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Tilings in Art and Science

James E. Hall
Westminster College

The title “Tilings in Art and Science” is a contraction
of one that is longer and more descriptive: “Tilings of
the Plane in Mathematics, Science, Nature, Art, and
Design: A Personal View." Election to the Henderson
Lectureship at Westminster College for 1989-90 was
the occasion for the investigation of a topic that has
long interested me and that has likewise long awaited
the opportunity for deeper study. Iwas honored tobe
chosenby my colleagues and grateful to the generosity
of Joseph and Elizabeth Henderson, whose endow-
ment of the lectureship made the project possible.

One characteristic of our contemporary culture,
viewed with distrust by many, is the increasing
mathematization of more and more aspects of our
lives. This mistrust or misunderstanding was under-
lined by the late C. P. Snow in his reference to “two
cultures.” He lamented the breakdown in communi-
cation between scientists and humanists. Iattempted,
through an illustrated presentation about tilings, to
convince my audience that there is, in fact, a positive
relationship between the abstract structure of math-
ematics and the sensory reality of the world in which
we live and move.

Human beings look for meaning and significance in
the multitude of sensory stimuli with which they are
bombarded by seeking pattem and order—organizing
principles, schemes of classification, necessary rela-
tionships. Such abstractions enable them to under-
stand, appreciate, evaluate, predict, and even shape
and control certain portions of their surroundings.

For example, the diagram below [Fig. 1] abstracts and
idealizes the pattern of hexagons and triangles under-
lying the design on the ninth century Islamicbowl. The
elaboration of relationships such as the one between
these two pictures, inawide variety of settings, formed
the substance of the “show.”

Two recurring themes in the history of thought are
change and constancy. They are combined in patterns
and tilings, where the theoretical urge to continue the
design, and the practical need to curb and regularizeit,
are in dynamic tension. Sometimes a designer allows
random variation to take a hand, as in the facing of a
wall or building by irregular pieces of building stone
[Fig. 2(a)] or in a random pattem of wood shingles.
More often, regularity is imposed: a few basic shapes
arechosenand used repeatedly, asin the many patterns
that can be created with building bricks of the same
shape [Fig. 2(b)]. We thus subject the flowing process
of change to regulation, imitating the cyclic behaviors
observed in nature.

A bridge to understanding these parallel regularities
of pattern in design and nature is the mathematical
theory of tilings or tesselations. Scientistand artist alike
attempt to describe important features of the world
about them—though the scientist’s aim often goes
beyond description to prediction and control. These
can be as varied as a print by the graphic artist M. C.
Escher or a structure diagram from organic chemistry
[Fig. 3].
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Figure 1: Islamic bowl (a) and underlying tiling (b). Figure 2: Random stone (a) and regular brick (b).
1(a) Figure 3: Escher horsemen (a) and chemical diagram (b).
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Subjecting our observations to the intellectual disci-
pline of abstraction called mathematics deepens our
appreciation of patterns and enables us to participate
in creating new and better ones. Mathematical ideas
can interact with all aspects of our experience.

Mathematical philosopher Philip J. Davis observes
that “mathematics dreams of an order which does not
exist. This is the source of its power; and in this dream
it has exhibited a lasting quality that resists the crash
of empire and the pettiness of small minds. Math-
ematical thought is one of the great human achieve-
ments. The study of its ideas, past and present, can
[free] the individual . .. from the tyranny of time and
place and circumstance. Is not this what liberal edu-
cation is about?”
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Figure 4: Tiling (a) and pattern (b).

Let us distinguish between tilings and patterns; pat-
tern is the more general word. When Grunbaum and
Shephard were collecting materials for their definitive
1987 book on tilings and patterns, they found no
rigorous technical definition of pattern in the math-
ematical literature; their book provides the first text-
book treatment of the topic. That most of this material
is new is, in their own words, “a surprising fact
considering the immense amount of effort that artists
and architects have expended in designing and ana-
lyzing patterns since time immemorial.”

A patternin the planeis simply a geometric design for
which thereis asmall part whose repetitions create the
whole [Fig. 4(a)]. The small prototypic part is called
the motif. Patterns are studied and classified by con-
sidering various motions of the plane, such asrotations,
and determining which of them leave the overall
pattern indistinguishable from its original state.

Tilings represent a special case in which the plane is
partitioned, without gaps or overlaps, into sets called

tiles [Fig. 4(b)]. We will be mostly concemed with the
casein which one or a few distinct shapes, the prototiles,
are used to generate the entire configuration. Sym-
metries of these configurations are an important way
of describing and classifying them.

There are several classical tiling problems that don't
quite fit this description, yet are similar in nature.
Though some of these have a “game” or “puzzle”
character, they should not be taken lightly. Many
mathematical puzzles are the key to understanding
significant related applications; many have turned
outin thelong run tobe more useful than their creators
imagined. Such a classical puzzle is that of “tiling the
crippled chessboard with dominoes.” A standard 8 by
8 chessboard can easily be tiled with 32 dominoes,
where the size of the domino is just that of two
chessboard squares. If two opposite corners of the
board are removed, however, it is no longer possible
to tile it with the dominoes, even though its 62 square
unit area would seem to accommodate precisely 31 of
them.

A mathematical proof of this is illuminating and may
suggest the appeal of this subject to those with a
logical bent of mind. Any domino on the board must
cover two adjacent squares, hence one square of each
color. The 31 dominoes would thus cover 31 light and
31dark squares. But the crippled chessboard, because
the opposite comers which were removed had the
same color, has 30 of one color and 32 of the other!

Like many mathematical demonstrations, this little
argumenthas the virtue of settling the question without
recourse to any tedious exploration of a large number
of “nearly correct” solutions. For simply failing to
find a solution by experiment isn’t very convincing—
we may just not have tried hard enough!
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Figure 5: Stein decomposition,
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Figure 6: Trominoes (left) and tetrominoes (center and right).
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Figure 7: Pentominoes.

A related kind of question is that of tiling a given
rectangle with squares that are all of different sizes.
This is the antithesis of the notion of regularity men-
tioned earlier, butis another interpretation of the term
tiling. The problem turns out to be difficult: not all
rectangles can be tiled this way. There are restrictions
on the dimensions of the rectangle as well as on the
squares used to tileit. A minimal example isshownin
Fig.5 (from Stein’s Man-Made Universe). The rectangle
is 33 by 32; the number in each square is the length of
its side. (These tilings have interpretations as the
equilibrium states of certain electrical circuits!)

Mathematical puzzles and recreations, especially those
of a geometric nature, have played a significantrolein
the evolution of the subject. In addition to providing
pleasure and diversion, mathematical puzzles and
recreations have helped to develop the geometric
intuition and insight of many a future geometer. They
have stimulated creative and original contributions to
the field, not only from mathematical professionals
but from “amateurs” as well, that is, those with only
modest training in formal mathematics.

For example, an interesting instance of a finite tiling is
provided by an innovative jigsaw puzzle, called the
“Shmuzzle,” all of whose 168 tiles are alike. A typical
piece is shaped like a lizard with six extremities: four
legs, ahead, and a tail. Since the outside border of this
tiling is irregular, the puzzle maker provides a border
into which to fit the pieces.

Some 25 years ago the mathematician Solomon Golomb
generalized the familiar domino, made of two equal
squares, to polygonal tiles called polyominoes. These
can consist of three squares (triominoes or trominoes),
foursquares (tetrominoes), five squares (pentominoes),
and so on. Fig. 6 shows the two trominoes and five
tetrominoes; Fig.7 illustrates the twelve pentominoes.

If we count mirror images as distinct—not allowing
the figures to be flipped over—there are then seven
“one-sided” or “oriented” tetrominoes and 18 “ori-
ented” pentominoes. (The extra asymmetric figures
are shown in brackets.) Higher order polyominoes
have been studied, but to date there is no formula
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Figure 8: Moniamonds, diamonds, triamonds, tetriamonds, and

pentiamonds.
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(b) (c)

Figure 10: Ravenna mosaic (a), underlying figure of Ravenna mosaic (b), and tiling of the plane using Ravenna underlying figure (c).

of a given order. Polyiamonds are formed in a similar
way using equilateral triangles instead of squares. A
moniamond is one such triangle; a diamond consists
of two. (The double-form is the source of the idea—as
well as the terminology—for both polyominoes and
polyiamonds!) There is only one triamond, but there
are three tetriamonds, four pentiamonds, and a dozen
hexiamonds (not counting the oriented or asymmetric
forms) [Figs. 8 and 9].

Which polyominoes and polyiamonds are prototiles
for plane tilings? Can copies of any one of these
figures, laid out appropriately, be used to cover the
plane periodically? It turns out that many of these
figures do tile the plane, but some do not. There are
many unsettled questions!

Mosaic is an art form closely related to tiling. A finite
region is covered with small shapes, usually polygo-
nal, but the requirement that there be no gaps between
the tiles is not strictly observed. In addition, the tiles
are colored. (This chromatic distinction can be made
for stricttilings, too; the more colors allowed, the more
complicated becomes the problem of classification.)

Most mosaics are approximate tilings: the artists’ cre-
ativity and realism have overruled strict structure.

A mosaic from Ravenna, the fretwork design from an
alcove of the Galla Placidia Mausoleum [Fig. 10(a)],
represents a very different meeting of creativity and
structure. The shape outlined in white resembles a
cross between a starfish and a swastika, but each
example has only three arms instead of four.

The underlying regular figure [Fig. 10(b)], has four-
fold rotational symmetry. Although each instance in
the mosaic is missing an extremity in order that the
design be confined to a linear border, the full design
can easily be extended to a tiling of the plane [Fig.
10(c)]. Note how four tiles cluster together some
restrictions commonly adopted when considering
tilings of the plane.

Thefirstoftheseis thatthe number of distinct prototiles
be finite, ordinarily quite few in number. A second is
thateach tileitself be finitein extent. That these arenot
necessary can be seen in the examples in Fig. 11. The
tiles on the left are unbounded strips. The tiling on the
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Figure 11: Unbounded tiles (a) and infinitely many prototiles(b).
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Figure 12: Hexagonal tiling with parallelogram motif.

right consists of infinitely many strips, of differing,
ever-increasing size. While suchtilings are not without
interest, we won't pursue them further here.

As suggested earlier, the symmetries of a tiling and of
its constituent prototiles are characteristics important
in the description and classification of plane tilings.
These are rigid motions of the plane after which the
outline of the tiling appears identical to its original
form.

One such motion is translation: slide the pattern in a
fixed direction a specific distance, always parallel to
its starting position. After a certain fixed distance, it
coincides with its original configuration. Most of the
tilings we'll look at are periodic: there are two distinct
directions and distances in which translations will
bring about coincidence. This means we can find a
parallelogram whose contents form a motif for the
overall pattern. The motif sometimes consists of
fragmented copies of the prototiles [Fig. 12].

Many interesting tilings are aperiodic, however; artistic
examples are provided by “spiral” tilings [Fig. 13].
The tiling on'the left, constructed from enneagons, is

due to Heinz Voderberg. Marjorie Senechal created
the tiling on the right from concave heptagons.

Other symmetries are described in terms of rotations,
reflections, and glide-reflections. These can be demon-
strated most effectively using transparent models and
other dynamic visual aids.

A further characteristic used in classifying tilings is
that of being “edge-to-edge.” This requirement limits
the number of possibilities and makes the mathemati-
cal treatment easier. Yet many tiling patterns are not
edge-to-edge. A familiar example is the usual pattern
in which bricks are laid to face a building. Just by
varying the offset, with no change in the shape of the
prototile, an infinite number of distinct patterns is
possible. InFig. 14(a) the overlap is half a brick; in Fig.
14(b) it is one-third of a brick.

The examples mentioned so far may begin to convince

you that tiling patterns canbe found all around. Near-
tilings appear in nature, while their imitations and
idealizations abound in art and design. Once you
begin tolook for tilings, you will find them everywhere!

The pattern of patches on the hide of the giraffe
provides a crude example of an irregular tiling; it is
cleareston thereticulated giraffe. The cracksindrying
mud often form similarly reticulated patterns, as do
gelatinous preparations of tin oil, rock formations like
the Devil's Postpile, packings of soap bubbles, and the
pattern of cracks formed by the shrinking of plaque.
The scales of fishes form tiling-like patterns. That
reptiles provide illustrations of tiling patterns in their
scales and skinsis not surprising. We may be startled,
though, to find similar patterns in the tail of the beaver
and the paw of the mole. Additional examples of the

13(a)
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Figure 13: Vodeberg spiral (a) and Senechal spiral (b). Figure 14: Bricks with one-half brick offset (a) and one-third brick offset (b).
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Figure 15: Herringbone bricks (a) and squares with octagons (b).

regular hexagonal tiling are found in cross-sections of
the honeycomb and the nest of the paper wasp.

The study of crystallography has a close relationship
with tiling. Although crystals are three-dimensional,
suggesting a generalization of the tiling idea into
space that is outside the scope of this discussion, their
cross-sections and projections lead to configurations
with tiling pattems.

Taking a cue from some of these natural phenomena,
but adding creativity and the ability to make accurate
copies of the motif to generate precise tiling pattems of
any size, the human designer and artist have incor-
porated such elements into a wide variety of settings,
using many different materials. To the underlying
geometric pattern are often added the further di-
mensions of color and texture.

Atapractical everyday level we see tilings in the roofs
of thebuildings in which we live and work, whetherin
asphalt shingles with an “anvil pattern,” slate roofs
arranged like diamonds, or in real old-fashioned ce-
ramicroof tiles. The common postage stamp is another
source of patterns for the student of tilings, since the
sheets of which they are a part are tiled by the stamps

[Fig. 27]. By far the most common pattern is that of
simple squares or rectangles, but several countries
have issued stamps shaped like triangles, trapezoids,
parallelograms, and pentagons.

Earlier we mentioned pattems in brick facings. Bricks
are used for walks and malls, too, as we see in Fig. 15,
with a criss-cross pattern of rectangles on the left, a
mixed tiling of octagons and squares on the right.

Glimpses of geodesic domes and some of nature’s
near-tilings may have inspired mathematician Doris
Schattschneider, herself an expert on mathematical
aspects of Escher’s work, to use Escher designs to tile
the surfaces of the five regular or platonic solids, three-
dimensional analogs of regular polygons, having all
edges, faces, and angles equal. These imaginative
combinations of artistic creativity and mathematical
regularity must be seen to be appreciated. Using
tilings whose prototiles represent reptiles (is this a
“rep-tiling”?), fishes, bats, lizards, shells, and starfish,
Schattschneider and her colleague Wallace Walker
present us with the tetrahedron, cube, octahedron,
dodecahedron, and icosahedronresplendently clothed
in their new “Escher prints.”

This image of clothing leads naturally to the obser-
vation that many textiles are decorated with patterns
and tilings. Somewhere between the sublime near-
tessellations of a seventeenth century Persian carpet
and the mundane (if not ridiculous) diamond tiling on
a sweater in a fashion ad, are the colorful designs of
quilts. Those of us living in the midst of Amish
country, of course, find this no surprise. The designs
vary from the relative simplicity of the Bow Tie pattern
to the complexity of Pierced Star and Sunburst. The
complexity results both from the intricacy of the un-
derlying tiling and the further variations resulting
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Figure 16: Novi tiles (a) and matching rules (b).
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Figure 17: Irregular “glass" tilings (a) and crystal tilings (b).
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19(a)
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Figure 18: Penrose kites and darts (a) and Penrose rhombi with matching (b).
Figure 19: Inflation (a) and deflation (b) of Penrose kite and dart tiling. Figure 20: Polyamond sphinxes.

from the use of color or pattern within the tiles. Like
the Escher-covered polyhedra, these must be seen in
“living color” to be appreciated fully.

Recently a game has appeared called Novi, described
by its creators as “a game of visual intelligence.” Its
256 tiles, colored on both sides, represent the 512
possible ways of coloring either white or black the
nine small squares of a square enneomino [Fig. 16(a)].
The tiles may be used to construct specified figures or
played on a game board according to various sets of
rules. A feature of all the games and pastimes associated
with Novi is that tiles are to be placed next to one
another only if their edge colorings match; Fig. 16(b)
shows examples of a legal match and an illegal one.

This matching rule is similar to the matching rules
imposed on Penrose tiles. In the 1970s, British math-
ematical physicist Roger Penrose was intrigued by
tilings that were not quite periodic, not quite random.
They exhibited the five-fold symmetry strictly for-
bidden by the crystallographers (apparently related
to the fact that regular pentagons won't tile the plane).
It wasn’t until the discovery in 1982 of an icosahedral
quasicrystalline phase of aluminum-manganese alloy
that this pentagonal symmetry appeared convinc-
ingly in nature. Poised somewhere between the dis-

order of a glass, represented by the tiling by random
polygons in Fig. 17(a), and the regimentation of a
crystal in Fig. 17(b), these quasi-crystalline substances
seem right in step with the recent emergence of the
study of chaos as a scientific discipline: the remarkable
discoveries, as David Eck puts it, of “unpredictability
without randomness . . . [and] pattern without deter-
minism.”

Penrose’s most interesting tiles, the kites and darts,
must be matched according to rules enforced by cor-
ner labels or by matching colored arcs; these seem to
reflect rules of chemical structure in the quasi-crys-
talline state of matter. Tiling by kites and darts [Fig.
18(a)], and its companion based on two differently
shaped rhombuses [Fig. 18(b)], tantalize the physicist,
intrigue the mathematician, and stimulate the artist to
delight the eyes of all!

Penrose tilings are related to another topic of current
interest, fractal geometry and sets of fractal or fractional
dimension. Penrose tilings, like many fractals, exhibit
selfsimilarity —identical structure at different scales of
magnification. Tiles of a kite-and-dart configuration
canbebroken downinto smaller versions or combined
into larger ones [Fig. 19]. Other tilings have this
property, too. The “sphinx-like” tile, repeated in Fig.
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Figure 21: Triamond cells. Figure 22: Convexity (a) and non-convexity (b). Figure 23: Distinct tilings by the same triangle.
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26(a)

Figure 24: Quadrilateral tilings, convex (a) and non-convex (b).
Figure 25: Tiling by Type 1 hexagon. Figure 26: Tiling by pentagons (a) and stars (b).

20 at several scales, is just a hexiamond; a self-similar
pattern is built from a tromino in Fig. 21.

A question about tilings that has intrigued both pro-
fessionals and amateurs concerns the possible plane
tilings with just one polygonal prototile—with the
restriction that the tiles be convex. Convexity means
that the boundary always bulges outward: there are
no “dents” [Fig. 22]. In other words, the straight line
path between any two points of the set remains en-
tirely within the set.

We know, of course, that we can tile with equilateral
triangles, squares, and regular hexagons; these are the
only regular edge-to-edge tilings. One can, in fact, tile
with any triangle, and in more than one way [Fig. 23].
It’s also possible to tile the plane with any quadrilat-
eral [Fig. 24]. There are no restrictions on the relative
sizes of the sides or on the angles: the quadrilaterals
needn’t even be convex!

For hexagons the situation is more complex. We've
seen several examples of tilings by regular hexagons,
butirregular ones work only under special conditions
on sides and angles. It was shown by Reinhardt in
1918 that there are only three distinct types ofhexagons

which tile the plane. Each of these typesis characterized
by certain restrictions. The first, for example, has top
side b and bottom side ¢ equal in length; in addition,
the three angles at the left end must add up to 360
degrees, as must the three at the right end. Fig. 25
illustrates these conditions and shows a tiling by a
hexagon of this type.

Tiling by convex heptagons was believed for a long
time to be impossible. No formal proof was written
anywhere, and the fact was referred to as part of the
“folklore” of the subject. An elementary, if tricky,
proof was supplied by Niven in 1978. He actually
proved the impossibility for 7 or more sides!

The alert reader will have noticed the omission of the
case n = 5. Can we tile with pentagons? For regular
pentagons the answeris no, thoughregular pentagons
can be combined with other prototiles to produce
interesting tilings like those in Fig. 26.

For many irregular pentagons, however, tiling is easy.
The typical shape of a house drawn by a young child,
for example, tiles as shown in Fig. 27(a), while the
lopsided version of this pentagon [Fig. 27(b)] can also
be used to tile. Possibly because its form suggests the
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Figure 27: Drawings of houses (a); stable-shaped stamps (b).
Figure 28: Tiling by pentagon species 10 (M. Rice). Figure 29: Escher tiling sketches from the Alhambra.
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outline of a stable, it was chosen as the shape for a set
of Maltese Christmas stamps in 1966.

Experience with hexagons suggests that there may be
restrictions on pentagons as well. Indeed, the two
examples above are special, since each contains two
rightangles and a pair of parallel and equal sides. The
Reinhardt who classified hexagons also listed five
types of pentagons that work and claimed that his list
was complete, but in 1968, R. B. Kershner published
three more types. He too claimed completeness for the
now expanded list, but it was more “folklore”—not
formally established. An engineer named Richard
James produced a ninth one in 1975, stimulated to
study the matter when the taxonomy of Reinhardtand
Kershner was published by Martin Gardner in the
Mathematical Games column of Scientific American
earlier that year. This was not the end of the story,
however.

Marjorie Rice, a San Diego housewife and mother of
five, whose formal mathematics training ended with
high school “general math” but whose informal
training included years of reading Gardner’s columns
in Scientific American, devised her own scheme of
classification and came up with type 10 in February of
1976, types 11 and 12 in December of 1976, and type 13
in December of 1977. The experts were amazed! Fig.
28 shows a tiling by her type 10. Its not quite parallel
sides have a rather disconcerting effect, but it is a
periodic tiling!

So the list stands at thirteen, but the question is still
open. Atthis pointnoteven the experts claim to know
whether the list is complete. Perhaps some reader of
this account will discover species number fourteen!

The artistic imagination leads one to seek more com-
plex and interesting prototiles than just polygons.The
Dutch graphic artist M. C. Escher was fascinated by
tilings. In 1936 he made sketches of a number of
Islamic designs from Moorish Spain [Fig. 29].

Ernest Ranucci and Joseph Teeters were so intrigued
by Escher’s drawings that they wrote a book entitled
Creating Escher-type Drawings. While they produced
some amusing efforts (for example, tilings by football
players and by St. Bernard dogs), they didn’tseriously
challenge Escher, the master. From drawings of those
Andalusian tiles in the Alhambra, Escher went on to

Humanistic Mathematics Network Journal #12

lizards, angels and devils, fish and birds, and many
other memorable designs. New York art publisher
Harry Abrams has created a stunning collection of
wrapping paper designs, colorfully continuing
Escher’s tilings into works of art too lovely to use on
any package. .

The art of Islam has been rich in geometric design
because of Mohammed’s prohibition against repre-
senting the human figure. The variety and inventive-
ness of these can be sampled by leafing through books
on Islamic art. One will find such examples as a tiling
by three species of octagon (two of them non-convex!)
in a panel from a mosque at Isfahan and an intriguing
design of interlocking arrows in a column from a tomb
inMaragha. (A similar pattern appearsin anineteenth
century French graphic by Cahier and Martin.)

The diversity and beauty with which these many
tilings are executed in the world about us, both natural
and man-made, together with the ingenuity of their
neatly dovetailed designs, can provide both stimula-
tion to the intellect and refreshment to the spirit. As
you move about in your own world, be alert for tilings
all around you—and enjoy!

POSTSCRIPT

In collaboration with my photographer/student as-
sistant Mark Tanner, I assembled a library of ap-
proximately five hundred slides illustrating tilings in
architecture, science, philately, Islamic art, and other
areas. Eighty pairs of these formed the central visual
vehicle for the Westminster Henderson Lecture and
for subsequent versions of the lecture given in the US,
New Zealand, and Australia. The narrative above
conveys the structure of the presentation within the
limitations of much simpler illustrations.
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(Islamic Art Publishers, 1980; ISBN 0-85667-698-7).

Fig.3(a): Plate 137, World of M. C. Escher, ]. L. Locher, ed. (NY: Abrams,
1971; ISBN 0-81090107-2).

Fig. 3(b): adapted from Fig. 99, p. 223, Organic Crystals and Mol-
ecules, ]. Monteath Robertson aca: Cornell Univ. Press, 1953).
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Fig. 4(a): adapted from Fig,. 4, p. 8, of Contemporary Crystallography,
Martin J. Buerger (NY: McGraw-Hill, 1970).

Fig. 10(a): from “Fifteen Centuries Later, Ravenna’s Mosaics Still
Glow,” Robert Warnick, in Smithsonian, Jan. 1990, p. 65.

Fig. 13(a): Fig.37 p.4, Penrose Tiles to Trapdoor Ciphers, Martin Gardner
(NY: Freeman, 1989; ISBN 0-7167-1986-X).

Fig. 13(b): Fig. 16, p. 20, of “A Brief Introduction to Tilings,”
Marjorie Senechal, in Introduction to the Mathematics of Quasicrystals,
Marko Jaric, ed. (San Diego: Academic, 1989; ISBN 0-12-040602-0).

Fig. 16: author; Novi is a registered trademark of the R/L Group,
Cambridge, Massachusetts.

Fig. 17(b): Fig. 1, p. 80, of Crystal Chemistry of Large-Cation Silicates,
A. N. Belov (NY: Consultants Bureau, 1963).

Fig. 18(b): adapted from Fig. 10.3.18, p. 543, of Tilings and Patterns,
Grunbaum and Shephard (NY: Freeman, 1987;ISBN:0-7167-1193-
1).

Fig. 26(a): Fig. 2.5.4(q), p. 85, of Tilings and Patterns, Grunbaum and
Shephard (NY: Freeman 1987; ISBN: 0-7167-1193-1).

Fig. 26(b): adapted from Fig. 10.3.3, p. 532, of Tilings and Patterns,
Grunbaumand Shephard (NY: Freeman, 1987;1SBN: 0-7167-1193-
1).

Fig. 28: adapted from Fig. 6, p. 148, “In Praise of Amateurs,” Doris
Schattschneider, in The Mathematical Gardner, David A. Klarner,
ed. (Boston: PWS, 1981; ISBN: 0-534-98015-5).

Fig.29(a): tri-arrows from Plate 86 in World of M. C. Escher,]. L. Locher,
ed. (NY: Abrams, 1971; ISBN 0-8109-0107-2).
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Figure 1(a): Islamic bowl. Figure 3(a): Escher horsemen. Figure 27(b): Stable-shaped stamps.
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