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Abstract: Most texts on elementary differential equations solve homoge-
neous constant coefficient linear equations by introducing the characteristic
equation; once the roots of the characteristic equation are known the solutions
to the differential equation follow immediately, unless there is a repeated root.
In this paper we show how an integrating factor can be used to find all of the
solutions in the case of a repeated root without depending on an assumption
about the form that these solutions will take. We also show how an integrating
factor can be used to explain the “extra” power of t which appears in the trial
form of the solution when using the method of undetermined coefficients
on a nonhomogeneous equation in the case where the right hand side is a
polynomial multiple of the corresponding homogeneous solution.

1 Motivation and Intuition

Constant coefficient, linear differential equations are well-studied in introductory differen-
tial equation classes. The standard method is to use an ansatz to transform the differential
equation into a polynomial algebraic equation, which is easily solved. The standard
approach works well when the algebraic equation doesn’t have repeated roots. We offer
an alternative approach to explain the form of solutions obtained from repeated roots.
We further show that our approach, which is based on simple first order methods, applies
equally well to homogeneous and nonhomogeneous equations with repeated roots.

Consider the first order, constant coefficient linear differential equation,

y′(t) + r1y(t) = д(t). (1.1)

Here r1 is a constant and д(t) is an arbitrary function. Every equation of this form is
solved by use of the integrating factor µ(t) = er1t . Multiplying both sides of the equation
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by µ(t), we have
d

dt
(er1ty(t)) = er1t (y′(t) + r1y(t)) = er1tд(t).

Integrating both sides, we have

er1ty(t) =
∫

er1tд(t)dt .

This integrating factor technique allows us to solve the equation whether (1.1) is homoge-
neous, д(t) = 0, or non-homogeneous, д(t) , 0.

Let us now consider a homogeneous second order equation of similar form,

y′′(t) + a1y′(t) + a2y(t) = 0. (1.2)

The standard approach for this type of equation is to posit a solution of the form ert and
study the resulting algebraic characteristic equation

r 2 + a1r + a2 = 0.

If there are two distinct real solutions r1 and r2, we obtain the linearly independent
solutions y1(t) = er1t and y2(t) = er2t . When there is a repeated root, this approach yields
only one solution y(t) = er1t . One can use a reduction of order type approach to solve
for the second solution as in [4, p. 119]. One can also see [5] which develops a reduction
of order technique that applies for equations of any order n ≥ 2. We propose a slightly
different approach. If r = r1 is a repeated root to (1.2), then we can rewrite the equation as

y′′(t) − 2r1y′(t) + r 21y(t) = 0

We now multiply the equation by the integrating factor µ(t) = e−r1t , then a simple
calculation shows that the left hand side of the equation collapses to a second derivative,

d2

dt2
(e−r1ty) = 0.

So that

e−r1ty(t) = c1t + c2.
This leads to the solutions y1(t) = er1t and y2(t) = ter1t .

At this point consider the third order equation with a triple root r = r1, which takes
the form

y(3)(t) − 3r1y′′(t) + 3r 21y′(t) − r 31y(t) = 0. (1.3)

At this point, most texts take the approach of suggesting multiplying by t again to obtain
a third solution without any intuition or additional motivation. We suggest the following
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motivation, multiply by the integrating factor µ(t) = e−r1t , this will collapse the lefthand
side of (1.3) to a third derivative, (see (2.4) below)

d3

dt3
(e−r1ty(t)) = 0.

Thus the solution must be of the form

y(t) = c1t2er1t + c2ter1t + c3er1t

which yields the three linearly independent solutions y1(t) = t2er1t , y2(t) = ter1t and
y3(t) = er1t . At this point we note that as in the first order equation (1.1) this integrating
factor approach applies to equations of the form (1.2) and (1.3) even when the equations
are not homogeneous.

The rest of the article is outlined as follows. In Section 2 we develop the machinery
necessary to show that the integrating factor approach works for any nth order equation
with an n-fold repeated root. In Section 3 we discuss the nonhomogeneous nth order
equation with an n-fold repeated root, and finally in Sections 4 and 5 we show that
the integrating factor approach works for multiple roots and certain types of variable
coefficient equations, though these cases become a bit unwieldy.

2 General nth order case
Most textbooks first handle distinct real roots and later come back to discuss when r = r1
is a repeated solution to (2.3). Consider the following equation,

y(n) +
(
n

1

)
(−r1)y(n−1) + · · · +

(
n

n − 1

)
(−r1)n−1y′ + (−r1)ny = 0. (2.1)

This differential equation has characteristic equation

rn +

(
n

1

)
(−r1)rn−1 + · · · +

(
n

n − 1

)
(−r1)n−1r + (−r1)n = (r − r1)n = 0.

It is often shown, with varying levels of explanation and motivation, that the repeated
roots give rise to the solutions yi(t) = t i−1er1t for 1 ≤ i ≤ n. We show that this can be
seen via first order differential equation solution techniques. In particular, we show that
these solutions can easily be found through the use of the integrating factor µ(t) = e−r1t .

Consider the nth order constant coefficient homogeneous linear differential equation

y(n)(t) + a1y(n−1)(t) + a2y(n−2)(t) + · · · + an−1y′(t) + any(t) = 0. (2.2)

Here ai are constants. We most often study the case when n = 2 due to Newton’s laws of
motion and with ease one can generalize the theory of second order equations to higher
order. Under these conditions, one often makes the ansatz y = ert which transforms (2.2)
into an algebraic equation, which is more easily solved. In particular with the above
ansatz, we have the characteristic equation

rn + a1r
n−1 + a2r

n−2 + · · · + an−1r + an = 0. (2.3)
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Lemma 2.1. The following derivative identity holds.

dn

dtn

(
e−r1ty

)
= e−r1t

[
y(n) +

(
n

1

)
(−r1)y(n−1) + · · · +

(
n

n − 1

)
(−r1)n−1y′ + (−r1)ny

]
. (2.4)

Proof. We prove this inductively. Take the base case of n = 1,

d

dt

(
e−r1ty

)
= e−r1ty′ − r1e

−r1ty.

Assume that (2.4) holds for n derivatives, we show that it must hold for n + 1 derivatives
as well. Now,

dn+1

dtn+1

(
e−r1ty

)
=

d

dt

{
e−r1t

[
y(n) +

(
n

1

)
(−r1)y(n−1) + · · · + (−r1)ny

]}
=

d

dt

{
e−r1t

n∑
j=0

(
n

j

)
(−r1)jy(n−j)

}
= e−r1t

n+1∑
j=0

bjy
(n+1−j)

If we examine the coefficients on the n − jth derivative, bj+1, we have contributions from
when the derivative acts on the exponential or the y(n+1−j), so

bj+1 = (−r )j+1
((n
j

)
+

(
n

j + 1

))
= (−r1)j+1

(
n + 1
j + 1

)
by Pascal’s rule. Thus,

dn+1

dtn+1

(
e−r1ty

)
= e−r1t

n+1∑
j=0

(
n + 1
j

)
(−r1)jy(n+1−j)

as desired.
�

Returning to the differential equation with an n-fold repeated root, we now multiply
(2.1) by the integrating factor µ(t) = e−r1t to see

e−r1t
[
y(n) +

(
n

1

)
(−r1)y(n−1) + · · · +

(
n

n − 1

)
(−r1)n−1y′ + (−r1)ny

]
= 0.

Applying (2.4), we have

dn

dtn

(
e−r1ty

)
= 0.

As the only functions whose nth derivative is exactly zero are polynomials of order strictly
less than n, integrating both sides of the equation n times yields

e−r1ty(t) = cn−1tn−1 + cn−2tn−2 + · · · + c1t + c0,

4



equivalently, the solution to the differential equation is

y(t) = er1t (cn−1tn−1 + cn−2tn−2 + · · · + c1t + c0).
While this approach does not apply directly to (2.2) when there are distinct roots, it

does provide an alternative to the standard methods; factoring differential operators (see
for example [3, p. 304]), using partial derivatives (see for example [2, p. 232]), or the
“method of the lucky guess” of [1, p. 329]. The case of a second order differential equation
using first a substitution and then an integrating factor was explored in [4, p. 119]. Our
approach is logically equivalent to the factoring of operators, we can rewrite (2.4) as a sum
of terms of the form (D + r1)n[e−r1ty] = e−r1tDny, though it loses the familiar first-order
feel and the ability to tackle the nonhomogeneous applications we discuss below.

3 Nonhomogeneous Equations
We also offer an application of the integrating factor technique outlined above to non-
homogeneous equations. Consider when the nonhomogeneity of the nth order equation,
(2.1) is a polynomial multiplying the exponential solution er1t .

y(n) +
(
n

1

)
(−r1)y(n−1) + · · · +

(
n

n − 1

)
(−r1)n−1y′ + (−r1)ny = P(t)er1t . (3.1)

Here P(t) is a polynomial. Multipying (3.1) by the integrating factor µ(t) = e−r1t we have

e−r1t
{
y(n) +

(
n

1

)
(−r1)y(n−1) + · · · +

(
n

n − 1

)
(−r1)n−1y′ + (−r1)ny

}
= P(t).

Again applying (2.4), this is equivalent to
dn

dtn

(
e−r1ty

)
= P(t).

This can be easily integrated n times to obtain both the particular and the homogeneous
solution. The particular solution arises from integrating P(t) n times and the constants of
integration yield the homogeneous solution.
Example 3.1. Consider the following nonhomogeneous problem whose characteristic
equation has the triple root r1 = 2.

y(3) − 6y′′ + 12y′ − 8y = t9e2t

Multiplying by the integrating factor µ(t) = e−2t , and using (2.4), we have

d3

dt3

(
e−2ty

)
= t9.

Integrating three times, we have

e−2ty =
1

(12)(11)(10)t
12 + c2t

2 + c1t + c0.

So that the solution is

y(t) = e2t
( 1
1320

t12 + c2t
2 + c1t + c0

)
.
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This approach provides a more natural explanation than the standard approach of
multiplying by t until it works [2, p. 181], [3, p. 331] . We were able to find this solution
without solving a system of equations as necessitated in using the method of undetermined
coefficients. The standard approach of undetermined coefficients first forces us to guess
the correct form of the solution and then to solve a resulting system of ten equations and
ten unknowns. Our approach avoids the linear algebra and requires only integration. We
note that this approach works with any non-homogeneity д(t), we chose д(t) = er1tP(t)
since integrating a polynomial requires no special techniques and to offer more motivation
for why multiplication by t yields the correct form for the solution.

4 Unequal Repeated Roots
While the above approach does not apply exactly to the case when there are distinct
repeated roots to the characteristic equation, an approach that relies on integrating factors
does still work. We first give the following example.

Example 4.1. Consider the following differential equation whose characteristic equation
has a triple root r1 = 4 and double root r2 = −2,

y(5) − 8y(4) + 4y(3) + 80y′′ − 64y′ + 256y = 0.

We first multiply by the integrating factor µ1(t) = e−4t ,

e−4t [y(5) − 8y(4) + 4y(3) + 80y′′ − 64y′ + 256y] = 0,

using (2.4), we have the equivalent equation

d5

dt5

[
e−4ty

]
+ 12

d4

dt4

[
e−4ty

]
+ 36

d3

dt3

[
e−4ty

]
= 0.

Now, let u = d3

dt3
[e−4ty], the equation in terms of u becomes

u′′ + 12u′ + 36u = 0

Now we use the integrating factor µ2(t) = e6t , notice that the exponent is the difference
between the two roots to the original equation, again using (2.4) we have

d2

dt2

[
e6tu

]
= 0

So that, upon integrating twice, we have

e6tu = A1t +A2.

Thus, we have

d3

dt3

[
e−4ty

]
= e−6t (A1t +A2)
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Using integration by parts on the right hand side, and noting that A1, A2 are arbitrary
constants, we have

e−4ty = e−6t (B1t + B2) + B3t
2B4t + B5.

So that, the solution is

y(t) = e−2t (B1t + B2) + e4t (B3t
2 + B4t + B5)

with Bi arbitrary constants, as desired.

We outline the approach for an equation of the form in (2.2) whose characteristic
equation is of the form

(r − r1)k(r − r2)ℓ = 0,

where without loss of generality, we take k ≥ ℓ. We use two integrating factors, first we
multiply the original equation, (2.2), by the integrating factor µ1(t) = e−r1t and use (2.4) to
expand the differential equation in terms of d j

dt j
[e−r1ty]. This leads to an ℓth order equation

in u = dk

dtk
[e−r1ty]. The integrating factor µ2(t) = e(r1−r2)t reduces the equation to

dℓ

dt ℓ

[
e(r1−r2)tu

]
= 0.

Upon integrating ℓ times, we have

e(r1−r2)tu = Pℓ−1(t).

Here Pj(t) indicates an arbitrary polynomial of order j. Noting, by integration by parts,
integrating a polynomial of degree j multiplied by an exponential, yields a polynomial of
degree j multiplied by the same exponential. We have

dk

dtk

[
e−r1ty

]
= u = e(r2−r1)tPℓ−1(t).

Now, integrating k times, we have

e−r1ty = e(r2−r1)tPℓ−1(t) + Pk−1(t).

Thus, the solution is

y(t) = er2tPℓ−1(t) + er1tPk−1(t)

as desired.
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5 Non-Constant Coefficient Equations
We briefly discuss how the integrating factor approach can apply to non-constant coeffi-
cient equations. We offer the following example.

Example 5.1. Consider the variable coefficient second order equation

y′′(t) + 2 cos(t)y′(t) + (cos2 t − sin t)y(t) = 0.

At first glance, this equation is not easily solved. We consider the following integrating
factor µ(t) = esin(t) and the equation

d2

dt2

(
esin ty(t)

)
= y′′(t) + 2 cos(t)y′(t) + (cos2 t − sin t)y(t).

Thus, multiplying both sides of the equation will collapse the left hand side to a second
derivative.

d2

dt2

(
esin ty(t)

)
= 0

Integrating twice and solving fory(t) yields the solutionsy1(t) = e− sin t andy2(t) = te− sin t .

For a second order equation of the form

y′′(t) + f ′(t)y′(t) + (f ′′(t) + [f ′(t)]2)y(t) = д(t)
we can use the integrating factor µ(t) = e f (t) to collapse to the equation

d2

dt2

(
e f (t)y(t)

)
= e f (t)д(t),

at which point we can integrate twice to find the solution. If we have a homogeneous
equation, д(t) = 0, we see solutions of the form y1(t) = e−f (t) and y2(t) = te−f (t). As this
is possible only for a very special class of equations, we do not discuss equations of order
higher than two.
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