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Abstract: The dynamics of a simple model of three charged bodies interacting
under an inverse square electrostatic force is presented. The model may be
viewed as an alternative to the pendulum, the standard model of a periodically
forced and damped nonlinear oscillator.

1 Introduction
Does your department offer a follow-up to the sophomore-level ODE course? Perhaps
an upper-level ODE or PDE course, or an introductory dynamical systems course? The
second author still remembers and is, indeed, fortunate to have taken just such a course
from Paul Blanchard at Boston University many years ago.

There is but one mathematics course devoted to the study of ODEs at Oberlin College,
and that is the sophomore-level course. Walsh does teach an upper-level discrete dynamical
systems course (Math 302), which was taken recently by the first author. But what does a
discrete dynamical systems course have to do with the study and teaching of ODEs?

The connection comes from the requirement that students complete independent
projects in Math 302, either individually or in small groups, for which the expectations
are high. It is via these research projects that the study of ODEs arises, most often in the
context of mathematical modeling. In this article the model Woodard created and analyzed
for her project is presented, both for its intrinsic interest and as a simple alternative to the
the pendulum, often viewed as the standard model of a periodically forced and damped
nonlinear oscillator [7]. The exact interplay of gravitation, forcing, and damping is
arguably difficult to visualize, however, when seeking an intuitive understanding of just
why the pendulum behaves chaotically for certain parameter regimes. (See, for example,
the animation at http://www.myphysicslab.com/pendulum2.html.)

After introducing the model, a variety of simulations and animations will be presented,
all of which were executed in Mathematica. More recent versions of this computer
algebra system clearly have an increased facility when it comes to performing computer
experiments related to ODEs.
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2 The Model ODE

Consider a charged particle p0 of massm, constrained to move along a straight line, which
we take to be the x-axis. Place two charged particles p1 and p2 on the y-axis. Particle
p2, with position fixed for all time at a distance d2 below the x-axis, exerts an attractive
force on p0, while p1 exerts a repulsive force on p0. Assume that p1 oscillates vertically
over time, so that its distance above the x-axis is given by p1(t) = d1 +A cos t , A > 0 (see
Figure 1). We assume A < d1 throughout so that p1 never collides with p0.

The magnitude of the force Fi exerted on p0 by particle pi is assumed to be inversely
proportional to the the square of the distance ri between p0 and pi , i = 1, 2. In addition,
we assume the magnitude of F2 is greater than the magnitude of F1 when p1 and p2 are
equidistant from p0. We thus have a model of a simple 3-body problem, one in which the
force between bodies is electrostatic rather than gravitational. For a more sophisticated
treatment of a charged 3-body model, see [2].

Let x = x(t) denote the position of particle p0 as a function of time. The goal is to
understand the behavior of x(t) as time varies and as initial conditions and parameters
change. This requires, of course, that we first derive the model ODE.

Figure 1: The model set-up
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By assumption, we have

∥F1∥ = k1

r 21
=

k1
(d1 +A cos t)2 + x2 and ∥F2∥ = k2

r 22
=

k2

d22 + x
2 , 0 < k1 < k2.

The sum of the horizontal components of F1 and F2 is then

Fx = ∥F1∥ cosθ1 + ∥F2∥ cosθ2
=

k1x

((d1 +A cos t)2 + x2)3/2 −
k2x

(d22 + x2)3/2
.

Assuming that damping is proportional to velocity we have, via Newton’s Second Law,
Fx − b

′ẋ =mẍ , b′ ≥ 0. Letting qi = ki/m, i = 1, 2, and b = b′/m, we have

ẍ =
q1x

((d1 +A cos t)2 + x2)3/2 −
q2x

(d22 + x2)3/2
− bẋ , 0 ≤ b, 0 < q1 < q2, (2.1)

a second-order nonlinear ODE. We thus wish to understand the behavior of solutions to
equation (2.1).

The analysis to follow is interspersed with animations created with Mathematica.
Animation 1, for example, presents a solution which converges to a periodic solution
comprised of three “bumps" to the right and three bumps to the left. With regard to
animations, we agree with Paul Blanchard, who wrote [3]:

If a picture is worth 1000 words, then a good animation is like a classic short story—
a simple tale simply told. Animations are particularly effective in the teaching of
mathematics because motion is often fundamental to the concept at hand, and a
well designed animation is usually an excellent way to introduce such a concept.

We found that using Mathematica as an investigative tool provided great insight into the
dynamics of this model.

3 The case of no damping and no forcing
Let’s assume, for simplicity, that d1 = d2 = d for the remainder of this article. Setting
A = b = 0 in equation (2.1) then yields

ẍ = −
(q2 − q1)x
(d2 + x2)3/2 . (3.1)

Note that for very small x , equation (3.1) is approximated by
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ẍ = −ω2x , ω2 =
q2 − q1
d3
, (3.2)

as x2 will be much smaller than x in this case. Equation (3.2) is easily recognizable as an
equation for a harmonic oscillator, with general solution

x(t) = x0 cosωt +
v0
ω

sinωt , (x(0), ẋ(0)) = (x0,v0).
Solutions of equation (3.2) are plotted in the (x , ẋ)-phase plane in Figure 2. (For this and
all subsequent plots, we use the values q1 = 5, q2 = 10 and d = 1.5.)

What of solutions to equation (3.1)? Given the absence of damping and forcing at this
point, one might expect conservation of energy to play a role.

To see that this is indeed the case, we first convert the second order equation (3.1) into
a first order system, as on page 164 of Borrelli and Coleman [5]. Letting v = v(t) denote
the velocity ẋ of p0, equation (3.1) corresponds to the planar system

ẋ = v (3.3a)

v̇ = −
(q2 − q1)x
(d2 + x2)3/2 . (3.3b)

Now letting H (x ,v) = v2/2 − (q2 − q1)/
√
d2 + x2, we note

∂H

∂v
= v = ẋ and

∂H

∂x
=

(q2 − q1)x
(d2 + x2)3/2 = −v̇ .
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2

−4 4
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2

Figure 2: The case of no damping and no forcing. (a) The linear approximation, for small
x , given by equation (3.2). (b) The phase plane for system (3.3).
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Hence, if (x(t),v(t)) represents a solution curve of system (3.3), we have

d

dt
H (x(t),v(t)) = ∂H

∂x

dx

dt
+
∂H

∂v

dv

dt
= −v̇ẋ + ẋv̇ = 0.

This implies the function H is constant along solutions to system (3.3), that is, solutions to
system (3.3) lie on level sets of H (which level set depends on the initial condition). Such
a function H is called a Hamiltonian function and, in applications to mechanics, often
represents the total mechanical energy (see §5.3 in [4]).

Solutions to system (3.3) are plotted in Figure 2. Note how well solutions to equa-
tion (3.2) in the (x , ẋ)-phase plane approximate solutions to system (3.3) near the origin.

If particle p0 is placed on the positive x-axis and given a sufficiently strong push
to the left, it will move monotonically to the left with x(t) → −∞ as t → ∞. Using
the Hamiltonian function H above, however, one can show that if p0 is placed at initial
position (x(0), 0) (so that it starts from rest), its motion will be periodic. Two such (t ,x(t))
solutions are plotted in Figure 3; also see Animation 2.

In this regard system (3.3) can be viewed as modeling a nonlinear oscillator. What
happens if we first damp the system and then add periodic forcing?

4 The damped, unforced case
Setting A = 0 and b > 0 in equation (2.1), and letting v = ẋ and d1 = d2 = d , yields the
autonomous system

ẋ = v = f (x ,v) (4.1a)

v̇ = −
(q2 − q1)x
(d2 + x2)3/2 − bv = д(x ,v). (4.1b)
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Figure 3: Two periodic solutions of system (3.3). Red: (x(0),v(0)) = (2, 0). Blue:
(x(0),v(0)) = (4, 0).
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Due to the damping term the system is now dissipative in the sense that it loses energy
over time. We make this more precise shortly.

Note that (x(t),v(t)) = (0, 0) is the sole equilibrium solution for system (4.1). To
determine the nature of this equilibrium point we linearize the system at (0, 0) (§8.2 in
[5]). Computation of the Jacobian matrix J at (0, 0) yields

J (0, 0) =


∂ f
∂x

∂ f
∂v

∂д
∂x

∂д
∂v



�������(0,0)
=



0 1

−a −b


, a =

q2 − q1
d3

> 0, b > 0.

The eigenvalues of the Jacobian matrix J (0, 0) are λ± = 1
2 (−b ±

√
b2 − 4a). Thus for small

damping (b2 < 4(q2 − q1)/d3), the eigenvalues are complex numbers with negative real
part. Since the vector field V= (f ,д) is twice continuously differentiable, this implies the
origin is an asymptotic spiral sink (Theorem 8.2.1 in [5]). The oscillator is underdamped
in this case (see Figure 4).

For larger values of b (b2 > 4(q2 − q1)/d3), the eigenvalues of J (0, 0) are distinct, real
and negative (recall a > 0). Hence the phase plane for the linearized system has a sink at
(0, 0) with two “straight line" solutions (§3.2 in [4]). A typical solution to system (4.1) for
these b-values is plotted in Figure 4; we see that the oscillator is overdamped.

It is natural to ask whether this stable long-term behavior will persist when particle
p1 begins to oscillate, applying a periodic force to p0.
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Figure 4: Two solutions to system (4.1), each with (x(0),v(0)) = (4, 0). Top: b = 0.05
(underdamped). Bottom: b = 2.5 (overdamped).
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5 Damping with forcing
We now consider the first-order system corresponding to equation (2.1):

ẋ = v (5.1a)

v̇ =
q1x

((d +A cos t)2 + x2)3/2 −
q2x

(d2 + x2)3/2 − bv . (5.1b)

5.1 The Poincaré map

Solutions to the nonautonomous system (5.1) live in (x ,v, t)-space. To reduce the dimen-
sion of this state space by one we turn to the Poincaré, or first-return, map associated
with this system of ODEs. Given that the vector field in system (5.1) is periodic in t with
period 2π , we will sample solutions at integer multiples of 2π . This yields a mapping
P = PA,b : R2 → R2, which sends the point (x0,v0) to the value at time t = 2π of the solu-
tion to system (5.1) having initial condition (x0,v0). That is, if (x(t),v(t)) is the solution
with initial condition (x(0),v(0)) = (x0,v0), then P(x0,v0) = (x(2π ),v(2π )).We are thus
sampling a given solution each time particle p1 completes one oscillation.

Letting Pn denote the n-fold composition of P with itself, we have that Pn(x0,v0) =
(x(2πn),v(2πn)) for n ≥ 1. We thus iterate the Poincaré map P in the (x ,v)-plane to
deduce the qualitative long-term behavior of solutions to system (5.1) (see Figure 5 for an
example in the case b = 0).

Note that (x(t),v(t)) = (0, 0) is a solution of system (5.1) for all parameter values. This
implies (0, 0) is a fixed point of the Poincaré map, that is, P(0, 0) = (0, 0) for all parameter
values.

The dissipative nature of this model is a consequence of the damping. This is evidenced
mathematically by the fact the Poincaré map contracts area in the plane each iterate for
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Figure 5: Left: The projection of a solution to system (5.1) onto the (x ,v)-plane. Right:
The corresponding Poincaré orbit. (A = 0.11,b = 0, (x(0),v(0)) = (2.553, 0.2373))
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any A > 0 and b > 0. To see this, we convert system (5.1) into an autonomous system in
3-space:

ẋ = v = f (x ,v, t) (5.2a)

v̇ =
q1x

((d +A cos t)2 + x2)3/2 −
q2x

(d2 + x2)3/2 − bv = д(x ,v, t) (5.2b)

ṫ = 1 = h(x ,v, t) (5.2c)

We then use Liouville’s formula, as in §9.6 in [1]. To that end, letM(t) denote the Jacobian
of the vector field (f ,д,h) evaluated along the solution to system (5.2) with initial value
(x0,v0, 0). Note that the trace ofM(t) is

Tr(M(t)) = ∂ f
∂x
+
∂д

∂v
+
∂h

∂t
= 0 − b − 0 = −b .

Liouville’s formula then says the area contraction per iterate of P is given by

exp
(∫ 2π

0
Tr(M(t))dt

)
= exp

(∫ 2π

0
−b dt

)
= e−2πb .

This implies in particular that any fixed or periodic points of P must be of either attracting
or saddle type. What else can be said concerning periodic points for the Poincaré map?

5.2 Bifurcations
In this section we fix the value b = 2 and increase the value of the amplitude A of the
periodic forcing. We are interested in experimentally determining any changes in the
long-term behavior of particle p0 as a function of A. Recall that for A = 0 and b > 0, the
origin (0, 0) is a sink in the (x ,v)-phase plane, so that (0, 0) is an attracting fixed point for
the Poincaré map in this case.

Plotted in Figure 6 are a variety of (t ,x(t)) solution curves and corresponding Poincaré
orbits for b = 2 and A > 0. Note that for A as large as 0.75, the solution still converges
to the origin. Periodic behavior emerges, however, as A increases through 0.9. We note
that discrete periodic orbits for the Poincaré map P correspond to continuous periodic
solutions for system (5.1). The period-4 cycle illustrated in Figure 6 for A = 0.9617 is
rendered in Animation 3.

The existence of periodic behavior as A varies strongly suggests that we execute the
following computer experiment: Plot the long-term behavior of solutions (via Poincaré
orbits) as a function of A in a bifurcation diagram.

Our approach is adapted from an algorithm in [8], and proceeds as follows. For a given
value of A, select an initial condition near the fixed point (0, 0). For definitiveness, we
will set (x(0),v(0)) = (0.1, 0). Sample the corresponding solution to ODE (5.1) at integer
multiples of 2π , generating a list of position and velocity values for particle p0. After
discarding the first 100 points, compute the distance of each remaining point (x ,v) from
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the origin. For each of these distances r we the plot the point (A, r ). Then select a new
A-value and repeat.

We note this approach has certain drawbacks. For example, a period-2 cycle in which
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Figure 6: Solutions to system (5.1) with b = 2 and A varying as indicated. Left: (t ,x(t))
plots. Right: Iterates 125 through 150 of the Poincaré map corresponding to the given
solution.
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both points are equidistant from the origin will yield but one point in the (A, r )-plane,
rather than two. In addition, this algorithm finds at most one attracting periodic orbit,
whereas more than one attracting cycle may be present for a given A-value. Nonetheless,
this simple approach helps to elucidate the remarkably complicated behavior of particle
p0 as A increases.

Two views of the bifurcation diagram, each with A < 1, are presented in Figure 7.
Note the striking similarity to the well-known bifurcation diagram for the logistic map
fλ(x) = λx(1 − x) (§11.2 in [6]). As the amplitude of the periodic motion of particle p1
increases from 0 to 1, the behavior of particle p0 follows the period-doubling route to
chaotic dynamics.

The small arrow embedded within Figure 7 points to a “period-6 window." The corre-
sponding periodic orbit is shown in Figure 8.

It is relatively easy to see why the behavior of particle p0 depends sensitively on initial
conditions for certain parameter values. The force exerted by particle p1 on p0 is greatest
when p1 is closest to the origin (at t-values near tk = (2k + 1)π , k an integer). Recall that
d1 = d = 1.5 in all simulations. As A increases toward 1.5, p1 exerts an ever greater force
on p0, particularly when t has a value near an odd multiple of π while p0 is simultaneously
near the origin. If p0 is just to the right of the origin at a time near tk , it will receive a
large push to the right, while if it is just to the left, it will receive a large push to the left.
This sensitivity to initial conditions is illustrated in Figure 9 and in Animation 4.

The interplay of the periodic forcing, gravity and damping, and the role these forces
play in determining the model dynamics, is relatively easy to grasp in this setting.

5.3 Fractal basin boundaries
It is well known that basins of attraction of fixed and periodic points for the forced,
damped pendulum have a fractal structure for certain parameter values ([7], §2.1 in [1]).
We now show this also holds true in this simple charged 3-body model.

System (5.1) admits two attracting periodic orbits when b = 2 and A = 1, as indicated
in Figure 10. The corresponding fixed points of the Poincaré map P lie at roughly ℓ1 =
(1.23,−0.6) and ℓ2 = (−1.23, 0.6).We implement, via Mathematica, an algorithm outlined
in [7] which generates the basins of attraction of ℓ1 and ℓ2 under P . Start by choosing a
large grid of initial conditions. Compute the Poincaré orbit of each point in the grid, and
color the initial condition blue or red, depending on whether the orbit limits on ℓ1 or ℓ2,
respectively. The results are shown in Figure 11.

The behavior of p0 for initial conditions near or on the common boundary of the two
basins presented in Figure 11 is of particular interest. Let the symbol L correspond to a
negative local minimum on the (t ,x)-graph of a given solution (so a “bounce" to the left),
and let R correspond to a positive local maximum (a bounce to the right). One can then
assign strings (often called symbol sequences) of Ls and Rs to trajectories, as illustrated
in Figure 12. (Animation 5 corresponds to the lower right solution in Figure 12.) The
conjecture is that corresponding to any symbol string is an initial condition (x0,v0) on
the basin boundary whose solution provides this exact string in terms of the sequence of
bounces to the left and right. A proof of this conjecture would likely involve showing
that the Poincaré map admits a Smale horseshoe, as in [7].
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Figure 7: The bifurcation diagram for system (5.1) with b = 2 and A varying. Top:
0.7 ≤ A < 1. Bottom: 0.96 ≤ A ≤ 0.964.
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We note that if we fix A = 1 and weaken the damping b < 2, there appear to be
b-values for which no attracting cycles exist. A single orbit of the Poincaré map when
A = 1 and b = 0.1 is presented in Figure 13, which is similar in spirit to Figure 2.7 in [1].

Finally, if the periodic forcing remains but we remove all damping, a completely
different story emerges. The analysis in this case requires the celebrated KAM theory,
which we will present in a subsequent paper.
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Figure 9: Sensitive dependence on initial conditions. Blue: (x(0),v(0)) = (4, 0). Red:
(x(0),v(0)) = (3.9, 0). Near t = 20, particle p1 pushes the red p0 to the right, and the blue
p0 to the left.
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Figure 10: Two attracting cycles for A = 1, b = 2, and the corresponding fixed points for
the Poincaré map.
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Figure 11: The basins of attraction for the blue and red fixed points shown in Figure 10.
Zooming in on the common boundary would continue to produce ever finer striations of
blue and red points.
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Figure 12: The assignment of symbol sequences to solutions to system (5.1) forA = 1,b = 2.
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Figure 13: The Poincaré orbit of a single solution for A = 1,b = 0.1, and (x(0),v(0)) =
(0.5, 0). Other orbits also limit on this chaotic attractor.

6 Conclusion
The model presented in this article is a simple alternative to the forced and damped
pendulum. While the interplay of the physical forces vis-à-vis the dynamics is more
intuitive in Woodard’s model, the motion of particle p0 exhibits all of the behavior one
finds in the pendulum model. A computer algebra system, such as Mathematica, can and
should play an important role as students, in increasing numbers, create and investigate
the behavior of new and intriguing mathematical models.
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