
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2016

The Philosophy of Mathematics: A Study of
Indispensability and Inconsistency
Hannah C. Thornhill
Scripps College

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Thornhill, Hannah C., "The Philosophy of Mathematics: A Study of Indispensability and Inconsistency" (2016). Scripps Senior Theses.
Paper 894.
http://scholarship.claremont.edu/scripps_theses/894

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70984241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/scripps_theses
http://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu


The Philosophy of Mathematics: A Study of

Indispensability and Inconsistency

Hannah C.Thornhill

March 10, 2016

Submitted to Scripps College in Partial Fulfillment

of the Degree of Bachelor of Arts in Mathematics and Philosophy

Professor Avnur

Professor Karaali



Abstract

This thesis examines possible philosophies to account for the prac-

tice of mathematics, exploring the metaphysical, ontological, and epis-

temological outcomes of each possible theory. Through a study of the

two most probable ideas, mathematical platonism and fictionalism,

I focus on the compelling argument for platonism given by an ap-

peal to the sciences. The Indispensability Argument establishes the

power of explanation seen in the relationship between mathematics

and empirical science. Cases of this explanatory power illustrate how

we might have reason to believe in the existence of mathematical en-

tities present within our best scientific theories. The second half of

this discussion surveys Newtonian Cosmology and other inconsistent

theories as they pose issues that have received insignificant attention

within the philosophy of mathematics. The application of these incon-

sistent theories raises questions about the effectiveness of mathematics

to model physical systems.
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1 The Division of Platonism and Fictionalism

1.1 Introduction to the Philosophy of Mathematics

The history of mathematics is full of mathematical problems with philosoph-

ical significance. This is no surprise when we trace the roots of mathematics

and philosophy. Both of these fields came into interest because of their ability

make useful models of the world. The origins of mathematics are up for de-

bate, but a rough sketch can be made by seeing mathematics as social field.

As our ancestors began asking questions about the planets and stars they

started forming models and theories accounting for what the saw. Over cen-

turies these elementary models became the modern notion of orbits. These

measuring tools gave rise to modern planetary science and astronomy. This

human thirst to quantify is unquenchable, because in mathematics the more

questions we answer the more questions we ask. The field of mathematics

has grown exponentially, however, the same philosophical questions still re-

main. The notion of infinity or the idea of an empty set might be troubling

for mathematicians and philosophers alike. A fundamental understanding of

the nature of these problems is found by studying what mathematical objects

and theorems consist of. The implications of accepting one philosophical the-

ory over another spreads to problems in broader ontology and metaphysics.

I wish to focus on The Indispensability Argument for platonism and the pos-

sible issues it faces with the inconsistencies in the field of mathematics. Here

we focus on two of the most successful philosophical theories of mathematical

objects.

The question about the existence of mathematical objects is more contro-

versial than one may initially think. There are epistemological and metaphys-

ical issues that are entangled in the acceptance of either theory. Philosophers

initially thought Plato's theory of the Forms gave a comprehensive idea of the

developing field of mathematics. The ideas from the broader metaphysical

theory carried naturally to mathematical entities, mainly due to the formal-



ization of the Forms. Plato scheemed an abstract heaven filled with perfect

entities outside of our idea of space and time. To illustrate this idea it is

useful to look at an example of a circle. We can draw a representation of

a circle on a piece of paper but it is fundamentally different than the circle

in the Forms. If we draw three circles in a row we can pick which one is

the most perfect, which shows that we have some intuition of this perfect

circle Plato suggests. However, the perfect circle is imperceivable because

the circle in the Forms has no size, no color, and no physical properties. A

reasonable question is if we can't perceive or have any causal relations with

the Forms how are we able to have knowledge about them? Plato claimed

that prior to our souls finding physical bodies on earth they had access to

the Forms of abstract entities in the heaven. Furthermore, our experiences

on earth reflect our efforts to remember the Forms to the best of our ability.

Unsurprisingly the latter part of Plato's theory has been buried many times

over. The idea of abstract mathematical entities, however, has remained as

the foundation of mathematical platonism.

1.2 Mathematical Platonism

Similarly to Plato's theory, mathematical platonism is committed to objec-

tive mathematical entities. Plato's explanation requires accepting the soul

to explain the possibility of connecting with The Forms. Although mathe-

matical platonism has certain parallels with Plato's theories, it is best to see

Plato's ideology as the starting point. Platonism (from here on describing

modern mathematical platonism) is the metaphysical view that there are ab-

stract mathematical objects that exist independent of the human practice,

ambition, or language. If you asked a platonist what the Gaussian prime

(4 + 2i) refers to, they would say (4 + 2i) is an abstract object that doesn't
rely on our knowledge for it to exist. There is no physical representation

of this prime. We cannot know the number three by experiencing three ap-

ples on a table based on our inability to have a causal connection with “3”.
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The number three is an abstract mathematical entity that is independent

of our perception. Platonism is defined by the acceptance of three theses:

existence, abstractness, and independence. Each of these theses weighs heav-

ily on the ontological commitments of platonism, and without each of them

being justified separately the rest will unravel.

1.2.1 Existence

I want to look at what abstract existence entails before looking at the spe-

cific cases of mathematical objects and their abstractness. The questionable

existence of abstract objects creates a divide within different sectors of phi-

losophy. Drawing the line between concrete and abstract objects has been

controversial because of the epistemological consequences. David Lewis in

his book “On The Plurality of Worlds”, surveys the possible ways of distin-

guishing between the concrete and the abstract. The first way is called The

Way of Abstraction which asks us to take a concrete object and remove all

specificity from it. A blue shirt, blueberries, and the sky are concrete exam-

ples of blue things but “the color blue” is abstract. Class nominalists, who

deny the existence of any abstracta, claim “the color blue” is nothing more

than the set of all of the blue things but is not a distinct entity. Lewis defines

to The Way of Example next. This urges a person to make a list of standard

cases of abstract and concrete objects with the hope that the distinction will

appear [17]. The Way of Negation points to the idea that concrete entities

are in space and time and are causally efficacious, where abstract objects are

not. Therefore, it suffices to label objects that do not fit these properties as

abstract. Frege claimed an object could only be abstract if and only if it is

non–physical, non–mental, and causally inefficacious. Further thoughts on

epistemology and metaphysics depend on how a person categorizes abstract

objects. For example, the empiricist takes issue with granting the existence

of abstract entities based on their ideas of how we come to knowledge. The

properties of causality and spatial location make it unclear how we are able
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to become aware of the existence of these abstracta. We will see an attempt

to get around this issue in section 1.3.6 with James Robert Brown.

The argument for the existence of mathematical entities is the platonist's
first responsibility. The second thesis of abstractness follows close behind,

because clearly we cannot prove the existence of mathematical objects in the

same way we would show the existence of a spider or a chair. Therefore,

the platonist must show that abstract entities exist. The platonist wants

to argue that mathematical objects are in existence similarly an electron.

Electrons escape the verification through physical interaction and have prop-

erties that are unknown to us [18]. The independent lives of electrons are

not governed by our understanding of them, however, we are able to know

facts about electrons through experiments that capture the electrons salient

properties. We have given the name “electron” to attempt to capture the

abstract phenomenon of the electron. Mathematics is the same in practice,

because we are trying to strategically tow mathematical truths out of our

mathematical systems.

Possibly the most qualified speaker on the matter of the existence of math-

ematical objects was Gottlob Frege. Frege was a German mathematician,

philosopher, and one of the founding fathers of modern logic. His ambition

to argue for platonism worked alongside his argument that all mathematical

truths could be boiled down to the general laws of logic. Frege made a separa-

tion between two kinds of expressions we use as linguistic models: saturated

and unsaturated. He defined saturated expressions as singular terms such

as proper nouns and unsaturated remarks as predicates or quantifiers. This

distinction, according to Frege, accurately mirrors a metaphysical difference

within our thoughts. Our thoughts are made from saturated “objects” and

unsaturated “concepts” [8]. He uses this outlook to form his argument for

arithmetic–object platonism. His argument begins with the claim that sin-

gular terms which refer to natural numbers can be seen within true simple

statements. Simple statements with singular terms as components are only
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true if the referred objects exist. Therefore, the natural numbers must ex-

ist. If the natural numbers exist then they are mind–independent abstract

objects because they are neither mental nor physical [8]. Frege's Existence

Thesis relies on a number of controversial claims. He assumes the natural

numbers exist because singular terms that refer to them appeal in true simple

statements. Frege uses identity statements to illustrate how this is true. For

example, 4 + 3 = 7 is an identity claim using 4, 3, and 7. In order for this to

be true, the numbers we refer to must exist. A similar argument for truth of

mathematical sentences is seen within Putnam and Quine 's Indispensability

Argument. However, in this case our sentences involve scientific statements

that use mathematics indispensably.

Perhaps the most convincing argument for mathematical platonism is The

Indispensability Argument given by Hilary Putnam and William Van Orman

Quine. In the next chapter I take a closer look at the argument for platonism

through the indispensability of mathematics in science, however, for now I

simply want to give an overview of how the argument fits in with the rest

of the outlook. The argument begins by making the claim that we ought to

be ontologically committed to the things that are indispensable to our best

scientific theories. We will see issues with this argument based on this notion

of stagnant science later, however, it is important to recognize the evolution

of scientific truths. Some argue that our scientific theories are not true but

act as good approximations that help us predict things to a good degree.

Through time these theories get abandoned and replaced by better theories

that can adapt to our current picture of the world. Putnam and Quine state

that mathematical entities are indispensable to our best scientific theories,

therefore, we need to acknowledge the existence of mathematical entities.

If both of the premises are true then mathematical sentences are true and

we are justified in believing these truths according to Putnam and Quine's
argument. Before granting these two theses as true, we need to have a closer

look at the roots of the argument. In order to prove The Indispensability
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Argument we must show there is an overlap between our mathematical theory

and our empirical theory.

According to Putnam, platonism and the acceptance of science go hand

in hand. To argue against platonism while accepting the scientific method

would be like “maintaining that neither God nor angels exist but claiming

that it was an objective fact that God put an angel in charge of each star.”

Putnam and Quine rely on the philosophical stances of naturalism and con-

firmation holism to take them from their observations of empirical evidence

to their first premise. More specifically we should be ontologically commit-

ted to the things that are indispensable to our scientific theories. Naturalism

practitioners safely abandon the search for a first philosophy by leaning ex-

clusively on the scientific method to study and identify reality. Confirmation

holism rejects sections of our theories in isolation, and demands we can only

confirm or deny theories as a whole. Therefore, evidence for a set of scientific

sentences that use mathematics indispensably is also support for the validity

of the part of the theory tied to the mathematical entities. An entire the-

ory can be confirmed if the theory's validity rides on empirical findings. In

the case of this particular argument we see how mathematical entities are

only confirmed by the confirmation of the larger scientific theory. Naturalism

claims the mathematical part of the theory serves as a mirror of the reality

we are modeling. The truth of the theory commits us to the existence of the

entities involved, including the mathematical objects.

1.2.2 Abstractness

To add abstractness to the picture does not seem so controversial if we are

already on board with the existence of mathematical entities. A well rounded

notion of abstraction in this platonistic sense is easily understood when tak-

ing the characteristics of a physical object (size, weight, taste, color) and

seeing how these descriptions can not possibly refer to mathematical objects.

This is more explanatory when one thinks about what it would be like if
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these mathematical entities were physical. How much would the number

twelve weigh? What is the empty set made of? These questions seem far-

fetched and that is precisely the point. Linnebo speaks to this phenomenon

by noticing that if mathematical entities were physical then mathematicians

would concern themselves with the outright physical nature of mathematical

objects [18]. This is the first time we have leaned on the working mathemati-

cian and their practice to help us solve philosophical problems. Later we will

take a closer look at the intricate nature of the mathematician. A more

hands-on argument for the abstractness of mathematical objects is given by

the fictionalist later in the chapter, however, this is already fairly convincing.

1.2.3 Independence

Independence is the last premise for the platonist to verify, and seemingly

the most difficult to overcome. The platonist must show that mathemati-

cal activity is independent from all other rational activity. This seems clear

when thinking about what it would look like if the converse were true. Under

the conditions that the platonist wants to subscribe, mathematics is inde-

pendent of our thoughts, practices, and speech. The entity of pi would still

govern much of our universe even if we didn't yet have the tools to uncover

the pattern ourselves. The area of a circle involving pi was not a response to

human recognition of the value. A dodecahedron would have the same fea-

tures regardless of human's rational activity. If an alien from planet X saw

a dodecahedron it would have the same properties as our dodecahedron on

earth, even though our rational activities are very different. Mathematical

properties are inherent to the object we refer to, which can help explain the

unreasonable effectiveness of mathematics [28]. Mathematics simply would

not be as accurate if the properties of mathematical entities relied on any-

thing else but their innate properties. There is an objectivity of mathematics

that is captured by this independence thesis. Leaning on our notion of the

working mathematician, it would not make sense to have a dependent math-
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ematical theory. What exactly would it be dependent on? There are some

stimulating arguments for the stubborn philosopher who needs more reason

to believe in this independence. Kurt Godel proved his Incompleteness The-

orem and in doing so brought to surface two interesting notions within both

mathematics and philosophy. I am going to reproduce a similar outline given

by Rudy Rucker in “Infinity and the Mind” because he successfully captures

how clever Godel's proof really is [25].

Let's pretend a woman approaches Godel and tells him that she had a

machine that had captured all of the truth in the universe, let's call this

Machine X. According to the creator, Machine X was capable of answering

any question correctly. Godel asks the woman for the program and internal

design of Machine X, P(X), and no matter how long this program is, it must

be finite because it was programmed in a finite amount of time. Godel writes

out the following sentence, sentence Y: “Machine X constructed on the basis

of P(X) will never say that this sentence is true.” This sentence has the same

logical setup as the sentence, X will never say Y is true. Now, Godel asks X

if sentence Y is true or false. There are two possible answers that Machine

X could give, X could say that Y is true or X could say that Y is false. If X

says that the sentence is true then the sentence “X will never say Y is true”

is false, therefore if X says Y is true then Y is in fact false. If “X will never

say Y is true” is false, then Y is false. If X says Y is true then it must be

the case that Y is false and Machine X made a false statement. Therefore,

X can never say that sentence Y is true because it would be wrong. We can

now conclude that Machine X is not universal because we found a truth that

was unaccounted for.

This proof utterly demolishes the search for complete logical foundations

for mathematics, much to Whitehead, Hilbert, Russell's dismay. The mathe-

matical symbolism of this proof is that any system using arithmetic is incom-

plete. Given a set of axioms there exist some true mathematical sentences

that simply can not be derived by the given set. Within a set where an infi-
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nite amount of truths can be developed there will similarly be some that can

not be derived and therefore the set will always be incomplete. This points to

the phenomenon that is happening objectively in mathematics, more specifi-

cally, that the ultimate truth can not be be attained by our rationality. Godel

concludes mathematical entities are independent of our thought because our

best efforts can never contain all truths in mathematics. Any attempt will

be incomplete or inconsistent. The independence criterion is one of many

consequences of Godel's Incompleteness Theorem. In Chapter Four we will

see how the inconsistent aspect of Godel's proof shattered naive–set theory.

1.3 Transitioning to Fictionalism

In this account of mathematical platonism it is important to unpack the

mathematical sentence. When looking at other alternatives to platonism we

will see how this facet of the proof differs. So far mathematical sentences

have been taken literally and at face value. Under this face–value notion of

mathematical terms, the sentences “Three is an odd number” and “Theresa

is an odd girl” are both literal. Both cases require the existence of the subject

in question. In Putnam and Quine's argument, when we read our scientific

theories at face value they are committed to existence of mathematical enti-

ties. We are mathematical realists when we read mathematical sentences at

face value. In order to assign a truth value to these mathematical sentences

we are ontologically committed to the objects they refer to. There are many

ways to disagree with the platonist claim, however I want to focus on one

regarding semantics. Mathematical fictionalism argues that the utterance of

mathematical sentences should be taken at face value as if they were pointing

to some object in the world. However, we should not accept these sentences

as expressing any truth value.

Fictionalism provides the principal philosophical rebuttal to mathemati-

cal platonism. Fictionalism rejects the platonist account of metaphysics and

creates an entirely new and convincing ontology along the way. Unlike pla-
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tonism, fictionalism denies the existence of abstract objects. Referring back

to the justification of abstract mathematical entities, the possibility of these

objects being physical is seemingly out of the question. The fictionalist,

like the platonist, approaches the metaphysical problem by noticing that our

mathematical sentences refer to abstract entities. This can not be the case

because there are no such things as abstract objects, therefore, our math-

ematical sentences are false. When engaged in mathematical discourse, we

don't mean our sentences literally in regards to truth value. Instead, we are

pretending that there are mathematical objects in order to get some point

across. As we look closer at the consequences we may realize that from a

purely philosophical standpoint the fictionalist may have it right. One way

they could go about their attack is to argue for materialism. Instead, they

argue against all other possibilities leaving fictionalism on the other side as

the only choice.

1.3.1 Paraphrase Nominalism

The semantic claim of the fictionalist is especially troublesome to paraphrase

nominalism. Referring to our previous example, the sentence “three is an odd

number” refers directly to the number three. This is not controversial to the

platonist, however, it is controversial within other schools of mathematical

philosophy. The paraphrase nominalist holds that the sentence “three is

odd” is really saying “if there were numbers, then three would be odd.” The

fictionalist responds to this by claiming the view of paraphrase nominalism

involves an empirical claim about what we mean when we use mathematical

language that seems unlikely. It is hard to believe that when mathematicians

speak about their theories they really mean to say something like what the

nominalist is pushing for. There is a lot of evidence that mathematical

discourse should be read at face value, and very little for the converse. If

mathematicians had the intention to be understood non literally it seems as

though they would give some indication of this desire. However, there is an

10



additional issue with this appeal to mathematicians that we will see when

we look at the application of naive–set theory in Chapter Four.

The paraphrase nominalist might reply by saying that they do not need

to appease the practice of the mathematicians. If they do reply with this,

then their view will quickly collapse into fictionalism because they will be

claiming that the discourse of actual mathematicians is false. If this is true,

then it seems like they are simply fictionalists that think we should alter what

we mean when we talk about mathematics. We can accept that mathemat-

ical sentences should be read at face value because paraphrase nominalism

declines to offer a counter argument the fictionalist needs to take seriously.

1.3.2 Neo-meinongianism

The fictionalist must enforce their premise about the impossibility of the

truth value in mathematical sentences. Fictionalism says that when we read

sentences at face value and we claim that they are true, then there must be

some mathematical object the sentence is referring to. Neo-meinongianism

is the school of philosophy that claims the truth of mathematical sentences

isn't contingent on the positive existence of abstract objects. The neo-

meinongianism and the fictionalist are disagreeing about what must be the

case in order for something to be true in ordinary conversations. The view

is that there are non-existent entities that numerals refer to. According to

the platonist, the sentence “17 is prime” says “there is something that is 17

and that thing is prime”. Here if the first sentence is true then the second

has to be true. On the other hand, to neo-meinongianism the sentence “17

is prime” is true without 17 being an abstract entity in existence.

They agree with the fictionalist that the mathematical sentences seem

to be about irreferable abstract entities. If they had a standard acceptance

of truth then the neo-meinongianist would collapse into fictionalism. To be

distinct the neo-meinongianist must make a claim about the ordinary sense

of the term true when the claim is about something that does not exist. The
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fictionalist can implore our intuition when we say a sentence is true. For

example, when one says “it is true the grass is green”, our intuition is to

think that there is such a thing as grass.

This semantic problem isn't the only issue with neo-meinongianism. The

platonist offers another point of contrast. On the surface neo-meinongianism

looks like we still have a way around platonism, especially if it collapses into

fictionalism. Let's consider two notions of true, called X and Y. Truth X

refers to the kind of truth that entails the existence of the subject of conver-

sation, like in the grass example above. Truth Y is the kind of truth that the

neo-meinongianist is trying to put into practice, in other words, Y is the kind

of truth from a sentence where the sentence doesn't successfully refer to the

existence of the object in question. A possible platonist response would be to

slightly tweak their philosophy to show they have been arguing for X truth

all along. When we use the word “true” in ordinary language we are unaffili-

ated whether we are talking about X or Y. This question only surfaces when

philosophers get involved. The Indispensability Argument argues for X truth

in mathematics. It seems as though the neo-meinongianist semantic thesis

was irrelevant to this overall conversation about truth. We should really fo-

cus on the platonists argument for the X kind of truth. Therefore, it boils

down to the two philosophies still in question, fictionalism and platonism.

1.3.3 Physicalism

The secured abstraction of mathematical entities is the next step in the fic-

tionalist argument. We have seen a partial argument for the necessity of

mathematical entities being abstract, however, the fictionalist gives us a dif-

ferent account. The fictionalist agrees with the platonist about the necessary

abstraction of such entities as mathematical objects. Physicalism and psy-

chologism give two opposite viewpoints that try to explain mathematical

objects without abstraction. Physicalism claims our sentences refer to physi-

cal objects. This idea is less controversial when one thinks about elementary
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mathematics, however, when we consider mathematics in multidimensions

it becomes less apparent. In knot theory, for example, we see the physical

representation of the trefoil knot by simply making one out of string. Phys-

icalism falls short when we are asked to find a physical representation of the

knot with infinite crossings, or the knot made from an infinite number of

trefoils together in a line. This issue of infinity is especially apparent in set

theory, made more confusing with the idea of different sizes of infinity. Even

if a physicalist could figure out a way to make the mathematical concept

of infinity somehow physical, the notion of different sizes of infinities would

surely stump them.

Georg Cantor, born in Russia in 1845, was the inventor of set theory. Set

theory is of extreme importance in our conversation of philosophy of mathe-

matics. Cantor allowed his mathematical achievements to shape his theolog-

ical viewpoint. He claimed that a world without infinite numbers could not

possible have a God with infinite power. His quest to prove the existence of

the multitudes of infinite sets was perpetuated by his idea that God was the

Absolute Infinite and all other infinities consequently were smaller than this

one. The proof of this concept is relatively simple, and can be reproduced

with an elementary notion of set theory. Cantor's diagonal argument was

published in 1891. This proof shows that there are infinite sets that are un-

able to form a one-to-one correspondence with the infinite set of the natural

numbers. His proof begins with a set that we are familiar with, the counting

numbers. Let's define this as set S. S = {1, 2, 3, 4, 5, . . . } The infinity prop-

erty of the counting numbers is that we can always get another number by

adding 1 to the last number in the set. Cantor defined a set as “countably

infinite” if an infinite set has members that can be illustrated as a one–to–

one correspondence with the counting numbers. These countable infinite sets

have some interesting properties that provoked Cantor. For example, there

are subsets of countably infinite sets that are also countable infinite. One

might think there would be half as many even numbers as counting numbers,
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however, Cantor proved that you can make a one–to–one correspondence

with these two sets. He paired the numbers up in the following set P.

P = {(n, 2n) where n = 1, 2, 3, 4, . . . }

This shows that there is still a countable infinity when we look at half of

a countable infinity. He then showed that the set of real numbers is not a

countable infinity by proving it is not possible to have a bijection between the

reals and the natural numbers. He does this by using his diagonal method

with creating a numbered list of the elements within an infinite set and

flipping numbers to uncover a missing string. From here, Cantor concludes

there are infinitely many sizes of infinite sets because one could complete

this process with any infinite set at come to the same conclusion. For a

complete translated proof refer to Keith Simmon's translation of Cantor's
1892 masterpiece [?].

Cantor shows through his proof that these infinities, although sometimes

distinguishable (as seen with the real numbers vs. the listable integers), are

mysterious in ways that are unimaginable precisely because of the finiteness

of the human mind. It seems as though this proof, born from set theory, is

one of the greatest challenges for the physicalist because of our inability to

comprehend even the smallest infinity. The physicalist, if still serious about

their philosophy, would have to be able to point to some physical entity

for every mathematical entity because physicalism would unravel with the

possibility of one aspect being unaccountable.

1.3.4 Psychologism

Psychologism is perhaps more plausible than physicalism, however, the issues

with psychologism arise in a similar way. Psychologism, like physicalism,

tries to argue against the idea that the existence of mathematical entities

entails that these entities must be abstract. This view describes ordinary
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mathematical sentences as the true descriptions we make about the objects in

our minds. Again, this seems plausible for elementary mathematical objects

such as “3” however, the idea of infinity, let alone infinitely many infinities,

seems unbreachable by this analysis. If psychologism is a possibility we

would have to have infinitely many ideas in our minds, which simply isn't
the case. Notice how this thesis is not saved by arguing that we have the

idea of infinity in our minds. In order to save psychologism, there needs to

be proof of infinitely many ideas in our minds because there are infinitely

many mathematical entities that need to be accounted for. Therefore, when

we utter mathematical sentences our theories are not descriptions of these

mental entities. Another issue with this thesis is that it seems to miss out on

the objectivity of mathematics. If we believe that mathematical entities are

just figments of an individual's mind, then we better have an explanation for

why mathematics is so universally agreed upon.

1.3.5 Humanism: The Social

We have seen the standard arguments for the mental and the physical exis-

tence of mathematical objects. In his book, “What is Mathematics, Really?”,

Rueben Hersh offers another possibility to the mix: the social. Hersh claims

that mathematics is essentially a social phenomenon and a human activity.

Mathematics is socially evolved and can only be understood within a social

context [15]. Based on this definition of mathematics, he does not see the

need to look for a definition of mathematics beyond this cultural meaning.

Hersh gives an example of a 4–dimensional cube as his initial “inquiry

into mathematical existence” [15]. He notices by appealing to the character-

istics of the 1–D, 2–D, and 3–D cube, that there is a pattern than extends to

the cube outside of our perception. This experiment provokes Hersh to ask if

the 4–D cube exists. If so, then what kind of existence is it? If not, then how

can we infer so many details about it? Furthermore, does the 3–D cube exist

in our space and time? Hersh claims that his humanist view of mathematics
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accounts for these questions more adequately than other philosophies. Hu-

manism claims this cube exists within the shared consciousness of people as

a thought or idea [15]. In a more simple case, Hersh explains how to think

about the integers. The number “three” for example, is considered culturally

as a noun and an adjective. It is noun insofar as it can refer to a real ob-

ject but there is a social process that separates this distinction and creates a

“shared concept in the minds/brains of people who know elementary arith-

metic” [15]. On the other hand, the number “three” is an adjective because

it amounts to the process of counting. Hersh claims the counting numbers

are really finite because we do not see people counting to 923783782939. This

idea is plausible with these specific cases, however, humanism falls short

describing other mathematical truths– such as infinity. We have seen how

psychologism and physicalism fumble with the idea of infinities, especially

infinitely many sizes of infinity. Hersh agrees with psychologism that the

brain is finite, but argues that “it is not the infinite that our brains generate,

but the notions of the infinite” [15]. To claim that the “notions of infinity”

can exist within the brain needs some back up that Hersh does not offer.

This might not be enough of a reason to completely give up on Hersh's hu-

manism, but the implications of this issue should push Hersh to address this

more seriously.

1.3.6 Against Platonism

For the final premise of the fictionalist argument we see the direct jab at

platonism, more specifically, there are no such things as abstract objects.

This step is the most difficult because as we have seen the fictionalist has

developed a standard argument to rule out most of the other philosophies in

question. However, because the platonist agrees with the fictionalist under

the aforementioned claims about semantics and the word “true”, the fiction-

alist needs to come up with something else to overrule the platonist. In the

attempt to cross platonism off of the list, the fictionalist appeals to their
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theory of human knowledge. This theory has been extremely popular within

the history of philosophy and is rooted in the importance of sense percep-

tions to form belief. In order to form justifiable knowledge of an entity, one

has to receive a sense perception from that entity in some way. According to

the platonist picture, these mathematical objects exist outside of our reality.

Therefore it is unreasonable to think we are able to sense them with our five

senses let alone form any kind of substantial knowledge about them. In other

words, causal contact is necessary to have a sense perception and according

to platonism that this is not how mathematical entities exist.

James Robert Brown offers an explanation as to how platonism can re-

spond to this problems of access [5]. He notes a disconnect in our understand-

ing of everyday physical objects about how a sensation becomes a belief. The

physiological process of how sense perceptions operate is understood, how-

ever, the belief formation process is still a grand mystery [5]. The nominalist

claims the platonist must come up with an explanation as to how mathemat-

ical entities become mathematical beliefs. However, this issue is no worse

than our inability to understand this phenomenon in the world outside of

mathematics.

Brown gives a response to the additional issue of causality. The abstrac-

tion of these objects seems to disable possible causal connection between the

realized object and the observer. Favored among naturalism, the causal the-

ory of knowledge seems reasonable. For every thought there must be a causal

chain between the object and our minds. I know there is a cup of coffee in

front of me because photons from the coffee enter my eyes. I know events

from the past because people who had direct causal contact recorded the

events and their recordings were brought to me through this chain. If this

model is correct, there would be no possibility of knowing abstract objects.

Brown shows a flaw in the argument by providing an example in the physical

world where this causal chain is unapparent.

There is a thought experiment in quantum mechanics posited by Einstein,
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Podolsky, and Rosen. In this experiment, there is a decay process that pro-

duces two photons going in opposite directions towards detectors on either

side of the space. Each detector has polaroid filters that determine if the

approaching photon has the spin–up or spin–down property. The two out-

comes of the photons are always correlated. If one of the photons is spin–up

then the other is necessarily spin–down. There is an aspect of randomness

because before the experiment we do not know which one will end up at ei-

ther side. The question is within this perfect correlation of the photons. One

idea is that the measuring tool causes the outcome of the other. However, we

can rule this explanation out by applying special relativity claiming that no

causal power travel faster than light. Brown notes that the two simultaneous

measurements are outside of each other's light cones so there is no possibil-

ity of them causally affecting the other. Another possibility is that there is

something at the time of the creation of the photons that explains this prop-

erty. This cannot be the case because of the Bell result showing that, “such a

common cause predicts a different measurement outcome than either quan-

tum mechanics predicts or experience determines” [5]. He concludes from

this case that knowledge does not necessarily rely on a casual connection. If

a person was on one side of the experiment and saw the result spin–up they

could automatically infer the other side was spin–down without having any

causal connection to the other wing. This example is thought–provoking, but

rests on profound presumptions from the physical world. My issue with this

example is that we are only able to infer any information about the photon

because it exists in binary. If, for example, there were three possible states

then we could not know anything about the photon. Our supposed causally

unaffected knowledge rests on the knowledge that the photon must exist in

one of two states which is previous knowledge.

The argument against abstracta is one of the most convincing arguments

against platonism, however if someone is skeptical about this metaphysical

issue there is an interesting mathematical argument against platonism as
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well. Originally by Benacerraf, the arithmetic multiple–reductions argument

starts by postulating a set of numbers. Benacerraf claims that if there exists a

set of abstract entities that are coherent with our theories in arithmetic then

there are infinitely many of these sets. Furthermore, when we pick out the set

of integers there is nothing metaphysically special about it in comparison to

a different one of the infinite sets. However, Benacerraf notes that if we are

platonists then we believe that there is a unique sequence of abstract entities

that are the integers, and therefore platonism must be getting it wrong. He

uses the structuralist view of the natural numbers to make the argument. He

claims that numbers cannot be objects because when we give the properties

of numbers we are simply characterizing the abstract structure. This view

means that the numbers have no properties besides the properties that they

have within their sequence relationally.

It is unclear how successful this argument is, however it is worth men-

tioning because it forces the deciding philosopher to ask questions about the

nature of these abstract sets. If these arguments against all other possible

philosophies are granted successful, then fictionalism is the only option left

and we would be foolish not to believe it.

Now that I have explained the two propositions given to us by the platon-

ist and the fictionalist it is time to decide on a stance as to who got it right.

To reiterate, the question that has been up for debate between platonism and

fictionalism is the question of mathematical objects and their questionable

existence. A very simple recap of the two arguments is that the platonist

is lacking on epistemological accounts, whereas the fictionalist is fumbling

where metaphysics are involved. The problem here has seemingly reached a

philosophical dead end because the only way for one argument to be refuted

is for the other argument to restate one of their premises.

I want to move my conversation towards a focus on The Indispensability

Argument given by Putnam and Quine. This argument is one of the more

convincing arguments for platonism and therefore needs to be looked at closer
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to make sure we aren't missing anything before we admit the existence of

abstract mathematical entities. The Indispensability Argument has high

stakes because it illustrates accepting mathematical entities as a necessity

to scientific inquiry. The Indispensability Argument might be precisely why

followers of platonism were willing to take the metaphysical leap.

2 The Indispensability Argument and Scien-

tific Inquiry

2.1 Another Look at The Indispensability Argument

While the first chapter merely glanced at The Indispensability Argument,

we are now going to take a closer look into the strength of this argument.

It garners its first premise from an observation embedded in the philosophy

of science, particularly in the way that our theorems in mathematics act

as an indispensable part of our best theories in science. The practice of sci-

ence relies on the ability to use mathematical objects as explanatory entities.

When scientists have evidence for a specific theory, the evidence corresponds

to the theory as a whole as opposed to referring to the individual hypotheses.

Given these two points, if we have evidence for a scientific theory, then this

set of evidence is also evidence for the mathematical principles it presup-

poses. In addition to this claim, The Indispensability Argument says that

science is the best vehicle for gathering evidence pointing to truth and exis-

tence. Therefore, the mathematical principles are true and the mathematical

entities exist as much as the entities proposed by the scientific theories. This

last point adds an interesting complication; by accepting our theories in sci-

ence as true, we are forced to accept the mathematical entities involved as

well. Vineberg put it bluntly when she claimed accepting the best results

in science while denying abstract mathematical entities would be failing to

accept the consequences of affirming the truth of our scientific theories [27].
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The acceptance or denial of this argument comes down to a study of the

nature of mathematics, and in particular, how much explanatory power we

warrant pure mathematics. All it takes is scanning through any science text-

book to notice the prevalence of mathematics as support for all applications.

Mathematical anti-realists such as Benacerraf have tried to come up with

a science without mathematical algorithms or formulas. Even if this were

somehow possible, the resulting “science” would still be lacking something

crucial. As we shine this spotlight on the practice of science, we will see that

the picture offered by Benacerraf only accounts for a small piece of what we

consider the evolving field of science today. The complex relationships be-

tween mathematics and science are of utmost importance when studying The

Indispensability Argument. I want to look at some specific cases to illustrate

how this relationship should not be overlooked.

2.2 Mathematics Playing An Explanatory Role

First, let's explore how physical phenomena can be explained by science. The

following examples are of mathematical truths, rather than explanations that

merely utilize math. Alan Baker draws the distinction between representa-

tional mathematics and explanatory mathematics. Mathematical algorithms

represent large sets of data, whereas mathematical truths explain physical

phenomena. Baker quotes Mark Steiner noting that there are numerous in-

stances where “when we remove the physics, we remain with a mathematical

explanation of a mathematical truth!” [1]. The case of the North American

cicada demonstrates exactly what Steiner had in mind.

2.2.1 The North American Cicada

The life cycle of the North American cicada highlights a mathematical truth

about prime numbers. The cicada is a locust–like bug that buries its larvae in

the ground. These larvae resurface simultaneously after a period of 13 to 17
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years as mature bugs to mate, and die shortly afterwards. Although the life

cycle varies with climate, within a single population the number of years is

always synchronized. Concepts in number theory explain the ways this mass

emergence after a prime number of years can be advantageous to the species.

The periods of 13 and 17 years are notable, given that these numbers are not

only prime but consecutive primes. The notion of a least–common–multiple

(LCM) explains why cicada life cycles settled on these prime numbers and

how this is beneficial to the cicadas’ survival. The LCM of two numbers, x

and y, is the smallest possible number z, where x divides z and y divides z.

For example, the LCM of 3 and 4 is 12 because 3 divides 12 and 4 divides

12. When we have one prime number, the LCM of a prime and a composite

will be the prime number multiplied by the composite number unless the

composite number is divisible by the prime number. For cicadas, the LCM

explains how the prime–numbered life cycle results in a diminished risk of

being eaten by predators. The prime-numbered life cycle means that the

life cycles of most other species do not overlap with that of the cicada. For

example, the 13 year cycle cicada will be less likely to have intersections with

predators whose life cycles are any number other than 1 or 0mod13 . On the

other hand, if the cicada has a life cycle of 16 years we see that it intersects

with predators of life cycles of 1, 2, 4, and 8 years. This hypothetical cicada

life cycle would mean that a predator would have an increased chance of

being able to eat the cicadas when they emerge for about five weeks to mate.

The cicadas plant their larvae in the soil and then die after these brief weeks

of life above ground. Below is a diagram I made to illustrate the first ten

possible life cycles of predators and how they fail to overlap the primes in

question. The only numbers that interact with 13 and 17 are 13 and 17

themselves. The other numbers on the number line are relatively prime to

13 and 17. Notice that the cicada could have had the same evolutionary

advantage if their cycles were every 11 or 19 years. Biological factors, such

as body size, put the cicadas within this specific 13 or 17 year window. If we
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were dealing with a smaller cicada perhaps we would see it shift down to 11

or 13.

The notion of an LCM also explains how the cicada finds an evolutionary

advantage in avoiding other species by limiting the potential for hybridiza-

tion. The theory that prime numbers have the lowest–common–multiple pro-

vides the best explanation for the evolution of prime–numbered life cycles.

This theory comes from number theory, a realm of mathematics devoted to

numbers. The Indispensability Argument holds that we must acknowledge

the existence of any object that plays an indispensable explanatory role in

our scientific theorems. In the case of the cicada, we see that number theory

plays this role.

2.2.2 The Honeybee

Joe Morrison's talk, “The Ontological Extravagance of Honeybees,” presents

another example of mathematics playing an explanatory role in science. The
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Honeycomb conjecture posits that bees solved a recondite problem, and have

thus made their cells the proper shape to contain the most amount of honey

using the least possible amount of wax in their construction. Bees solved this

problem using the tools given to them through evolution. We are not claiming

that these smart bees are mathematicians, only that they successfully solved

this efficiency problem in order to reap the benefits for their species. Given

one swarm of bees making a mathematically efficient honeycomb, and another

making their honeycomb with excess wax, the more proficient swarm will be

more likely to survive and pass on their wax-saving genes. Hypothetically,

if there were a beehive using a more efficient shape than the hexagon, then

the bees using the hexagon would eventually die out. Disregarding wax, the

problem at hand is one of geometrical optimization. In other words, what

shape has the largest surface area but the smallest possible perimeter?

This question dates back to 36 B.C., when Marcus Terentius Varro notes

how the bee's chamber has six angles and claims, “the geometrician proves

that this hexagon inscribed in the circular figure encloses the greatest amount

of space” [2]. Although we have been observing bees for thousands of years,

this honeycomb conjecture was not formalized until June 1999 by Thomas

C. Hales in his 24 page proof,“The Honeycomb Conjecture”. This may seem

shockingly late, considering bees solved the problem originally. Hales had to

use the notion of sphere packing in order to completely prove the conjecture

without employing the convexity hypothesis. Before 1999, the hexagonal

honeycomb conjecture was merely based on biological observation. Mathe-

matics served the role of making this observation more rigorous by unifying

the results without relying on our instinct about animal behavior and per-

haps our religious affiliation. The explanatory power of mathematics becomes

crucial for our understanding of the physical system of the bees, as well as

providing an attractive argument for evolution. Hexagons are shown to be

the most effective way to tile an area using the smallest perimeter by the

mathematical truth highlighted in the two different approaches.
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2.2.3 The Kirkwood Gaps

Kirkwood Gaps provide a final example of the power of explanatory math-

ematics. Daniel Kirkwood was the first person to notice the gaps in the

asteroid belt between Jupiter and Mars. These gaps initially confused many

scientists studying the orbits of these planets, however, by looking at the

eigenanalysis of the orbits involved they derived the precise location of these

gaps. The clearest gaps are dispersed at fractional orbit ratios of one-half,

two-thirds, two-fifths, and three-sevenths. It was later discovered that grav-

itational resonances cause Jupiter's orbit to be unstable. If an asteroid is in

these unstable orbits, it gets further and further off course until the asteroid

is adopted by a stable orbit.

Colyvan explains the varying level of mathematical involvement within

these Kirkwood gaps [10]. Starting with the less impressive case, we see eigen-

values of an operator identify the fraction of the unstable orbits compared to

Jupiter's orbit. These discoveries are important, but they fail to explain why

the Kirkwood gaps make it impossible for an asteroid to maintain a stable

gap. The noteworthy explanatory involvement comes when looking at the

relationship between the fractions through functional analysis. Through this

analysis, scientists have found that the orbits are unoccupied because the

vector operator squishes or stretches vectors. Colyvan notes that an asteroid

circles the sun three times for every one rotation of Jupiter, will thereby be

drawn into repeated interactions with Jupiter of a type to eventually pull

it off course [10]. The similarities between the orbits are mathematical and

not visibly physical, which means there is some mathematical truth hidden

within these gaps. Here, the notion of eigenvalues in the study of linear

algebra make it possible for us to understand a phenomenon happening in

space. Without studying these orbits with mathematical rigor, these gaps in

the asteroid belt would remain a mystery since there is no strictly physical

explanation for their existence.
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2.3 Scientific Discovery and Development

In all three of these cases, the explanatory connection is purely mathematical

which makes it arguably impossible for scientists to explain the phenomena

without mathematics. Thus, the practice of science goes beyond reading

physical results, and in these cases the explanation requires an appeal to

mathematical truth. When nominalists try to refute cases such as these,

they miss out on the deep importance of mathematics in explaining the world.

This lack of attention to explanatory power is the first mistake seen in the

nominalists’ attack. Alan Baker brings to light the second mistake, as he

introduces the ideas of scientific development and scientific discovery.

We can clearly point to cases in science that suggest further mathematical

innovations, such as Fourier analysis, however, more often than not, it is the

formalization of mathematics that suggests the development of new physical

theories [2]. The symbiotic relationship of calculus and mechanics provides

a clear, somewhat controversial, example of this. Another example applies

formal group theory to particle physics, which lets us predict the activity of

entire families of unobservable subatomic particles [2]. Nominalism focuses

their attention on a transection of a stagnant point in the history of science,

which is not an adequate sample based on how science moves forwards hand

in hand with mathematics. John Burgess goes so far as to say that if science

goes nominalistic, that future science may never be discovered. As far as the

nominalist successfully reformats specific examples, it is still a reformation

that would not exist without the original platonistic account.

The nature of scientific discovery gives us further reason to discount nomi-

nalism. Baker underlines the distinction between proof verification and proof

discovery, which helps us view mathematical practice through a new lens.

Proof verification stems from the desire to verify something that is already

known. In this kind of proof with a predetermined conclusion, the math-

ematician needs only to arrange the premises accordingly. Euler's totient

function is an example of proof verification, and it follows from the funda-
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mental theorem of arithmetic. This kind of proof creates lines connecting

existing mathematics to help unify results in various fields. On the other

hand, proof discovery is the type of proof that arrives at a previously un-

known truth by combining previously known axioms and theorems. This

distinction between mathematical proofs is not taken into consideration by

nominalism.

2.3.1 Asymmetry In Cryptography

A great example of how this asymmetry can be exploited is seen in cryptog-

raphy. One of the main coding systems used to transfer secret information is

called the Diffie–Hellman key exchange. Baker and Colyvan focus on another

public key system called RSA, however, Diffie–Hellman is slightly more user

friendly. The Diffie–Hellman system is created to make encoding the message

as easy as possible and makes decoding the message as hard as possible. Con-

sider an interaction between two colleagues Adam and Beth, they are trying

to share a secret without Eve knowing. They start with a public prime, let’s

use 67 with a public base of the primitive root 7. Adam chooses a secret

integer a=6, and calculates A ≡ 7a mod 67, which is equal to 64. Now Beth

does the same calculation but with her own secret integer b=3, she gets B=8,

then she send this to Adam. Now Adam computes s ≡ Ba mod 67 with his

secret a, and gets the number 40. Beth also computes s ≡ Ab mod 67 with

her secret b and also gets 40. This number, 40, is the shared secret between

Adam and Beth that Eve does not know. In the NSA they are using much

larger base prime numbers, however, even with this example the decoding is

non–trivially difficult. This is thanks to the (hopefully forever) unsolvable

discrete logarithm problem (I say hopefully forever because if it were to be

solved our world would go to shambles.) In this example Eve could feasibly

try all possible private keys, however, to decode the typical problem is im-

possible for the best modern supercomputers to do in a reasonable amount of

time. For example, the typical time to factor a 100–digit product is around 60
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years. Considering how simple it is to encode one of these crypto–systems,

this is remarkable. Baker notes that in this example the encoding of the

message is similar to verification and the decoding is analogous to discovery.

The proof discovery relates to the mathematical truth about the difficultly

to decode the discrete logarithm problem.

This mathematical disconnect shows that it is unwise to treat all mathe-

matical problems with the same philosophical attitude. Baker claims “if the

resources needed for proof discovery exceed those required for proof verifica-

tion then mathematics might be dispensable for the latter task without being

dispensable for the former one” [2] When examining The Indispensability Ar-

gument, it is possible that some rebuttals only capture a narrow segment of

mathematical results. Even if proponents for nominalism could show the

dispensability for mathematics in proof verification, it is not the case that

this would translate to mathematics being dispensable to the discovery of

new results in science [2]. For example, if nominalists such as Benacerraf can

recreate scientific theorems without using numbers, it does not mean that

the mathematics originally involved with discovery are dispensable to the

theory. Mathematics can be responsible for the development and evolution

of the theory in ways that cannot be replicated. Baker urges philosophers

studying mathematics and science to stop focusing on the static aspect of

theories and try to look at the larger picture of how science moves forward.

2.3.2 A History of Complex Numbers

At first glance, a static view of the complex number system looks like non-

sense. What was once considered a mathematical trick of working with
√
−x,

now complex calculus is applied to control theory, fluid dynamics, electro-

magnetism and electrical engineering. Complex numbers have a rather con-

troversial history. The applicability of complex numbers in physical theories

has contributed to the unification of previously distinct mathematical fields,

and ultimately the unification of mathematics and science. For years math-
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ematicians refused to believe in these numbers which caused tension within

the community. However, after they were geometrically represented, people

were somewhat less hesitant. Descartes famously coined these numbers as

“imaginary,” claiming “one can imagine as many as I said in each equation,

but sometimes there exists no quantity that matches that which we imagine?”

[12].

The unifying nature of complex numbers make them of utmost impor-

tance to the philosopher. Demonstrating the symmetrical nature of math-

ematics, complex numbers built the bridge between pure mathematics and

applied mathematics. Colyvan claims that complex numbers had their finest

hour when they were used to solve real integrals that could not be solved with

the integration techniques available [9]. In calculus a student learns a hand-

ful of tricks when faced with an integral. There are certain cases where the

only way to solve the integral by hand is through Euler's formula. It seems

strange at first to complicate the integral by introducing complex variables,

however, the identities of the trigonometric functions uncover aspects of the

integral that were initially hidden.

Euler's formula is also used in second order differential equations acting as

a middle step in the analysis of real (real as in not complex) functions. Here,

complex numbers are a tool to unify exponential and trigonometric functions.

Colyvan points to an example in differential equations that segues nicely into

the physical application of the system. He defines the complex numbers as an

extension of the typical operations in the reals with the addition of i =
√

(−1)

Complex exponentiation leans on Euler's formula, e±iθ = cos θ± i sin θ where

θ ∈ R. This identity can be reworked to solve for sine and cosine in terms of

the complex variable, z. These equations look like this,

sin z =
eiz − e−iz

2i
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cos z =
eiz + e−iz

2

This rewriting of the sine and cosine functions shows that trigonometry in the

reals is a specific case of a larger area. This coexistence of the exponential and

trigonometric functions enables us to proceed gracefully with solving second-

order differential equations. The applications of second-order differential

equations in physics and engineering are impressive. A typical second-order

linear homogeneous ordinary differential equation with constant coefficients

takes the form, y”+ y’+y=0. I will proceed with a slightly more complicated

example from the textbook “Differential Equations” by Paul Blanchard [4].

1. We want to solve

y′′ + 4y′ + 13y = 0 (1)

2. We assume that y = ert is a solution, so we have

y′ = rert and y′′ = r2ert (2)

3. Now, we substitute these back into the original equation

r2ert − 4rert + 13ert = 0 (3)

4. Now we divide by ert

r2 − 4r + 13 = 0 (4)

5. This quadratic doesn't factor, therefore we turn to to quadratic formula

to find the roots

r = 2 + 3i and r = 2− 3i (5)

30



6. We conclude the general solution to our differential equation is

y = a1e
(2+3i)t + a2e

(2−3i)t Substitution (6)

y = a1e
2te3it + a2e

2te−3it Rule of Exponents (7)

y = e2t(a1e
3it + a2e

−3it) Factoring out the e2t (8)

7. This general solution involves complex exponents. We must use Euler's
Formula to find the real answer. We find that

y = e2t[a1(cos(3t) + i sin(3t)) + a2(cos(−3t) + i sin(−3t))] (9)

y = e2t[(a1 + a2) cos(3t) + (a1 − a2)i sin(3t)] (10)

8. Now we let

c1 = a1 + a2 and c2 = i(a1 − a2) (11)

9. Substitute these in to get the final answer

y = e2t[c1 cos(3t) + c2 sin(3t)] (12)

This example shows how we use complex numbers to get to a real an-

swer. Euler's formula acts as the bridge between these two areas. This kind

of differential problem is indispensable in order to explain physical phenom-

ena in fluid mechanics, heat conduction, and to analyze population models.

This elementary differential equations problem indicates the deeper nature

of complex numbers. Imaginary numbers were thought to be entirely unreal,

until they proved so useful in describing the structure of space. The intro-

duction of complex variables help illuminate the underlying structure of the

mathematical truths at play.
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2.3.3 The Utility of Quaternions

Alongside the rigorization of the complex numbers, quaternions provide an-

other great illustration of the complicated relationship between math and

science. This case study given by Alan Baker and others illuminates the im-

portance of utility when declaring a theorem as acceptable. In 1843 William

Rowan Hamilton was on a quest for a three dimensional extension of com-

plex numbers with the form x + yi + zj. He was particularly drawn to this

form because he saw the possibility of it being used in physics for modeling

of actual three dimensional space. He was unable to find such a framework,

however, along the way he did discover a four dimensional extension of the

complex numbers, quaternions. Quaternions are made up of three vector

components, xi, yj, and zk, and one scalar element, w. These four compo-

nents, w+xi+yj+zk, compose an associative but non commutative vectorial

system.

This distinction between associativity and commutativity enabled quater-

nions to set the stage for algebra as a separate and rigorous field in math-

ematics. This system was the first to show there could exist a system that

gives up commutativity without becoming trivial. This idea paved the road

for division algebras, a whole scheme of algebraic structures which each have

two operations. In addition to algebraic uses, quaternions were used in num-

ber theory to represent prime numbers as a sum of two squares. Quaternions

helped introduce the contemporary system of vectors and scalars seen in most

fields of mathematics and physics. When we consider a quaternion with a

scalar part equal to zero, xi+yj+zk, we see how similar it is to the structure

of a modern vector. Hamilton held a persistent geometrical lens throughout

his mathematical infatuation with quaternions. Baker points out that he

made the multiplication requirement for them to satisfy the ‘law of moduli’

which guarantees that every multiplication also has an inverse multiplication

[2].

This geometrical side of quaternions made them a plausible tool for physi-
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cal applications, but they never became the tool Hamilton had hoped. To his

dismay, the specific geometric interpretation, particularly the rotation of the

vector and the conical rotations, made quaternions an undesirable choice for

physicists. Before quaternions were completely replaced by modern vectors,

they were used for their transparency compared to Cartesian coordinates

(Tait, 1875). The vector offered many benefits for scientists, and eventu-

ally pushed quaternions out of the picture. These benefits stem mostly from

the intuitions of physicists being drawn to vector spaces. Specifically, the

separation between the scalar and vector parts make it easier to formulate

theories.

The case of quaternions is crucial to unpacking notions of indispensabil-

ity. This study opens up a new sense of mathematics and how it relates

to our progressive scientific theories. Strictly speaking, quaternions are not

indispensable to any of our modern scientific theories – but they are indis-

pensable to the history of physics and that is perhaps more powerful. The

fault of quaternions in algebra was a gain for vectors in physics, and without

this teeter totter of utility we would not be where we are today in physics.

The road for quaternions, somewhat surprisingly, is not a dead end after-

all. Quaternions were left in the dust due to their four dimensionality and

their non-commutativity, allowing the modern vector to be the phoenix from

their ashes. However, these faults were considered virtues when applied to

Einstein's theories of special relativity and quantum mechanics. For the first

time we begin to see the deductive indispensability of quaternions in physics.

This fuels Baker's conversation about distinguishing indispensability and

deductive indispensability. Baker notes that this distinction has remain ig-

nored by many philosophers, however, in light of the next section it is crucial

to understand. He points to an example within the history of infinitesimals.

Baker asks if infinitesimals were previously shown to be deductively dis-

pensable before Cauchy, why were infinitesimals not dispensed by later 18th

century mathematicians? [2]. This is a misunderstanding within the utility
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of infinitesimals. Although quaternions were not deductively indispensable

to science they were completely indispensable for the discovery of unknown

results [2].

The four dimensionality of quaternions was embraced by the development

of special relativity. To model special relativity scientists needed something

that would show the divide between the two spacetime points and the spa-

tial separation minus the temporal separation. The norm of the real valued

quaternion provided the perfect reformulation of special relativity [2]. Per-

haps more impressive, the silver lining of the non-commutativity in quater-

nions is seen when they are applied to quantum mechanics. The application of

quaternions to quantum mechanics has not only reformulated the theory but

has unsurfaced other implications that go beyond the theory without quater-

nions. This is when this mathematics becomes indispensable to our scientific

theory. Douglas Sweetser describes why quaternions are especially indispens-

able in quantum mechanics in his paper, “Doing Physics With Quaternions.”

The product of a quaternion transpose with another quaternion has the dis-

tinct property of a complete inner–product space. When applied to calcu-

lating the tensor product in quantum mechanics, the non–commutativity of

quaternions ensure dependent results. This means that in any two systems

of quaternionic quantum mechanics there will be a complementarity between

some of the properties in the systems [2].

On the surface this might not seem like a groundbreaking discovery, but

the fact that quaternions uncover a truth about the impossibility of indepen-

dence of two systems is remarkable. This truth is brought to light by the

properties of quaternions, specifically their non–commutativity. In this ex-

ample, our choice of formalizing quantum mechanics with quaternions made

it possible to further understand the structure of the physical reality at play.

Quaternions prove to be deductively indispensable to our theory of quantum

mechanics.

The hot and cold history of quaternions introduces an idea about scien-
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tific progress that is crucial to the study of indispensability. If quaternions

were completely thrown out and replaced with vectors we would see quantum

mechanics less clearly. With the exponential growth of scientific progress it

is impossible to claim that a dispensable mathematical entity will always

remain dispensable. The account for why quaternions were dispensable to

early physics, specifically their non-commutativity and their four dimension-

ality, was precisely the reason why they became indispensable to quantum

mechanics years later.

2.4 Questions About Indispensability: The Worries of

Penelope Maddy

These examples give fruitful reasons to believe in The Indispensability Ar-

gument. However, there are important questions about the theory that have

yet to be completely developed. Geometrical analysis, number theory, linear

algebra, eigenanalysis, functional analysis, and complex analysis are some

of the areas that look promising through an understanding of mathematics

through science development and discovery. Penelope Maddy strategically

rejects both of the premises of The Indispensability Argument but it is un-

clear if she is able to account for the explanatory power of mathematics we

have discussed. Once we become familiarized with Maddy's objections we

will investigate possible counterarguments. Maddy, once an eager mathe-

matical realist, points to the practice of scientists and draws out a potential

disconnect between naturalism and confirmational holism.

Her first objection is primarily given in her 1992 paper, “Indispensability

and Practice,” and then made more concrete in her paper, “Taking Nat-

uralism Seriously.” She appeals to the practice of scientists claiming that

how they treat separate components of well–confirmed theories is rarely how

confirmation holism would predict. The nature of science is to take the past

discoveries and try to see it through a new lens until eventually we have a

new system to better represent our world. Maddy provides an example about
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atomic theory, which was not accepted as true until the beginning of the 20th

century through scientific justification. She claims that the majority of sci-

entists remained skeptical of atomic theory although it was well-confirmed

as early as 1860 [21]. Scientists remained comfortable with believing directly

verifiable results from atomic theory as they weighed on their direct theory

without believing in the atom's existence. In the case of a specific theory

they granted the atom, however, they were not confirming the existence of

the atom at large. Maddy sees this situation as disagreeing with Quine's
confirmation holism because if he was correct then the scientist should have

accepted the atom's existence the moment it became indispensable to their

theories. In reality, scientists remained skeptical about the existence of atoms

until as late as 1904 although atoms became indispensable to science around

1860 [9].

There is minimal leeway within this observation looking at Putnam and

Quine's next premise, naturalism. Naturalism grants that we must lean on

the working scientist and in this case the working scientist is giving us reason

to reject the first premise. The inspection of the scientist in this situation

indicates that they do not grant the existence of all entities proposed by

our best theories. Maddy's next issue arises from the previous rejection of

confirmation holism. If we no longer can regard a scientific theory as a

homogenous element, there is a the possibility that the mathematical section

of the theory is untrue. Maddy calls this into question claiming that it is up in

the air whether the mathematical portions of the scientific theory correspond

with the true parts of the confirmed theories [21]. She uses an example in

fluid dynamics to show an incorrect use of indispensability in hypotheses that

are purposely incorrect. Scientists provoke the premise a body of water is

infinitely deep in order to analyse water waves in fluid dynamics. Maddy

claims that these theories would be nonexistent without these unreasonable

hypotheses, and are therefore indispensable to the theories they produce.

It would be ill–advised to take this appearance in our best theory about

36



water waves as sufficient reason to believe in infinity [21]. Maddy notices

that scientists seem to use whatever mathematics they need to use to get

the most accurate answer, even if the mathematics does not have ontological

rights within the theory.

These rejections clearly do not sit well with The Indispensability Argu-

ment. Not only has Maddy pointed to errors in the thesis, she actually used

one of the premises to refute the other premise. However, platonism should

not give up quite so soon.

2.5 Colyvan Responds to Maddy

Mark Colyvan gives a coherent response to each of Maddy's issues with the

argument. Starting with the first appeal to the practice of scientists, Colyvan

tries to undercut Maddy's idea that scientists distinguish between fake and

real entities in their theories. The first case is when the fictitious element is

introduced to the theory as purposefully inconsistent. Colyvan gives a few

examples, such as frictionless planes or inertial reference frames. He then

claims that although these ideas are useful to the hypothetical situation, there

must be a better way to theorize that is consistent with the other axioms at

hand. The fact that scientists are hypothesizing with an inconsistent idea

means that it is not the best possible practice to get at the truth of the

system. In the case of the infinitely deep water example, we do not need to

warrant the existence of the false hypothesis because we are not taking the

literal truth of the entire theory.

The next case is illustrated by Maddy's previous observation of the atom.

This issue occurs when scientists treat an object instrumentally that is in fact

indispensable to the best theory. Colyvan retraces Maddy's steps and points

out a misunderstanding of Quinean naturalism. Maddy wants to observe the

Quinean notion that the philosopher overlooking science must second the

ontological conclusions of science. However this is inconsistent with how she

formalizes her ideas of naturalism, because she does not hold that natural-
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ism prohibits all philosophical commentary of natural methodology. Colyvan

claims that, “once this misconception is cleared up we see that the door is

open for a critique of the sceptical scientists from a philosophical perspective

located within the scientific enterprise” [10]. Colyvan selects Hilary Putnam

to be the displeased philosopher and looks to Putnam’s definition of “intel-

lectual dishonesty”. Putnam says to deny the existence of what one daily

presupposes is intellectual dishonesty. In the case of the atom it is dishon-

est for the chemist to use these entities without granting that they exist.

This doesn't mean that it is impossible for them to do so, however, it is

an intellectual crime. It is impossible to know the motives behind scientists

who suspended the existence of atoms, but from a Quinean point of view

they were doing something wrong. Colyvan understands initial hesitation

or skepticism to new objects, but after they become indispensable it seems

worrisome to deny their existence. Colyvan then mentions another facet of

Quine's thesis. This thesis is not a descriptive thesis about how science is or

has been, it is a normative proposition about how we ought to decide our on-

tological commitments [10]. Quine is not committed to the history of science

being unflawed, and in this case of the atom it seems like a human flaw that

could be explain by various personal reasons and preferences. Consequently,

this can not be seen as a real issue when surveying the practice of science.

Maddy argues that scientists use mathematics as a means to an end with-

out considering the ontology of the mathematics in question. Colyvan notes

that in examples of such negligence, the mathematics has already been widely

used within the theory. Scientists do take caution when the they are working

with mathematics that is being applied for the first time. This can be seen in

the previous example of complex numbers. Mathematicians did not accept

their existence until they were mentioned by Guass’ fundamental theorem of

algebra and then used successfully in modeling physical structures that were

otherwise unapproachable. As well as in the early stages of the calculus,

where the hesitation within applying the math was raised from the ques-
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tionable use of the infinitesimal. Berkeley, as well as other mathematicians,

were unconvinced that the calculus as proposed by Leibniz and Newton had

consistent foundations. Colyvan gives an example Dirac's equation with the

introduction of the delta function. Dirac knew this equation would cause a

controversy based on its improper function. Along with his rigorization of the

equation he wrote a sort of “users guide” to his equation claiming that there

was a ontologically correct version of this equation, however, the solution

becomes more salient with the given equation [10]. Here, the mathematician

gives a philosophical warning in correlation to his theory. If Maddy is right

in thinking mathematicians are not bothered by the philosophy they invoke,

then we would not see Dirac's warning.

There is, however, a more concerning objection to account for in Coly-

van's response. Maddy raises the idea that mathematical practice does not

mirror mathematical realism as explained by The Indispensability Argument.

Colyvan's rebuttal uses the account of holism given by Quine, and claims that

Maddy is misunderstanding Quine's intentions. Maddy notices a disconnect

between mathematical practice and scientific practice. Mathematicians do

not commit themselves to theorems because of their utility; they believe

the theorems based on the provability from given axioms. Colyvan draws a

distinction between two types of belief to put at the background of Maddy's
worry. When mathematicians assign truth to a theorem they are doing so be-

cause the theorem is in accordance to the other true axioms that contributed.

Colyvan claims that there is no ontological grounds until the mathematical

claim is rendered useful to empirical science [9]. The workings of pure mathe-

maticians should not be concerned with the ontological commitments of their

theories until they are applied as indispensable to empirical observations.

This seems right, however, Maddy claims this leaves a great deal of math-

ematics unaccounted for [21]. If we are only ontologically committed to the

mathematics that makes the way into the empirical sciences it seems as

though The Indispensability Argument isn't as strong as we once thought.
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As we have seen in this survey of indispensability, there is not specific indi-

cation that a mathematical theorem will become indispensable. Therefore, it

seems like we should allow the possibility for all mathematics to eventually

be applicable to empirical findings. There are constantly branches of math-

ematics becoming linked by the discovery of hidden connections. However,

Quine does raise the question of mathematical recreation, and claims some

abstract branches of mathematics are considered to be without ontological

rights according to The Indispensability Argument. This doesn't mean that

mathematicians are misguided in continuing to pursue such abstract avenues.

As we saw with complex numbers, mathematicians were not considering the

possibility of them being mapped onto Euclidean space. The mathematicians

in this example were not committed to the entities in their results, but even-

tually there became a reason to be committed to complex numbers. In this

example mathematical recreation was shown to be increasingly important

as complex analysis became more rigorous. Maddy misunderstands mathe-

matical practice in this way and thinks we must endorse ontological rights

to all mathematical entities in order for them to relevant. The practice of

mathematicians illustrates their faith that the underlying current of mathe-

matical patterns will eventually tie the theory together. Perhaps this does

not happen in the majority of mathematical pursuits. The few times these

miraculous connections are found gives enough reason to endorse mathemat-

ical recreation as a worthy endeavor.

3 Newtonian Cosmology and Inconsistent In-

finite Sums

3.1 An Introduction To Newtonian Cosmology

Newtonian Cosmology possibly contributes an argument against indispens-

ability that has not been touched on by Penelope Maddy. Thus far, each case
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study illustrates the power of mathematics to push scientific discovery and

development further. In some cases the progress of science has demanded

more rigorous mathematics to formalize the results. When we don't react to

the demand we see examples of unsuitable mathematics that fails to stabilize

scientific theory. Broadly speaking, this is what happened for two–hundred

years with Newtonian Cosmology. The controversies embedded within New-

tonian Cosmology are numerous from a physicist's standpoint. In John D.

Norton's paper, “The Cosmological Woes of Newtonian Gravitation The-

ory”, he points to a handful of issues within the theory that are mutually

inconsistent. My focus will be how the theory deals with infinite sums, and

more specifically, how some results require one outcome and other results re-

quire the opposite outcome. Our incomplete understanding of infinite sums

lead us to overlook important results in the study of time evolution and the

expansion of our universe.

Newtonian Cosmology describes the evolution of the universe exclusively

using the language of Newtonian Dynamics. Newtonian Dynamics is the

study of a particle as stated by Newton's laws of motion. In 1687, New-

ton devised an impressive picture of universe in his work “Principia” . He

described an infinite universe with gravitational balance and uniformly dis-

tributed matter. This was remarkably advanced for his time and set the stage

for many fields of science for years to come. The main question considered

by Newtonian Cosmology aims to find the net gravitational force of a given

test particle at any arbitrary place in the universe [26]. In order to attempt

a solution scientists use a combination of Newton's law of gravitation, Pois-

son's equation, and considerations of symmetry and gravitational potential.

Through this approach, inconsistencies arise.

Peter Vickers is particularly interested in understanding the nature of

these inconsistencies. His book “Understanding Inconsistent Science” points

to Newtonian Cosmology as an exemplification of a particular type of math-

ematical error leading science. He claims there are two main types of con-
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tradictions in this theory. Primarily, there is the kind of contradiction that

arises when the force of a specific test particle is both X and Y where X 6= Y

The other notable contradiction surfaces when the force on the particle is

both determinate and indeterminate. The bulk of the mathematical interest

resides in the second kind of contradiction. Vickers calls the contradiction

C5 in his book, where C5 is “it is the case that there is a unique gravitational

force on a test mass and it is not the case that there is a unique gravitational

force of a test mass.” I will call the first part of C5, P, and the second part

6= P. If the larger theory was consistent it would be impossible to derive both

P and 6= P.

These conclusions follow from applying Newton's three laws of motion,

Newton's inverse square law of gravitation, and the fact that in an infinite

Euclidean space matter is distributed isotropically and homogeneously. The

issue can be seen through applying each of these aforementioned laws to arrive

at the conclusion that the net force on a given test mass is undetermined.

However, it is an axiom of Newton's three laws of motion that there is always

a determinate force on a body. Simply by looking at Newton's inverse square

law of gravitation and the fact about matter we get an indeterminate infinite

sum. The mistake is to take this infinite sum as meaning there is no unique

gravitational force on the test mass. It could simply mean that using the

inverse square law and the fact about matter are not the right means to

determine what the force is. Scientists can either take indeterminacy as

meaning no solution has been reached or that there is no solution.

3.2 Infinite Sums

The possibility of arriving at a contradiction depends on how one handles

the indeterminate sum. This fact was exploited by early scientists fond of

Newtonian Cosmology. If we take this infinite sum to mean that there is

some solution that has yet to be discovered, then we have a consistent theory.

However, if the indefinite sum is inferred as no possible solution, then we have
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a contradiction to the laws of motion. It wasn't until two hundred years later

that Cauchy showed that the contradiction-free application was the wrong

way to deal with infinite sums.

Cauchy proved that when faced with an indeterminate sum there exists

no solution. When faced with indeterminacy the only correct way to proceed

is to conclude there is no solution. Overlooking this result in cosmology is

nothing less than a metaphysical error. Scientists used incorrect mathemat-

ics to grasp a metaphysical understanding of forces in the universe. The

mathematics was inconsistent, in turn causing inconsistencies in the meta-

physical conclusions. Therefore, our conclusions about physical properties in

the universe rely on a complete understanding of infinite sums.

This illustrates one of the issues that can arise when scientists use incon-

sistent mathematics as indispensable to their physical theories. The under-

lying structure of infinite sums points to a truth in cosmology that would

have gone unnoticed using the incorrect framework. In other words, without

understanding the actual structure of these infinite sums our cosmological

truths are inconsistent. The indispensability of mathematical truths govern

the consistency of our theories, and in this case we only got so far because

we were not reading the infinite sums correctly. Perhaps without surprise,

this is not the only time failing to understand infinity caused issues when ap-

plying mathematics. Infinity is prone to inconsistency, and before Cantor's
proof regarding cardinality, mathematics concerning the size of infinity was

inconsistent.

3.3 Applying Inconsistent Mathematics

The case of Newtonian Cosmology illustrates issues within the empirical sci-

ences that arise based on mathematical error. This error was not trivial

because there was not yet a clear understanding of how to approach infinite

sums. Two hundred years later, this issue was ironed out with the help of

Cauchy in his convergence test. There are cases where the inconsistent math-
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ematics is impossible to iron out, leaving the physical problems at a stand

still. Most of these situations stem from known paradoxes in mathematics

that when applied to physical systems cause inconsistency.

Godel's Incompleteness Theorem, previously outlined in section 1.2.3,

exemplifies that some mathematical statements are simply undecided. This

proof caused many mathematicians, including Godel himself, to enter ex-

treme existential crisis. Hilbert, and other mathematicians looking for a

complete system of logic, were shocked to realize that any system they ever

developed would rest on at least some assumptions that are unprovable.

The example of the machine in 1.2.3 illustrates the theorem’s obvious im-

plications to artificial intelligence. Alan Turing was the first person to take

Godel's work and apply it to the physical world. In an article from late last

year Davide Castelvecchi reported on unanswerable physical problems based

on this paradox given by Godel.

Condensed matter theory is one field where such unanswerable physical

problems have surfaced. Scientists have tried to understand the gaps between

the lowest energy levels of electrons in a given material. Using an idealized

model of the atoms, scientists have found that it is impossible to calculate this

property. Toby Cubitt, a quantum physicist, stumbled upon this result while

studying spectral gaps between electrons. His research was focused on the gap

between the two lowest energy levels that electrons occupy within a material.

This is an especially important layer because in some materials, this gap is

the determining factor of the material becoming a superconductor [7]. The

researchers devised a theoretical model of an infinite two dimensional “crystal

lattice of atoms” [7]. In this model, the “quantum states of the atoms in the

lattice embody a Turing machine, containing the information for each step

of a computation to find the material’s spectral gap” [7] The issue occurred

when Cubitt saw that for this kind of infinite lattice, it is impossible to see

whether the calculation ends or the gap remains undecided. The team found

that on a finite lattice the calculation was always finite, however, because
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of the possible undecidability with the infinite lattice, they cannot draw any

general conclusions about the spectral gap. This question about infinity is

problematic because it introduces the possibility of an abrupt change within

the gap that cannot be accounted for.

Cubitt claims that this is the case with quite a few problems of mat-

ter theory. He points to a few examples that currently are getting massive

mathematical attention and claims there is the great possibility that they

are unanswerable. For example, the Yang–Mills mass-gap problem has been

posed by the Clay Institute with a multi–million dollar prize attached to the

solution. This type of problem stems from the inaccuracy of our current

system when dealing with why force–carriers have mass while photons are

massless. This case is of particular interest because the scientists in question

would not know what to do with such a result, if Godel had not proven his

Incompleteness Theorems. In this example, inconsistent mathematics proved

to be indispensable to our theories about matter. “Undecided” as a possi-

ble scientific result came from Godel?s earth-shattering mathematical proof.

Mathematics is typically appealed to for problem solving, however, in this

case we see how a truth of mathematics actually creates undecidability for

the sciences.

This understood undecidability in the sciences is based on the undecid-

ability result illustrated by Godel. Godel's proof allows scientists to remain

calm when an experiment yields “undecided”. This ties into the conversation

of inconsistency because we can see how science does not simply decide to

be modeled by the best conclusive and consistent mathematics. This fur-

ther reinforces the value of studying these typically forbidden areas within

mathematics and science for further results.
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4 The Worry of Inconsistency

Inconsistent mathematics is the branch of mathematics of non-classical logic

that can tolerate the presence of a contradiction without turning every sen-

tence into a theorem [23]. This definition provides a nice starting point, since

clearly the mathematician is going to have to introduce a way to reform the

existing logical structure. Francisco Miro Quesada introduced the logical ba-

sis called paraconsistent logic. Broadly speaking, this inconsistency–tolerant

system allows certain mathematics to have some inconsistency without being

completely disregarded. An inconsistency in number theory would entail a

theorem claiming X and another theorem claiming ∼X simultaneously. As if

this situation weren't enough of a quandary, we must also note the ontology

of the objects at hand: more specifically, that the objects in question are

consequently inconsistent due to governance by inconsistent theorems.

A perceived strength of mathematics is that the mathematical world is

considered to be free from uncertainty. We like to hold math to this standard,

as the subject where there is always a “right” and a “wrong”; unfortunately,

the picture is slightly more muddled than early logicians may have hoped.

The formalist goes so far to claim that in order for a mathematical structure

to be considered as an object of study, it must be consistent. The platonist,

however, might be in trouble if they are willing to take inconsistent mathe-

matics seriously. According to The Indispensability Argument, they would

have to also occasionally accept the existence of inconsistent objects, which

is more philosophically troubling than the acceptance of abstract objects.

Platonist must possess a firm understanding of where the indispensability

thesis leaves them with inconsistent mathematics. A look at specific incon-

sistencies provides a better understanding of their place within the landscape

of mathematical practice and the field of mathematics more broadly.

A glance at the history of mathematics is sufficient to understand the

value of critically considering inconsistent mathematics. There are two cases

of inconsistencies that need approaching. Primarily the inconsistencies that
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are apparent to the mathematicians. This kind of inconsistency is illustrated

by Dirac providing mathematicians with a warning of the inconsistency issues

within his equation. Another, more controversial example, can be seen in

the early calculus when one proof uses two different notions of convergence.

The second kind of inconsistency is seen when the mathematicians do not

realize the inherent flaws in their theory. Seeing as there are times when we

don't know when things are inconsistent we should have a way to deal with

it philosophically before the inconsistency emerges. Pre–paradox naive–set

theory is, of course, the notorious case of this strain of inconsistency. I want

to focus on the overall application of inconsistent mathematics to see how

inconsistencies weigh on the philosophy of mathematics as a whole.

4.1 Inconsistent Calculus

The Indispensability Argument is arguably the only reason to take mathe-

matical platonism as a possibility. If this is the primary reason to believe

in mathematical objects, then we believe in the existence of the objects in-

dispensable to our best scientific theories. What if our best scientific theory

involves inconsistent mathematics? If the reason is as stated above, then we

have the same justification for inconsistent mathematics as we do for consis-

tent mathematics. Colyvan illustrates this point nicely with the somewhat

obvious example of the early calculus. The calculus, proposed by Leibniz and

Newton, was inconsistent in a few ways. Primarily, the partial understanding

of infinitesimals made it seem acceptable to write equations like this, a = a

+ δ, where δ is a changing quantity [9]. It should be noted that this equation

was actually the submitted revision for a more problematic mistake. Newton

advised the above equation as a way to get rid of the issue seen when we

divide by an infinitesimal, where sometimes the infinitesimal was treated like

zero and other times as a fixed quantity. Early calculus required equations

like the one above in order to capture the basic structure of changing quan-

tities. However, clearly a = a + δ is an inconsistent function because when
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δ is anything other than zero we get a false equation.

Eventually, calculus was put on a firm basis by Lagrange, Cauchy, Bolzano,

and Weierstrass. Lagrange was the first person to realize that algebra would

be an ideal base for calculus because it included infinite products and series

without the necessary appeal to the derivative using ε and ρ notation. He

used the coefficients of Taylor Series expansions to find derivatives. Cauchy

then offered the revolutionary insight of the limit. He described how the

rigorous foundations of the limit could account for the integral, infinite se-

ries, the derivative, and continuity. Weierstrass formally proved Cauchy's
findings in the 1870's completing the improved calculus [13]. The main issue

with this history is the fact that for over 150 years the inconsistent version of

the calculus was being applied in all different areas. During this time, using

calculus helped us understand the effects of changes in systems in economy,

engineering, science, architecture, and more.

If we are taking The Indispensability Argument seriously, this poses quite

a big problem, perhaps even larger than the issues raised by Penelope Maddy

in section 2.4. To grant the existence of certain mathematical entities based

on their apparent indispensability to science is an issue in the case of the

early calculus. From the beginning of calculus up until 1873 we were com-

mitted to the existence of inconsistent objects. If one desires to argue against

this commitment to inconsistency in this case, the reasons to believe in the

indispensability of other consistent entities falls through simultaneously. An

argument claiming that such inconsistent theories cannot be suitable for our

best theories would go against naturalism and the appeal to the working sci-

entist. People in favor of The Indispensability Argument need to understand

the possible consequences of such a claim in mathematical ontology. It is

subject beyond the scope of this paper but worthy of further inquiry.

This is not to say these inconsistent commitments force the platonist

to immediately adopt inconsistent mathematics. We have seen cases where

the mathematicians in question have not realized that they are committed
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to inconsistent objects. In the case of Newtonian Cosmology, scientists were

indeed committed to two inconsistent theories which called for an adjustment

of their overall theory. This case might initially look troublesome to the

platonist, however, if there are two contradictory ideas in a theory we can still

see a reason to believe in the existence of mathematical entities. Newtonian

Cosmology was committed to there being either the entities on one side of the

inconsistency or the entities on the other side of the inconsistency. Perhaps

in the future it becomes clear that they are only justified in committing to

the consistent side, and then dispel the necessity of the inconsistency. This

illustrates the desire to iron out inconsistency eventually. The commitment

to inconsistent objects might be uncalled for in certain cases because the

platonist still is getting what they need to move forward.

4.2 Paraconsistent Logic

Colyvan makes controversial inferences from mathematical practice, however

he considers inconsistencies in mathematics more than other philosophers in

favor of platonism. It is suffice to say that neither nominalism nor platonism

is comfortable committing to the existence of inconsistent objects. Colyvan

argues that when faced with the question about the ontological commitments

of an inconsistent theory we must embrace paraconsistent logic. Without

paraconsistent logic we implore classical logic where from an inconsistency

comes trivialism: where everything is true. Furthermore, this trivialism can

be set within an indispensable theory which means that it can be shown

using classical logic that anything exists.

1. h = 0 ∧ h 6= 0 (Assumption)

2. h = 0 (1,∧ − elimination)

3. h = 0 ∨ ∃xTx (2,∨ − introduction)

4. h 6= 0 (1,∧ − elimination)

5. ∃xTx (3, 4, Disjunctive Syllogism)
Paraconsistent logic does not allow inference through disjunctive syllo-
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gism which means that we do not run the risk of lapsing into trivialism. Is

this idea of using paraconsistent logic plausible?

If supporters of The Indispensability Argument decide to take paracon-

sistent logic seriously the consequences are not trivial. Paraconsistent logic

acts as a foundation for many philosophical areas. Endorsing this kind of

logic would not stop philosophers from applying this outlook to epistemol-

ogy, metaethics, deontic logic, artificial intelligence, semantics, and electron-

ics. The Indispensability Argument originally seemed to be a claim about

entities in science and mathematics however the repercussions are vast. The

inconsistent mathematics we have seen creates tension in the foundations of

this argument. In order to implement indispensability further, we have to be

weary of the weighty philosophical consequences.

4.2.1 Paraconsistent Logic in Science

Colyvan looks to scientific practice and observes it could be plausible for sci-

entists to invoke paraconsistent logic when working with inconsistent theories

[9]. In fact, it seems like there is no other option for scientists who knowingly

involve inconsistent science or mathematics. We have seen a few inconsis-

tencies within science based on mathematical inconsistencies but there are

also inconsistencies that are purely scientific. An example that follows nicely

from the conversation about Newtonian Cosmology as discussed in 3.1 is seen

when scientists try to apply Newtonian gravitational theory to spiral galax-

ies and get a contradiction. In this this study we have titled an object as

indispensable to the theory if there is no competing theory that is as good

without the object being discussed. Inconsistency is not necessarily a reason

for scientists to render the theory useless because there are many other fac-

tors to keep track of. Colyvan and Putnam agree on these factors, including

empirical adequacy, simplicity, utility, and explanatory power of the theory

in question. If consistency held more power than these other attributes, we

would not see working scientists giving thought to inconsistent mathematics
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or science. It is worth pointing out that this is a clear application of Quine's
naturalism because it is zooming in on the practice of scientists.

4.2.2 Paraconsistent Logic in Mathematics: Set Theory

Paraconsistent logic is more complicated when turning to mathematical prac-

tice. Applied paraconsistent logic in mathematics is best seen with the exam-

ple of naive–naive–setset theory. Naive–set theory was a response to Hilbert's
programme within formal logic. David Hilbert challenged mathematicians to

find a consistent and complete set of axioms from which all mathematical

theorems could be derived. Naive–set theory is based on two axioms, ab-

straction and extension. Abstraction says that for a given property there is a

set of all of the objects that satisfy this property, for example, if the property

is “tall” there is a set that is “objects that are tall”. Extension claims that

in order for two sets to be considered the same, it must be the case that their

members are the same. With this theory, we can create any set as long as

they satisfy these claims.

Godel's Incompleteness Theorem given in section 1.2.3 proves that there

is no possible way for such a system to be complete. Russell's Paradox

introduces a precise set that this set theory can not account for.

R = x|x /∈ x

Here we see that there is no answer to Russell's question. In order to be a

member of itself, x must not be a member of itself. Therefore if x is in R then

x is not in R, and if x is not in R then x is in R. Naive–set theory can not

rationalize this set, and therefore is incomplete just as Godel had anticipated.

To formalize a theory to take set R into consideration, Ernst Zermelo and

Abraham Fraenkel had to dispose the first axiom of abstraction and replace

it with eight other much more complicated axioms. These axioms included

the axiom of regularity, schema of specification, pairing, union, schema of

51



replacement, infinity, power set, and the well–ordering theorem. In addition

to these new axioms, they created a hierarchy of sets that are used to make

new possible sets. It is safe to say set R cannot be constructed using this

hierarchy.

This impressive reformation of naive–set theory given by Zermelo and

Fraenkel comes with two main costs. First of all, it is unnecessarily confusing.

The extra axioms seem to obviously be addressing a specific problem and not

for any real systemic reason. To prove 1+1 = 2 using this system, Russell and

Whitehead needed 379 pages [22]. This cumbersome system does not make

sense when mathematicians want to apply it to consistent mathematical sets.

Does the issue of a possible inconsistency merit all of these arguably ad hoc

specifications?

It turns out that most mathematicians do not seem to think a possible

inconsistency labels the entire theorem as useless. Naive–set theory, or a sim-

ilar brand, is still used with caution in fields such as analysis, topology, and

algebra [11]. Maarten McKubre–Jordens, a modern mathematician practic-

ing at the University of Canterbury, claims that although mathematicians

might not be quick to admit it, they use naive–set theory in their informal

arguments. Mathematicians rationalize this by claiming that it is reducible

to a set in Zermelo–Fraenkel set theory and that is enough reason for them

to proceed. We see mathematicians being tolerable of inconsistent theories

remaining aware that if they are not careful they could run into difficulty.

Perhaps the mathematicians are right and their theories can be put consis-

tently, but the crucial point of interest is that they are not afraid of the

possibility through using this method. Mathematicians use inconsistent the-

ories to pursue the development of other branches that are applied across

many fields [11]. As well as in set theory, mathematicians used the early cal-

culus knowing it stood on inconsistent foundations. Despite the presence of

contradiction, many useful conclusions were made here. It does not seem out

of the question that mathematicians use paraconsistent logic when working
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because they are making use of theorems that are known to be inconsistent.

After this more consistent version of set theory was devised it was ques-

tionable whether it was as powerful as the original theory. Instead of clas-

sifying Russell's paradox as a problem that needs solving, paraconsistent

logicians treat these instances as points of interest worthy of pursuing. This

opens up an entirely new area of study because there are objects that are

only accountable by inconsistent mathematics. McKubre–Jordens puts it

nicely when he says, “Allowing inconsistencies without incoherence opens up

many areas of mathematics previously closed to mathematicians, as well as

being a stepping stone to making sense of some easily described but difficult

to understand phenomena ” [22]. Paraconsistent logic draws a line between

contradiction and absurdity. This creates a system that can be inconsistent

without being completely incoherent unlike in the troll example in 4.2. This

application of paraconsistent logic is illustrated well with the inconsistent

drawings on M.C. Escher and Oscar Reutersvrd. Reutersvard's drawing of

the penrose triangle is unapproachable using consistent geometry. With this

example we see a clearly inconsistent but coherent drawing of a shape that

can only be accounted for through adopting paraconsistent logic.

A more relevant example can be seen in computer science with the halting

problem. We touched on Alan Turing's application of Godel's theorems to

computer programing in section 3.3. The halting problem is a consequence

of this theorem. In computer analysis the halting problem arises when one

cannot determine the fate of an arbitrary running program and an input.

Alan Turing found that a general algorithm to solve this problem for all

possible pairs of input and output cannot exist. This issue of finding whether

or not an algorithm will halt in finite time is similar to many problems

in mathematics and science. Through applying paraconsistent logic, this

problem does not become a dead end worth avoiding at all costs. Instead,

these kind of problems can be re-evaluated for further understanding.
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4.2.3 The Ability To Model Reality Through Mathematical Mod-

els

As we saw with the case of complex numbers, the powerful world of math-

ematics is still a mystery to us. It never occurred to mathematicians that

the controversial complex numbers could be used to adequately to model the

structure of space. The refusal to move forward in studying these inconsis-

tent systems is a scientific error because it does not encourage additional

discovery. The successful application of inconsistent theories is also of inter-

est to the philosopher. We have seen the inconsistent mathematical theories

of calculus and pre–paradox set theory be used to model the real world in

nontrivial ways. If we assume to be living in a consistent world then why is

it the case inconsistent mathematics can so adequately model physical phe-

nomena? Before tackling this problem, there is a question concerning the

nature of mathematics in general that is worth looking at.

The applicability of mathematics, unlike inconsistent mathematics, has

received a considerable amount of attention from philosophers. This problem

relates to the further issue of how an a priori system like mathematics is an

adequate tool for empirical science. There is a general consensus in philoso-

phy that the success of a mathematical theory applied to a physical system

is due to structural similarities between the structures of the two systems [9].

Colyvan points to physical space being modeled successfully by IR3. This is

a special case because the two systems are isomorphic, however, this does

not accurately account for non-isomorphic structures. Colyvan claims that

although extensive work has been done on this topic, no one has successfully

explained how non-isomorphic structures can be explained by one another.

These are huge topics worth further study, however, for my focus I want to

how inconsistent mathematics adds a new facet to these problems.

The question revolves around the assumption that we live in a consistent

world but on occasion it can be structurally assessed by inconsistent theories.

For example, the world explained by calculus for 150 years before Cauchy
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set what Newton and Leibniz started on firm foundations. Colyvan argues

that the early calculus was so successful in physical applications because

it had the important features of the consistent calculus. It seems in this

instance it matters only if the mathematical theorem captures the salient

aspects of the empirical phenomenon at hand [9]. Colyvan then makes the

observation that the proposed model can achieve this independent of the

modelers knowledge [9]. The similarities between the two calculus'explains

why the calculus presented by Leibniz and Newton was so useful. There

are many incorrect theories that have been extremely useful for capturing

the attributes in the contemporary questions. The fact that an inconsistent

theory proves to be so useful could point to a consistent theorem in the

distance. This is another reason to study and not abandon inconsistent

mathematics. A critical study of the inconsistency will lead mathematicians

to a thorough view of why the inconsistency is present. Narrowing down on

a specific inconsistency is the crucial steps in finding the suitable consistent

theory [9].

William Byers also speaks to contradictions in mathematics as a way to

propel discovery. In his book “How Mathematicians Think: Using Ambigu-

ity, Contradiction, and Paradox to Create Mathematics”, he touches on the

creative process of mathematicians. He claims that mathematical progress is

by way of present contradiction. The mathematicians job is to take at first

sight unrelated perspectives on a mathematical structure and unify them

through using known mathematics. Byers makes the argument that a com-

prehensive view of any mathematical system would not be feasible without

the practicing mathematician using inconsistent ideas at some point in their

discovery. Mathematics as a human activity is further testament to how the

underlying mathematical truths are applicable to our physical systems.
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4.3 Conclusion

The uncanny ability of mathematics to model physical systems speaks multi-

tudes to the nature of mathematics. An evaluation of indispensability shows

that a remarkable amount of mathematics has gained footing in the empirical

sciences through explanatory power. When such mathematics is derived it

is often complete with many unobservable corollaries. These abstractions,

although not yet directly applicable to the physical sciences, further root our

discoveries of mathematical truths. There is a trial and error within this

discovery that is much more obvious within the evolution of science. Math-

ematicians are tapping away at the surface of mathematical truths trying

to make our formulated notation consistent with other existing truths. This

sheds light on mathematics as a fundamentally creative activity.

If it is important for working scientists to believe in the existence of

the entities in their theories, then they must adopt paraconsistent logic as a

consequence of the power of The Indispensability Argument. We have looked

at scientific cases where the mathematics in question is inconsistent. In order

to press forward in scientific development it seems reasonable to adapt the

paraconsistent framework with caution. This being said, consistency remains

a possible virtue of mathematical theorems. Nevertheless, consistency is

not the only virtue a theorem can entertain. Mathematicians and scientists

should strive for consistent models to apply to empirical occurrences. It

is not, however, always counterintuitive to endorse inconsistencies along the

way seeing as a better understanding of the particular inconsistency can point

to a solution. The available inconsistent theorems might better capture the

underlying mathematical structures at play. Without taking advantage of

these available theorems, mathematicians and scientists leave the possibility

of missing out on further understanding mathematical truths within their

study.
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