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Abstract: This article introduces a powerful ODE solver called the Taylor
Center for PCs (http://www.ski.org/gofen/TaylorMethod.htm) as a
tool for teaching and performing numeric experiments with ODEs. The
Taylor Center is an All-in-One GUI-style application for integrating ODEs
by applying the modern Taylor Method (Automatic Differentiation). The
Taylor Center also offers dynamic graphics (including 3D stereo vision). After
a brief review of the features of the Taylor Center, we consider instructive
examples of ODEs in various applications and also several particular examples
illustrating intricacies of numeric integration. The article therefore continues
the thesis of Borrelli and Coleman [2] that awareness and caution are needed
while interpreting the results of numeric integration. We offer practical ideas
and advice on how to use the Taylor Center for teaching ODEs, and to increase
the motivation and interest of students.

1 Preface
In this article we deal with holomorphic1 ordinary differential equations (ODEs) and their
solutions in accordance with the Theorem of Cauchy-Kovalevskaya on existence and
uniqueness of the solution for initial value problems (IVPs).

The goals of the article are

• to introduce an ODE solver, called the Taylor Center for PCs [5] as a tool for teaching
and numeric experiments with ODEs (Section 2);

• to illustrate its usefulness by addressing problems from the simple (Section 3) to the
more advanced (Sections 4–6);

• to show that caution is always prudent in dealing with and interpretation of
computer-generated results (Section 7). In doing this we are continuing the discus-
sion started by Borrelli and Coleman [2].

1A complex function is called holomorphic in a neighborhood of a point if its Taylor expansion at this
point exists and has nonzero convergence radius.
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2 Introduction

It seems there have been no sophisticated Taylor Solvers designed for PCs since 1994
(ATOMFT [3, 4]). We expect an application with advanced interactive visualization to
provide a user interface with graphics and controls that can be adapted to specific models
and operational tasks and realistic visualization of the modeled processes employing all
appropriate faculties of the human perception, achievable with advanced hardware and
multimedia.

With that in mind we introduce the ODE solver called The Taylor Center2, an all-in-
one system for integration of ODEs by applying the modern Taylor Method (Automatic
Differentiation), and offering powerful dynamic graphics (including 3D stereo vision with
conventional monitors and anaglyph Red/Blue glasses).

The modern Taylor Method is a descendant of its classical counterpart. It is an efficient
method for numerical integration of Initial Value Problems (IVPs) for ODEs (presuming
that no singularities occur on the integration path). What distinguishes the Taylor Method
from all other numerical methods for ODEs is the ability to compute the approximation
to the solution with virtually unlimited order of approximation (the number of terms
in the Taylor expansion). With no singularities on the integration path, the step does
not approach zero regardless of how high accuracy is specified (presuming the order of
approximation may increase to infinity and the length of mantissa is unlimited). It is the
distance to the singularities which bounds the finite integration step. Of course, round-off
errors due to machine computation can occur.

An unlimited order of approximation is possible because the method performs Au-
tomatic Differentiation (i.e., exact computing of the derivatives up to any desired order
n by optimized formulas for n-order differentiation) which provides the Taylor series of
any desired length for the solution components. Hence, the Taylor Center applies to any
explicit first-order system whose right hand sides are generalized elementary functions of
the state variables, explained below.

Automatic Differentiation is applicable to a subclass of holomorphic ODEs whose right
hand sides are the so called generalized elementary vector-functions. The generalized
elementary functions widen the class of the traditional (Liouville) elementary functions.
The generalization was suggested by R. Moore [8] in the 1960s and further developed by
Gofen [6]. Moore defined generalized elementary functions as those that may be represented
as solutions of explicit (nonlinear) ODEs whose right hand sides are rational in all variables.
For brevity, we will call them simply “elementary" functions.

It appears that practically all ODEs used in applications are comprised of (generalized)
elementary functions. At the moment, only the Gamma function and Gamma integral are
proved to be non-elementary [6]. Other candidates suspected (but not yet proved) to be
non-elementary are general solutions of elementary ODEs as functions of their parameters
or of their initial values. However, the solutions of elementary ODEs as functions of the
variable of integration are always elementary (the theorem of closeness of the class of
elementary functions [6]). The composition of elementary functions and their inverse are
also elementary [6]. Therefore, almost all problems arising in applications and courses of

2http://www.ski.org/gofen/TaylorMethod.htm

2

http://www.ski.org/gofen/TaylorMethod.htm


mathematics and physics taught in universities, can be handled by the Taylor solver.
In the most straightforward way this software may be used to illustrate dynamics

in every initial value problem taught in universities, and we will point out many such
examples further on. However, the Taylor Center also gives an opportunity to explain and
demonstrate particularities of numerical integration. In so doing, it raises the awareness
of the students when they interpret the computed numerical solutions. All the examples
discussed in the article or illustrated here with a static picture may be animated via the
free demonstration version of the Taylor Center3.

For every illustration in this article, the path via the Main menu’s Demo item, or the
name of the respective script file for loading via File/Open script is given. (After the
installation, the sub-folder Samples contains all pre-loaded scr files and ode files). In
this article, all illustrations on a black background are stereoscopic images that should be
viewed through red/blue glasses4. See Appendix A for the complete list of features of the
Taylor Center.

3 A powerful tool for dynamic drawing
The Taylor Center is beneficial whenever the drawing of orbits of ODEs is required. It
produces plane or stereoscopic three-dimensional orbits that can be seen using red/blue
glasses.

Example 3.1. Here is the “Wine glass” solution (see Figure 1) for the ODEs of autocatalytic
reaction (from the book of Borrelli and Coleman [1]) graphed as a planar curve. The IVP is

x′ = e−.002t − .08x − xy2, x(0) = 0
y′ = 0.08x − y + xy2, y(0) = 0.

These ODEs are entered into the four panes of the Taylor Center in this manner:

t=0

x=0

y=0

t’=1

x’=exp(-0.002∗t)-0.08∗x-x∗y^2

y’=0.08∗x-y+x∗y^2

This is the general layout of the four panes of the Taylor Center. See Figure 2.

Constants Auxiliary variables

Initial values ODEs

3Available at http://www.ski.org/gofen/TaylorCenterDemo.zip. To obtain the license for the
full version, contact the author under Help/Registration.

4Some are available at http://www.3dstereo.com or through the author.
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Figure 1: The “Wine glass solution” (script file Borrelli.scr )

Note that a trivial equation for the independent variable (like t ′ = 1) may generally be
omitted. However it is necessary in this case in order that the “Dynamic Play" feature be
possible. Also, it is necessary if the user plans switching from one independent variable to
another. The names of the variables may be multi-character identifiers, and the arithmetic
expressions must obey the syntax of Pascal (the multiplication sign ∗ cannot be omitted).

Figure 2: Front panel of the Taylor Center.

The Taylor Center is indispensable for visualizing dynamics. There is a huge difference
between a static picture of a trajectory (say in a book) vs. the real time animation of the
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Figure 3: Double pendulum (file DoublePendulum.scr).

motion along the trajectories in the Taylor Center. In it not only can the viewer watch the
near real time evolution of the motion, but also observe its acceleration and decelerations,
examine the ODEs, and vary the parameters.

Example 3.2. Figure 3 shows an orbit of the motion of the double pendulum described
with the ODEs

θ ′′1 = −
L2{m2 cos(θ1 − θ2)[L1θ ′12 sin(θ1 − θ2) − д sinθ2] + дm sinθ1 +m2L2θ

′
2
2 sin(θ1 − θ2)}

L1L2(m1 +m2 sin2(θ1 − θ2))
θ ′′2 =

L1{дm[sinθ1 cos(θ1 − θ2) − sin(θ1 − θ2)] + sin(θ1 − θ2)(m2L2 cos(θ1 − θ2)θ ′22 +mL1θ
′
1
2)}

L1L2(m1 +m2 sin2(θ1 − θ2)) .

Here is how the ODEs for the double pendulum are entered in the Taylor Center.
g = 9.8

m1 = 1

m2 = 1

m = m1+m2

L1 = 1

L2 = 1

Te10 = 1.4

Te20 = -1.4

VTe10 = 0

VTe20 = 0.2

y1=-L1∗cos(Te1)

x1=L1∗sin(Te1)

y2=-L2∗cos(Te2)+y1

x2=L2∗sin(Te2)+x1

Te12=Te1-Te2

VTe12=VTe1-VTe2

D=-L1∗L2∗(m1+m2∗sin(Te12)^2)

D1=L2∗(m2∗cos(Te12)∗(L1∗VTe1^2∗sin(Te12)-g∗sin(Te2))+

+g∗m∗sin(Te1)+m2∗L2∗VTe2^2∗sin(Te12))

D2=-L1∗(g∗m∗(sin(Te1)∗cos(Te12)-sin(Te2))+

+sin(Te12)∗(m2∗L2∗cos(Te12)∗VTe2^2+m∗L1∗VTe1^2))

t=0

Te1=Te10

Te2=Te20

VTe1=VTe10

VTe2=VTe20

t’=1

Te1’=VTe1

Te2’=VTe2

VTe1’=D1/D

VTe2’=D2/D
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Example 3.3. Here are ODEs for the planar three-body problem (Figure 4):

i15=-1.5

m1=1

m2=1

m3=1

x1c=1

y1c=0

x2c=cos(120)

y2c=sin(120)

x3c=cos(240)

y3c=sin(240)

vx1c=0

vy1c=1

vx2c=cos(210)

vy2c=sin(210)

vx3c=cos(330)

vy3c=sin(330)

k=0.2

dx12=x1-x2

dy12=y1-y2

dx23=x2-x3

dy23=y2-y3

dx31=x3-x1

dy31=y3-y1

r12=(dx12^2+dy12^2)^i15

r23=(dx23^2+dy23^2)^i15

r31=(dx31^2+dy31^2)^i15

t=0

x1=x1c

y1=y1c

x2=x2c

y2=y2c

x3=x3c

y3=y3c

vx1=k∗vx1c

vy1=k∗vy1c

vx2=k∗vx2c

vy2=k∗vy2c

vx3=k∗vx3c

vy3=k∗vy3c

t’=1

x1’=vx1

y1’=vy1

x2’=vx2

y2’=vy2

x3’=vx3

y3’=vy3

vx1’=m3∗dx31∗r31-m2∗dx12∗r12

vy1’=m3∗dy31∗r31-m2∗dy12∗r12

vx2’=m1∗dx12∗r12-m3∗dx23∗r23

vy2’=m1∗dy12∗r12-m3∗dy23∗r23

vx3’=m2∗dx23∗r23-m1∗dx31∗r31

vy3’=m2∗dy23∗r23-m1∗dy31∗r31

If this problem were entered as a non-planar system with “z” as a third coordinate and
a greater number of variables, the resulting system of ODEs would be much more cumber-
some. However, the software generates the equations of n-body problems automatically.

The Taylor Center also visualizes variability of the radius of convergence along the
trajectory (the ticks in the progress bar in the lower part of the Figure 4). The direct
observation of the dramatic acceleration when the bodies approach the center of the
masses is a perfect illustration when teaching Kepler’s laws.

The Taylor Center is preloaded with a variety of commonly taught classical prob-
lems such as pendulums (planar in files Pendulum2D.ode, DoublePendulum.scr, and
non-planar in files PendulumFlower.scr, PendulumApple.scr) and n-body problems
under different conditions, including the illustration of the Lagrange points (under the
Demo menu and in the folder Samples). Naturally, teachers can add examples of their
own interest.
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Figure 4: The three-body Lagrange case. (You can find this example by clicking on
Demo→3 Bodies→Symmetrical or using the file 3Bodies2D.ode.)

Among mathematical tools, the Taylor Center perhaps is unique in employing stereo
vision for displaying non-planar curves. It is always a challenge to draw non-planar
trajectories in the conventional axonometric projection. That is why the Taylor Center
uses the Red/Blue anaglyph stereo as a cheap, yet efficient system of stereo vision. The
curves literally pop up from the screen into the 3D space in front of the viewer, who
can turn them and explore them with a 3D cursor controlled with the mouse wheel (the
respective 3D coordinates being continuously displayed).

Dynamic playing of trajectories is desirable for almost every ODE problem in math-
ematics and physics, especially in celestial mechanics. There are numerous pre-loaded
script files (in the sub-folder Samples) defining common mechanical problems, such as
pendulums, to sophisticated examples in celestial mechanics illustrating the 5 Lagrange
(libration) points (Demo→5 Lagrange Points or file LagrangePoints.scr).

In the Taylor Center, we can see the immediate effect of parameters controlling the
behavior of the solution. In particular, it is instructive to illustrate instability, for example
in the Lagrange solutions of the n-body problem.

Definition 3.4. A solution of the n-body problem is called the Lagrange case if the n
masses are equal, and, at the initial moment:

1. The bodies are positioned at the apexes of a regular polygon; and
2. Their initial velocity vectors are equal in absolute value; lie in the plane of the

polygon; and
3. Their initial velocity vectors are inclined at the same non-zero angle to the respective

radii.

The initial polygonal formation (defined by the properties 1–3) is preserved during the
motion, in which all the bodies move along trajectories of the same elliptical type, with
the center being the center of the polygon. See, for example, Figure 4.
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Figure 5: The three-body problem disturbed into non-planar motion (Demo→ 3 Bod-
ies→Disturbed→3D or file 3Body3D.scr)

Example 3.5. Finally, let’s see what happens when the initial setting in Example 3.3 was
disturbed in the direction perpendicular to the plane pushing the trajectories into 3D
space. See Figure 5.

You can show students the Euler formation (in line) of 3 bodies (files 3EqBodEuler.scr
or 3NonEqBodEuler.scr) and then demonstrate instability of their motion. Or you can
generate the Lagrange setting (circular or elliptic) for the n-body problem (n may be up to
99, but for a PC of an average power try numbers, n, not exceeding 20). Here you may
explain to the students that the circular Lagrange motion also exemplifies the simplest
case of a Choreography solution.

Definition 3.6. A solution of the n-body problem is called a Choreography solution if all
the n bodies move along the same periodic trajectory.

For a long time the circular Lagrangemotionwas the only known case of Choreography.
It was not until 2000 when a non-circular case of choreography was discovered [9]:
the amazing 8−shape motion of 3 bodies (Demo→3 Bodies→Choreography or file
Simo.scr). Many others have been found since then.

Now ask the students a provocative question if they think the Lagrange case of n-body
motion may be non-planar : Say if 4 equal mass bodies are placed into the apexes of the
regular tetrahedron (or if the n bodies are positioned at the apexes of the other known
regular polyhedra called Platonic bodies). Ask them to suggest the directions for the
initial velocities and to try them in the Taylor Center: for a tetrahedron, a cube...

(The correct answer is that a non-planar Lagrange motion is impossible except the
trivial radial collision case, because in 3D space it is impossible to turn a solid non-planar
pencil of rays in such a way, that all the angular increments are equal—see Appendix B.)
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Figure 6: The 4-body problem, the trajectories inscribed into a cube (Demo→ 4 Bod-
ies→Cube or file 4BodiesCubic.scr)

Finally you may ask the students what their expectations are about the possibility
for n equal mass bodies each to move along some cyclic near planar orbit so that all the
orbits are reciprocally perpendicular planes in 3D space? Then show them the remarkable
4-body orbits inscribed into a cube [7]. See Figure 6.

In the following sections, we will consider ideas where the Taylor Center provides an
illustration or a helpful hint beyond mere graphing the solutions.

4 The Taylor Center as a tool for generating the Taylor
expansion of the solution

In this section we are going to deal with concepts such as:

• numerical series, Taylor series and their radii of convergence;
• points of singularity of a function at the boundary of its Taylor series’ radius of
convergence;

• numerical integration of ODEs, the integration step size, its accuracy, and sources
of integration errors.

Typically in numerical methods for the integration of ODEs, the input is a vector of
initial values along with the name of the subroutine that computes the right-hand side of
the differential equations. The output is a table of the values of the solution at a grid with
a step small enough to satisfy the accuracy requirements.

Any Taylor solver differs from conventional integrators in that it treats the right-
hand side of the differential equation as a symbolic expression, rather than evaluating it
numerically at a set of time points.

9



Correspondingly, the output and interaction of a Taylor solver with other applications
have their own peculiarities. The Taylor Center result is not just tabulated values of the
solution, but rather the solution’s expansion into a Taylor series (an analytical element),
or a sequence of such elements.

The possibility of expanding the solution into a Taylor series presumes that the right-
hand sides of the ODEs are holomorphic. So the behavior of the solution as a real-valued
function is determined by its properties as a complex holomorphic function (while the
derivatives in all subsequent real-valued ODEs in fact stand for complex differentiation)5.
The Taylor expansion at every point is characterized by its finite (or infinite) radius of
convergence equal to the distance of a base point to the nearest point of singularity of
the solution (usually unknown). Therefore the Taylor Center operates with the so-called
heuristic convergence radius re (discussed below) always displayed during the process of
integration, while the expansions themselves may be viewed at the Debugging page.

Observing the expansion of the solution may be instructive. For example, it would
be useful to show students how the expansions differ for the elliptic vs. the circular case
of the Lagrange motion. In the elliptic motion example, stop at the slowest and fastest
locations of the trajectories to observe how the expansions of the solution dramatically
differ, and so does the re . The applicable integration step h must always make the fraction
k = h/re < 1, (by default k = 1/2).

The Taylor Center can deal only with finite partial sums

Sn =
n∑

k=0
ak(t − t0)k

of the Taylor series, whose exact convergence radius (given by the Cauchy-Hadamard
formula)

R =
1

sup |ak |1/k
usually is unknown. To obtain the heuristic convergence radius, re , the program uses
the Cauchy-Hadamard formula based on the available n terms of the Taylor expansion
(by default n = 30). The comparison Table 1 contains the heuristic vs. exact values of
convergence radii for various types of singularities, demonstrating that the heuristic
values reasonably fit the exact radii. (Indeed, the examples of the solutions were chosen in
such a way that their points of singularity are available, thus allowing an easy computation
of the exact convergence radius).

Now you can ask the students what to expect for solutions which happen to be entire
functions, i.e. those which have an infinite convergence radius. Will the program work
out the heuristic radius equal to the machine infinity? Does it mean that an arbitrarily
large step of integration may be practically applied?

5In the definition of a derivative of a real valued function at a point, the argument approaches the
point along the real axis. In the definition of a derivative of a complex function at a point, the argument
approaches the point along any path in the complex plane. Existence of a complex derivative is a much
stronger condition than existence of the derivative on the real axis only. However the functions we deal
with are holomorphic, which is equivalent to being differentiable at a point and a small neighborhood
around it. For these functions, both the real and complex derivatives exist.
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Function Heuristic re Exact R
n = 30 n = 100

1
1 − t

0.951 0.984 1

1
(1 − t)2 0.803 0.885 1

1
(1 − t)3 0.692 0.848 1

1
1 − t2

0.971 0.992 1

1
1 − t3

0.966 0.991 1

e
1

1−t 0.696 0.798 1
√
1 − t 1.244 1.110 1

ln(1 − t) 1.156 1.058 1

tan t 1.52 1.558
π

2
≈ 1.57

t

et − 1
5.93 6.133 2π ≈ 6.28

Table 1: Comparison of the heuristic and exact radii in cases of a finite convergence radius.

In fact, the program does work out nearly “infinite” heuristic radius for polynomial
solutions, or for certain non-polynomial holomorphic functions. For example, for the
system6

x′ = −y7, x |t=0 = 1
y′ = x5, y|t=0 = 0

(file y7x5_in_t.ode) the Taylor Center computes re = 2.18 × 101192. (To see it, you will
have to temporarily change the default radius limit from the value 10 to say 102000).

Now you can demonstrate to the student an effect of a violent bell-shape growth of the
Taylor coefficients (or of the Taylor terms during an attempt to apply a big enough step).
In order to do it, enter the trivial ODE t ′ = 1 and the function x = e−100t as an auxiliary
variable. Compile it and immediately look into the Debugging page to see the bell-shape
growth of the Taylor coefficients particular to functions having an infinite convergence
radius.

The function f (t) = e−100t on [0,+∞) is a typical example of such a function. Its
Taylor coefficients are a0 = 1, a1 = −100, a2 = 5000, a3 = −16667, a4 = 4.16667 × 106.

6Courtesy of Harley Flanders
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Function Heuristic re Exact R
n = 30 n = 100

e−t 5.506 17.4 ∞

e−10t 0.505 1.746 ∞

e−100t 0.059 0.171 ∞

e−1000t 0.0058 0.0174 ∞

e−10000t 0.00055 0.00170 ∞

sin t 8.46 32.15 ∞

sin 10t 0.922 3.223 ∞

sin 100t 0.0917 0.321 ∞

sin 1000t 0.0093 0.0314 ∞

sin 10000t 0.00092 0.00321 ∞

sin t
t

11.753 34.29 ∞

Table 2: Comparison of the heuristic radii in cases of an infinite convergence radius.

They violently grow in absolute value, reaching a maximum of a114 = 3.9315 × 1041.
From that point on, the coefficients decrease in absolute value and decay to zero. For
example, a268 = 1.09019, a269 = −0.405277, a270 = 0.150103, . . . ,a398 = 2.49241 × 10−68,
a399 = −6.24663 × 10−69, a400 = 1.561665 × 10−69.

The same bell-shaped pattern may be observed not only for the coefficients ak proper,
but also for the terms akhk in the Taylor expansions

∑
akh

k of entire functions.

Remark 4.1. The Taylor expansion for every (non-polynomial) entire function x(t0 +h) =
∞∑
k=0

akh
k converges for an arbitrary h, with akhk → 0 as a consequence. Yet for any given

number k and any large value,M , there exists a step size h, such that the term |akhk | > M .
(This is obvious for any term for which ak , 0, and there must be infinitely many of them
in non-polynomial expansions).

Indeed, the integration step h is a finite part of the convergence radius R (whether
it is finite or infinite). Moreover, R is usually unknown, so only the available Taylor
coefficients allow the determination of the applicable integration step h in order to meet
the given error tolerance criteria. The Taylor coefficients allow us to determine the step
via the algorithm elaborating the heuristic convergence radius re . Table 2 displays values
of re obtained for various entire functions.

Observe that not only are the heuristic radii obtained by the program finite (rather than
being “machine infinity"), they tend to get smaller and smaller for those entire functions
whose beginning terms in the expansion behave violently and seem to have a bell shaped
distribution. Although computed by the Cauchy formula, the heuristic re has nothing
to do with the actual infinite radius of convergence. Indeed, if the order of the method
in the program were specified to be much bigger then the numbers at which the Taylor
coefficients disappear, the computed heuristic radius re would approach machine infinity.
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Otherwise, what the program outputs as re is in fact just a numeric characteristic of the
available Taylor coefficients, helpful in determining the integration step necessary to
achieve the specified accuracy.

Although theoretically the series for entire functions converge for any arbitrarily large
step, in practice the number of terms required for achieving high accuracy may be enor-
mous. Also because of the fixed length of the mantissa, the explosive growth of the terms
of the series causes a loss of accuracy, and results in the so called catastrophic subtractive
error. Fortunately, the algorithm in the Taylor Center works out a computationally viable
heuristic radius for entire functions, and the number of recalculations necessary to reach
the required accuracy is small.

5 Is the highest accuracy of the Taylor method always
achievable?

In this sectionwe raise the question of accuracy of numerical methods in general, and of the
numerical integration of ODEs in particular. It would be helpful here to remind the students
about the concepts of rounding errors in computation, and about the absolute and relative
error tolerances. This section focuses on one particular type of error emerging while
computing differences of close numbers, called catastrophic cancellation or subtraction
error.

One distinguishing feature of the Taylor Method is its potential to achieve the highest
accuracy at a given fixed length floating point representation: the “all-correct-digits”
accuracy for the entire integration pass. This potential derives from (but is not guaranteed
by) the following two facts.

1. During one finite step integration the “all-correct-digits” accuracy is achievable
because of an arbitrary high order of approximation in the Taylor method. For the
PC the longest native floating point number is represented by a 64 bit mantissa
and a 16 bit exponent, resulting in the 80 bit (10 byte) type called extended in
Delphi. However, the 64th and all subsequent (virtual) digits are assumed to be zero,
resulting in rounding error. Therefore even after the very first integration step, the
“all-correct-digits” result ends up slightly off the original trajectory. The second
and all subsequent steps will inevitably cause the computed trajectories move away
from the exact trajectories defined by the previous steps. Whether this deviation
from the original trajectories increases or not depends on the stability properties of
the given ODE.

2. During multi-step Taylor integration the number of steps is minimized because the
step size is large. The smaller the number of integration steps, the fewer incidents
of deviation from the original trajectory due to rounding error. Ideally, to avoid any
deviation, we would need to reach the final point in one step.

To specify the “all-correct-digits” accuracy in the Taylor Center, the user has to set
the values of the relative error tolerance (for the variables of interest) to something less
than 2−64 or 10−22.

13



Besides the inevitable rounding error and possibly intrinsic instability of the ODEs,
there is one more effect which may prevent achievement of the “all-correct-digits” accu-
racy: it is the catastrophic subtraction (also called cancellation) error. This effect comes
up not only for the Taylor method. It may also occur in any computations with floating
point binary numbers having the formm2n, where 2−1 ≤ |m| < 1.

The mantissa m (in the native machine representation proper to the processor) is
usually of a fixed length of 64 bits. (For emulated operations it may be 128 binary digits or
something bigger, yet it is still fixed). The binary exponent n, however, is allowed to be
between −4951 and +4932. To accurately represent a sum of two numbers having such
extreme values of the exponents, the mantissa ought to have nearly 10000 binary digits.

Because of the limited length of the mantissa, in the Intel generic floating point
machine arithmetic

1 + 10−22 = 1
and

0.1234567890123456789 − 0.1234567890123456788 = 0

Therefore, the summation of a Taylor expansion having terms that grow very quickly
may cause a loss of accuracy, similar to the loss of accuracy that occurs when finding the
difference of two very close numbers.

To clarify the concept of catastrophic subtraction error and its fundamental distinction
from the rounding error, consider the following two seemingly similar expressions for
some differentiable function f (x) when h → 0:

Catastrophic subtraction error Rounding error

lim
f (x0 + h) − f (x0)

h
lim

f (x0 + h) + f (x0)
2

The first one inevitably becomes machine zero for small enough h. It therefore never
approaches the derivative f ′(x0) if f ′(x0) , 0, and may differ from it dramatically. The
second one always approaches f (x0) and may differ from it only in the 64th binary digit.

In ODE solvers the catastrophic subtraction error emerges when the integration pass
approaches a point of singularity of the ODE, or another special point. Such examples
are provided in Chapter 5 “Tricks and Traps of Automatic Differentiation” in the Taylor
Center User Manual7.

6 Regular solutions of singular ODEs
This section provides grounds for a discussion about points of singularity in ODEs and
their solutions, illustrated in the pre-loaded examples (see the Taylor Center User Manual).

First, advise the students about the distinction between points of singularity of the
solution vs. points of singularity of the ODEs in their phase space. For example, the
meromorphic functions x = 1/(1− t) and y = tan t have singularities at t = 1 and t = π/2,

7http://www.ski.org/gofen/TaylorUserManual.doc
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respectively. However, each of them satisfies a polynomial ODE (x′ = −x2 and y′ = y2+1),
for which every finite point of the phase space is regular.

And vice versa, the right hand sides of ODEs may happen to be singular at particular
points of the phase space. For example the ODE x′ = ax/t is singular when t = 0. Yet
its solution x = ta is regular for any natural (non-negative integer) parameter a. This
solution also happens to satisfy a regular ODE x′ = ata−1.

However, there exist regular solutions (in fact entire functions) which at certain points
can satisfy no explicit polynomial ODE, nor any rational ODE with non-zero denominator
[6]. For example, such functions are x = (et − 1)/t , x(0) = 1, or y = (sin t)/t , y(0) = 1, or
z = cos

√
t . All the above mentioned functions are entire (holomorphic at all finite points).

The problem at the point t = 0 for these functions is that the explicit Taylor method
(i.e. the explicit formulas for the evaluation of the derivatives implied by the Taylor
method) is not applicable at this special point. The elementariness of these functions
is possibly violated at this point [6]. Therefore some other—implicit ODEs and implicit
formulas—must be used at such points, generating the respective Taylor expansions. For
many classical functions these expansions at the special point are known.

A feature of the recent version of the Taylor Center is that it can even integrate some
ODEs near their points of singularity, provided that the Taylor expansions at the special
points are known from other sources. Some examples of this feature are pre-loaded and
their descriptions provided in the Taylor Center User Manual.

The following section may serve as a good illustration of the statement in Borrelli and
Coleman [2]:

Using a numerical solver to produce an approximate solution of an initial
value problem is not a mindless operation; It is not merely inserting an IVP
into a package solver and out pops a decent approximate solution.

7 Properties ofweird examples of real-valued solutions
We expect that even a simple looking ODE, e.g with a polynomial or rational function on
the right-hand side, may have a solution that is not “simple” at all. The following ODE,
however, exemplifies the opposite situation.

Example 7.1. Consider the initial value problem:

x′ = −
√
x , x |t=0 = 1.

In the neighborhood of t = 0, its solution is a polynomial x = (t − 2)2/4. Indeed, the
solution exists and may be continued analytically to all points of the complex plane, but
the right-hand side of the ODE, −

√
x , cannot. Here the right-hand side is deliberately

chosen to be the negative branch of the 2-branched function
√
x . Therefore, this ODE may

be satisfied only by the decreasing portion of the parabola x = (t − 2)2/4. This example
illustrates the strange effects that may be encountered during a naïve attempt to integrate
an ODE of this type. (See Figure 7).
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Figure 7: A naïve (and incorrect) attempt to integrate x′ = −
√
x (file strange.ode). This

piecewise curve (instead of a parabola) is an artifact of the program.

The other remarkable example8 is the function x = cos
√
t , also pre-loaded and

integrable in the Taylor Center: both for negative and positive t . Indeed, this version of
the Taylor Center cannot deal with complex variables directly. Observe that even though
√
t becomes imaginary for t < 0, the cosine of purely imaginary values is real (and bigger

than 1 because cos it = cosh t ).
It is worth noting a fundamental fact of automatic differentiation [6], that ODEs whose

right hand sides contain non-rational elementary functions (transcendental or algebraic)
may be equivalently transformed into larger systems of ODEs whose right hand sides
are rational only. The function cos

√
t is elementary, except at the point t = 0. Hence

the problem may be treated as though it has real-valued variables as soon as we find a
rational ODE satisfied by this elementary function. There exists a general way to eliminate
non-rational functions in ODEs [6]. In this particular case, differentiate x twice:

x′ = −
sin
√
t

2
√
t
;

x′′ = −

(cos√t)2
√
t

2
√
t
− (sin√t) 1√

t

4t
= −

x + 2x′

4t
,

obtaining the required rational ODE:

x′′ = −
x + 2x′

4t
, x |t=0 = 1, x′|t=0 = −12 .

This ODE still has t = 0 as a point of singularity, because this is the unremovable or
“regular” singularity of the function x(t) [6]. The Taylor expansion of this ODE at t = 0 is
easily available and pre-loaded into the Taylor Center, so that the program can integrate
this ODE and graph the solution in both directions. See Figure 8.

8Courtesy of George Bergman
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Figure 8: Function x = cos
√
t (file SpecPoints\cos(sqrt(t))-2.ode)

8 Conclusions
The Taylor Center may assist in teaching elementary and advanced ODEs. Moreover, it
could also be useful in other mathematical fields such as complex analysis, general and
celestial mechanics, numerical methods, and Automatic Differentiation (in the context of
the Unifying View [6]).

Perhaps the Taylor Center’s most obvious benefits to the teacher are the sophisticated
dynamic graphics which teachers can easily use to illustrate examples of ODEs and
examine the effects of system parameters. This article describes several such examples
appropriate for a basic course in ODEs. Teachers can also enter their own examples.

Possible applications of the Taylor Center are not limited to basic ODEs. It can also
be used to illustrate various ideas in advanced courses, as was shown in this article.
Additionally, the Taylor Center is indispensable for numerical experiments in research
and advanced student projects because of its potential to achieve the all-correct-digits
accuracy in numerical integration, to obtain the roots of solutions to ODEs, to explore
the radii of convergence and expansions of these solutions, and to graphically display the
dynamics in real time.

A The full list of features of the Taylor Center
With the current version of the Taylor Center you can:

• Specify and study any Initial Value Problem presented as a system of explicit first
order elementary ODEs (the standard format) with numeric and symbolic constants
and parameters;

• Perform numerical integration of IVPs with an arbitrary high accuracy along a
path without singularities, while the step of integration remains finite and does not
approach zero (under the assumption that the order of approximation or the number
of terms may increase to infinity, and the length of the mantissa is unlimited);

• Apply an arbitrarily high order of approximation (by default 30), and obtain the
solution in terms of analytical elements - Taylor expansions covering the required
domain;

• Study Taylor expansions and the radius of convergence for the solution at all points
of interest up to any high order (the terms in the seriesmust not exceed themaximum
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value of about 104932 implied by the Intel processor generic implementation of the
extended real type as 10-bytes with a 63-bit mantissa);

• Perform integration either “blindly” (observing only the numerical changes), or with
graphical visualization. Perform integration for a given number of steps, or until
an independent variable reaches the terminal value, or until a (former) dependent
variable (now a new independent variable) reaches a terminal value (as explained
in the next item);

• Switch integration between several states of ODEs defining the same trajectory,
but with respect to different independent variables. For example, it is possible to
switch the variable of integration from t to x or y, to reach the terminal value of a
former dependent variable (x or y). In particular, if the initial value is nonzero and
the terminal value is set to zero, the root (the zero) of the solution may be obtained
directly without iterations.

• Integrate piecewise-analytical ODEs;
• Specify different methods to control the accuracy and the step size;
• Specify accuracy for individual components either as an absolute or relative error
tolerance, or both;

• Graph curves (trajectories) in color for any pair of variables of the solution (up to
99) on one screen - either as plane projections, or as 3D stereo images (for triplets of
variables) to be viewed through anaglyphic (Red/Blue) glasses. The 3D cursor with
audio feedback (controlled by a conventional mouse) enables “tactile” exploration
of the curves virtually “hanging in thin air”;

• Play dynamically the near-real time motion along the computed trajectories either
as 2D or 3D stereo animation of moving bullets;

• Graph the field of directions - actually the field of curvy segments, whose length is
proportional to the radius of convergence.

• Explore examples such as the problem of Three and Four Bodies supplied with
the package. Symbolic constants and expressions allow parameterization of the
equations and initial values to try different initial configurations of special interest.

• Automatically generate ODEs for the classical Newtonian n-body problem for n up
to 99 and then integrate and explore the motion. For n = 99, there are 298 ODEs,
19404 auxiliary equations, compiled into over 132000 variables and over 130000
AD processor’s instructions: a “heavy duty” integration!

• Integrate a few special instances of singular ODEs having regular solutions near
the points of the “regular singularities” [6].

In particular, the demo version of this software comes with numerous instructive ODEs
including the Choreography for the Three Body motion, a figure eight orbit discovered in
2000 by Chenciner and Montgomery [9]. Users can “feed” the ODEs of their interest into
the Taylor Center, integrate them, draw the curves, and play the motion in the real-time
mode all in the same program. Another example describes the four body non-planar
trajectories inscribed in a cube [7].

The Taylor Center is a 32-bit software which runs under both 32- and 64-bit Win-
dows (up to Windows 7). The executable module is only 1 Mb. As a 32-bit application,
the program can use no more than 4 Gb of available memory for variables and their
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expansions—the limit far exceeding any practical needs—see the memory requirements
below. (When the new 64-bit Delphi compiler became available, the project is recompiled
into a 64-bit application doing away with this 4 Gb limitation).

The memory consumption depends on the number of variables VarNum (a function of
the number of ODEs and their complexity) and on the specified Order of approximation. If
the expansions are not stored, the program takes 2×VarNum×Order×10 bytes of memory.
If the expansions in P points are stored, it additionally requires P×VarNum×Order×10
bytes.

A benchmark for the 10 body planar problem comprised of 41 ODEs, 45 + 90 = 135
auxiliary equations, parsed into 811 AD instructions, takes 38 seconds for 10000 steps of
integration (or 3.8 ms per step) at 2.4 GHz Pentium.

Generally for each system of ODEs there is a value of the accuracy tolerance small
enough so that, at this high accuracy, the Taylor method beats any fixed order method
due to the unlimited order of approximation in the Taylor method.

B Impossibility of the non-planar Lagrange motion
Consider the earlier given definition of the Lagrange case for the n-body problem hypo-
thetically applied to one of the five regular polyhedra in 3D. Let us call it a non-planar
Lagrange case.

Lemma B.1. If a non-planar Lagrange case with the masses at the apexes of a regular poly-
hedron is possible, the pencil of rays from the center to the apexes in this regular polyhedron
must be rotatable in such a way that the angular increments are equal for all the rays.

Proof. Absolute values of the initial velocities must be equal and inclined at the same angle
to the radii at all the apexes. Therefore, they must cause equal angular increments. �

The issue of the possibility of a non-planar Lagrangemotion therefore relies on a purely
geometric question: whether a solid non-planar pencil of rays is rotatable preserving all
its angular increments (no regularity of the pencil is now assumed). A planar solid pencil
of rays (Figure 9) is definitely rotatable this way in its plane.

Now consider an arbitrary non-planar pencil of rays rotating in 3D around the point
of apex. According to Euler’s Theorem, the motion of a rigid body about a fixed point is
equivalent to the rotation of the body about an instantaneous axis of rotation. Let this
instantaneous axis be OQ (Figure 10).

Lemma B.2. During rotation around an axis of a pencil of rays, a ray with a bigger angle to
the axis has a bigger rotational angular increment.

Proof. Let the ray OA be at angle α to the axis OQ , the ray OB be at angle β to the axis,
and α > β . Let the pencil of rays turn around the axis at angle γ so that m∠AQA′ =
m∠BQB′ = γ , while CC′ = BB′. Observe that

CO

CQ
>

AO

AQ
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Figure 9: A solid pencil of rays in a plane turned at angle α .
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Figure 10: Rotation of a solid pencil of rays in 3D.

because m∠OCQ > m∠OAQ . Therefore

CO

AO
>
CQ

AQ
=
CC′

AA′

(due to similarity of △CQC′ and △AQA′), and

CC′

CO
<

AA′

AO

meaning thatm∠BOB′ < m∠AOA′. �

Conclusion 1. A rotation of a non-planar pencil of rays preserving all the angular incre-
ments in the 3D space is possible if and only if the rays belong to the surface of a direct
circular cone.

Proof. Follows from the Lemma. �
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Conclusion 1 may be also proved using analytical geometry. Denote the rays as vectors
ak , which rotate around an unknown axis x. In order that axis x be inclined to each of
the vectors ak at the same angle, all the cosines expressed through the scalar product
must be equal to the same unknown value α :

(ak , x)
|ak | · |x|=α . (B.1)

If α , 0, this non-linear system expresses the fact that all vectors ak belong to a direct
circular cone. Otherwise if α = 0, (B.1) means that the axis x must be perpendicular to all
vectors ak , which is possible only if x belongs to a space of dimension 4 or higher.

In fact, the pencil of rays from the center to the apexes of the polyhedra does not
belong to a direct circular conic surface in any of the regular Platonic polyhedra. Therefore,
there exists no way to orient the vectors of the initial velocity at the apexes of the regular
polyhedra so that the bodies preserve the initial formation during the motion unless all
these vectors are collinear with the respective radii. If this is the case, the motion takes
place along the radii, and it either ends up with a collision, or the bodies escape to infinity.
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