
CODEE Journal

Volume 9 Article 10

5-14-2012

Delay-Differential Equations with Constant Lags
Lawrence Shampine

Skip Thompson

Follow this and additional works at: http://scholarship.claremont.edu/codee

This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in
CODEE Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Shampine, Lawrence and Thompson, Skip (2012) "Delay-Differential Equations with Constant Lags," CODEE Journal: Vol. 9, Article
10.
Available at: http://scholarship.claremont.edu/codee/vol9/iss1/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70984577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu/codee?utm_source=scholarship.claremont.edu%2Fcodee%2Fvol9%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.claremont.edu/codee/vol9?utm_source=scholarship.claremont.edu%2Fcodee%2Fvol9%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.claremont.edu/codee/vol9/iss1/10?utm_source=scholarship.claremont.edu%2Fcodee%2Fvol9%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.claremont.edu/codee?utm_source=scholarship.claremont.edu%2Fcodee%2Fvol9%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Delay–Differential Equations with Constant Lags

Lawrence F. Shampine
Southern Methodist University

Skip Thompson
Radford University

Keywords: delay differential equations, constant lag
Manuscript received on March 24, 2009; published on May 14, 2012.

Abstract: This article concerns delay–differential equations (DDEs) with
constant lags. DDEs increasingly are being used to model various phenomena
in mathematics and the physical sciences. For such equations the value of
the derivative at any time depends on the solution at a previous “lagged”
time. Although solving DDEs is similar in some respects to solving ordinary
differential equations (ODEs), it differs in some rather significant ways. These
differences are discussed briefly. The effect the differences can have on systems
of ODEs and DDEs is illustrated. Popular approaches used in the development
of numerical methods for solving DDEs are described. AvailableMatlab DDE
solvers and a Fortran 90 solver based on these approaches are mentioned.
Finally, some pointers to further resources available to interested readers are
given.

1 Delayed Effects
Ordinary differential equations (ODEs) are widely used in modeling, but it is becoming
more common that models take into account effects that have a delayed action. The
populations y1(t) of prey and y2(t) of predator are often modeled by a system of first-order
ODEs

y′1(t) = ay1(t) + b y1(t)y2(t)
y′2(t) = c y1(t) + d y1(t)y2(t)

with constants a,b, c,d . Hale [1] considers variations of this model that have a resource
limitation on the prey and a birth rate of predators that responds to changes in the
populations only after a constant time lag. These models have the form

y′1(t) = ay1(t)
(
1 −

y1(t)
m

)
+ b y1(t)y2(t)

y′2(t) = c y1(t) + d y1(t − τ)y2(t − τ)

CODEE Journal http://www.codee.org/

http://www.codee.org/

60 70 80 90 100 110 120 130
5

10

15

20

25

30

35

40

y1(t)

y 2(t)

Initial point
No delay
Lag = 1

Figure 1: Effect of Delay on Predator-Prey Model.

This is a first-order system of delay–differential equations (DDEs). Here τ > 0 is a lag
in the effect of population changes andm is another parameter. Only one lag appears
in this system, but in general there might be lags τ1, . . . ,τk . In some applications a lag
τj(t ,y) might depend on the time t and/or state vector y. New phenomena are possible
with these more general lags, so for the sake of simplicity, we consider only constant lags
in this article.

2 Effects of Delays
There are important differences between ODEs and DDEs that are easily seen. To be
concrete, we display some results for the two kinds of predator-prey models in Figure
1. In this computation the physical parameters were a = 0.25,b = −0.01, c = −1.00,d =
0.01,m = 200 and the lag τ = 1. The ODEs were solved on the interval [0, 100] with initial
values y1(0) = 80,y2(0) = 30.

A first important difference between ODEs and DDEs is that for DDEs we must specify

values of the solution not just at the initial point t = 0 but also at earlier times. Specifically,
if 0 < t < τ , the argument of the terms y1(t − τ) and y2(t − τ) in the differential equation
is less than 0. Values of the solution components for t ≤ 0 are called the history of the
solution. TheMatlab [2] ODE solver ode23 requires users to specify a vector of initial
values. Now we understand why the corresponding DDE solver dde23must ask for more,
namely a history function h(t) that defines the vector y(t) = h(t) for t ≤ 0. It is common
that the history is a constant vector, so as a convenience, the DDE solvers of Matlab
allow users to provide this vector instead of a function. This was done when computing
Figure 1 because the DDEs were solved with a constant history equal to the vector of
initial values for the ODEs.

2

The existence and uniqueness of a solution of a system of DDEs,

y′(t) = f (t ,y(t),y(t − τ)) (2.1)

with history y(t) = h(t) for t ≤ 0 can be deduced from corresponding results for ODEs
using the method of steps: On the interval [0,τ), the differential equations (2.1) are a
system of ODEs because the term y(t − τ) is a known function, namely h(t − τ). Having
established the existence of a unique solution on this interval, the same argument applies
to the interval [τ , 2τ), and so forth.

This all sounds fine, but lurking in the details is another important difference between
ODEs and DDES: A solution normally has a jump discontinuity in the first derivative at

the initial point. That is because the derivative from the left is determined by the history
function, y′(0−) = h′(0), but the derivative from the right is defined by the differential
equation,

y′(0+) = f (0,y(0),y(0 − τ)) = f (0,h(0),h(0 − τ))
and generally these two derivatives are different. In the case of the predator-prey equations
with the parameters and constant history of Figure 1, y′2(0−) = 0 and y′2(0+) = (−1)(80) +
(0.01)(80)(30) = −56. Unfortunately, the same argument shows that a lag of τ causes a
discontinuity at 0 to propagate to τ , 2τ , 3τ ,

It gets worse if there is more than one lag. A second lag τ2 implies discontinuities
at τ2, 2τ2, 3τ2, . . ., but in addition, it implies that the discontinuity at τ propagates to
τ +τ2,τ +2τ2, Every discontinuity is propagated by both lags, so the initial discontinuity
spawns a whole tree of discontinuities. As might be expected, discontinuities cause trouble
for numerical methods, especially if they are very close to one another. A simple example
shows why this is surprisingly common: Suppose there are lags 1 and 1/3. An initial
discontinuity is propagated from t = 0 to t = 1 by the first lag. The second lag successively
propagates the discontinuity to 1/3, 2/3, 3/3. The snag is that the lag 1/3 is not represented
exactly in a computer, so 1/3 + 1/3 + 1/3 is not exactly equal to 1—it is extremely close
and therein lies the problem.

For the kinds of DDEs we are talking about, retarded DDEs, it is easy to deduce from
the differential equations that the order of a discontinuity increases by one each time
it propagates. Numerical methods “see” discontinuities only up to a certain order, so in
solving retarded DDEs numerically we can ignore all high order discontinuities and in
effect, get control of this kudzu vine [3] of discontinuities by hacking off branches close
to the stem.

3 Numerical Methods

With the method of steps in mind, it is natural to use popular methods for ODEs like
explicit Runge–Kutta (RK) formulas as the basis for programs to solve DDEs. That is what
we did with the two solvers of Matlab and a Fortran 90 program, DDE_SOLVER [4].
However, the approach requires two important extensions of the usual formulas.

3

3.1 Looking Back: RK+
At first thought it seems straightforward to apply an explicit RK formula to the ODEs of
the method of steps, but on second thought, where do the delayed terms in the differential
equations come from? An RK method integrates (2.1) by a sequence of steps from an
approximation yn ≈ y(tn) to yn+1 ≈ y(tn+1) at tn+1 = tn + h. The method produces an
approximate solution only at mesh points tm and generally a delayed argument will fall
between mesh points, so how do we approximate the solution there? It is natural to
interpolate previously computed approximations to y(tm), and perhaps the slopes y′(tm),
to approximate y(t − τ) for an argument tj ≤ t − τ ≤ tj+1. For sufficiently low order
formulas like those of dde23, cubic Hermite interpolation to value and slope at tj and
tj+1 provides approximations throughout [tj , tj+1] that have the same order of accuracy
as the values at the end points. It is harder to do this with formulas of higher order
as in DDE_SOLVER. Still, there are formulas for which linear combinations of values
of f formed in the course of taking a step, plus perhaps a few more, provide accurate
solutions throughout the span of the step. These so-called continuous extensions of RK
formulas are important when solving ODEs, but they are essential when solving DDEs.
An important practical matter is that a DDE solver must save all the information needed
to approximate delayed terms. This can amount to a lot of data.

3.2 Breaking the τ Barrier: RK++
When the step size h is bigger than the smallest lag τ , the formula needs an approximate
solution at a delayed argument t − τ > tn. This is a Catch-22 [5]: We need an approximate
solution in the span of the current step [tn, tn+1] before the step is actually taken! To
avoid this difficulty, early solvers simply did not use step sizes h > τ , but this means
that problems with “small” τ are expensive, perhaps prohibitively so. For example, if we
were to solve a DDE with a smallest delay of 0.1 over an interval [0, 1000], we would have
to take (at least) 10,000 steps, no matter how smooth the solution is. Using an h > τ
amounts to evaluating an implicit RK formula, this despite the basic formula being explicit.
This can be done effectively with a scheme rather like the Picard iteration used to prove
the existence of solutions of ODEs. The continuous extension on the previous step is
used to predict a solution throughout [tn, tn+1]. With this, the explicit RK formula can
be evaluated to get a solution at tn+1 and a continuous extension formed for the current
step. The process is repeated with the continuous extension for the current step until
the values at tn+1 converge. Typical codes allow only a few iterations before reducing h
to speed up the process. It is always possible to get convergence, for if h is reduced to a
value smaller than τ , the formula is explicit. Iteration is expensive compared to an explicit
step, but it is done only when the behavior of the solution permits a step size big enough
to make it worthwhile.

4 Where Can I Learn More?
The Scholarpedia article [6] is a short introduction to DDEs that is a good sequel to
this article. A more complete, but still introductory, treatment is found in the text [7],

4

especially as regards solving DDEs in Matlab. After that text was published, the ddesd
program was added to Matlab to solve DDEs with time- and state-dependent delays.
TheMatlab problem–solving environment documents its solvers and their use, but in
addition, there is a tutorial with many examples that show how advanced capabilities
of the software can be to solve a wide range of problems for DDEs with constant lags.
This tutorial and its example programs are available online at [8] along with the Fortran
90 DDE_SOLVER and preprints of several relevant papers. Also available are drivers
ezdde23 and ezddesd for theMatlab solvers with a syntax that some find simpler than
dde23 and ddesd, respectively. Links to other publicly available DDE solvers in several
languages and computing environments are found at http://twr.cs.kuleuven.be/
research/software/delay/software.shtml.

It is nearly as easy to solve DDEs as ODEs inMatlab, and not much more difficult
in Fortran 90 using DDE_SOLVER. The obvious difference is that you have to provide
a history and define the lags. And, of course, the differential equations are a little more
complicated because of the delayed terms.

References
[1] J. Hale, Functional Differential Equations. Springer-Verlag, Berlin, 1978.

[2] Matlab 7, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA, 2006.

[3] M. Shores, The Amazing Story of Kudzu: Love it, or Hate it... It Grows on You!, http:
//www.maxshores.com/kudzu/.

[4] S. Thompson and L.F. Shampine, A friendly Fortran DDE solver. Appl. Numer. Math.

56:503–516 (2006). See also http://www.radford.edu/~thompson/ffddes/
index.html.

[5] J. Heller, Catch-22. Classic Ed., Simon & Schuster, New York, 1999.

[6] S. Thompson, Delay-differential equations. Scholarpedia, http://www.
scholarpedia.org/article/Delay-differential_equations.

[7] L.F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with Matlab. Cambridge
Univ. Press, New York, 2003.

[8] L.F. Shampine and S. Thompson, Web support page for DDE solvers, http://www.
radford.edu/~thompson/webddes/.

5

http://twr.cs.kuleuven.be/research/software/delay/software.shtml
http://twr.cs.kuleuven.be/research/software/delay/software.shtml
http://www.maxshores.com/kudzu/
http://www.maxshores.com/kudzu/
http://www.radford.edu/~thompson/ffddes/index.html
http://www.radford.edu/~thompson/ffddes/index.html
http://www.scholarpedia.org/article/Delay-differential_equations
http://www.scholarpedia.org/article/Delay-differential_equations
http://www.radford.edu/~thompson/webddes/
http://www.radford.edu/~thompson/webddes/

	CODEE Journal
	5-14-2012

	Delay-Differential Equations with Constant Lags
	Lawrence Shampine
	Skip Thompson
	Recommended Citation

	Delayed Effects
	Effects of Delays
	Numerical Methods
	Looking Back: RK+
	Breaking the Barrier: RK++

	Where Can I Learn More?

