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Synopsis

In standard treatments of calculus, the Fundamental Theorem of Calculus is
often presented as a computational method to evaluate definite integrals, with
such powerful utility that one is tempted to overlook its beauty. To improve
students’ appreciation for the first part of the Fundamental Theorem of Calculus,
we suggest a few classroom examples focusing on the accumulation function, to
be introduced early and often throughout an introductory calculus course. These
examples are small enough that they would not necessarily result in changes to a
typical course schedule; yet we believe their contribution to student understanding
can be significant. Furthermore, such examples might allow students to share
more of the excitement that the pioneers of the subject surely experienced along
the way.

1. Introduction

What is the most difficult part of Calculus? Many answers abound. In
this paper we focus on one specific idea to respond to one of the most typical
answers.
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Calculus students often say that they understood everything up until in-
tegration. Sadly our students see integrals only as the inverse operation of
derivatives and fail to see why the definite integral of a non-negative contin-
uous function yields the area under the curve. They do not seem to develop
an intuition for the relationship between limits, derivatives, and integrals.
In summary, students fail to see the beauty of the Fundamental Theorem of
Calculus. There are more calculus books available than ever; however, they
all approach the subject in essentially the same way. This standard approach
does not work for everyone; we need alternative ways of teaching the topic
to provide additional insight into the Fundamental Theorem of Calculus.

After a brief background section (Section 2), we present four short exam-
ples involving the accumulation function that can help students understand
the first part of the Fundamental Theorem of Calculus long before it would
typically be introduced in a calculus class. These geometric examples eluci-
date the beauty of the Fundamental Theorem of Calculus. The main added
value of the examples is that students can visualize the idea of the rate of
change of the accumulation function, which leads to an increased understand-
ing of the Fundamental Theorem of Calculus. The last section (Section 7)
summarizes student feedback from a calculus course where these examples
were highlighted.

2. Background

The concept of the integral is central to the study of calculus. Research
shows that most students see integral calculus as a sequence of steps to solve
a problem and do not emerge from the course with a strong understanding
of the Fundamental Theorem of Calculus [1, 2]. The lack of clarity has been
attributed to students’ poor understanding of the accumulation function

F (x) =

∫ x

a

f(t)dt

that appears in the first part of the Fundamental Theorem of Calculus
[1, 2, 3]. While the accumulation function may entail a higher order of
thinking, Thompson and Silverman [2] argue that a major source of this
lack of understanding is that the idea of the accumulation function is rarely
taught with the intent that students will actually understand it. Instead,
the Fundamental Theorem of Calculus is typically taught as just a tool for
evaluating definite integrals [2].
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Thompson and Silverman [2] suggest that educators include accumulation
functions in the calculus curriculum as a central idea. We offer the examples
in the next four sections to provide opportunities to explore the concept
of accumulation as early as the introduction of the limit definition of the
derivative. We recommend that these problems be discussed in class; active
dialogue will enhance student understanding. Furthermore, spacing these
problems throughout the course will conceptualize and reinforce the idea of
accumulation several times prior to presenting the Fundamental Theorem of
Calculus.

These examples were developed and reworked over several years teaching
Calculus I at a small private college. The intent was to give students addi-
tional insight into the main idea behind the subject, as opposed to just using
the standard approach given in textbooks. A formal presentation of these
examples was incorporated into a calculus course, taught to 24 students,
who were primarily engineering and mathematics majors, during the spring
semester of 2014. The student feedback we share in Section 7 corresponds to
that semester’s experience.

3. The Accumulation Function as the Area under a Curve

The function y = x2 is almost always represented as a parabola in the
xy-plane. However, functions can be represented in a multitude of ways. For
example, the same function can be visualized as the area of a triangle with
base x and height 2x. As such, we can use the straight line y = 2x instead
of a parabola, provided that we imagine y = x2 as the area under this line,
and above the x-axis. This motivates our first example:

Example 1. Graph the function f(x) = cx for x > 0 and the
line x = z where z > 0 (Figure 1). Let Acc(z) represent the area
of the triangle bounded by the x-axis, the vertical line x = z, and
the curve y = f(x). Prove that Acc′(z) = f(z) using the limit
definition of the derivative.

Solution. Students will use the formula for the area of a triangle
to get Acc(z) = 1

2
zf(z) = 1

2
cz2. From there, the problem fits

perfectly as a typical problem involving the limit definition of the
derivative,
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Acc′(z) = lim
h→0

Acc(z + h)− Acc(z)

h
= lim

h→0
c
(
z +

h

2

)
= f(z).

x

y

y = f(x) = cx

Acc(z)

x = z

Figure 1: Illustration of the bounded region given in Example 1.

Students appreciate an alternative solution that provides geometric intu-
ition without any algebraic manipulations. The main idea is that the deriva-
tive of the accumulation function can be computed without an explicit formula
for Acc(z). Indeed the difference Acc(z + h)−Acc(z) represents the area of
a trapezoid, with parallel sides of length cz and c(z + h), and with height h,
where the height of the trapezoid is lying on the x-axis (Figure 2).

The difference quotient

Acc(z + h)− A(z)

h
= c

(
z +

h

2

)
is the average of the lengths of the two parallel sides. Taking the limit as
h→ 0 gives the result.

With this solution, we think of the rate of change of the accumulated area
under the curve as equal to the value of f at the stopping point x = z. This
is the heart of the Fundamental Theorem of Calculus.

Students are so comfortable with this example that they can handle an
intuitive discussion of the notation

Acc(z) =

∫ z

0

f(x)dx.
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z + hz

y = cz

cz c(z + h)

x

y

Figure 2: Acc(z+ h)−Acc(z) gives the area of a trapezoid, which is sufficient for proving
Acc′(z) = f(z).

In this context it means that, in order for our quadratic function to be
represented by the straight line f(x) = cx, we need a starting point, x = 0,
and a stopping point, x = z. While it is standard in calculus texts to switch
from the variables (x, z) to (t, x), thus writing

∫ x

0
f(t)dt instead of

∫ z

0
f(x)dx,

we believe this to be a mistake, as it leads to unnecessary confusion for
beginners. An additional advantage of using (x, z) is that it more closely
aligns the notation for the accumulation function with the notation used in
the second part of the Fundamental Theorem of Calculus.

Depending on the students and the amount of time the instructor has
for discussing class exercises, there may be some interest in the following
question:

Does this still work if a non-linear function f(x) is used instead of y = cx?

After all, it would not be possible to replace

c

(
z +

h

2

)
with

f

(
z +

h

2

)
in the preceding solution. If this question is asked, it provides an excellent
opportunity to motivate the essential role of existence theorems, such as the
Intermediate Value Theorem.
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4. The Accumulation Function as the Area of an Expanding Circle

A key point from the previous example has to do with imagining an
expanding triangle. It is now intuitive to think that the rate of change of area
depends on the value of f at the stopping point. As an additional exercise
to build on this type of thinking, students can be challenged to explain the
connection between the area of a circle and its circumference through the use
of a suitably chosen derivative. The next example illustrates that the area
of the circle can be thought of as the accumulation of the circumferences of
all the circles of radius r ≤ z.

Example 2. Graph the circle with radius z, z > 0. Let Acc(z)
represent the area of the circle. Prove that

Acc′(z) = 2πz

using the limit definition of the derivative.

Solution. Using the formula for the area of a circle, Acc(z) =
πz2, where the variable z represents the radius of the circle.

Again, from the limit definition of the derivative,

Acc′(z) = lim
h→0

π(z + h)2 − πz2

h

= lim
h→0

π

h

[(
(z + h)− z

)(
(z + h) + z

)]
= lim

h→0

πh

h
[2z + h]

= 2πz.

It is interesting to note that Acc(z + h) − Acc(z) gives the area
of the annulus (Figure 3).

The main value of this example is that it encourages the kind of thinking
required for finding new applications for calculus. A circle is a static object;
yet by imagining an expanding circle, we see that the rate of change of the
area is given by the circumference of the circle at the stopping point x = z.
In the class trial, students were most impressed with this example; while all
students had memorized formulas for the circumference and area of a circle,
none were made aware of the connection between the two formulas.
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x

y

z + hz

Figure 3: Acc(z+h)−Acc(z) gives the area of the annulus, which is sufficient for proving
Acc′(z) = 2πz.

In fact most calculus text books inadvertently prove that the derivative
of the area of the circle is the circumference of the circle while introducing
cylindrical shells. By contrast, we are explicitly mentioning and proving
this connection at the time when derivatives are first introduced, since it is
interesting! It is also a good time to preview the formula for finding the
volume of a solid by rotating the region under the curve y = f(x) from a to
b about the y-axis [4]:

V =

∫ b

a

2πxf(x)dx where 0 ≤ a < b.

Naturally, Example 2 can be reviewed prior to the proper treatment of cylin-
drical shells.

5. The Accumulation Function as the Volume of a Cone

This next example combines features of the previous two. Once again we
see that the derivative of the accumulation function can be computed without
an explicit formula for Acc(z). The example also captures the essence of how
calculus is used to find volumes, by treating it as an accumulation of areas.
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As a result we get an elegant explanation of the poorly-understood formula
for the volume of a cone.

Example 3. Graph the function f(x) = cx for x > 0 and the line
x = z where z > 0, as presented in Example 1 (see Figure 1). Let
Acc(z) denote the volume of the cone obtained by revolving the
triangle about the x-axis (Figure 4). Prove that Acc′(z) = πf(z)2

using the limit definition of the derivative.

x

y

y = f(x) = cx

Acc(z)

x = z

Figure 4: Illustration of the cone generated in Example 3.

Solution. We use the formula for the volume of a cone to get
Acc(z) = 1

3
πf(z)2z = 1

3
πc2z3 where the variable z represents the

height of the cone. Using the limit definition of the derivative,

Acc′(z) = lim
h→0

Acc(z + h)− Acc(z)

h

= lim
h→0

1

3
πc2

(z + h)3 − z3

h

= π(cz)2

= πf(z)2.
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Again, this example fits perfectly into the beginning part of the course.
Fortunately, the following beautiful solution does not require the formula for
the volume of a cone. Indeed, if h > 0, then Acc(z + h) − Acc(z) is the
volume of a frustum (Figure 5).

x

y

y = f(x) = cx

z + hz

Figure 5: Acc(z + h) − Acc(z) gives the volume of the frustum, which is sufficient for
proving Acc′(z) = πf(z)2.

This volume is greater than the volume of a cylinder with height h and
radius f(z), and it is smaller than the volume of a cylinder with height h
and radius f(z + h). It follows that

πc2z2 ≤ Acc(z + h)− Acc(z)

h
≤ πc2(z + h)2.

Using the Squeeze Theorem and taking the limit as h→ 0 gives the desired
result.

Just as in Example 1, where we emphasize that the rate of change of an
expanding triangle is given by the value of f , here we see that the rate of
change of the volume of an expanding cone is given by the area of the circular
base. We see once again that the derivative of the accumulation function is
entirely dependent on the evaluation of f at the stopping point x = z, the
heart of the Fundamental Theorem of Calculus.
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While it is easy to memorize the formula for the volume of the cone,
it is more inspiring to understand the formula as an antiderivative of the
area of the circular base. Prior to formally introducing antiderivatives, it is
straightforward enough for students to determine the antiderivative of the
equation representing the area of the circular base as

1

3
πc2z3 =

1

3
πf(z)2z.

This is an excellent explanation of the volume of the cone formula.

6. Bonus: A Related Rates Example

The expanding cone is central to related rates problems where, typically,
the height of the cone is assumed to be increasing. Example 3 allows students
to think of the expanding cone problem as if it is the circular base of the cone
that is expanding.

Consider the following ubiquitous related rates example:

Example 4. Sand is pouring from a pipe at a constant rate
of dV

dt
(where V is the volume of the sand). The sand forms a

conical pile such that the ratio of the radius to height, r/h, is the
constant c. How fast is the height increasing when the pile is at
a fixed height?

Solution. Let

V =
1

3
πr2h

be the volume of the cone. Write r = ch to get

V =
1

3
πc2h3

and differentiate with respect to t to get

dV

dt
= πc2h2

dh

dt
.

Substitute the given values appropriately and the problem is
solved.
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This solution is certainly succinct. Students generally ask: “Where does
the dh

dt
come from?” The standard answer is useful. Namely, if we differentiate

the right hand side with respect to t, then we must do the same to the left
hand side, and use the Chain Rule. Here we provide an additional answer,
to provide extra meaning to the first one. Our proposed solution involves a
lot of imagination.

Proposed Solution to Example 4. Turning the expanding
cone sideways, the altitude of the cone being measured is given by
the x-coordinate. Thus, the cone would be the solid of revolution
obtained by revolving y = cx, x > 0, about the x-axis and the
cone would be continually expanding to the right as it grows. This
suggested change provides an opportunity to illustrate that real-
world details can be temporarily imagined as altered, to make the
mathematics seem more familiar, provided that the variables are
defined carefully, and therefore the mathematical solution stays
essentially the same.

Start from the proposed solution to Example 3, where stu-
dents see that

dAcc(z)

dz
= πc2z2.

In other words, the rate of change of the volume of an expanding
cone is given by the area of the circular base. Replacing Acc(z)
with V yields

dV

dz
= πc2z2.

Multiply both sides by dz
dt

and the left hand side can be replaced
with dV

dt
by the chain rule. Substitute the given values appropri-

ately and the problem is solved.

An important advantage of this solution is that the equation

dAcc(z)

dz
= πc2z2

suggests thinking about how the volume changes with respect to z. This
indirectly, yet emphatically answers the student’s commonly asked question.
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As a bonus, another possible benefit of the proposed solution is that it
encourages students to recognize a derivative as having been calculated using
the chain rule. Indeed, the last step, replacing dV

dz
dz
dt

with dV
dt

encourages
recognizing patterns that should help students when they eventually integrate
using the method of substitution.

7. Classroom Feedback and Final Thoughts

At our institution students have the option to complete a course evalua-
tion at the end of the semester. This is anonymous feedback that is available
to the course instructors and college administrators several weeks after course
grades are submitted. We have observed that the inclusion of the examples
we shared here has coincided with substantial improvements in student evalu-
ations of the course. For our Spring 2014 course, student comments1 included
the following:

“I like the professor’s way of teaching and how he connected
the material . . . helped me to understand the material better.”

“The professor’s explanations of the mathematical concepts of
Calculus are the best I have ever heard. Because of his teach-
ing methods and thorough detail, I actually understand not only
Calc 1, but also large chunks of Pre-Calc that I failed to grasp in
multiple previous passes.”

“[The professor] explained topics in a more understandable
way.”

“[The professor taught the] class in many different styles of
teaching to makes sure all students were gaining an understand-
ing.”

“I strongly believe in his teaching methods. To be specific [his
presentation of the Fundamental Theorem of Calculus] was a far
more effective strategy in my opinion.”

1We have completed Norwich University’s IRB process regarding quoting student com-
ments.
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Although the accumulation function is fairly trivial when introduced in
the context of these examples, it seems to come across as a very complex con-
cept if its first appearance coincides with the presentation of the Fundamental
Theorem of Calculus. These examples provide an informal introduction to
part I of the Fundamental Theorem of Calculus before it is formally covered.
They provide an ideal opportunity to communicate the main idea of this the-
orem, focusing on its simplicity, beauty, and applicability. We believe that
greater connections between topics will result in greater enjoyment of the
material as well as a deeper understanding of mathematics.
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