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Abstract: Ordinary differential equations (ODEs) are often used to model the
behavior of physical phenomena and textbooks today especially demonstrate
this fact. Since only a very small collection of ODEs can be solved analytically,
there is often no alternative than to use computer software to gain some
insight into the behavior of solutions (and sometimes even if solution formulas
are available—the formulas are often complicated!). A classic work on the
numerical solution of ODEs was authored by Shampine [8].

There are some questions about the behavior of solutions of ODEs that are
not quite appropriate for numerical solvers. In this paper we present examples
which illustrate some of these features. However, there is no disputing the
fact that the output of numerical solvers is often useful for portraying and
understanding the behavior of solutions of ODEs and their utility in modeling
physical phenomena, as our final example shows.

1 Introduction
Numerical ODE solvers use a discrete numerical algorithm to approximate a continuous,
piecewise smooth solution and hence one must always ask if an artifact produced by a
solver is really present in the solution or just a product of the discretization process that
produced the numerical solution. It also is a fact that if parameters in a solver are adjusted
then sometimes artifacts arise in the output that were not there before (this is especially
true when a driving term in the ODE is piecewise continuous). Finally, results may vary
from one numerical solver to another.

Using a numerical solver to produce an approximate solution of an initial value
problem (IVP) is not a mindless operation; it is not merely inserting an IVP into a package
solver and out pops a decent approximate solution. The papers by Stewart [13], Shampine
[9, 10, 11, 12], and Hubbard [6] cite some pitfalls in using numerical ODE solvers and give
some cautionary examples in this regard. We give some examples below; other examples
can be found in Borrelli and Coleman’s “Modeling and Visualization with ODE Architect”
[2].
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2 Examples
Example 2.1 (Longer to Rise or to Fall?). Throw a ball straight up in the air. Does it take
longer to rise or to fall? Or does it take equal time? The gravitational force acting on
the ball is constant while the ball is in the air, but air puts a drag force on the ball. The
magnitude of this drag force is proportional to the ball’s speed (if the ball is light) and
acts in a direction opposite to the ball’s motion (this is viscous damping). Nowadays this
question could be answered experimentally using sensors and accurate timers in a physics
lab. Galileo, on the other hand, would have cut a groove in a frictionless plane and rolled
the ball in the groove with the plane only slightly inclined. Another approach might be to
perform a thought experiment as follows: Newton says that the force acting on the ball is
equal to the ball’s mass times its acceleration. The gravitational force acting on the ball is
constant in value (near the earth’s surface) and always acts downward while the ball is in
motion. But the drag force on the ball acts downward when the ball rises and upward
when the ball is falling. Hence a larger total force acts on the ball when it rises than when
it falls. So the ball accelerates more slowly when it is falling and it takes longer to fall
than to rise.

Another approach to answering this question would be to model the motion of the
ball with a differential equation and then visually examine the output graph produced by
using a numerical ODE solver on the appropriate initial value problem (IVP). This is the
approach which was used in Example 1.4.1 of our text [1]. If the ball is thrown upward
from ground level with initial velocity v0, then using Newton’s Second Law the position
y of the ball above the ground at time t is given by the IVP

my′′ = −mд − cy′, y(0) = 0, y′(0) = v0 (2.1)

where m is the mass of the ball, д is the gravitational constant (and hence mд is the
gravitational force on the ball), and cy′ is the viscous drag on the ball due to the air, where
c is the positive drag constant. For this case we could use a grapher because, as we shall
soon see, there is a formula for the solutions of IVP (2.1). But solution formulas are not
always available and then a numerical ODE solver must be used. Our solver/grapher
produced the graphs in Figures 1 and 2 for various values ofm, c , and v0

Inspection of these graphs reveals that the ball takes longer to fall than to rise. But is
that the end of the story? Not exactly. Numerical ODE solvers require specific values for
the parametersm, c and v0, and we used only a few specific values of the parameters to
produce the graphs shown in the figures. From those few values we inferred what would
happen for any positive values of the parameters. Such an inference is not quite justified.
This shows a weakness in using numerical solvers in answering some kinds of questions.
Let’s try to improve this situation with an analytical solution of IVP (2.1). Writing the
ODE in the form

y′′ +
c

m
y′ = −д (2.2)

we see that a particular solution for the driven ODE (2.2) is

yd = −
дm

c
t (2.3)
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Figure 1: Viscous damping model: c/m = 3 and four initial velocities.
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and that the general solution of the undriven ODE y′′ + cy′/m = 0 is

yu = C1e
−ct/m +C2 (2.4)

where C1 and C2 are constants. Thus, the general solution for the ODE (2.2) is

ygen = yu + yd = C1e
−ct/m +C2 −

дm

c
t (2.5)

where C1 and C2 depend on the initial conditions given in IVP (2.1). Using the conditions
given in (2.1) we find the solution of IVP (2.1) to be

y =

(
−
дm2

c2
−
m

c
v0

) (
e−ct/m − 1

)
−
дm

c
t . (2.6)

Now the initial time is t0 = 0, so let T be the time the ball reaches the top of its motion
and begins to fall toward the ground. Hence,

0 = y′(T ) =
(дm
c
+v0

)
e−cT /m −

дm

c
(2.7)

and it follows that
ecT /m = 1 +

c

дm
v0. (2.8)

Using equation (2.8) we can rewrite the solution y(t) in (2.6) as

y(t) = дm2

c2
ecT /m

(
1 − e−ct/m

)
−
дm

c
t (2.9)

From equation (2.9) we have that

y(2T ) = дm2

c2

(
ecT /m − e−cT /m

)
−
дm

c
2T

=
2дm2

c2

(
ecT /m − e−cT /m

2
−
cT

m

)
=

2дm2

c2

(
sinh

cT

m
−
cT

m

)
> 0

for all possible positive values ofm and c , (since sinhu > u for all u > 0) . Thus the ball
takes longer to fall than to rise no matter what the mass of the ball is or what the positive
drag coefficient c is (provided, of course, that the modeling ODE is still valid).

Example 2.2 (Predator-Prey Interaction with Constant Effort Harvesting). Suppose that
we are dealing with two populations which are undergoing a predator-prey interaction
and that, in addition, each population is being harvested at the same proportional rate.
Using the Balance Law and the Population Law of Mass Action (see p. 10 and p. 86 in [1]),
we showed in Section 2.6 of [1] that the predator population x and the prey population y
satisfy the differential equations

x′ = −ax + bxy − Hx (2.10)
y′ = cy − dxy − Hy (2.11)
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Figure 3: The effects of harvesting.

where a, b, c , d , and H are positive constants In Example 2.6.2 in[1], we considered the
special case with initial data,

x′ = −x + xy/10 − Hx , x(0) = 8 (2.12)
y′ = y − xy/5 − Hy, y(0) = 16. (2.13)

The orbits in state space for IVP (2.13) were plotted for various values of H and the results
are shown in Figure 3.

Of course, all of the orbits pass through the point (8, 16) at the initial time t0 = 0, but
the orbits also appear to pass through another common point. The question is this: is
this an artifact of the discrete numerical algorithm which produced the graph or is there
indeed another common point on all the orbits of IVP (2.13) for any value of H > 0 other
than the initial point (8, 16)?

To answer that question we proceed as follows. Since the differential system (2.13) is
autonomous, we see that all orbits of the system are integral curves of the first order ODE

dy

dx
=

y − xy/5 − Hy
−x + xy/10 − Hx

(2.14)

and vice-versa. Writing ODE (2.14) in differential form we have

(y − xy/5 − Hy)dx + (x − xy/10 + Hx)dy = 0. (2.15)

To separate the variables, divide ODE (2.15) through by xy to obtain the separated ODE(1 − H
x
−
1
5

)
dx +

(
1 + H
y
−

1
10

)
dy = 0.
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Integrating, we have the level curves

(1 − H ) ln |x | − x

5
+ (1 + H ) ln |y| − y

10
= C (2.16)

where C is a constant. To find the level curve which passes through the point (8, 16) we
set

C = (1 − H ) ln |8| − 8
5
+ (1 + H ) ln |16| − 16

10
and substitute this value for C back in (2.16) to get that

(1 − H ) ln |x |
8
+ (1 + H ) ln |y|

16
−
1
5
(x − 8) = 1

10
(y − 16) (2.17)

as the equation of the level curve passing through the point (8, 16) for any value of H > 0.
Rewriting equation (2.17) as

H

(
ln

|y|
16
− ln

|x |
8

)
−
x

5
−

y

10
+
16
5
+ ln

|x |
8
+ ln

|y|
16
= 0 (2.18)

we see that a point (x ,y) in the quadrant x > 0,y > 0 satisfies equation (2.18) for allH > 0
if and only if

ln
y

16
− ln

x

8
= 0

and −
x

5
−

y

10
+
16
5
+ ln

x

8
+ ln

y

16
= 0. (2.19)
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Thus, y = 2x and from the first equation in (2.19) substituting this into the second
equation we have that

−
2
5
x +

16
5
+ 2 ln

x

8
= 0

or
e(x−8)/5 = x

8
. (2.20)

The question now is this: does equation (2.20) have any solution for x > 0 other than
x = 8? Using a graphical approach, put

z = e(x−8)/5 and z =
x

8
(2.21)

and plot these two curves in the zx-plane to see where they intersect. The graph in
Figure 4 shows that these two curves intersect in exactly two places: x = 8 and x ≈ 3.

Hence, there are exactly two points in the xy-plane that are common to all the orbits
of the IVP (2.13) for all H > 0.

Example 2.3 (Minimal Time of Descent). Here is an example where it is much more
convenient to use a numerical solver rather than slog through the algebra of solution
formulas.

A parachutist wants to jump out of a plane at 1200 ft and reach the ground going no
more than 40 ft/sec and in minimal time (think James Bond landing behind enemy lines).
(See Drucker [4].) The parachutist’s weight, including equipment, is 240 lbs. Air resistance
has been found experimentally to be proportional to velocity with the proportionality
constant k = 2 during free fall and k = 10 when the chute is open (assume that the chute
opens instantaneously). Here are two questions to be answered:

1. What is the last possible moment that the chute can be deployed so that the
parachutist lands at a speed no greater than 40 ft/sec?

2. What is the minimal time required for the parachutist to land at a speed no greater
than than 40 ft/sec?

Ifm is the mass of the parachutist, including equipment, thenmд = 240, where д (= 32
ft/sec2) is the gravitational constant. If y measures the height above the ground, then
Newton’s Second Law says that

my′′ = −mд − ky′ (2.22)

Putting v = y′ and dividing through bym, ODE (2.22) becomes

v′ +
k

m
v = −д. (2.23)

The solution of ODE (2.23) with the initial condition v(0) = 0 is

v(t) = mд

k
e−kt/m −

mд

k
.
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So when the chutist jumps out of the plane his downward velocity increases until it hits
the limiting velocity −mд/k . Hence, if the chute always remains closed (so k = 2), then
the chutist would hit the ground with velocity no greater than 120 ft/sec in magnitude.
On the other hand, if the chutist jumped out of the plane with the chute open (k = 0),
then the chutist would hit the ground with velocity no more than 24 ft/sec. The solution
formula for the IVP

y′′ = −д −
kд

240
y′, y(0) = 1200, y′(0) = 0 (2.24)

is sufficiently complicated that it is difficult to answer the questions posed above just from
that formula. So instead we shall use a numerical ODE solver. Toward that end let’s first
convert IVP (2.24) into an equivalent normalized first-order system by setting x1 = y and
x2 = y

′, to obtain the system

x′1 = x2

x′2 = −д −
kд

240
x2.

Now comes the crucial step in this approach: to find the minimum time of descent in
order for the chutist to land not faster than 40 ft/sec, proceed as follows: In the x1x2 state
space solve the IVP with the chute closed

x′1 = x2, x1(0) = 1200 (2.25)
x′2 = −32 − (4/15)x2, x2(0) = 0 (2.26)

forward in time, and the IVP with the chute open

x′1 = x2, x1(0) = 0 (2.27)
x′2 = −32 − (4/3)x2, x2(0) = −40 (2.28)

backward in time. IVP (2.26) describes the motion of the chutist from a height of 1200 ft
with the chute closed. In IVP (2.28) the chutist starts with chute open at ground level and
going -40ft/sec and is solved backwards in time. Plotting these two orbits in the state
space 0 ≤ x1 ≤ 1200, −120 ≤ x2 ≤ 0 yields the graph in Figure 5.

Zooming in near the point where the two curves in Figure 5 intersect, we obtain
Figure 6 and see from this graph that the chutist must deploy his chute when x1 ≈ 88.7
ft (and falling at a velocity of −116.1 ft/sec) in order to land at -40 ft/sec. Deploying the
chute after x1 ≈ 88.7 ft will result in the chutist landing faster than 40 ft/sec. Deploying
the chute before x1 ≈ 88.7 feet would result in the chutist landing at slower than 40 ft/sec.

To find out when the chutist should pull the ripcord, solve the forward IVP (2.26) and
plot x1 versus t , zooming in on the screen 80 ≤ x1 ≤ 100, 12.75 ≤ t ≤ 13 to get Figure 7.
From the graph in Figure 7 we see that x1 ≈ 88.7 when t ≈ 12.88 sec. Now the question is
this: assuming the chute deploys instantaneously, how long is it before the chutist hits
the ground? To find how long it takes for the chutist to hit the ground after his chute
deploys solve the IVP (2.28) backwards in time and plot x1 versus t for the solution to
obtain the graph in Figure 8, after zooming in to the screen 0 ≤ x1 ≤ 100,−2.5 ≤ t ≤ 0.

8
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We see that x1 ≈ 88.7 when t ≈ 1.3 sec. Therefore, the minimum time it takes the chutist
to descend from 1200 ft in order to hit the ground at a speed of no more than 40 ft/s is
approximately 12.88 + 1.3 = 14.18 sec.

With these figures we would not want to take the chutist’s place. For one thing, chutes
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Figure 8: Zoom of solution of IVP (2.28) backward.

don’t open instantaneously, and for another thing the reaction time of the chutist to pull
the ripcord is something on the order of 1.3 sec. Our guess is that the chutist would
actually hit the ground at about 100 mi/hr if he follows this plan. So the safest thing to do
would be to give up on this plan to reach the ground in minimum time.
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3 Autocatalators; An Example
In 1974 J. Arthur Campbell (a chemist known to students at Harvey Mudd College as
“J. Arthur God”), Dick Popkin (a philosopher at Harvey Mudd College) and I (Courtney
Coleman, a mathematician at HarveyMudd College and the author of this segment) tackled
the question “What is Truth?”. The setting was a seminar at the Claremont Graduate
School (now called Claremont Graduate University). Art Campbell opened the seminar
and spoke about chemical kinetics and how chemical reactions evolve. He pointed out
that most chemists believed that all chemical reactions proceeded steadily toward end
products (a chemical “truth”). Then he combined liquids in a flask, stirred them up, set
the flask on a table and sat down. From that point on, no one paid any attention to what
Campbell, Popkin or I had to say. All eyes were on the events taking place in the flask,
marked as they were by oscillating changes in color back and forth between blue and clear
states, but eventually coming to an end. These reactions seemed to be going backwards
as well as forwards! So what is going on here?

A chemical reaction like that described above was seen in 1951 by the Russian chemist
Boris Belousov (1894–1970). He observed a specific chemical reaction that behaved as
if it were promoting its own production. He reported on what he observed, but no one
believed him and his work was ignored. In disgust, he abandoned his research and it was
only years later that its importance was recognized. The reaction is now known as the
B-Z Reaction, named after Belousov and A. N. Zhatbotinsky, another early pioneer in this
area of chemical research. Belousov had a turbulent life, starting out as a revolutionary in
the tsarist days. After the Bolshevik revolution of 1917 he joined the army and rose to the
rank of Brigade Commander. Eventually he got out of the army and began a career as
a research chemist. A decade after his death his work was recognized with the highest
civilian award of the Soviet era.

It was only many years after the “Truth” seminar that the book by Gray and Scott [5]
appeared. When I later discovered this book I realized that what had been going on in
the flask at the seminar was something called autocatalysis. Autocatalysis is a process by
which a substance promotes (i.e., catalyses) its own production, but in the process may
generate other chemical species which in turn regenerate the original substance. This can
sometimes be observed as oscillating colors. Here are some terms that appear in articles
where this phenomenon is discussed:

Catalator (or Catalyst): an agent that brings about or facilitates a change. Catalysis:
the action of a catalator that increases the rate of change without the catalator itself
being consumed. Catalyse: to accelerate or promote a process or reaction by catalysis.
Autocatalator: an agent that promotes its own production. Autocatalysis: the catalysis of
a reaction by one of its own products. Autocatalyse: to accelerate or promote a process or
reaction by autocatalysis.

These definitions are generic, but in this article they specifically refer to chemical
reactions and the mathematical equations for the rates at which the reactions proceed.
When modeling physical phenomena with mathematical equations, numerical solutions
of those equations may exhibit artifacts not actually present in the phenomena. However,
in the autocatalator example described below the unusual numerical solution does indeed
correspond to the actual physical behavior.
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Example 3.1 (An Autocatalator). A species in a chemical reaction is a catalator if it
promotes the reaction. The species is an autocatalator if it promotes its own production
in the reaction. Here is an example of a reaction with an autocatalytic step.

R → A The precursor species R decays to the species A (3.1)
A→ B A decays to species B (3.2)

A + 2B → 3B Autocatalysis of B (3.3)
B → C Decay of B to the end-product species C (3.4)

The process stops after the supply of the precursor species R runs out. This example
is discussed in some detail in Differential Equations: A Modeling Perspective [1], pg. 445;
in Borrelli et al. [3], pg. 247; and in Borrelli and Coleman [2].

A basic law of chemistry provides the transition from the four reaction steps to four
rate equations.

Chemical Law of Mass Action In each step of a chemical reaction the rate
of decrease of the concentration of each reactant species is proportional
to the arithmetic product of the concentrations of all the reactant species.
Similarly, the rate of increase of the concentration of each product chemical
is proportional to the arithmetic product of the concentrations of all the
reactants.

Similarly, the rate of increase of the concentration of each product chemical is proportional
to the product of the concentrations of all the reactants.

The Mass Action Law provides the rate equations

dw/dt = −aw (3.5)
dx/dt = aw − bx − cxy2 (3.6)
dy/dt = bw − ky + cxy2 (3.7)
dz/dt = ky, (3.8)

wherew,x ,y, z denote the scaled concentrations of the respective chemical species R,A,B,C
and a,b, c,k are positive rate constants. The Mass Action Law explains why the sum
A + 2B in the autocatalytic step (3.3) becomes xy2 in the rate equations (3.6) and (3.7).
Note that the total concentration is constant over time since d(w + x + y + z)/dt = 0.

The rate equation for w(t) is linear and its solution is w(t) = w(0)e−at , where w(0)
is the initial value of w . So w(t) decays exponentially as t increases. The next two rate
equations are nonlinear because of the term xy2. Solutions of these rate equations cannot
be expressed in terms of the familiar functions of calculus. Instead we turn to the numerical
differential equation solver ODE Architect to generate tables of approximate solution
values, given the specific values used by Gray and Scott [5]:

w(0) = 500
x(0) = y(0) = z(0) = 0 (3.9)

a = 0.002 b = 0.08 c = 1 and k = 1.

12
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Figure 9: Decline in the concentration of the precursor species

These approximate solution values can be used to plotw(t),x(t),y(t) and z(t) against t .
Figure 9 shows the decline of the precursor species R (denoted by w) as the process

goes on. Figure 10 shows small oscillations in the intermediates A and B (denoted by x
and y respectively). These correspond, respectively, to the blue and the clear states noted
in the Campbell experiment mentioned earlier. Figure 11 shows the increase over time of
the end-product C (denoted by z). The oscillations in the intermediates do not seem to
have much effect on the end-product (but see the small amplitude wiggles in Figure 11).
Note the different vertical scales in the figures.

Gray and Scott, [5], also list specific chemical mixtures that display oscillating color
changes. Perhaps it was one of these chemical mixtures that was observed in the “Truth”
seminar in 1974.

3.0.1 Comments

Attempts to use a mathematical model to represent an observed physical phenomenon
should address the following questions.

1. Are the physical principles that underlie the phenomenon accurately modeled by
mathematical equations?

2. Do the solutions of the mathematical equations accurately portray the behavior of
the physical phenomenon?
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Figure 10: Oscillations in the concentration of the intermediates, A (top) and B (bottom).

3. Is the mathematical model robust? In particular, do the actual physical effects of
small changes in the conditions of the phenomenon match up well with the effects
of the corresponding small changes in the model equations on the solutions of those
equations?

Here are some specific questions about the autocatalator model.

4. Are the oscillatory solutions of the mathematical equations (3.5)–(3.8) in this model
real or are they artifacts of the numerical methods used to find approximate solutions
of the equations?

5. For the chemical system (3.1)–(3.4) modeled by differential equations (3.5)–(3.8), is
the model robust?

6. In actual chemistry experiments the oscillating changes die out over time and
equilibrium is approached. The graphs in Figures 10 and 11 suggest the same
behavior in solutions of equations (3.5)–(3.8) .

7. These issues are addressed in detail in reference Gray and Scott [5]. The conclusion
is that the model seems to be robust and that oscillatory solutions of the model
equations accurately correspond to the observed oscillations in the colors of the
chemical compounds.

8. In numerical simulations large initial values of the precursor seem to suppress the
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Figure 11: The oscillations in x(t) and y(t) have small effect on z(t).

oscillations in the intermediates? Is this true in the chemical experiments?
Scott [7] discusses many examples of chemical oscillations.

4 Suggested Exercises
1. Would it take a ball longer to rise or to fall on the moon? On Mars?

2. Prove that a straight line cuts the graph of y = ex twice, once, or not at all.

3. See if you can find more accurate values for the coordinates of the second fixed-
point identified in Example 2.2. [You might try successive approximation to solve
equation (2.20)].

4. In Example 2.2, the system of equations (2.11) models predator-prey interactions
with proportional harvesting. The parameters a, b, c , d and H are positive constants.
Let (x0,y0) be a point inside the positive quadrant of the xy-plane. Consider all
the orbits of the predator-prey model above for H > 0 that pass through the point
(x0,y0). Show that exactly one of the following statements is true:

(a) If dx0 + by0 = c + a, then (x0,y0) is the only point in the xy-plane which is
common to all the orbits.

(b) If dx0+by0 > c+a, then there is exactly one more point (x1,y1) in the xy-plane
common to all the orbits, and x1 < x0.

(c) If dx0+by0 < c+a, then there is exactly one more point (x1,y1) in the xy-plane
common to all the orbits, and x1 > x0.
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Choose various specific positive values for a, b, c , d , x0 and y0 and use a numerical
solver/grapher to illustrate the validity of statements (b) and (c). Which statement
applies to the predator-prey problem in Example 2.2? It is a bit trickier to use a
numerical solver to illustrate statement (a). Why?

5. Can you modify the landing speed, the initial height of the chutist and/or the viscous
drag coefficients to obtain more reasonable results for Example 2.3?

6. If the parachutist in Example 2.3 were to start at an elevation of 1200 feet above the
surface of Mars, could he in minimal time reach the surface of Mars traveling no
faster than 40 ft/sec?

7. Using the autocatalator data given in (3.9) but replacingR(0) byR(0) = 1000, 750, 250,
and finally R(0) = 100, describe what happens as the value of R(0) changes.

8. Can you turn off the oscillations by changing the value of a from 0.002 to 0.02? 0.2?
0.0002? Leave all other data as listed in (3.9).
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