
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2015

A Plausibly Deniable Encryption Scheme for
Personal Data Storage
Andrew Brockmann
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Brockmann, Andrew, "A Plausibly Deniable Encryption Scheme for Personal Data Storage" (2015). HMC Senior Theses. 88.
https://scholarship.claremont.edu/hmc_theses/88

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70984723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

A Plausibly Deniable Encryption Scheme for
Personal Data Storage

Andrew Brockmann

Talithia D. Williams, Advisor

Arthur T. Benjamin, Reader

Department of Mathematics

May, 2015

Copyright © 2015 Andrew Brockmann.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right tomake thiswork available for noncommercial, educational pur-
poses, provided that this copyright statement appears on the reproducedmaterials
and notice is given that the copying is by permission of the author. To disseminate
otherwise or to republish requires written permission from the author.

Abstract

Even if an encryption algorithm is mathematically strong, humans in-
evitably make for a weak link in most security protocols. A sufficiently
threatening adversary will typically be able to force people to reveal their
encrypted data.

Methods of deniable encryption seek to mend this vulnerability by al-
lowing for decryption to alternate data which is plausible but not sensitive.
Existing schemes which allow for deniable encryption are best suited for
use by parties who wish to communicate with one another. They are not,
however, ideal for personal data storage.

This paper develops a plausibly-deniable encryption system for usewith
personal data storage, such as hard drive encryption. This is accomplished
by narrowing the encryption algorithm’s message space, allowing different
plausible plaintexts to correspond to one another under different encryption
keys.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1

2 Background Information 5
2.1 The XOR Cipher . 5
2.2 TrueCrypt Hidden Volumes 7
2.3 Existing Public-Key Schemes 10
2.4 Steganography . 11

3 Framework For The Scheme 15
3.1 Our General Approach . 15
3.2 Message Spaces . 17
3.3 Practical Considerations . 18

4 Methods of Message Space Reduction 21
4.1 The Even-Split Property . 22
4.2 Absence of Long Runs . 23

5 Assessing the Strength of ESP 25

6 Selecting Our Maximum Run Length 27

7 Assessing the Strength of the “No Long Runs” Requirement 31
7.1 Counting Binary Strings With No c-runs of 1s 31
7.2 Counting Binary Strings With No c-runs At All 32
7.3 Direct Comparison of U c

n to 2n 35

vi Contents

8 Combining ESP and the “No Long Runs” Requirement 37

9 Generalizing ESP and “No Long Runs” to Bit Blocks 41

10 Conclusion 47

11 Future Work 49

A Example Algorithm Construction 51
A.1 Choosing and Efficiently Computing f 52
A.2 Efficiently Computing f −1 . 53

Bibliography 55

List of Figures

2.1 TrueCrypt hidden volume functionality 9
2.2 An example of steganographic image concealment 12

3.1 Two different ways to develop our scheme 16

List of Tables

2.1 Tabular Definition of the XOR Function 5

8.1 Several values of U6
n ,n/2 . 40

9.1 Several values of U6
n ,n/2 and U3,2

n/8,n/8,n/8,n/8 45

A.1 An example selection of the function f 52

Acknowledgments

I am grateful to both TalithiaWilliams, my thesis advisor, andArt Benjamin,
my second reader.

I also extend special thanks to Vincent Fiorentini and Megan Shao,
without whom my final code might never have worked.

Chapter 1

Introduction

Encryption is a mathematical means of achieving information security. A
person’s unprotected information, called the plaintext, is passed as a param-
eter to an encryption function. The function requires another input, called
an encryption key, which can be viewed as a string or a number. Given these
inputs, the encryption algorithm produces an output, referred to as the ci-
phertext. The corresponding decryption algorithm, when given a ciphertext
and the appropriate key (which may be distinct from the encryption key),
produces the original plaintext.

The ciphertext usually has length comparable to (or the same as) that of
the plaintext. However, while the plaintext can typically be easily read and
understood, the ciphertext will in general appear random or nonsensical.
The protection offered by encryption is a result of the difficulty involved in
deducing anything about the plaintext when only the ciphertext is readily
available. A good encryption algorithm can be performed quickly and pro-
duces a ciphertext that yields no useful information on its own. An adver-
sarial third party can usually recover the plaintext by attempting decryption
with every possible decryption key—however, the number of possible keys
for any good algorithm is large enough that brute force attacks of this sort
are completely impractical.

On its own, strong encryption can thwart passive eavesdroppers who
may attempt to access individuals’ sensitive informationwithout ever inter-
actingwith the individuals in question. If information is stored in encrypted
form, to be decrypted only when its owner has need of it, then anyone else
who attempts to access the informationwill be presentedwith an unhelpful
ciphertext. However, active eavesdroppers still pose a threat. An active
eavesdropper may threaten people to reveal their plaintext information un-

2 Introduction

der threat of force, blackmail, or some other type of coercion. If the threat
is strong enough, an individual may have little choice but to reveal their
information; decrypting a ciphertext with an incorrect key will, with over-
whelming probability, yield junk data, letting the threatening eavesdropper
know that the decryption key used was incorrect.

The existence of threatening adversaries motivates the creation of en-
cryption schemes which allow for plausible deniability. An encryption
scheme is called plausibly deniable if it enables a user to maintain the se-
crecy of their plaintext even when faced with a threatening adversary. This
is usually accomplished by allowing users to decrypt their ciphertexts to
multiple sensible plaintexts, at least one of which can be safely revealed if
necessary. Thus, when confronted by a threatening adversary, a user of a
plausibly deniable scheme can choose to reveal a non-sensitive plaintext,
preserving the security of their sensitive information.

The existing literature on plausibly deniable encryption includes several
working schemes. However, all but one of them are not well-suited to large,
personal data storage, and the remaining scheme may fail in the face of
especially persistent adversaries.

The one existing scheme that works well for personal data storage uses
private-key encryption algorithms. Private-key algorithms are those which
use the same key for both encryption and decryption. The encryption and
decryption algorithms are mirrors of one another. The scheme in question
can be used with several freely available hard drive encryption programs,
such as TrueCrypt. In many of the scenarios in which plausible deniability
is desirable, this scheme works excellently; it is furthermore easy to use.
However, the deniability offered by this scheme is often plausible at best.
That is, it often does not afford probably deniability, which may be necessary
to ward off certain malicious adversaries.

The remaining existing schemes are all public-key schemes, which use
separate keys for encryption and decryption. The keys generated in public-
key schemes are mathematically related and come in pairs. Each key can
decrypt what the other encrypts, but neither key can decrypt what it itself
has encrypted. Public-key algorithms are so-named because one of the
two keys in any pair can be safely made public, allowing anyone to send
an encrypted message to the owner of the keys. As long as the other key,
called the private key, is kept secret, only the owner of the keys will be able
to read the messages directed to him or her.

The existing plausibly deniable public-key schemesmay, in theory, work
for hard drive encryption. However, they are not ideal for this task, in part

3

because the existing schemes were developed for use by mutually trusting
parties who wish to communicate with one another. Typical messages
between two parties will be negligibly short compared to even the smallest
of hard drives. The content of a typical hard drive is large enough that the
use of the existing public-key schemes for hard drive encryption may be
very awkward.

Another problem that would arise from the application of the existing
public-key schemes is the necessary key length. The keys used in public-key
algorithms must be much larger than those used in private-key algorithms
in order to achieve the same level of security. In short, this is because the
two keys used in public-key schemes are mathematically related, and this
relation allows attackers to deduce the private key from the public key by
means faster than a brute force attack. The easiest way of defending against
these attacks is to simply increase the key length, preventing anybody from
executing such an attack in a reasonable amount of time.

The inconvenience involved in using long keys in public-key schemes is
compensated for by the convenience gained in key exchanges. Two parties
who wish to securely communicate using a private-key schememust some-
how agree on a keywithout revealing their key to eavesdroppers. If the two
parties use a public-key scheme, however, they can simply exchange their
public keys without worrying about eavesdroppers who learn their public
keys. But while this is an attractive feature of public-key algorithms, it does
not benefit individuals who wish to keep the contents of their hard drives
secret. Thus, using the existing plausibly deniable public-key schemes for
hard drive encryption would require the use of unnecessarily long keys.

This paper develops a plausibly deniable private-key encryption scheme
by creating a means by which one sensible plaintext can be encrypted to
another. That is, when one plausible plaintext is encrypted, the resulting
ciphertext is itself another plausible plaintext. This way, a user can encrypt
a non-sensitive dummy plaintext using an existing private-key encryption
algorithm. If forced to reveal their encrypted information, the user can
decrypt their ciphertext to their dummy plaintext. On the other hand, if the
user wishes to access his or her real plaintext, he or she need only decrypt
their ciphertext to obtain their dummy plaintext and then decrypt their
dummy plaintext to their real plaintext.

Chapter 2

Background Information

2.1 The XOR Cipher

The basic or XOR cipher is an encryption algorithm predating the field of
modern cryptography. The cipher makes use of a plaintext and a key of the
same length as the plaintext to produce a ciphertext that is also of the same
length as the plaintext. This is accomplished via bitwise application of the
XOR, or exclusive OR, function. Given two bits b1 and b2, the exclusive OR
value b1 ⊕ b2 is equal to 1 if exactly one of b1 and b2 is equal to 1; otherwise,
b1 ⊕ b2 � 0. Equivalently, the XOR function can be defined as in Table 2.1.

Given a plaintext P with bit sequence P � p1 . . . pn and an equal-length
key K with bit sequence K � k1 . . . kn , a ciphertext C � c1 . . . cn is produced
by letting ci � pi ⊕ ki for each i � 1, . . . , n. The XOR cipher is at the heart of
many commercially used encryption algorithms. It also has the desirable
feature of allowing any equal-length plaintext and ciphertext to correspond
to one another under some key.

In fact, when a key is generated for the sole purpose of encrypting a

b1 b2 b1 ⊕ b2

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1 Tabular Definition of the XOR Function.

6 Background Information

message via XOR encryption and is then never reused, the result is the so-
called “one-time pad” encryption scheme. The one-time pad is famous for
being one of the only provably secure encryption schemes. Any message of
fixed length can be encrypted to any other message of fixed length via the
XOR cipher, so it is impossible to deduce anything about a plaintext given
only its ciphertext under a one-time pad encryption. One-time pads are also
exceptionally simple from a mathematical and programming standpoint.
The cipher can be applied in O(n), with n the bit length of the plaintext,
and is nearly trivial to implement in code.

Notably, one-time pad encryption does provide an easy means of creat-
ing a scheme with many of our desired properties. For any two plaintexts
P1 and P2 of the same length, we could randomly produce a key K1 and
then obtain a ciphertext C by applying the XOR cipher to P1 and K1. By
applying the XOR cipher to P2 and C, we produce another key K2 which
can be used to decrypt the ciphertext C to the second plaintext P2. Since
K1 was randomly produced, C will be random, and hence K2 will also be
random. This scheme easily allows us to decrypt a ciphertext C to two (or
more) different plaintexts of our choosing.

However, while this scheme is easy and works excellently, it is com-
pletely impractical in the context of hard drive encryption. This is because
the encryption keys used must be of the same length as the plaintext. The
most popular private-key encryption schemes require keys between 16 and
32 bytes in length. To encrypt a 500 gigabyte hard drive (an example wewill
use throughout this paper), we would need a key with slightly more than
500 billion bytes. Increasing the key length by a factor of multiple billions
is simply not practical, especially considering that 32 byte keys are already
difficult for most people to remember.

Initially, it might appear as though we can avoid this difficulty by ran-
domly generating a 32 byte key and then producing our 500 billion byte key
by repeating the same 32 bytes over and over. Our encryption key is not
actually random, but it is obtained by repetition of a random key, so it may
seem as though this key is good enough.

However, creating anXORcipher key in thisway is a gravemistake. One-
time pads are so-called because the encryption key must never be used to
encrypt anotherplaintext. If the samekeyK is used to encrypt twoplaintexts
P1 andP2, resulting in ciphertextsC1 andC2, then an eavesdropper can learn
the bitwise XOR P1⊕P2 of the two plaintexts by computing the bitwise XOR
of the ciphertexts. Once the bitwise XOR of the two plaintexts is known, it
is usually possible to easily deduce both plaintexts by performing certain

TrueCrypt Hidden Volumes 7

types of frequency analysis on P1 ⊕ P2. Thus, resusing a one-time pad key
results in the compromise of the security of all encrypted plaintexts. The
provable security of one-time pads breaks down if a key is reused, because
the existence ofmultiple ciphertexts under the same key can give an attacker
useful information about the plaintexts.

Thismight not immediately seem topose a problem for encryptionusing
a long key formed by repeating the same random bits. However, encrypting
a long plaintext with such a key is equivalent to encrypting many shorter
component plaintexts with the same key. Thus, an attacker can use the
attack described above to recover the long plaintext with high probability.

The XOR cipher does not by itself allow for a practical plausibly deniable
scheme. However, this cipher will be the backbone of the scheme which we
do eventually develop.

2.2 TrueCrypt Hidden Volumes

TrueCrypt is a freely available piece of software that allows for hard drive
encryption. The fundamental units under TrueCrypt encryption are called
volumes. Auser can encrypt their entire harddrivewith TrueCrypt, inwhich
case their whole hard drive is the volume. Alternately, a user can create a
volume by setting aside a fixed amount of space on their hard drive. The
volume is encrypted by TrueCrypt. If the plaintext of a volume contains
empty space, a user can decrypt the volume, add another plaintext file to
the volume, and the re-encrypt the volume. Users can also nest volumes by
placing encrypted volumes in the plaintext of larger encrypted volumes.

TrueCrypt is well known for its hidden volume functionality, described
by Andrew Y. (2012). Hidden volumes provide a way for users to hide sen-
sitive information along plausible dummy plaintexts such that the dummy
plaintexts can be revealed without revealing the real plaintext. The only
requirement is that the dummy plaintexts and real plaintexts have total
length equal to the capacity of their containing volume.

For the sake of simplicity, suppose we have a single real plaintext Pr
and a single dummy plaintext Pd . A user should choose one of the private-
key encryption algorithms available for use with TrueCrypt as well as two
private keys Kr and Kd . The real plaintext is encrypted using the key Kr ,
yielding a ciphertext Cr , while a ciphertext Cd is obtained by encrypting
the dummy plaintext with the other key Kd . Each plaintext will be of
the same length as its corresponding plaintext. (All encryption algorithms

8 Background Information

used by TrueCrypt have this property.) A single ciphertext C is then formed
by concatenating the two ciphertexts Cr and Cd . When this ciphertext is
decrypted using the dummy key Kd , the portion of the ciphertext formed
from Cd is correctly decrypted to the dummy plaintext Pd , whereas the
remainder Cr of the ciphertext is incorrectly decrypted and appears as a
random mess of bits. Similarly, decryption using the real key Kr allows a
user to recover their real plaintext. Therefore, a hidden volume user is able
to decrypt their data to a plausible plaintext while also retaining the ability
to recover their real plaintext if desired.

Notably, when a volume containing a hidden volume is decrypted, it
appears as though all empty space has been filled with random data (which
is actually an incorrectly decrypted ciphertext). This should not in general
raise the suspicions of threatening adversaries, since it is not uncommon
for people to fill the empty space on their hard drives with pseudo-random
data. In fact, TrueCrypt does this by default.

Somewhat more specifically, a TrueCrypt volume contains both a stan-
dard volume header as well as space for a hidden volume header. If no
hidden volume is present, the hidden volume header space is filled with
pseudo-random data. When TrueCrypt is given a decryption key, it first
attempts to decrypt the standard header. If this decryption is successful,
TrueCrypt decrypts the remainder of the volume using the same key. If,
on the other hand, decryption of the standard header fails, TrueCrypt then
attempts to decrypt the hidden volume header using the same key, again
decrypting the remainder of the volume if decryption is successful. Refer
to Figure 2.1.

It is worth mentioning that the addition of files to a volume containing
a hidden volume may destroy part of the hidden plaintext. The hidden
plaintext will appear as random data if the volume is decrypted using the
dummy key, and since TrueCrypt writes over all empty space with pseudo-
random data, the bits containing the hidden plaintext will be treated as
“empty”. Adding files to the volume decrypted with a dummy key may
therefore overwrite some of the hidden plaintext bits, effectively corrupting
the real ciphertext. Ameddlesome adversarymay therefore destroy hidden
plaintexts by tampering with the volume. It is not advisable to prevent
changes to the data in the volume, however, because this may clue the
adversary in to the existence of a hidden volume.

TrueCrypt hidden volumes are extremely practical and will work just
fine in many (perhaps most) cases. They do, however, struggle to provide
probable deniability; plausible deniability is often the best that they can offer.

TrueCrypt Hidden Volumes 9

Figure 2.1 A demonstration of how TrueCrypt hidden volumes work. Source:
Y. (2012).

10 Background Information

Hidden volumes are a highly advertised feature of TrueCrypt. Therefore,
an adversary who is familiar with TrueCrypt may feel suspicious upon
seeing empty space inside a decrypted volume, regardless of whether there
is actually any further hidden content. If a volume has a capacity of n bits,
a particularly threatening adversary may continue to threaten a user until n
bits of plaintext have been revealed from the volume. Such adversaries are
troublesome both for people who do and who don’t have hidden volumes.

A TrueCrypt user might try to hide their real plaintext in a small hidden
volume within a much larger volume. This way, an adversary who sees the
decrypted volume will notice that very little of the space in the volume is
“empty”, hence making it somewhat more plausible that there is no further
hidden content. This method might work, depending on the adversary in
question. However, it is risky and also undesirable because it requires a
user to dedicate only a relatively small portion of their hard drive to their
sensitive information.

TrueCrypt hidden volumes and their potential problems served as the
original inspiration for this thesis.

2.3 Existing Public-Key Schemes

As explained in the introduction, the existing deniable encryption schemes
other than TrueCrypt hidden volumes are not ideal for deniable hard drive
encryption. This is because the encryption keys need to be very long,
and also because the existing schemes are best suited for communication
rather than storage purposes. Nonetheless, these public-key schemes are of
theoretical (if not, for our purposes, practical) interest.

Deniable encryption was introduced by Canetti et al. (1996) in their
paper “Deniable Encryption”. The authors define a scheme to be sender-
deniable if the sender of an encrypted message, when approached by a
malicious party, can decrypt their message to a plaintext different than the
one that was actually communicated. The notion of receiver-deniability
is defined similarly. A scheme is sometimes called bi-deniable if it is both
sender- and receiver-deniable. Furthermore, a scheme is called δ-deniable
if the existence of the original plaintext can be detected with probability δ
or less.

The authors demonstrate how to construct δ-deniable schemes, for ar-
bitrarily small δ. However, the length of each message in any such scheme
scales roughly as 1/δ. Thus, achieving a reasonably low detection proba-

Steganography 11

bility requires very long communications—longer than would be typical,
certainly.

Canetti et al. also provide a deniable private-key scheme, but it is simply
the XOR cipher. This is not very practical for communication purposes
because it requires two communicating parties to share a large number of
bits not known to anybody else. The XOR cipher is not suitable for mass
data storage for reasons already explained.

Since the seminal paper by Canetti et al., other researchers have built
on their work. For example, Dürmuth and Freeman (2011) produced the
first public-key algorithm that is both sender-deniable and δ-deniable for
arbitrary δ. In the same year, O’Neill et al. (2011) introduced the first
bi-deniable public-key algorithm. Also, Klonowski et al. (2008) expanded
differently on the work of Canetti et al. by constructing a scheme that
allows for arbitrarily small detection probability δ while also providing a
user with the ability to deny that he or she is using a deniable encryption
scheme. In short, the work on public-key deniable encryption since Canetti
et al. has provided bi-deniability, stronger overall deniability, and the ability
to achieve deniability in shorter messages.

The existing deniable public-key schemes are clever and should not
be disregarded entirely, even for the purposes of personal data storage.
However, if a practical private-key scheme can be constructed, then it would
likely be preferable.

2.4 Steganography

Steganography is the study of methods of achieving information security
by hiding the very existence of the information. By contrast, observe that
cryptography does not hide the existence of information; rather, it renders
information unreadable by anyone who does not know the decryption key.
Strong encryption thwarts eavesdroppers by preventing them frommaking
sense of information. Well-implemented steganographic methods thwart
eavesdroppers by preventing them from even finding the information in
the first place.

An example of a purely cryptographic method is encrypted email. A
sophisticated eavesdropper will not be able to make sense of encrypted
email, but will in general be able to see that the encrypted email exists.

An example of a purely steganographic method, on the other hand, is
the concealment of information within an image file. Suppose we have an

12 Background Information

Figure 2.2 The image of a cat is steganographically hidden within the image
of a tree. Source: Greene (2009).

n-bit image file I1 thatwewish to hide aswell as another image I2 containing
at least n bytes (not bits). We can conceal the former within the latter by
overwriting the least significant bit of the ith byte of I2 with the ith bit of
I1, for each i � 1, . . . , n. This embeds I1 within I2, so that anyone aware of
the existence of I1 can easily extract it from the new image I′2. However, the
differences between I2 and I′2 will usually not be apparent to the naked eye,
so people unaware of the existence of I1 will tend to remain unaware of I1
even after viewing the new image I′2. Refer to Figure 2.2 for an example of
this image concealment algorithm in action.

Encryption on its own is strong but does not allow for deniability.
Steganography allows for deniability but is weak on its own. Observe
that even if an eavesdropper is not previously aware of the existence of a
concealed image, he or she may still be able to easily extract the hidden im-
age. This is not unrealistic—there are pieces of software made for the sole
purpose of finding steganographically hidden information within image
files. However, cryptography and steganography can be combined to great
effect. For instance, if information is encrypted and then embedded within
an image file, the image may look essentially the same as before while still
providing an eavesdropper with no easy means of extracting the hidden
information.

Deniable encryption schemesareboth cryptographic and steganographic.
Our scheme will encrypt a dummy plaintext while also, in some sense, hid-
ing a real plaintext within the dummy plaintext. The methods employed

Steganography 13

in this paper will never be explicitly steganographic. However, it is worthy
of note that the development of a deniable encryption scheme represents a
departure from conventional, “pure” cryptography.

Chapter 3

Framework For The Scheme

3.1 Our General Approach

There are several different ways to go about constructing a plausibly de-
niable encryption scheme. Perhaps the most natural approach is to alge-
braically force two chosen plaintexts (one secret and one dummy) to the
same ciphertext using different encryption algorithms or keys. This way,
a user can choose which plaintext to reveal by specifying the appropriate
combination of algorithm and key.

A second, more steganographic approach is to “encrypt” a chosen real
plaintext to a chosen dummy plaintext, which is then encrypted using a
standard encryption algorithm to obtain a ciphertext. The dummyplaintext
can be recovered by undoing the standard encryption. The real plaintext
can be recovered by recovering the dummyplaintext and then “decrypting”
it to the real plaintext. This approach is more steganographic than the first
because the real plaintext is, in some sense, hidden within the dummy
plaintext. These two approaches are explained pictorially by Figure 3.1.

This paper will focus exclusively on the second approach. The first
approach turns out to be intractable in the absence of serendipity—that
is to say, it does not work for most possible plaintext pairs. The second
approach, while still difficult, is possible.

Our approach, more specifically, will be to create a means by which an
arbitrary pair of sensible plaintexts can be associated with one another via
a key of reasonable length. The crux of this paper will be the creation of a
mathematical framework which allows for this.

16 Framework For The Scheme

Figure 3.1 Twodi�erentways to approach the construction of a plausibly de-
niable encryption scheme. (Figure produced by Gli�y.)

Message Spaces 17

3.2 Message Spaces

The phrase Message Space refers to the set of messages (typically viewed as
binary strings) to which a given cryptographic algorithm can be applied.
The phrases Ciphertext Space and Key Space are defined similarly. Most
algorithms in widespread use have as their message space the set {0, 1}n

of all binary messages of length n, for some n specific to the algorithm
in question. This makes sense—these algorithms work equally well on
all possible input messages, so it makes little sense to needlessly prohibit
certain messages from being used as input.

In the context of deniable cryptosystems, however, there are some ad-
vantages to be had by limiting the size of our message space. Suppose,
for instance, that our message space M consists of messages of length n
and satisfies |M | ≤ 2k , for some k < n. Then it is possible to create an
injective map f : M → {1, . . . , 2k}. Hence, we can represent any message
m ∈ M using fewer than n bits, since f (m) is unique to m and must be
representable using at most k bits. Given twomessages m1 ,m2 ∈ M, we can
then “encrypt” m1 to obtain m2 as follows. First compute f (m1). Perform
the XOR cipher on f (m1) using f (m1) ⊕ f (m2) as the encryption key; the
resulting ciphertext is f (m2), because

f (m1) ⊕ �
f (m1) ⊕ f (m2)� � f (m2) (3.1)

Lastly, apply the inverse function f −1 to this ciphertext. This yields m2,
because

f −1 �
f (m2)� � m2 (3.2)

Observe that the map f need not be invertible, since it is injective but not
necessarily surjective. However, it is invertible for any value corresponding
to a message in M, which is sufficient for our purposes. (More formally, we
could instead let M′ be the image of M under f . The mapping f : M → M′

is then invertible.)
Although the only encryption algorithmwehave used is the XOR cipher,

we have successfully mapped one message of length n to another using a
key with fewer than n bits. In essence, we have accomplished this by
compressing the twomessages of length n and then using an XOR cipher to
obtain the compressed representation of one message from the compressed
representation of the other.

Given such a mapping f and a suitably small message space M, we
can achieve plausible deniability using two keys of reasonable length as

18 Framework For The Scheme

follows. Select a real plaintext m ∈ M and a dummy plaintext m′ ∈ M. Let
K1 � f (m) ⊕ f (m′) be our first key. Select a standard encryption algorithm
E as well as a second key K2 that can be used with the algorithm E. The
ciphertext C in this protocol is given by

C � E(m ⊕ K1 , K2) � E(m′, K2) (3.3)

In other words, encrypt the dummy plaintext with the standard algorithm
E and key K2 to obtain the plaintext. The real plaintext can be recovered as
follows:

m � f −1 �
K1 ⊕ f

�
E−1(C, K2)��

(3.4)

In words, we undo the encryption E to obtain the dummy plaintext m′,
compute f (m′), perform the XOR cipher on f (m′) with key K1 to obtain
f (m), and then perform the inverse map f −1 to recover m. Recovery of the
dummy plaintext m′ is simpler:

m′ � E−1(C, K2) (3.5)

Importantly, the real message m is never obtained in plaintext during the
process to recover the dummy message m′. Therefore, an adversary mon-
itoring all of the intermediate results of encryption and decryption will
never see m in plaintext form. A scheme such as this one allows for plausi-
ble deniability, provided that the key K1 is sufficiently short.

3.3 Practical Considerations

While the protocol described in the previous section works excellently in
theory, it is difficult to use in practice. If we were to use the message space
M � {0, 1}n of all binary messages of length n, then the first key would
need to have length |K1 | � n, while the second key would probably have
size on the order of |K2 | ∼ 128. Thus, if the message to be encrypted is the
content of a 500 GB hard drive, then the total necessary key length for the
protocol is

|K1 | + |K2 | ≈ 242 , (3.6)

which is unacceptably long. This is why we seek to restrict the size of our
message space. However, even if we reduce the message space size by a
factor of square root to |M | � 2n/2, then the total necessary key length is still

|K1 | + |K2 | ≈ 1
2 · 2

42
� 241 , (3.7)

Practical Considerations 19

which is still unacceptably long. Evidently, we need our message space to
be miniscule compared to the universal message space {0, 1}n .

Even if the message space is reduced to a manageable size, another
potential problem is the algorithmic complexity incurred by the map f :
M → {1, . . . , |M |}. Recovery of the dummy plaintext requires no use of
the map f . Recovery of the real plaintext, on the other hand, requires at
least one application each of f and f −1. Thus, the time required to recover
the real plaintext in this protocol is lower-bounded by the time required to
compute both f and f −1. If these operations cannot be performed quickly,
then the protocol overall will be slow; in a worst-case scenario, it may be too
slow for practical use. Therefore, it is mandatory in practice that we have
efficient algorithms for the operations f and f −1.

Another similar requirement is that it should be possible to perform
the encryption and decryption algorithms using a reasonable amount of
computer memory. A fairly modest amount of memory for computers in
2015 is 4 gigabytes, although it would be better to limit memory usage to
1 gigabyte at a time since a substantial amount of computer memory may
already be devoted to other tasks.

The only practical consideration addressed in this paper is the necessary
total key length. While efficient algorithms for f and f −1 would be vital for
any implementation of our scheme, the purpose of this paper is to develop
a theoretical framework by which plausible deniability can be achieved.
Implementation of the scheme developed here is beyond the scope of the
paper. However, Appendix A develops efficient algorithms for f and f −1

for a simplified version of our scheme as a proof of concept.
There are numerous other concerns that would arise if the scheme de-

veloped here were ever implemented in production code, but these are all
considerations for software engineers and are thus beyond the scope of this
paper.

Chapter 4

Methods of Message Space
Reduction

It would be ideal to create a standard message space M for use with our
scheme so that users do not have to specify their message spaces as ad-
ditional parameters. Other than its size, which should be negligible in
comparison to {0, 1}n , the only requirement for M thus far is that it should
contain any user’s real plaintext and dummy plaintext. Roughly speaking,
then, we may proceed by letting M consist only of the sensible messages of
length n.

We can perhaps do better than just this. For instance, a collection
m1 , . . . ,mr of messages might all represent the same sensible data, dif-
fering only in their representations of blank space or in the order of its
distinct sections. For each such family of messages, we can choose exactly
one of the mi to include in M, effectively decreasing the size of M without
losing any real content.

It is not immediately clear, however, how large the resulting message
space M will be, or what, generally, it will look like. In large part, this is
becausewehavenot specifiedwhat itmeans for amessage to be “sensible”—
nor does it seem likely that this can be specified in a satisfactory way. We
might say that the number of distinct sensible messages of fixed length
is uncountably finite, meaning that it is finite but has not been expressed
combinatorially in closed-form. (Note that this definition differs sharply
from the topological notions of countable and uncountable infinities.) Even
if the number of distinct sensible plaintexts is uncountably finite, however,

22 Methods of Message Space Reduction

wemay still be able to construct amessage space M of reasonable sizewhich
contains all or most distinct sensible plaintexts.

One way of proceeding is to list some expected characteristics common
to all plausible plaintexts and then count the number of binary messages
with those characteristics.

4.1 The Even-Split Property

One characteristic we might expect plausible plaintexts to have is that they
have roughly equal numbers of 1s and 0s in their bit sequences. This is
because even if a message has significant overall structure, it is still likely
to look random on first glance at a bit or byte level. We say that a binary
string has the even-split property, or ESP, if exactly half of its bits are 0s.

Several potential concerns arise from this property definition. Firstly, a
binary string representing the plausible content of a computer hard drive
may fail to have ESP if the hard drive has blank space. If the blank space
is represented, for instance, as a large string of 0s, then the hard drive
content may be plausible and yet have many more 0s than 1s. This problem
can probably be entirely avoided in practice by requiring users to write
over blank hard drive space with pseudo-random data, which will tend to
exhibit ESP. If the user’s actual content and blank space both have ESP, then
their hard drive overall will also have ESP. Even if a user’s actual content
does not exhibit ESP, then their overall message may still have ESP if the
blank space is altered so as to counteract the discrepancy in the numbers
of 0s and 1s. (Here, we are essentially identifying a family of messages
corresponding to the same content, differing only in their representations
of blank space, and including in M only the ones that have ESP. This both
reduces the size of M and cuts down on the amount of redundancy in M.)

Perhaps a larger concern is that it will be rare for a user’s plaintexts to
have exactly equal numbers of 0s and 1s, even if the numbers of the two
are roughly equal. In the chapters that follow, our binary string counting
will include only those strings with exactly equal numbers of 0s and 1s.
Practically speaking, I expect that this will not cause the scheme developed
here to fail. If a user has even a small amount of blank space on their hard
drive, then it will probably be possible to modify that blank space so that
the overall message has ESP.

Failing this, however, it is possible to extend the schemes developed in
this paper to strings that do not quite have ESP. Specifically, if we allow our

Absence of Long Runs 23

strings to have any number of 0s from n
2 −

k
2 to n

2 +
k
2 , for any k > 0, then

our schemes will still work just as well provided that we lengthen our key
slightly. The necessary lengthening is upper-bounded by log k, which is a
fairly small penalty.

4.2 Absence of Long Runs

Another characteristic we might expect of plausible plaintexts is that they
do not contain excessive repetition of the same patterns. For example, we
would expect a binary string representing actual content to not have any
1000 consecutive bits equal to 0, since it would be rare for such a substring
of 0s to convey any real information. We define a c-run of a character α to
be any occurrence of c or more consecutive α characters within a string. We
might then expect that for sufficiently large c, any plausible plaintext will
not contain any c-runs (of 0s or of 1s).

As was the case with ESP, several potential concerns arise here too.
Firstly, if blank space is represented by a long string of 0s or 1s, then a
message may be a plausible plaintext and yet contain c-runs, even for large
values of c. As was the case with ESP, this problem can probably be entirely
avoided in practice by modifying the blank space. In fact, in almost all
cases, it should be possible to modify the blank space to force a string to
have both ESP and no long runs, provided that the rest of the string satisfies
or nearly satisfies these properties.

Writing over the blank space with pseudo-random data may or may not
work, depending on the chosen value of c. However, if the actual content of
a message has ESP and no long runs, then the entire message can be made
to satisfy these properties too by writing over the blank space with the data
010101 . . . , where the pattern 01 repeats. On the other hand, if the content
portion of the message has no long runs but has more 0s than it has 1s,
then this difference can be made up by writing over the blank space with
a pattern such as 011011011 In short, it is probably easy in practice to
avoid any ESP or long run problems arising from blank hard drive space.

Another practical concern that arises is that it is not immediately clear
which value of c should be chosen. On the one hand, we could let c � n,
since peoples’ hard drive contents will almost definitely not be entirely 0s
or entirely 1s. However, this value of c is too large, since the only strings
excluded in this case by the required absence of c-runs are 0n and 1n , which
would have been excluded anyway since they don’t have ESP. Thus, we see

24 Methods of Message Space Reduction

that this value of c is much too large and does not actually reduce the size
of our message space. On the other hand, we could choose a small value
such as c � 2. But the only binary strings of length n with no 2-runs are
(01)n/2 and (10)n/2, both of which are exceedingly redundant and convey
very little information. Thus, we see that c � 2 is too small of a value, since
it excludes essentially every meaningful string from our message space.

It will be necessary to find a balance. That is, we should choose a value
of c that is small enough to exclude messages with excessive redundancy
and yet large enough that our resulting message space contains all or most
plausible plaintexts. The chosen value of c is so important that chapter 6 is
devoted to the selection of c.

Chapter 5

Assessing the Strength of ESP

Our next step is to assess the message space reductions achieved individu-
ally by ESP and the required absence of long runs. In other words, we will
impose each requirement on its own on the set {0, 1}n of all binarymessages
of length n and then determine or estimate the size of the resultingmessage
space M.

To this end, we first count the binary strings of length n that have ESP.
Combinatorially speaking, this is very easy to do. The number of binary
strings of length n in which half of the bits are 0s is simply equal to the
number of ways to choose n/2 bits to be 0s (with the remaining bits all 1s).
Thus, ESP on its own gives us a message space M satisfying

|M | �
(

n
n/2

)
(5.1)

But while this count is absolutely correct, it does not make it obvious how
|M | compares to the number of binary strings of length n, which is 2n . To
more directly compare |M | to 2n , we make use of Stirling’s approximation,
which states the following:

n! ≈
√

2πn
(n

e

)n
(5.2)

Specifically, this approximation converges to equality as n → ∞. The ap-
proximation is useful to us because it converges very quickly. The error in
the approximation scales roughly as 1

12n . When n is chosen to be 242, equal
to the number of bits in a 500 GB hard drive, we see that the relative error in
this approximation is truly miniscule. To make use of this approximation,

26 Assessing the Strength of ESP

we first represent |M | as follows:

|M | �
(

n
n/2

)
�

n!
�� n

2
�
!
�2 (5.3)

We then use Stirling’s approximation to replace all of the factorials in (5.3),
yielding (

n
n/2

)
≈

√
2πn

� n
e

�n

[√
πn

� n
2e

�n/2]2 , (5.4)

which simplifies to

|M | ≈ 2n√
πn
2

. (5.5)

We thus see that ESP on its own reduces our message space by a factor of
roughly

√
πn
2 . In absolute terms, this reduction is significant. For n � 242,

this translates to a reduction by a factor of roughly 2million. In otherwords,
by requiring binary strings to have ESP, we remove all but one 2-millionth of
the possible binary strings from our message space, while keeping at least
one binary string corresponding to each plausible plaintext.

However, ESP on its own is nowhere near strong enough to make our
scheme practical. Note that in the map f : M → {1, . . . , |M |}, the values of
f (m) for m ∈ M may be as large as |M |. Thus, the number of bits in our first
key may be as large as

|K1 | � log |M |. (5.6)

Equations (5.5) and (5.6) together yield (after some simplification) the fol-
lowing:

|K1 | ≈ n −
1
2 log πn

2 . (5.7)

For n � 242, we thus obtain

|K1 | ≈ 242
− 21. (5.8)

Although the reduction in our message space is drastic, the reduction in
our key size is small. We may conclude that ESP is strong in absolute terms
but weak compared to what is necessary.

Chapter 6

Selecting Our Maximum Run
Length

Whereas ESP describes a single method of reducing message space size,
the “no c-runs” requirement actually describes a large set of ways to shrink
the message space, depending on the chosen value of c. Therefore, before
assessing the strengthof the effect achievedbyprohibiting long runs,wefirst
decide on a suitable value of c. Specifically, we will estimate the message
space size |M | in terms of n and c when c-runs are prohibited. Given this
estimation, we will then decide on an acceptable size for |M | and solve for
c in terms of n.

We will settle for a mere estimation in this chapter because counting
binary strings with no c-runs turns out to be a difficult combinatorial prob-
lem. We solve the problem exactly in chapter 7, but for the purposes of this
chapter, an estimation will suffice to provide us with an idea of the value
we should choose for c.

Specifically, wewill estimate the number of binary stringswith no c-runs
by estimating the number of binary strings which do contain at least one
c-run and then subtracting this estimate from the number 2n of all binary
strings of length n. If s is a binary string of length n, then a first c-run in s
can occur at any index from 1 to n− c +1, inclusive. Thus, there are n− c +1
ways to choose the index at which the first c-run in s begins.

For any starting index of the first c-run in s, there are n − c bits of s
not appearing in this first c-run. These bits can take on many of their 2n−c

total possible values—specifically, these n − c bits can take on any values
which produce no further c-runs prior to the designated first c-run. We

28 Selecting Our Maximum Run Length

will assume here that the substring of s generated by these n − c other bits
can take on most of their 2n−c possible values regardless of where the first
c-run in s begins. This allows us to estimate the number of binary strings
of length n with at least one c-run as (n − c + 1)2n−c , which in turn allows
us to estimate the number of binary strings of length n with no c-runs as

2n
− (n − c + 1)2n−c . (6.1)

If we let our message space M contain every binary string of length n with
no c-runs, then (6.1) provides us with an estimate for the resulting size of
M. That is,

|M | ≈ 2n
− (n − c + 1)2n−c . (6.2)

Optimistically speaking, we will be able to shrink our message space to a
size of 2256 or less, so that the first key in our scheme will have a standard,
reasonable length of a few hundred bits. To this end, we require

2256
≈ 2n

− (n − c + 1)2n−c . (6.3)

Note that for n on the order of n ∼ 242, the desired message space size 2256

is absolutely negligible compared to 2n . Thus, (6.3) holds true whenever

2n
≈ (n − c + 1)2n−c . (6.4)

This, in turn, requires

n ≈ log(n − c + 1) + (n − c), (6.5)

Which is easily rearranged to yield

c ≈ log(n − c + 1). (6.6)

Equation (6.6) is transcendental in c, but observe that in practice, we expect
c to be very small compared to n. Even if we allow enormous runs of length
c � 1000 in our messages, our chosen value of c is still tiny compared to
n � 242. We therefore make the approximation n − c + 1 ≈ n in order to
obtain

c ≈ log n. (6.7)

Wehavemadenumerous approximations along theway toobtain this result,
and at least one of those approximations is quite questionable. In particular,
after designating the index at which the first c-run within a string should
begin, it is not clear that “most” possible choices for the remaining n − c

29

bits will be acceptable. By simply using 2n−c here, we have overestimated
the number of binary strings with c-runs, leading us to underestimate the
number of binary strings with no c-runs. It is not immediately clear how
much of an underestimate this produces.

Nonetheless, equation (6.7) makes for a valuable indicator of roughly
which values of c we should choose. Observe that smaller values of c result
in smaller message spaces; if we are worried about the accuracy of our
estimation, we may try to compensate some by using an even smaller value
of c, such as c �

1
2 log n. In fact, this is the value we shall use henceforth.

It is worth pointing out that for n � 242, equation (6.7) gives us c � 42,
whereas the heuristic c �

1
2 log n yields c � 21. I suspect that both of these

values areusable inpractice; after amessagehas been altered so as to remove
unnecessary long runs, it seems unlikely to me that there will necessarily
be 21-runs remaining. In fact, I suspect we could use values of c that are
even a little smaller, such as c � 16 (which corresponds to there being no
more than three consecutive identical bytes in our messages). Regardless,
we shall settle on the value c �

1
2 log n for now.

Chapter 7

Assessing the Strength of the
“No Long Runs” Requirement

Having decided upon a run length c to prohibit in our message space, we
can now evaluate the message space reduction achieved by requiring our
messages tohaveno c-runs,much likewhatwedidwithESP in chapter 5. As
in chapter 5, we begin by counting the binary strings of length n containing
no c-runs. Unlike chapter 5, however, this combinatorics problem is highly
nontrivial. The first two sections of this chapter are devoted to counting the
binary strings with no c-runs. The third and final section of this chapter
is where we actually evaluate the message space reduction achieved by
prohibiting long runs.

7.1 Counting Binary Strings With No c-runs of 1s

As a first step, we count the binary strings of length n containing no c-runs
of 1s, but which may contain c-runs of 0s. We begin with this simplified
problem in part because the solution methods will prove useful, but also
because this problem has already been solved in existing mathematical
research. Specifically, Nyblom (2012) showed that the number of binary
strings of length n containing no c-runs of 1s is given by a shifted version
of the c-generalized Fibonacci sequence, Fc

n . The c-generalized Fibonacci
numbers are defined by the initial conditions Fc

n � 0 for n ≤ 0, Fc
1 � 1, and

Fc
n � Fc

n−1 + · · · + Fc
n−c (7.1)

for n ≥ 2. (Observe that the 2-generalized Fibonacci sequence is just the
Fibonacci sequence.)

32 Assessing the Strength of the “No Long Runs” Requirement

Let Sc
n denote the number of binary strings of length n containing no

c-runs of 1s. In particular, Nyblom showed that Sc
n � Fc

n+1 for all n. Nyblom
proved that these sequences are the same by showing that they have the
same initial conditions and satisfy the same recurrence relation.

Observe, firstly, that there exist no binary strings of length less than 0.
Thus, we have

Sc
n � Fc

n+1 � 0 (7.2)

whenever n < 0. For n � 0, we have

Sc
0 � Fc

1 � 1, (7.3)

since there is exactly one string of length 0: the empty string. (The empty
string contains no c-runs of 1s for any c > 0.)

Equations (7.2) and (7.3) together prove that Sc
n and Fc

n+1 have the same
initial values. All that remains is to show that the two sequences satisfy the
same recurrence relation. Nyblom did this via case work on the index of
the first 0 in any binary string that lacks c-runs of 1s. Note that any such
binary stringmust have its first 0 no later than index c—otherwise, the first c
characters of the string would be a c-run of 1s. If the first 0 appears at index
i, then the first i characters of the string are identical to the string 1i−10.
The remaining n − i characters of the string can then form any of the Sc

n−i
strings of length n − i which lack c-runs of 1s. Summing over i � 1, . . . , c,
we therefore obtain

Sc
n � Sc

n−1 + · · · + Sc
n−c . (7.4)

This recurrence is the same as the one satisfied by the c-generalized Fi-
bonacci sequence. Thus, the sequences Sc

n and Fc
n+1 satisfy the same ini-

tial values and recurrence relation. This concludes Nyblom’s proof that
Sc

n � Fc
n+1 for all n ∈ Z and c > 0.

7.2 Counting Binary Strings With No c-runs At All

Let U c
n denote the number of binary strings of length n containing no c-runs

(of 1s or of 0s). This sequence is more difficult to evaluate in closed-form
than Sc

n , but it, too, can be expressed in terms of the generalized Fibonacci
numbers.

To demonstrate why U c
n is more difficult to evaluate than Sc

n , we begin
by attempting to count U c

n using the same methods used by Nyblom to

Counting Binary Strings With No c-runs At All 33

count Sc
n . That is, we attempt to count U c

n via case work on the index of the
first 0 within a string which lacks c-runs.

Similar to Sc
n , the first 0 in any binary stringwhich lacks c-runs can occur

no later than index c, because otherwise the first c characters would be a
c-run of 1s. Suppose the first 0 in a string without c-runs occurs at index
i. The first i characters of the string are then 1i−10. The remaining n − i
characters can be any binary string of length n − i containing no c-runs,
except for those beginning with a (c − 1)-run of 0s—if the remainder of the
string were to begin with a (c − 1)-run of 0s, then our overall string would
have a c-run of 0s beginning at index i.

It is not immediately clear how many binary string have no c-runs and
begin with a (c − 1)-run of 0s. We define another sequence, V c

n , to denote
the number of binary strings of length n which contain no c-runs and
which begin with a (c − 1)-run of 0s. Observe that the number of binary
strings which contain no c-runs and which begin with a (c − 1)-run of 1s
is also V c

n . The introduction of another sequence initially serves only to
complicate things, but V c

n serves as a useful proxy which enables us to
derive a recurrence relation for U c

n independent of V c
n .

As a result of thedefinitionofV c
n andour reasoning from twoparagraphs

ago, we see that the number of binary strings of length n which have no
c-runs and which have their first 0s appearing at index i is U c

n−i − V c
n−i .

Summing over i � 1, . . . , c, therefore, we obtain the following recurrence:

U c
n � (U c

n−1 − V c
n−1) + · · · + (U c

n−c − V c
n−c). (7.5)

In order to eliminate the terms of the sequences V c
n from this recurrence,

we next derive a recurrence relation for V c
n . If s is a string of length n ≥ c

which contains no c-runs and which begins with a (c − 1)-run of 0s, then
the first c characters of s are 0c−11. The remainder of s after index c can be
any binary string of length n − c which contains no c-runs and which does
not begin with a (c − 1)-run of 1s. Thus, we obtain

V c
n � U c

n−c − V c
n−c . (7.6)

Applying (7.6) to each of the terms V c
n−i in (7.5), we obtain

U c
n �

�
U c

n−1 − (U c
n−1−c − V c

n−1−c)
�
+ · · · +

�
U c

n−c − (U c
n−2c − V c

n−2c)
�
, (7.7)

which we can rewrite as

U c
n �(U c

n−1 + · · · + U c
n−c)

−
�(U c

n−c−1 − V c
n−c−1) + . . . (U c

n−c−c − V c
n−c−c)

�
(7.8)

34 Assessing the Strength of the “No Long Runs” Requirement

From (7.5), we know that the portion of (7.8) appearing in brackets is the
recurrence for U c

n−c . Therefore, we find that

U c
n � (U c

n−1 + · · · + U c
n−c) −U c

n−c , (7.9)

which simplifies to
U c

n � U c
n−1 + · · · + U c

n−c+1. (7.10)

Observe that (7.10) is a recurrence for U c
n independent of the sequence

V c
n . Thus, our proxy sequence has been eliminated, leaving us with our

recurrence for U c
n . This recurrence is the same as the one satisfied by the

(c − 1)-generalized Fibonacci numbers.
We will prove, in particular, that U c

n � 2Fc−1
n+1 for n ≥ 1. From (7.10),

we know that the two satisfy the same recurrence, so it will now suffice to
show that they have the same initial values for n � 1, . . . , c − 1.

First, observe that U c
n � 2n for all nonnegative n < c, since any binary

string of length less than c has no c-runs.
It is easy to show inductively that Fc−1

n+1 � 2n−1 for i � 1, . . . , c − 1. It is
true that Fc−1

2 � 1, since Fc−1
1 � 1 and Fc−1

i � 0 for i ≤ 0. In the inductive
step with 1 < n ≤ c − 1, we use the recurrence for Fc

n to obtain

Fc−1
n � Fc−1

1 +
�
Fc−1

2 + · · · + Fc−1
n−1

�
. (7.11)

Applying our inductive hypothesis to the terms of (7.11), we deduce that

Fc−1
n � 1 +

�
20

+ · · · + 2n−3�
. (7.12)

The sum of powers of 2 in parentheses is a geometric series, and as such we
deduce that its value is 2n−2

− 1. Therefore, from (7.12), we find that

Fc−1
n � 1 +

�
2n−2

− 1
�
. (7.13)

Hence, we see that Fc−1
n � 2n−2, as desired.

We have shown that the sequences U c
n and 2Fc−1

n+1 have the same initial
values for n � 1, . . . , c − 1 and satisfy the same (c − 1)-order recurrence
relation. It follows that U c

n � 2Fc−1
n+1 for any n ≥ 1. (Notably, this equality

fails for n � 0, for which we have U c
0 � 1 and 2Fc−1

1 � 2. However, n � 0 is
the only index for which the two sequences differ.)

Direct Comparison of U c
n to 2n 35

7.3 Direct Comparison of U c
n to 2n

Now that we have shown that U c
n � 2Fc−1

n+1 for all n ≥ 1, we can analyze the
message space reduction achieved by prohibiting c-runs in our messages.
We can do this using several results from Dresden and Du (2014). Dres-
den and Du demonstrated that the values of the c-generalized Fibonacci
sequences can be computed directly as

Fc
n � Round

[
α − 1

2 + (c + 1)(α − 2)α
n−1

]
, (7.14)

where α is the positive real root of the polynomial equation

xc
− xc−1

− · · · − 1 � 0. (7.15)

Dresden and Du also demonstrated that if c ≥ 4, as it will be in our scheme,
then

2 − 1
3c

< α < 2. (7.16)

Using (7.14) and (7.16), we obtain the following upper bound and close
approximation for Fc

n :

Fc
n ≈

1
5
3 −

1
3c

αn−1. (7.17)

Since U c
n � 2Fc−1

n+1, we deduce from (7.17) that

U c
n ≈

2
5
3 −

1
3(c−1)

αn
c−1. (7.18)

We use our standard example n � 242 as well as the value c � 21 that results
from our heuristic derived in chapter 6. Using these values in (7.18) yields

U c
n ≈

40
33α

n
20. (7.19)

From (7.16), we know that

α20 > 2 − 1
60 ≈ 20.988. (7.20)

From (7.19) and (7.20), we deduce that

U c
n ≈

40
33 · 2

0.988n . (7.21)

36 Assessing the Strength of the “No Long Runs” Requirement

For n � 242 and c � 21, we thus see that U c
n is smaller than 2n roughly by a

factor of
2n

U c
n
≈

33
40 · 2

5.3·1010
. (7.22)

In absolute terms, this reduction is enormous—this message space reduc-
tion dwarves that obtained by using ESP on its own. However, similar to
ESP, thismessage space reduction isweak compared towhatwe need. From
(7.21), we see that the number of bits we would need in a key would still be
about 0.988 · 242, which is large.

Chapter 8

Combining ESP and the “No
Long Runs” Requirement

We have assessed both ESP and the prohibition of c-runs and deemed them
to be individually insufficient. Our next step is to measure the message
space reduction achieved by enforcing both requirements.

Let U c
n ,k denote the number of binary strings of length n containing

exactly k 0s and which have no c-runs. Observe that the number of binary
strings of length n with ESP and no c-runs is given by U c

n ,n/2. While trying
to count U c

n ,k may seem much more complicated than just counting U c
n ,n/2,

it really isn’t—there is no obvious way to derive a recurrence for U c
n ,n/2 only

in terms of values of the form U c
r,r/2.

As in chapter 7, we define a proxy sequence to aid us in deriving a
recurrence for U c

n ,k . Let V c ,0
n ,k denote the number of binary strings of length

n which have no c-runs, contain exactly k 0s, and which begin with a
(c − 1)-run of 0s. Define V c ,1

n ,k similarly.
Rather than attempting to evaluate U c

n ,k by case work on the index of
the first 0, however, we perform case work on whether the first bit is a 0 or
a 1. Let s be a binary string of length n with exactly k 0s and no c-runs. If
the first bit of s is a 0, then the remainder of s can be any binary string of
length n − 1 which has k − 1 0s, no c-runs, and which does not begin with
a (c − 1)-run of 0s. Ths number of such strings is U c

n−1,k−1 − V c ,0
n−1,k−1.

If the first bit of s is a 1, on the other hand, then the remainder of s
can be any binary string of length n − 1 with exactly k 0s, no c-runs, and
which does not begin with a (c − 1)-run of 1s. The number of such strings
is U c

n−1,k − V c ,1
n−1,k .

38 Combining ESP and the “No Long Runs” Requirement

Summing the numbers of possible strings s beginning with a 0 or with
a 1, we obtain the following recurrence:

U c
n ,k � (U c

n−1,k−1 − V c ,0
n−1,k−1) + (U c

n−1,k − V c ,1
n−1,k). (8.1)

As in chapter 7, we now derive recurrences for V c ,0
n ,k and V c ,1

n ,k . We begin
with V c ,0

n ,k . Let s be a string of length n which has k 0s, no c-runs, and begins
with a (c − 1)-run of 0s. Then the first c bits of s form the string 0c−11. The
remainder of s must be a string of length n − c which has k − (c − 1) 0s, no
c-runs, and does not begin with a (c − 1)-run of 1s. Thus, we deduce that

V c ,0
n ,k � U c

n−c ,k+1−c − V c ,1
n−c ,k+1−c . (8.2)

Analogous reasoning gives us the following recurrence for V c ,1
n ,k :

V c ,1
n ,k � U c

n−c ,k−1 − V c ,0
n−c ,k−1. (8.3)

We next apply one of (8.2) and (8.3) to each term in (8.1) not of the form
U c

p ,q , and then do so again to the resulting recurrence. This gives us

U c
n ,k �(U c

n−1,k−1 −U c
n−c−1,k−c + U c

n−2c−1,k−c−1 − V c ,0
n−2c−1,k−c−1)

+ (U c
n−1,k −U c

n−c−1,k−1 + U c
n−2c−1,k−c − V c ,1

n−2c−1,k−c). (8.4)

We rearrange the terms of (8.4) to obtain

U c
n ,k �U c

n−1,k−1 + U c
n−1,k −U c

n−c−1,k−c −U c
n−c−1,k−1

+

[(U c
n−2c−1,k−c−1 − V c ,0

n−2c−1,k−c−1) + (U c
n−2c−1,k−c − V c ,1

n−2c−1,k−c)
]
.

(8.5)

From (8.1), we know that the portion of (8.5) in brackets is the recurrence
for U c

n−2c ,k−c . Thus, we find that

U c
n ,k � U c

n−1,k−1 + U c
n−1,k −U c

n−c−1,k−c −U c
n−c−1,k−1 + U c

n−2c ,k−c . (8.6)

Thus, we have reproduced the 5-term recurrence for U c
n ,k found by Bloom

(1996). Bloom derived this recurrence using a combinatorial argument,
which is usually preferable to laborious algebraic derivations, such as ours.
However, a generalization of our algebraic approachwill allowus in chapter
9 to derive recurrenceswhich are far too complicated to feasibly derive using
combinatorial arguments.

39

We can complete a mathematical definition of the sequence U c
n ,k by

specifying its initial values. Strings of length less than c cannot contain any
c-runs. Therefore, a string of length n < c has k 0s and no c-runs if and
only if it has exactly k 0s. Thus, we deduce that

U c
n ,k �

(
n
k

)
(8.7)

for any n < c. Observe that this holds true even for n < 0.
Our initial values and recurrence relation complete our mathematical

definition of U c
n ,k . Observe, however, that U c

n ,k has not been expressed
in terms of well-known and previously studied sequences, as Sc

n and U c
n

have been. The sequence U c
n ,k remains uncountably finite. However, our

recurrence and initial values allow us to speedily compute many values of
U c

n ,k . Computing any one such term by brute force would require O(2n)
operations, since it would be necessary to check each of the 2n strings of
length n to see whether it lacks c-runs and has the correct amount of 0s.
On the other hand, computing all values of U c

p ,q for p , q ≤ n requires O(n2)
time when done using dynamic programming. To illustrate the profound
difference in these algorithmic complexities, note thatmy computer stopped
being able to compute terms by brute force at n � 26; it ran for about an hour
trying to compute U6

26,13 and ultimately failed because it ran out of memory.
Using our recurrence relation and dynamic programming, however, my
computer calculated U6

p ,q for all p , q ≤ 4096 in a matter of minutes.
The value n � 242 is not feasible even for an O(n2) algorithm, however,

which is why I used n � 4096 instead. The value of c that I used was
c �

1
2 log 4096 � 6. Table 8.1 lists some of the values U6

r,r/2 obtained using
my code.

The message space reduction that results from enforcing both ESP and
the absence of long runs is, once again, huge in absolute terms. For n �

4000, for example, the message space reduction is very roughly a factor of
1032

≈ 2106. Thus, we get a key length reduction from |K1 | � 4000 to about
|K1 | � 3894.

However, these results are still not nearly strong enough. Even as n
increases without bound, the key length reduction obtained by requiring
ESP and the absence of 6-runs appears to stay roughly constant at 2.65%.

40 Combining ESP and the “No Long Runs” Requirement

n U6
n ,n/2 2n

0 1 1
400 1.43 · 10116 2.58 · 10120

800 2.72 · 10233 6.67 · 10240

1200 5.97 · 10350 1.72 · 10361

1600 1.39 · 10468 4.45 · 10481

2000 3.33 · 10585 1.15 · 10602

2400 8.17 · 10702 2.96 · 10722

2800 2.03 · 10820 7.66 · 10842

3200 5.10 · 10937 1.98 · 10963

3600 1.29 · 101055 5.10 · 101083

4000 3.29 · 101172 1.32 · 101204

Table 8.1 Numerous values ofU6
n ,n/2 obtained using dynamic programming.

Chapter 9

Generalizing ESP and “No
Long Runs” to Bit Blocks

Ourwork thus far hinges on the assumption that a typical person’s plaintext
data can be subtly modified (without changing the real content) so as to
both have ESP and no long runs of the same character. This is because,
although a typical sensible plaintext will be highly nonrandom, a sensible
plaintext may nonetheless appear random to the naked eye when viewed
as a sequence of bits. The value of any one bit can be safely treated as
random, and repetition of the same pattern does not usually convey useful
information, so it seems reasonable to require our message space to consist
only of plaintexts with ESP and no long runs.

But while these requirements prohibit occurrences of strings such as
11000, they do not prohibit the string (01)500—that is, 500 consecutive repeti-
tions of the bit pattern 01. The string (01)500 has ESP and no long runs, but,
similar to 11000, it probably does not convey any meaningful information.

This observation suggests a possible generalization of the “no long runs”
and ESP requirements. Instead of viewing amessage as a sequence of n bits,
we may instead view it as a sequence of n

2 blocks, where each block consists
of two bits. Each bit has two possible values: 0 and 1. Each 2-bit block, on
the other hand, has four possible values: 00, 01, 10, and 11. Rather than
prohibiting c-runs of the same bit value, we can achieve a strictly greater
effect by prohibiting c

2 -runs of the same block value. Note that c-runs of
0s and 1s are still prohibited, since a c-run of 0s or 1s is equivalent to a
c
2 -run of 00 or 11 blocks. Our new requirement, however, also prohibits the
repetitive strings (01)c/2 and (10)c/2.

42 Generalizing ESP and “No Long Runs” to Bit Blocks

The previous paragraph describes a way of generalizing the “no long
runs” requirement. The even-split property, too, can be generalized using
2-bit blocks. If we make the reasonable assumption that any one 2-bit block
in a plaintext message can be treated as random, then we can require the
plaintexts in our message space to have equal numbers of the four possible
block values 00, 01, 10, and 11. Any such plaintext will have ESP, but will
also need to satisfy some additional requirements on its configuration of
bits. Thus, our 2-generalized ESP is a strictly stronger requirement than
ESP.

In fact, we can generalize further by viewing a plaintext message with n
bits as a sequence of n

b blocks, where each block consists of b bits. We refer
to a block of b bits as a b-block. For fixed b, there are 2b possible b-block
values. Observe that b � 8 corresponds to us viewing a plaintext message
as a sequence of bytes, since a byte consists of 8 bits.

In order to properly generalize ESP, we need the number of possible
b-block values to be at most as large as the number of blocks in our message
of length n. Otherwise, we know by the pigeonhole principle that some
possible b-block value will never occur in any length n message, whereas
others will, so that any such plaintext cannot possibly have generalized ESP.
Thus, we require the following:

2b
≤

n
b
. (9.1)

This inequality is transcendental in b. It is not hard to solve, however, since
b must be an integer. For n � 242, we find quickly by brute force that b � 36
is maximum. In practice, we will probably want to look at smaller blocks.
However, it is good to know that block sizes can be fairly large while still
being comfortably less than the strict upper bound given by (9.1).

We say that a plaintext with n bits has b-ESP if, when viewed as a length
n
b sequence of b-blocks, each possible b-block value occurs an equal number
of times. The number of messages with n bits that have b-ESP is given by
the multinomial coefficient(n

b
n

b2b , . . . ,
n

b2b

)
�

� n
b

�
!

[(
n

b2b

)
!
]2b . (9.2)

We could use Stirling’s approximation to get a better sense for how this
figure compares to 2n , but doing so is messy and not particularly useful to
us.

43

We refer to our generalized “no long runs” requirement as the “no
long b-block runs” requirement. The number of messages of fixed length
satisfying this generalized requirement is difficult to count and remains
uncountably finite, even though it is possible to deduce recurrences and
initial values for the corresponding sequence. If we let U c ,b

n denote the
number of 2b-ary strings of length n containing no c-runs, then we can
deduce that

U c ,b
n � 2bU c ,b

n−1 − (2b
− 1)U c ,b

n−c , (9.3)

and that the initial values of the sequence are

U c ,b
n � 2bn (9.4)

for n < c. These initial values are easy to derive. We do not include the
derivation for recurrence (9.3), but it can be derived by performing case
work on the value of the first character and introducing a proxy sequence
V c ,b

n , very similar to what we did in chapter 7.
Rather than expending further effort to count the numbers of strings

satisfying our individual generalized properties, we instead focus our at-
tention on the numbers of strings satisfying both generalized properties.
Let U c ,b

k1 ,...,k2b
be the number of 2b-ary string which has no c-runs and which

contains ki of b-block value i, for each i ∈ {1, . . . , 2b}. We also define proxy
sequences V c ,b ,i

k1 ,...,k2b
for i � 1, . . . , 2b . For each such i, let V c ,b ,i

k1 ,...,k2b
denote the

number of 2b-ary strings with no c-runs, which have exactly k j of b-block
value j for each j, and which begin with a (c − 1)-run of the b-block value i.

By performing case work on the value of the first block in a string, we
derive the recurrence

U c ,b
k1 ,...,k2b

�

(
U c ,b

k1−1,...,k2b
− V c ,b ,1

k1−1,...,k2b

)
+ . . .

+

(
U c ,b

k1 ,...,k2b−1 − V c ,b ,2b

k1 ,...,k2b−1

)
. (9.5)

Using reasoning similar to that used in chapter 8, we also deduce that

V c ,b ,1
k1 ,...,k2b

�

(
U c ,b

k1−(c−1),k2−1,...,k2b
− V c ,b ,2

k1−(c−1),k2−1,...,k2b

)
+ . . .

+

(
U c ,b

k1−(c−1),k2 ,...,k2b−1 − V c ,b ,2b

k1−(c−1),k2 ,...,k2b−1

)
. (9.6)

44 Generalizing ESP and “No Long Runs” to Bit Blocks

The recurrences for the other V c ,b ,i
k1 ,...,k2b

are analogous.
Although these recurrences are complicated, the initial values for our

sequence are again easy to deduce. If k1 , . . . , k2b are all less than c, then
there can be no c-runs. Thus, we have

U c ,b
k1 ,...,k2b

�

(
k1 + · · · + k2b

k1 , . . . , k2b

)
(9.7)

whenever k1 , . . . , k2b < c.
Similar to the way that we derived recurrences and used dynamic pro-

gramming to compute values of U c
n ,k , it is possible to derive recurrences

and use dynamic programming to compute values of U c ,b
k1 ,...,k2b

. There are,
however, several problems that arise in doing so. The first is that the deriva-
tion of the recurrences is very complicated—much more complicated than
any problem which should be solved manually. Even if we were to make
the illegal choice b � log 3 so as to work with ternary strings, the resulting
recurrencewould have 16 terms, as opposed to the 5 terms in the recurrence
for U c

n ,k . For 4-ary strings, the number of terms increases to 47.
To this end, I have written code that applies recurrences (9.5) and (9.6)

repeatedly until all proxy sequence terms have been eliminated. Thus was I
able to produce the 47-term recurrence relation for the sequence U c ,2

k1 ,k2 ,k3 ,k4
.

The resulting recurrences and initial values from (9.7) can be used to
“efficiently” compute values of U c ,b

k1 ,...,k2b
. This application of dynamic pro-

gramming is “efficient” in so far as the algorithmic complexity is polynomial
in n for any choice of b. However, for the 4-ary case with b � 2, the algorith-
mic complexity is O(n4), as opposed to our O(n2) dynamic programming
algorithm for U c

n ,k . In general, for fixed b, the algorithmic complexity of
dynamic programming isO

(
n2b

)
, which becomes bad quickly—evenO(n4)

is not fast.
Thus, although the values of U c ,b

k1 ,...,k2b
can be computed much faster

than brute force in this way, computer runtime and memory requirements
are significant factors and cannot be ignored. I have used my dynamic
programming code to compute various values of U6

512,k and U3,2
k1 ,k2 ,k3 ,k4

when
k1 + k2 + k3 + k4 � 256. The latter corresponds to viewing a 512-bit message
as a length 256 sequence of 2-blocks. Some of the results are presented in
table 9.1.

For n � 512, for example, U6
n ,n/2 would require roughly 495 bits to

represent, whereas U3,2
n/8,n/8,n/8,n/8 would require roughly 481 bits. These

45

n U6
n ,n/2 U3,2

n/8,n/8,n/8,n/8 2n

0 1 1 1
64 8.03 · 1017 3.15 · 1016 1.84 · 1019

128 3.53 · 1036 3.87 · 1034 3.40 · 1038

192 1.78 · 1055 7.12 · 1052 6.28 · 1057

256 9.49 · 1073 1.55 · 1071 1.16 · 1077

320 5.22 · 1092 3.70 · 1089 2.14 · 1096

384 2.93 · 10111 9.37 · 10107 3.94 · 10115

448 1.67 · 10130 2.47 · 10126 7.27 · 10134

512 9.61 · 10148 6.74 · 10144 1.34 · 10154

Table 9.1 Numerous values ofU6
n ,n/2 andU3,2

n/8,n/8,n/8,n/8 obtained using dy-
namic programming.

figures correspond to key shortenings by 3.3% and 6.0%, respectively. This
still leaves us with keys that are too long to be practical. This can be
improved further by using even larger block sizes. It is not clear exactly
how much of an improvement this would yield, because deducing values
such as those in Table 9.1 for larger block sizes is extremely computationally
intensive. Even if the required key length continues to be shortened linearly,
however, the maximum block size b � 36 would result in a key that is
roughly 97.8% shorter than the ones required for the message space M �

{0, 1}n . This key shortening is impressive, but for n � 242, the required key
length is still impractically large at about 97 billion bits.

Chapter 10

Conclusion

This paper succeeds in developing a plausibly deniable encryption scheme
for use with personal data storage. The primary method used is message
space restriction. By limiting the possible plaintexts of a user to thosewhich
conveymeaningful information, it becomes possible tomap one plaintext to
another (effectively hiding one plaintext within another) using a key shorter
than those usually needed to safely use an XOR cipher.

The scheme developed here offers perfect deniability. Any plaintext in
our message space M can be encrypted or decrypted to any other plaintext
in M. Thus, a user’s real plaintext can be hidden within any plausible
plaintext of his or her choosing. It is even possible to hidemultiple different
real plaintexts within the same dummy plaintext, and this is true even if all
of the plaintexts involved have no blank space and fill their containing hard
drive. Thus, this scheme doubles as an effectivemeans of data compression.

Our scheme also has several other desirable properties. For instance, it
has the same provable security as the XOR cipher. As long as the stegano-
graphic key in our scheme is not used for any other purposes, an adversary
will be unable to deduce anything about a user’s real plaintext even if the
first layer of encryption is broken to reveal the dummy plaintext. Nor will it
even be possible for an adversary to conclude that a hidden plaintext exists.

Furthermore, our scheme is versatile. Though it was developed with
personal data storage in mind, it can safely be used for communication
between mutually trusting parties too. This is not one of the more practical
uses for the scheme; it requires the two communicating parties to have at
least asmany shared secret bits as there are bits in themessages theywish to
securely exchange. However, for purposes of communication, our scheme
achieves the same security and perfect deniability as the XOR cipher and
requires a lesser number of shared secret bits.

48 Conclusion

Even if we set aside questions of security and privacy, some of the
combinatorial results of this paper can stand on their own. The results
of chapters 7, 8, and 9 constitute a solution to a large generalization of
problems considered by Bloom (1996) and Nyblom (2012).

With all of that said, our scheme in its current state faces difficulty when
it comes to practical use. The XOR cipher allows for perfect deniability but
is not practical because one of the encryption keys required for the scheme
must be as long as the message itself. The scheme developed here shortens
this necessary key length by potentially numerous orders of magnitude.
However, this is not nearly enough; the key needed for this scheme needs
to be shortened several more orders of magnitude for the scheme to be
realistically usable.

Another important point is that even if a sufficiently small message
space M is created for usewith this scheme, we still need functions f : M →
{1, . . . , |M |} and f −1 : {1, . . . , |M |} → M as well as efficient algorithms for
computing both f and f −1. The creation of algorithms for this purpose is
disregarded here as an implementation concern. However, the fact remains
that without such algorithms, this scheme cannot be used.

Yet another potential concern is whether all sensible plaintexts of fixed
length can be subtly changed so as to have the even-split property and also
satisfy the “no long runs” requirement. We have justified our assumption
that this is possible and explained somemethods that can be used to achieve
this form inpractice. However, if this is not alwayspossible, thenour scheme
may fail for some sensible plaintexts.

Overall, our encryption scheme is not quite on the brink of being prac-
tical, but neither is it far from that point. Our work is an important step
toward achieving practical private encryption with perfect deniability.

Chapter 11

Future Work

The key size reductions achieved using our methods are not quite enough
for our scheme to be practical. There are several ways we could attempt to
reduce the necessary key sizes further.

We mention in chapter 4 that a family m1 , . . . ,mr of messages might
all be plausible plaintexts corresponding to the same information, differing
only in the order in which they present different ideas or in their represen-
tations of blank space. Although the message space restriction techniques
used in this paper will eliminate some of this redundancy, our resulting
message space M likely still contains a high degree of redundant content.
One potential method of shrinking our message space (and hence our key
size) further is to cut down evenmore on this redundancy, ideally including
in our message space exactly one message corresponding to each plausible
collection of information.

Alternately or additionally, we could partition our message space M
into disjoint message spaces M1 , . . . ,Mk whose union is M. Our scheme
can still be used with any one of these smaller message spaces as long as a
user can indicate which specific message space they wish to use. Although
specification of a smaller message space might amount to yet another key
that counteracts the resulting smaller key size, it may also be able to hard
code the index of the correct message space into one’s computer or hard
drive so that this additional key is stored elsewhere than a user’s memory.

Although our modified XOR cipher that maps one plaintext to another
has ourmessage space M both as its message space and its ciphertext space,
there may be benefits to using a different ciphertext space. For example, we

50 Future Work

might use a ciphertext space C that contains only plausible plaintexts and
is small enough that

|M |
|C | � 2d , (11.1)

for some integer d. This way, each ciphertext in our ciphertext space can be
mapped to by some 2d different plaintexts in M even when the same key
is used to encrypt all of them. The primary draw of this approach is that
it shortens the necessary key length by d bits. This improvement may be
nullified somewhat, since a user will need to store some other information
in their memory in order to make their computer decrypt their ciphertext
to the correct plaintext. However, this additional information will at most
be d bits long, so that this ciphertext space shrinking is never detrimental.
Furthermore, even if a user’s effective key under this modified scheme is
not actually shortened, d bits of an essentially random key are replaced by
at most d bits of a user’s choosing. Thus, longer keys may become more
practical, since at least some of the key can be chosen by the user by virtue
of being easy to remember.

One last promising direction for future research lies in work done by
Juels and Ristenpart (2014). Juels and Ristenpart introduced honey encryp-
tion, which allows a ciphertext to be decrypted to numerous plausible,
“bogus” plaintexts when certain incorrect decryption keys are used. The
primary purpose of honey encryption is to make brute force attacks more
difficult—an attacker will have to actually exhaust the key space in their
attack, since there may yet be a hidden plaintext even if a sensible plaintext
has already been found.

It is not a given that honey encryption can be used to make a good
plausibly deniable encryption scheme. The authors explain in their paper’s
“Related Work” section that honey encryption schemes in general do not
provide deniability. Even so, it is conceivable that their work can be modi-
fied to construct a deniable encryption scheme. After all, the core principle
of being able to decrypt a ciphertext to multiple sensible plaintexts is the
same.

Appendix A

Example Algorithm
Construction

Given a message space M that we have constructed, an actual imple-
mentation of our encryption scheme would require a function f : M →

{1, . . . , |M |} as well as efficient algorithms to compute f and f −1. We have
not constructed such algorithmshere, and insteadhave left those algorithms
as implementation concerns. But because efficient algorithms for f and f −1

would be so crucial for anyone wishing to use our scheme, we use this
appendix to demonstrate how, generally, such algorithms might be created.

We create specific algorithms in the case where M is chosen to be the set
of messages of length n that have ESP. That is, we consider only messages
with equal numbers of 0s and 1s. Recall that this message space M is still
far too large for a scheme using M to be practical—the algorithms created
here are purely illustrative.

We first demonstrate an efficient algorithm for computing binomial co-
efficients, since computation of binomial coefficients will be necessary for
our algorithms. The factorial expansion of a binomial coefficient is(

n
k

)
�

n!
k!(n − k)! . (A.1)

Observe that this is equivalent to the following:(
n
k

)
�

n
k
·

(
n − 1
k − 1

)
. (A.2)

Therefore, to compute
�n

k

�
, we can compute n

k and then recursively multiply
this result by

�n−1
k−1

�
. The number of recursive calls made by this algorithm

52 Example Algorithm Construction

m f (m)
0011 1
0101 2
0110 3
1001 4
1010 5
1100 6

Table A.1 The selected function f when n � 4.

is bounded by k, which can itself be forced to be n
2 or less. Therefore, this

algorithm computes
�n

k

�
using O(n) operations. We are now ready to create

our algorithms for f and f −1.

A.1 Choosing and Efficiently Computing f

Note that any function f : M → {1, . . . , |M |} is, in theory, usable for our
scheme. We choose f as follows. Order the messages in M from least to
greatest, with their sizes determined by their values when viewed as base 2
numbers. For a given m ∈ M, the value of f (m) is then equal to the index of
m within our ordering of M. Refer to Table A.1 for an example in the case
where n � 4.

Given any m ∈ M, we need to be able to efficiently compute f (m).
Observe that this can be done by examining all binary strings of length n to
count the strings with ESP that are “less” than m. However, this exhaustive
search takes O(2n) operations, which is not efficient.

Notably, though, we can efficiently compute f (m) by efficiently counting
the messages in M that are less than m. Specifically, we will add 1 to the
number of messages in M that are less than m. This gives the index of m
within M, hence giving us f (m).

First, in O(n) time, we search the bits of m to determine the indices
a1 , . . . , an/2 of the 1s in m, where these indices are listed in order with
a1 corresponding to the leftmost 1. All messages in M with their first 1s
appearing after index a1 are less than m, so we now count these messages.
The number of such messages is (

n − a1
n
2

)
, (A.3)

Efficiently Computing f −1 53

since the number of such messages is equal to the number of ways to
distribute our n

2 1s to the n − a1 indices after index a1.
Quantity A.3, however, is not necessarily the correct value for f (m). It

correctly counts the messages less than m that have their first 1s appearing
after index a1, but there may be messages that have their first 1s at index a1
and yet are smaller than m. We must account for these messages too. To
do so, we recurse on the substring of m beginning at index a2, which is the
second 1 in m. This substring has length n − a2 + 1 and has n

2 − 1 bits equal
to 1. The number of binary strings with n

2 −1 bits equal to 1 that are smaller
than this substring by virtue of having their first 1 appear later is(

n − a2
n
2 − 1

)
, (A.4)

by reasoning analogous to that used to obtainA.3. Continuing our recursive
calls, we obtain the following expression for f (m):

f (m) � 1 +

n/2∑
i�1

(
n − ai

n
2 − (i − 1)

)
(A.5)

The summation in A.5 has n
2 terms, each of which can be computed in O(n)

time using our binomial coefficient algorithm. Thus, this algorithm for
finding f (m) requires O(n2) operations.

A.2 Efficiently Computing f −1

Our algorithm for computing m from f (m) is slower but simpler than our
algorithm for f . Given the value f (m), we compute values of(

n − a
n
2

)
, (A.6)

starting with a � 1 and ending no later than a � n. The index a1 of the
first 1 in m is then the largest value of a such that the computed binomial
coefficient is less than f (m).

After the appropriate index of the first 1 is found, we recurse using the
new function value

f (m) −
(
n − a1

n
2

)
, (A.7)

54 Example Algorithm Construction

since the first 1 appearing at index a1 makes m automatically larger than�n−a1
n/2

�
other messages in M. To find the index a2 of the second 1 in m, for

instance, we now find the maximum value of a such that(
n − a
n
2 − 1

)
< f (m) −

(
n − a1

n
2

)
. (A.8)

The index a2 is equal to this maximum value of a. We then recurse again
using the new value

f (m) −
(
n − a1

n
2

)
−

(
n − a2
n
2 − 1

)
, (A.9)

andcontinueuntilwehavededuced thevaluesof all of the indices a1 , . . . , an/2.
By learning the indices of all 1s in m, we uniquely determine m.

Observe that finding any one of the indices ai using this algorithm re-
quires the computation of at most n binomial coefficient, and each binomial
coefficient computation takes O(n) time. Calculating any one of the indices
therefore requires O(n2) time. Since there are n

2 such indices, our algorithm
for f −1 has runtime O(n3).

There are still many concerns that would arise in any implementation
of our scheme, and it is likely that there are faster algorithms for the com-
putation of our selected f and f −1. Nonetheless, we have demonstrated
generally how algorithms for f and f −1 could be created.

Bibliography

Bloom, David M. 1996. Probabilities of clumps in a binary sequence (and
how to evaluate them without knowing a lot). Mathematics Magazine .

Canetti, Ran, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. 1996.
Deniable encryption. Cryptology ePrint Archive, Report 1996/002.

Dresden, Gregory P. B., and Zhaohui Du. 2014. A simplified binet formula
for k-generalized fibonacci numbers. Journal of Integer Sequences .

Dürmuth, Markus, and David Mandell Freeman. 2011. Deniable encryp-
tion with negligible detection probability: An interactive construction.
Proceedings of the 30th Annual International Conference on Theory and
Applications of Cryptographic Techniques: Advances in Cryptology.

Greene, Tim. 2009. The history of steganography. Online; last viewed
27 April, 2015. URL http://www.networkworld.com/article/2870165/lan-wan/
the-history-of-steganography.html.

Juels, Ari, and Thomas Ristenpart. 2014. Honey encryption: Security be-
yond the brute-force bound. Cryptology ePrint Archive, Report 2014/155.

Klonowski, Marek, Przemyslaw Kubiak, and Miroslaw Kutylowski. 2008.
Practical deniable encryption. Proceedings of the 34th Conference on
Current Trends in Theory and Practice of Computer Science.

Nyblom, M. A. 2012. Enumerating binary strings without r-runs of ones.
International Mathematical Forum .

O’Neill, Adam, Chris Peikert, and Brent Waters. 2011. Bi-deniable public-
key encryption. Cryptology ePrint Archive, Report 2011/352.

Y., Andrew. 2012. Hidden volume. Online; last viewed 26 March, 2015.
URL http://www.andryou.com/truecrypt/docs/hidden-volume.php.

http://www.networkworld.com/article/2870165/lan-wan/the-history-of-steganography.html
http://www.networkworld.com/article/2870165/lan-wan/the-history-of-steganography.html
http://www.andryou.com/truecrypt/docs/hidden-volume.php

	Claremont Colleges
	Scholarship @ Claremont
	2015

	A Plausibly Deniable Encryption Scheme for Personal Data Storage
	Andrew Brockmann
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Background Information
	The XOR Cipher
	TrueCrypt Hidden Volumes
	Existing Public-Key Schemes
	Steganography

	Framework For The Scheme
	Our General Approach
	Message Spaces
	Practical Considerations

	Methods of Message Space Reduction
	The Even-Split Property
	Absence of Long Runs

	Assessing the Strength of ESP
	Selecting Our Maximum Run Length
	Assessing the Strength of the ``No Long Runs'' Requirement
	Counting Binary Strings With No c-runs of 1s
	Counting Binary Strings With No c-runs At All
	Direct Comparison of Ucn to 2n

	Combining ESP and the ``No Long Runs'' Requirement
	Generalizing ESP and ``No Long Runs'' to Bit Blocks
	Conclusion
	Future Work
	Example Algorithm Construction
	Choosing and Efficiently Computing f
	Efficiently Computing f-1

	Bibliography

