

Thus:

d1 �
r2 + r4

r1
d2 �

r1 + r3
r2

d3 �
r2 + r4

r3
d4 �

r1 + r3
r4

.
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This set of di and ri define a valid arithmetical structure on G if di and ri
are positive integers for all i and gcd(r1 , r2 , r3 , r4) � 1. Note that given the
ri , the di are determined. The vector R will define an arithmetical structure
on G if and only if gcd(r1 , r2 , r3 , r4) � 1 and

r1 |r2 + r4 r2 |r1 + r3 r3 |r2 + r4 r4 |r1 + r3

so that the di are integers.
Consider a tuple (a , b , c , d)with a ≤ b ≤ c ≤ d, such that somematching

of the variables a , b , c , d to r1 , r2 , r3 , r4 satisfies the divisibility statements.
Then d ≤ b + c. Since b ≤ c ≤ d, d is greater than or equal to the average of
b and c. So either a + b � d, b + c � d, or a + c � d, or a + b � 2d, b + c � 2d,
or a + c � 2d. In the cases that sum to 2d, we get a � b � c � d, so since
gcd(a , b , c , d) � 1, we have the vector (1, 1, 1, 1). Thus we can restrict to the
cases (a , b , c , b + c), (a , b , c , a + c), (a , b , c , a + b). (Note that once we know
all possible (a , b , c), we thus know all possible (a , b , c , d).)

Consider the case (a , b , c , b+c). We have a |b+c , b |a+b+c , and c |a+b+c,
or equivalently, a |b+ c , b |a+ c , and c |a+b. Since a ≤ b ≤ c, we have c � a+b
or c �

a+b
2 . The latter just reduces to (a , a , a). Consider the former. We have

a |a + 2b and b |2a + b, so a |2b and b |2a. So for some integers m , n, we have
2b � na and 2a � mb. Then 4a � m2b � mna. So mn � 4. Considering
all possible positive integer pairs (m , n) such that mn � 1, we get (a , 2a , 3a)
and (a , a , 2a).

Now consider the case (a , b , c , a + c). We have a |a + b + c, b |a + c, and
c |a + b + c, which reduces to the same conditions as above.

The case (a , b , c , a+b) similarly reduces to the same conditions as above.
Thus our list is exactly the tuples of the form (a , a , a), (a , a , 2a), (a , 2a , 3a),

with the fourth coordinate as specified above. Each coordinate is a multiple
of a, and one coordinate is a, so the gcd is a, so a must be 1.

The above enumerates all possibilities. It is easy to show when a given
vector R satisfies the specified divisibility conditions. �

2.2 N-Dimensional Hypercube

Theorem 8. There exists an effective algorithm to characterize the complete list of
vectorsR and the correspondingmatrices M that form arithmetical graph structures
on the n-dimensional hypercube.

Proof. Let G be the n-dimensional hypercube. We exhibit an algorithm to
find M, R that define an arithmetical structure on G. For a fixed binary
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number i such that 0 ≤ i ≤ 2n
− 1, let Ai be the set of binary numbers in

[0, 2n
−1]ofHammingdistance 1 from i. Solving the equation MR � 0 yields

equations for d0 , . . . , d2n−1 in terms of r0 , . . . , r2n−1 of the form di �

∑2n
−1

j�0 r jχAi
ri

where χAi is the characteristic function of Ai . Let (a1 , . . . , an) be a tuple
with a1 ≤ · · · ≤ an such that some matching of the variables a1 , . . . , an to
r0 , . . . , r2n−1 satisfies the divisibility statements. Since an is greater than
or equal to the average of any set of these terms, but an divides the sum
of some subset of these terms of size n, then there exists some i , j, k such
that the following is true: man � ai + a j + ak for some integer m such that
1 ≤ m ≤ n. Thus we can reduce our problem to divisibility statements
involving only the first 2n

− 1 entries of the tuple. We perform such a
reduction in 2n

− 2 steps, reducing until we need only to consider tuples
of the form (a1 , a2 , s1a1 + s2a2) for some rational numbers s1 , s2. Then our
divisibility statements will yield a1 �

p1
q1

a2 and a2 �
p2
q2

b2 where p1
q1

and p2
q2

are rational numbers in reduced form. Substitution yields a1 �
p1p2
q1q2

a1, so
p1p2 � q1q2. There are only finitely many integers p1 , p2 , q1 , q2 that satisfy
these conditions. Thus for a given a1, there are only finitely many a2 that
satisfy the conditions. Since the variable ak can only be made from finitely
many linear combinations of the variables a1 , . . . , ak−1, we have determined
that for a fixed a1, there are finitely many tuples (c1a1 , . . . , cn an) that satisfy
the condition, and all can be characterized as we have described above.
Since there are only finitely many arithmetical graph structures on any
connected graph, there are only finitely many a1 which determine such a
tuple. Thus we can determine all R that give arithmetical structures on G.
Note that our equations give the entries of D in terms of the entries of R.
Then M � D − A where A is the adjacency matrix of G. �

In addition todetermining theoretically a classificationof all arithmetical
structures on the n-dimensional hypercube, we implemented a computer
program to generate all such arithmetical structures for n � 2 and n � 3.
The code is included in Appendix A. The complete results for n � 2 are
given above. For n � 3, the computation was too large to run in its entirety.
Instead, we ran a computation that considered only those vectors R with
maximum entry less than or equal to some convenient bound. While it
was impractical to store every such vector R that is part of an arithmetical
structure, we stored the sum and product of the entries in each vector.
This information allows us to compute the volumes and linear ranks for
these arithmetical structures on the 3-dimensional hypercube. For n � 2
every vertex has degree 2, so it is immediate from the definitions of volume
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and linear rank that the volume is 1 and the linear rank is 0 for every
arithmetical structure on the 2-d hypercube. For n � 3, we display a partial
list of volumes and linear ranks below.

Remark 1. The following is a list of the volumes of the arithmetical graphs
(G,M, R) where G is the 3-d hypercube and R has maximum entry less than
or equal to 6.
1, 3, 4, 8, 9, 12, 16, 24, 27, 32, 36, 48, 64, 72, 80, 81, 96, 128, 144, 160, 180, 192,
216, 225, 240, 288, 320, 324, 360, 375, 384, 400, 480, 576, 648, 720, 800, 900,
1125, 1152, 1200, 1296, 1600, 1728, 1800, 2000, 2304, 3456, 4500, 5184, 6000,
8100, 10368, 32400, 162000.

Remark 2. The following is a list of the linear ranks of the arithmetical graphs
(G,M, R) where G is the 3-d hypercube and R has maximum entry less than or
equal to 20.
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49.





Chapter 3

Linear Rank and Genus

Lorenzini defines linear rank as an analogue of genus for an arithmetical
graph. We now explore the relationship between linear rank and several
notions related to genus considered in the study of graphs and adinkras. In
particular, we compare these notions in the case of a reduced arithmetical
graph structure on a hypercube.

Consider the linear rank of a reduced arithmetical graph. Let n � |V(G)|
and m � |E(G)|. Since∑n

i�1 deg(vi) � 2m, we have the following:

2g0 − 2 �

n∑
i�1

(deg(vi) − 2)

g0 � m − n + 1.

Note that the hypercube Qd has 2d vertices and d2d−1 edges. Thus the
linear rank of the reduced arithmetical graph on Qd is

g0 � (4d − 8)2d−3
+ 1.

3.1 Relations to Genus, Circuit Rank, and First Betti
Number of Graph

Note the following definition of the genus of graph.

Definition 12. König (1950) The genus of a graph is the minimal integer n such
that the graph can be drawn without crossing itself on an oriented surface of genus
n.
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By this definition, we see that a planar graph has genus 0. In general,
the problem of finding the graph genus is NP-hard [Thomassen (1989)]. It
is known that the hypercube graph Qd(d > 1) is planar if and only if d ≤ 3.
For d ≥ 4, the formula (d − 4)2d−3 + 1 gives the genus [ Beineke and Harary
(1965)].

We note the following relationship between the linear rank and the
genus of the reduced arithmetical graph on a hypercube.

Remark 3. The linear rank of the reduced arithmetical graph structure on Qd
equals the genus of Qd+2.

We explore this relationship further in an attempt to understand its
origins. The linear rank of a reduced arithmetical graph, g0 � |E(G)| −
|V(G)| + 1, contains purely graph theoretic quantities. So the relationship
between the linear rank of Qd and the genus of Qd+2 reveals the following
alternate graph theoretic characterization of the formula given by Beineke
and Harary for the genus of the hypercube graph.

Remark 4. The genus of Qd for d ≥ 4 is

g � |E(Qd−2)| − |V(Qd−2)| + 1.

The graph theory literature about the genus of the hypercube graphdoes
not seem to explore its relationship with the quantity |E(G)| − |V(G)| + 1.
The quantity |E(G)| − |V(G)| + 1 does have significance in graph theory, as
described in the following definition.

Definition 13. The circuit rank r (or cyclomatic number or nullity) of an
undirected graph G is the minimum number of edges that must be removed to make
the resulting graph acyclic.

An alternate, equivalent characterization is that circuit rank is the num-
ber of independent cycles in a graph. Equivalently, this is the graph’s first
Betti number. In fact, Matthew Baker and Serguei Norine refer to the circuit
rank as the genus in Baker and Norine (2007).

The circuit rank of a graph can be computed in terms of its number of
edges, vertices, and connected components.

Proposition 1. Let c be the number of connected components of a graph G. Then
the circuit rank r of G is given by

r � |E(G)| − |V(G)| + c

.
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Thus for a connected graph, we have

r � |E(G)| − |V(G)| + 1.

As the hypercube graph is connected, we canmake two further claims. First,
we note the connection between the linear rank of the reduced arithmetical
graph on Qd and the circuit rank of Qd .

Remark 5. The linear rank of the reduced arithmetical graph on Qd equals the
circuit rank of Qd .

Second, we can restate Remark 4 as follows.

Remark 6. The genus of Qd for d ≥ 4 equals the circuit rank of Qd−2.

Charles Doran, Kevin Iga, Greg Landweber and Stefan Méndez-Diez
have exploredways to situate adinkras in a geometric context. InDoran et al.
(2013), they give a canonical way to associate an adinkra chromotopology
to a Riemann surface. This Riemann surface has a genus, which can then
be thought of as a notion of genus for the chromotopology. In the case of
a hypercube Qd for d ≥ 2, the genus of the associated Riemann surface is
(d−4)2d−3+1. In further comments,wewill refer to the genusof theRiemann
surface canonically associated to a hypercube as the geometrization genus,
denoted g

′ to avoid confusion with the notion of genus traditionally used
in graph theory, as defined in Definition 12.

3.2 Summary of Relations Between Linear Rank and
Various Notions of Genus

We have noted in the previous sections the connections that exist between
the linear rank of a reduced arithmetical graph on a hypercube and various
notions of genus defined for graphs and adinkras. We summarize those
relations here.

LetQd be thehypercubegraphofdimension d. Let f (d) � (4d−8)2d−3+1.

• The linear rank of the reduced arithmetical graph on Qd for d ≥ 2 is

g0 � f (d).

• The genus of the graph Qd for d ≥ 4 is

g � f (d − 2).
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• The circuit rank of the graph Qd for d ≥ 2 is

r � f (d).

• The first Betti number of the graph Qd for d ≥ 2 is

β � f (d).

• The geometrization genus of the Riemann surface associated to Qd for
d ≥ 4 is

g
′

� f (d − 2).



Chapter 4

Modifications of an
Arithmetical Graph

The arithmetical graph structure is defined for graphs. An adinkra, in addi-
tion to its graph theoretic properties, has an edge-coloring, an edge-dashing,
and a vertex height assignment. We explore the question of whether it is
possible to incorporate some of these features of an adinkra into the struc-
ture of an arithmetical graph. To do so, we test various modifications of
the definition of an arithmetical graph. We define the directed arithmetical
graph in an attempt to incorporate the height assignment of the vertices.
Separately, we define the dashed arithmetical graph in an attempt to incor-
porate the dashing of the edges.

We explore what properties of an arithmetical graph the directed arith-
metical graph and dashed arithmetical graph retain. Are the volume and
linear rank still integers? Are there still only finitely many arithmetical
graph structures on a given graph? By answering these questions, we ex-
plore whether our new definitions make sense.

4.1 Directed Arithmetical Graph

The arithmetical graph structure is defined only for undirected graphs. To
encode the height assignment of the vertices of an adinkra into its repre-
sentation as an arithmetical graph, we consider the adinkra as a directed
graph. To do so, we replace the adjacency matrix in the definition of an
arithmetical graph with the adjacencymatrix of an directed graph. The rest
of the definition is the same as that of an ordinary arithmetical graph.
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Definition 14. Let G be a connected, directed graph with n vertices. Let A be
the adjacency matrix of G; that is, let ai j � 1 if there is an edge from i to j and
let ai j � 0 otherwise. Let D be a diagonal matrix where the diagonal entries di
are positive integers. Let M � D − A. Let R be a vector RT � [r1 , . . . , rn] such
that the ri are positive integers and gcd(r1 , . . . , rn) � 1 and MR � 0. We call
(G,M, R) a directed arithmetical graph.

In an arithmetical graph, when R is the vector of all 1′s, for MR � 0
we must have that di � deg(vi). In a directed arithmetical graph, when R
is the vector of all 1′s, for MR � 0 we must have that di is the outdegree
of vi . The outdegree can thus be considered an analogue of degree for a
directed arithmetical graph, andwewill use it in ourmodified definitions of
volume and linear rank. We now define directed degree, directed volume,
and directed linear rank.

Definition 15. The directed degree of a vertex vi in a directed arithmetical graph,
denoted deg+(vi), is the outdegree of vi , that is, the number of edges from vi to
other vertices.
Definition 16. Let (G,M, R) be a directed arithmetical graph, where vi are the ver-
tices of G. The directed volume v of (G,M, R) is defined as v �

∏n
i�1 rdeg+(vi)−2

i .
Definition 17. The directed linear rank g0 of an arithmetical graph (G,M, R)
is defined by 2g0 − 2 �

∑n
i�1 ri(deg+(vi) − 2).

We show that in modifying the definitions in this way, we lose two
properties of an arithmetical graph. First, the directed volume of a directed
arithmetical graph need not be an integer. Second, there can be infinitely
many directed arithmetical graph structures on some graphs. We demon-
strate examples of each of these scenarios. In both cases, the underlying
graph is the 2-dimensional hypercube.

Example 1. Wegive an examplewhere the directed volume of a directed arithmetical
graph is not an integer. Consider the directed 2-dimensional hypercube with the
adjacency matrix

A �

*...
,

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

+///
-

.

We have deg+(v1) � 2, deg+(v2) � 1, deg+(v3) � 1, and deg+(v4) � 0. Solving
the equation MR � 0 yields the following equations:

d1 �
r2 + r3

r1
d2 �

r4
r2

d3 �
r4
r3

d4 � 0.
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Let R � [1, 1, 1, 2]T . We note that R satisfies the divisibility conditions required
to make the di be integers. The directed volume is

v �

4∏
i�1

rde g+(vi)−2
i �

1
4
,

which is not an integer.

1

2

3

4

Figure 4.1 The graph used in Example 1.

Example 2. Consider the same graph as in Example 1. Note that R � [1, 1, 1, n]T
for any positive integer n will give integer values of di . Thus we can define
infinitelymany directed arithmetical graph structures on the directed 2-dimensional
hypercube.

To further explore the arithmetical features of a directed graph, it would
be interesting to consider a notion of a “directed genus.” A literature
search suggests that such a notion is defined only for directed graphs that
are Eulerian. Due to the nature of the height assignment of vertices, the
directed graph associated to an adinkra is never Eulerian. Thus in our study
of adinkras, we do not consider a notion of directed genus.

4.2 Dashed Arithmetical Graph

We define the dashed arithmetical graph to incorporate the edge dashing
of an adinkra into the structure of an arithmetical graph. We modify the
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adjacency matrix so that solid edges are represented by 1 and dashed edges
are represented by −1. The rest of the definition remains unchanged.

Definition 18. Let G be a connected graph with n vertices. Let every edge in E(G)
be either dashed or solid. Let A be a modified adjacency matrix of G: Let ai j � 1 if
i j ∈ E(G) and i j is solid, let ai j � −1 if i j ∈ E(G) and i j is dashed, and let ai j � 0
otherwise. Let D be a diagonal matrix where the diagonal entries di are positive
integers. Let M � D − A. Let R be a vector RT � [r1 , . . . , rn] such that the ri
are positive integers and gcd(r1 , . . . , rn) � 1 and MR � 0. We call (G,M, R) a
dashed arithmetical graph.

As for a directed arithmetical graph, we consider a new concept of
degree when studying dashed arithmetical graphs. If R is the vector of
all 1’s, then to have MR � 0 we must have that di is the number of solid
edges incident to vi minus the number of dashed edges incident to vi . This
motivates the definition of dashed degree. We use the dashed degree to
define dashed volume and dashed linear rank.

Definition 19. The dashed degree of a vertex vi in a dashed arithmetical graph,
denoted deg∗(vi) is the number of solid edges incident to vi minus the number of
dashed edges incident to vi .

Definition 20. Let (G,M, R) be a dashed arithmetical graph, where vi are the
vertices ofG. Thedashedvolume v of (G,M, R) is defined as v �

∏n
i�1 rdeg∗(vi)−2

i .

Definition 21. The dashed linear rank g0 of an arithmetical graph (G,M, R) is
defined by 2g0 − 2 �

∑n
i�1 ri(deg∗(vi) − 2).

We now discuss what properties we lose whenwemodify the definition
of an arithmetical graph in this way. We show that the linear rank can be
negative, and it is possible to have β > g0, even though neither of these
situations is possible for the original definition of an arithmetical graph.
We give an example where the dashed volume is a noninteger. We also
show that it is possible for there to be infinitely many dashed arithmetical
graph structures on a given graph.

Example 3. We show an example where the dashed linear rank is negative. Con-
sider the 2-dimensional hypercube where three edges are solid and one is dashed.
Incorporating dashing, the adjacency matrix is

A �

*...
,

0 −1 0 1
−1 0 1 0
0 1 0 1
1 0 1 0

+///
-

.
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Solving the equation MR � 0 yields the following equations:

d1 �
r4 − r2

r1
d2 �

r3 − r1
r2

d3 �
r2 + r4

r3
d4 �

r1 + r3
r4

.

Then two vertices have dashed degree 0 and two vertices have dashed degree 2.
Let R � [1, 1, 1, 1]T . Then β � g0. Then 2β − 2 �

∑n
i�1(di − 2) � (0 + 0 + 2 +

2) − 2(4) � −4, so β � g0 � −1. Note that the dashed linear rank is negative.

1

2

4

3

Figure 4.2 The graph used in Example 3.

Example 4. We find an R for which the dashed four cycle has β > g0. Let
R � [4, 1, 1, 1]T . Then∑n

i�1(di−2) � (0+0+2+2)−2(4) � −4 >
∑n

i�1 ri(di−2) �
4(−2) + 0 − 2 − 2 � −12, so β > g0.

Example 5. We see that for R � [4, 1, 1, 1]T for the above graph, the dashed volume
is not an integer. The dashed volume is

v �

4∏
i�1

rdeg∗(vi)−2
i �

1
r12r22 �

1
16
,

which is not an integer.

Proposition 2. There exists a graph with infinitely many dashed arithmetical
graph structures.
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Proof. We use the 2-dimensional hypercube with one edge dashed and
three solid, and adjacency matrix as given above in Example 3. Consider
the infinite class of tuples given by (n , 1, n + 2, n + 1) for n ≥ 1. We have

d1 �
r4 − r2

r1
�

n + 1 − 1
n

� 1 d2 �
r3 − r1

r2
�

n + 2 − n
1

� 2

d3 �
r2 + r4

r3
�

n + 1 + 1
n + 2

� 1 d4 �
r1 + r3

r4
�

2n + 2
n + 1

� 2.

Note that gcd(n , 1, n + 2, n + 1) � 1. Thus this infinite set of tuples give
vectors R that define an infinite set of arithmetical structures on G. �
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Conclusion

In this thesis, we have studied adinkras in the context of arithmetical graphs.
We have tried to see how connections can be established between these two
seemingly disparate concepts in hopes of bringing new tools to the study
of adinkras.

When we consider an adinkra in terms only of its underlying graph, an
adinkra lends itself naturally to the structure of an arithmetical graph. Using
this approach, we were able to classify all possible arithmetical structures
on hypercubes of any dimension and to compute some of the corresponding
volumes and linear ranks.

Interesting questions also arose in an examination of the linear rank of
a reduced arithmetical graph structure on a hypercube. The linear rank
of a reduced arithmetical graph can be stated in purely graph theoretic
terms. This expression can be compared to several other notions of genus.
In particular, we explored connections to the genus as traditionally defined
in graph theory, as well as the first Betti number of a graph, and the genus
of the Riemann surface canonically associated to a chromotopology on a
hypercube. We found that these notions are indeed quite related.

Though we can learn some things by defining an arithmetical structure
on just the underlying graph of an adinkra, an adinkra has so much more
structure than just that of a graph. So one of the goals for the project was
to incorporate some of the other properties of an adinkra when defining
an arithmetical graph structure on an adinkra. To this end, we defined
the directed arithmetical graph and the dashed arithmetical graph. These
definitions introduced certain pathologies, such as noninteger volume and
the existence of infinitely many arithmetical structures corresponding to a
single graph. We did not conduct this project with a predetermined use
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intended for the definition of an arithmetical graph structure on an adinkra.
As such, we cannot say whether or not these pathologies are enough to
invalidate the definitions. They do speak, however, to the difficulty of
combining the structures of an adinkra and an arithmetical graph while
holding true to the meaning of both.

We attempted to connect adinkras and arithmetical graphs. We learned
it can be difficult to simultaneously consider all of the properties of both
structures. However, we also learned that it is possible to find interesting
relationships through certain properties, such as those related to linear
rank and genus. The full potential of the enterprise of relating adinkras and
arithmetical graphs remains unknown.
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Code

This is the Python code we used to generate the volumes and linear ranks
of arithmetical graph structures on the 3-dimensional hypercube.

import time
import random
import f r a c t i o n s

def checkvector ( vec ) :
#We c a l l t h i s funct ion in cube .
output = [0 , 0 ]
i f reduce ( f r a c t i o n s . gcd , vec )==1 :

sumvertexvector=vec [0 ]+ vec [1 ]+ vec [2 ]+ vec [3 ]+
vec [4 ]+ vec [5 ]+ vec [6 ]+ vec [ 7 ]

productver texvector=vec [ 0 ] ∗ vec [ 1 ] ∗ vec [ 2 ] ∗ vec [ 3 ] ∗ vec [ 4 ]
∗vec [ 5 ] ∗ vec [ 6 ] ∗ vec [ 7 ]

output [0 ]= sumvertexvector
output [1 ]= productver texvector

re turn output

def cube (n ) :
#For n , input the maximum entry of a vec tor R tha t you wish to consider .

l i s to f sums =[ ]
l i s t o f p r oduc t s = [ ]

#These 8 fo r loops go through the elements of
# the 8− fo ld Car tes ian product of the in t ege r s in [ 1 , n ] .
#Let ' s c a l l a given element of the Car tes ian product a " ver tex vec tor . "
# I t ass igns a number to each of the
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# e ight v e r t i c e s of the 3−D hypercube .
fo r a000 in range ( 1 , n+1 ) :

fo r a001 in range ( 1 , n+1 ) :
fo r a010 in range ( 1 , n+1 ) :

fo r a011 in range ( 1 , n+1 ) :
fo r a100 in range ( 1 , n+1 ) :

fo r a101 in range ( 1 , n+1 ) :
fo r a110 in range ( 1 , n+1 ) :

fo r a111 in range ( 1 , n+1 ) :
#These 8 " i f s ta tements " check d i v i s i b i l i t y proper t i e s
# of a given ver tex vec tor .
#A ver tex vec tor i s " almost good " i f the number assigned
# to each ver tex divides the sum of the number assigned
# to i t s neighbors .
#Note tha t the neighbors of a ver tex of the N−D hypercube
# are the v e r t i c e s tha t d i f f e r from i t in exac t l y one binary d i g i t .
#The 8 i f s ta tements below are a l l nested
#within the innermost fo r loop and within each other .
#They are sh i f t ed l e f t fo r purposes of display .
i f ( a011+a101+a110)%a111 ==0:

i f ( a010+a100+a111)%a110 ==0:
i f ( a001+a111+a100)%a101 ==0:

i f ( a000+a110+a101)%a100 ==0:
i f ( a111+a001+a010)%a011 ==0:

i f ( a110+a000+a011)%a010 ==0:
i f ( a101+a011+a000)%a001 ==0:

i f ( a100+a010+a001)%a000 ==0:
ver t exvec tor =[ a000 , a001 , a010 , a011 , a100 , a101 , a110 , a111 ]
#The funct ion checkvector checks i f the gcd of a vec tor i s 1 .
# I f so , i t outputs the sum and product of the en t r i e s of the vec tor .
#Otherwise , i t outputs [ 0 , 0 ] .
outputcheckvector=checkvector ( vec )
sumvertexvector=outputcheckvector [ 0 ]
productver texvector=outputcheckvector [ 1 ]
i f not sumvertexvector in l i s to f sums :

l i s to f sums +=[ sumvertexvector ]
i f not productver texvector in l i s t o f p r oduc t s :

l i s t o f p r oduc t s +=[ productver texvector ]
#The sums and products are natura l numbers .
#We order them from smal l e s t to l a r g e s t .
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l i s to f sums . so r t ( )
l i s t o f p r oduc t s . s o r t ( )
p r in t l i s to f sums
pr in t l i s t o f p r oduc t s
re turn
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