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Introduction 

This work began with an investigation of computer science education at the 

Claremont Colleges. What becomes obvious, when discussing computer science at these 

schools is that in recent years teaching computer science has become a popular topic of 

discussion between educators, students and those within the technology industry as well 

as within popular culture.1  What is often discussed in both the media and industry are the 

increasing number of jobs and the lack of diversity in both race and gender within the 

technology industry and the field of computer science. This has led to an explosion of 

literature on how computer science should be taught as well as literature and programs 

designed to increase both the general knowledge of computer science practices and 

minority involvement in the field. In relation to the Claremont Colleges, professors and 

the departments are aware of the current societal discussions of computer science and 

ideas on how to make the field more inviting to students from differing educational 

backgrounds. Computer science as a field of study has grown to encompass many 

different topics within the relatively short time it has been in existence. This has created 

an increase of interest in computer science and its potential applications are seen as wide 

ranging.  

Throughout this thesis, I will discuss how the undergraduate computer scientist is 

trained, and how they learn what I am calling computational intuition. Computational 

intuition is a phrase that I am using to describe the methodology in which computer 

                                                           
1 Often technology industry is referred to as the industry. These go beyond just the applications that are 

used on the phone, but also include items like pieces of hardware, say your cable box, the keyboard on your 

computer as well as many other hardware items that you might not think of as involving computer science.  
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scientists approach their problems and solve them through the use of computers. 

Computational intuition is described as a series of skills and a way of thinking or 

approaching problems that students learn throughout their education. This involves not 

only the specific skills and concepts, but the larger and more nebulous manner in which 

problem solving occurs within computer science.  The main way that computational 

intuition is taught to students is through the experience they gain as they work on 

homework and classwork problems. To develop computational intuition, students learn 

explicit knowledge and techniques as well as knowledge that is tacit and harder to teach 

within the lectures of a classroom environment. Computational intuition includes 

concepts that professors and students discuss which include “computer science intuition,” 

“computational thinking,” general problem solving skills or heuristics, and trained 

judgement.  

 It is evident when talking to students and professors that there is the idea that 

students are supposed to develop what is called a “computer science intuition.” However, 

the phrase “computer science intuition” does not in itself capture all of the meaning that 

the computer scientists have when they employ that phrase.  Using the word intuition 

often points to an instinctive feeling or understanding and there is some element of this in 

computer science. There are gut feelings and snap judgments about how a computer 

scientist might solve or approach a problem. However, what is ignored within the concept 

of intuition is a sense of reasoning and the strategies that are employed to solve 
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problems.2 These snap judgments and ideas that make up the more common definitions of 

intuition and represent a single portion of computational intuition that the students are 

learning throughout their education. 

Another facet of computational intuition is the idea of “computational thinking,” 

which is a skill that students are expected to master. Computational thinking uses 

heuristic reasoning to deal with complex and open ended problems by using a process of 

logical analysis to break down the problem into smaller parts and then creating a serious 

of steps that solves the problems.3  Computational thinking is one of the key components 

of how computer scientists solve problems and is a specific way of solving problems that 

is considered to be from computer science. Eventually, the smaller steps would be broken 

down into commands that the computer can performs to achieve the task asked of it. The 

ability to deploy computational intuition is demonstrated in the successful demonstration 

of solving a problem.  

The variety of problem solving techniques within computer science, including 

computational thinking, can be described using the word heuristics. The idea of 

computational thinking is tied to the idea of heuristics because computational thinking 

uses “heuristic reasoning.”4 Heuristics is described as a “rule of thumb. It’s a method of 

reasoning that is powerful and general, but not absolutely guaranteed to work.”5 The idea 

of teaching heuristics within scientific education is considered another important topic 

                                                           
2 Merriam Webster Online, s.v. “Intuition.” 
3 “Exploring Computational Thinking” Google For Education, accessed March 30, 2016 

https://www.google.com/edu/resources/programs/exploring-computational-thinking/, paragraph 2.  
4 Jeannette M. Wing, “Computational Thinking,” Communications of the ACM 49, no. 49 (2006): 34.  
5 Michael E. Martinez, “What Is Problem Solving?” The Phi Delta Kappan 79  no 8, (1998), 606.  

https://www.google.com/edu/resources/programs/exploring-computational-thinking/
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closely tied to the idea of pedagogy. This is found both within the field of computer 

science as well as other scientific fields.  Herbert Simon argues that: 

“In teaching problem solving, major emphasis need to be directed toward 

extracting, making explicit, and practicing problem-solving heuristics –both 

general heuristics, like means-ends analysis, and more specific heuristics, like 

applying the energy conservation principle in physics.”6 

 

Within computer science, there is a focus on teaching students heuristics, 

Chandhry et al, points to the importance of teaching students tools for problem solving 

during their first years of studying computer science. Throughout their research, they 

discuss the fact that answers and ways to solve problems are relatively unknown to the 

students, and as they develop as computer scientists they build more methods of solving 

problems and more knowledge.7 What is more interesting is that this knowledge is not 

one which can be transferred easily; it is often something that can only be learned 

through practice, where the student is able “to generate the knowledge.”8 Professors can 

teach their students some hints of heuristics or give them examples on how to approach 

problems, but students must ultimately create their own strategies and ways of 

approaching problems.  To learn how to solve problems students need to be given 

problems where they are able to figure out how to generate problem solving skills and 

techniques. 

                                                           
6 Herbert A. Simon, The Sciences of the Artificial (Cambridge, Mass.: MIT Press, 1981) 
7 Nadeem Chaudhry, and Ghulam Rasool. "A Case Study on Improving Problem Solving Skills of 

Undergraduate Computer Science Students." World Applied Sciences Journal 20, no. 1 (2012): 34-39.  
8 Alexander Styhre. "Practice and Intuitive Thinking: The Situated Nature of Practical Work." International 

Journal of Organizational Analysis 19, no. 2 (2011): 109-26.  
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Heuristics do not always give the most accurate or even the most optimal answers, 

but they do allow for problems to be solved eventually. What is more important is they 

point to the situated nature of knowledge, as heuristics are a mixture which “involves an 

interaction of person’s experience and demands of the task.”9   

“Trained judgement,” is the last element of computational intuition and is 

borrowed from Lorrain Daston and Peter Galison. Lorraine Daston and Peter Galison 

demonstrate in their book, Objectivity, that the concept of trained judgment is part of the 

creation of the scientific self and how scientists approach their studies. In Objectivity, 

Daston and Galison focus on the use of images that the scientists create for atlases and 

the process they go through to represent that knowledge and make sense of it. This 

“trained judgement” is how scientists use their previous experience and gained 

knowledge to make informed interpretations of pictures.10 This is demonstrated when 

computer scientists make choices about different algorithms which they could potentially 

use during their process of problem solving. There are many different algorithms that a 

computer scientist can choose from that might solve the problem, but the choice they 

make depends on the situation and the type of problem they are solving.11 This 

demonstrates how trained judgment can be extended past the interpretation of photos and 

represents the manner in which computer scientists approach and solve their problems. 

The building of experience within computer science performs a multitude of 

tasks. It helps students build their heuristics, including computational thinking, as well as 

                                                           
9 Martinez, “What Is Problem Solving?” 606. 
10 Lorraine Daston and Peter Galison, Objectivity. (New York: Zone Press, 2010), 359. 
11 An algorithm is a procedure or formula, it is the step by step process for solving a problem 
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develops “trained judgment.”  This training is important in aiding the novice to see and 

understand what they could not before.12 It is the process in which they utilize their 

previous experience, and earlier solutions to problems to solve new problems. These 

processes are used to make decisions about how they are going to approach the problem 

presented to them.  

I argue that the way the professors and students conceptualize, teach and socialize 

together are designed not only to teach specific skills and concepts within computer 

science, but help the students understand the larger manner in which problem solving 

occurs within computer science. The goal of the computer science education at the 

undergraduate level is to expose students to the different areas of computer science and 

prepare them for graduate school or working in the industry by building their 

computational intuition.  

The Claremont Colleges 

When discussing the undergraduate education at the Claremont Colleges, it is 

important to note how the computer science departments at the colleges are arranged as it 

greatly influences the students’ experiences at the colleges. There are five colleges that 

are considered part of the Claremont Colleges these are: Scripps College, Claremont 

McKenna College, Harvey Mudd College, Pomona College, and Pitzer College.  Only 

three out of the five colleges have computer science departments; these are Harvey 

Mudd, Pomona, and Claremont McKenna. At these three colleges, there is mixing of both 

                                                           
12 Daston and Galison, Objectivity, 359. 
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students and professors from all five schools; especially as the demand for lower level 

computer science classes continues to increase.13 The main difference between the 

schools’ computer science programs is in their introductory courses. Harvey Mudd 

College has its own computer science department with its own specific introductory 

sequence. Meanwhile, Pomona College and Claremont McKenna College share a 

department and have an introductory sequence separate from those taught at Harvey 

Mudd. These sequences cannot be mixed, meaning if a student starts an introductory 

course at Harvey Mudd, they must complete the next courses in the introductory 

sequence with the Harvey Mudd computer science department.  These introductory 

sequences at the two different departments teach similar material, as the material is 

necessary to prepare the students for upper division classes. All departments have the 

goal of training their students to be as prepared as possible for either work or graduate 

school.  However, there are differences in the number and organization of the classes and 

other items such as the programming languages used.14 While students are tied to a 

specific colleges’ sequence for the initial courses, the upper division courses do not have 

this requirement.  

 This means that within the Claremont Colleges, there are various ideas about how 

to train the next generation of computer scientists. Though differences exist, there are still 

many similarities in how these professors teach their students, what they hope their 

                                                           
13 An examples of this is the Mudd introductory CS course being taught at CMC, as well as CMC and 

Mudd professors working on creating lower level computer science courses together.  
14 HMC uses python in their intro class, while CMC/PO uses Java. HMC has a three class introductory 

course, while CMC/PO has a two class introductory course. There is a lot of opinion on what languages is 

best for teaching students computer science and what levels are best. 
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students will gain from their classes and even the types of examples and homework 

problems the professors assign their students. 

The Claremont Colleges is where I had my first introduction to computer science. 

Going into college, I never expected to take a computer science class. More importantly, 

I never thought that the subject would be interesting for me. In fact, when I did decide to 

take my first computer science class, I thought there was a strong possibility that I was 

going to be absolutely terrible at the subject. Taking classes within the computer science 

department allowed me to develop contacts within the departments with both professors 

and students. My computer science classes have been at Harvey Mudd College and 

Claremont McKenna College. I have not taken any classes Pomona College, though that 

is also indicative of the way in which the computer science departments with the 

consortium function.  

At the time that I was determining my research topic, there were two driving 

forces that lead to my decision to study the computer science community at the 

Claremont Colleges. The first had to do with dynamics within the Scripps College 

campus, mainly with conversations that occurred over Facebook in the school year of 

2014-2015. Within the Facebook posts on the Scripps College Facebook group and in 

ensuing conversations, you could quickly see that there was tension between the Scripps 

students who were science majors and humanities majors. This tension dealt with a 

number of issues and potential complaints for the Scripps administration. However, one 

thing was clear in the conversations. Though these were all Scripps students and they 

shared a common bond, there was a belief that specific differences existed between the 



11 
 

two groups. These differences frequently lead to stereotyping of students as well class 

selection. Some students felt that science majors considered their science classes much 

harder than humanities classes leaving humanities majors feeling belittled. While on the 

other hand, humanities majors seemed to remain unsympathetic to science majors and 

how much time they professed to spend on their studies. It seems that on campus, 

students had begun to rank themselves and others based on majors as well as drawing 

lines between “science people” and “non-science people.” 

The second aspect that was a driving force for choosing my topic was the many 

conversations that I had with other students about computer science after I had taken my 

first course. Many of my personal friends asked me if they should also try an introductory 

computer science course. My answer was almost always yes, because it is a science that 

is not often taught in high school and you might as well try it at least once. It is 

considered a valuable skill to have, even if it is only one class, and can make a person 

seem more employable. In fact, the latter is a reason that many people do take at least one 

computer science class at the Claremont Colleges. However, my friends would often 

argue that they were not “computer science people.”  

After having these conversations, I began to wonder what exactly people meant 

by a “computer science person.” Especially, since this mirrors so many other statements 

such as people who say they are not a “math person” or are not a “science person.” I had 

begun to wonder exactly what those aspects were that made someone a computer science 

person and how that identity was born.  
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Methodology 

 This study was conducted over the course of the last four and a half months. 

During those months, I used participant observation in computer science classes at both 

Harvey Mudd College and Claremont McKenna College. Throughout this time, I 

conducted interviews with twenty-five Claremont College professors and students who 

had taken at least one computer science course. I had the opportunity to review 

homework assignments and grading guidelines that existed for some of the classes. 

Throughout these interviews, I discussed with students their experience taking classes at 

the Claremont Colleges and the skills that they thought were important to computer 

science and that they were learning throughout their education. I inquired about working 

on homework problems, and the methods in which they worked on their homework.  

When interviewing professors, I discussed what skills they thought were important for 

students to learn and the goals of their classes. Both students and professors were asked 

to define the field of computer science. 

Literature Review 

In The Structures of Scientific Revolutions, Thomas Kuhn discusses that 

revolutions in science are paradigm shifts that occur within groups of scientists who 

belong to a common field. Though, the concept of the paradigm shift in itself is not as 

important to my thesis, the idea of scientists as a group of people with a shared 

paradigm within which they operate is central. These paradigms include the fact that 

scientists have a shared set of beliefs that drive science and how a scientist performs their 

work. Drawing on the concept of a paradigm as a shared cultural belief, I take computer 



13 
 

scientists and computer scientists-in-training to constitute a sub-culture with its own 

methods of transferring information to novices.  This concept of scientists as a social 

group who can be studied is important, and as such can be studied with anthropological 

and other methodologies.  

My study also builds on Bruno Latour’s and Steve Woolgar’s Science in Action, 

which argues that the creation of knowledge is a process through which scientists 

perform socially and can therefore be understood through anthropological methodologies.  

Latour states that this form of examining scientific knowledge and communities is 

important because there is often a disconnect between how science is said to be done and 

how it is actually done. Within my project, exploring the difference between what 

computer scientists do and how people believe computer science happens will be 

important to understanding how the identity of a computer scientist is both created and 

maintained.  

The idea of scientists as a social group with their own norms and behaviors that 

are passed down is important to examining scientists and their practices within the field 

of anthropology.  In Beam Times and Lifetimes, anthropologist Sharon Traweek, writes 

an ethnography on particle physicists at the Stanford Linear Accelerator and an 

accelerator in Japan. Traweek describes how the scientists go about their daily lives and 

interact with one another as scientists as well as the machines at their sites. The 

conceptual views of the machines that that scientists utilize in their research, and the way 

they interact with them, is as important as the way that the scientists interact with each 
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other.15  Traweek describes the physicists as a social group that reproduced through the 

“training of novices.”16   This training and education of the novice to a full-

fledged physicist includes not only formal classroom training, but also tacit knowledge 

that is passed down from older physicists.17 The transfer of knowledge, and the methods 

employed in this transfer, is important to shaping the novice physicists as they move 

forward in their careers. Traweek describes the potential novice’s trajectory from 

undergraduate, to graduate and eventually the possibility of leading their own lab.  

Through this, Traweek addresses the most often told stories are male, and how the 

“cluster of characteristics is associated with success, a cluster that is part of our cultures 

construction of male gender.”18  This manner of considering the undergraduate scientists 

as a sort of novice who is being trained and having the transfer of knowledge is 

important, as well as the statements on the increasing complexity of knowledge that the 

novices are expected to gain over time. 

As we move from projects that represent the study of scientists as a social group 

and the production of their knowledge, we examine the concepts of computer science 

education and studies on retention of students. Often this research on the retention of 

students is focused on the pedagogy and how classes within computer science are taught 

to encourage or discourage certain groups from continuing in computer science. As a 

topic, computer science education is becoming very popular, making the literature rather 

                                                           
15 Traweek, Sharon. Beam Times and Lifetime (Cambridge, Massachusetts: Harvard University Press, 

1992).  
16 Ibid., 74 
17 Ibid, 74 
18 Ibid., 105 
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expansive, especially focusing on the methodology of teaching computer science at the 

introductory level, and which practices help in keeping students within the field of 

computer science.  

Turning to research performed by at universities, “Students Perceptions of 

Computer Science: A Retention Study Comparing Graduating Seniors vs CS Leavers.” 

This article examined a group of students at the Institute of Technology in Atlanta, 

Georgia who had all taken computer science classes. The students were then separated 

into two different groups: those who were graduating with computer science degrees, and 

those who left the computer science major. 

  They found that students left the major for variety of reasons including human 

interactions, rigor and workload, and connection of the skills they learned and application 

to the real world.19 These trends are also what various computer science departments are 

investigating as they address the topic of how to increase retention rates (and diversity) at 

their universities.  

  Within the field of computer science education, there is vast and fast growing 

literature of different ideas and pedagogies that help retain people to the field of computer 

science, as well as beneficial actions that professors can take. Research such as that done 

by Lorie Carter, demonstrate how those who drop computer science classes often view it 

as stereotypically male dominated, as well as asocial. When examining successful 

practices of computer science, literature points to a wide range of methods ranging from 

                                                           
19 Maureen Bigger, Anne Bauer, and Tuba Yilmaza. “Students perceptions of computer science: a retention 

study comparing graduating seniors with CS leavers”, ACM SIGCSE Bulletin 40, no 1 (2008): 402-406. 
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interactive approaches, to using game design as well as many other methods that might 

make students more successful. 

Collins, Brown, and Newman present the approach of cognitive 

apprenticeship, which allows students to learn how to solve problems and apply 

knowledge that is transferred to them in new ways.20 This is done through the interactions 

between their professors and other students. Cognitive apprenticeship is formed from the 

philosophy of constructivism, and focuses on the interactions that students have with 

their professors and peers as they work on problems or have problems modeled for them. 

A constructivist view of knowledge stresses that knowledge is embedded within a 

specific worldview, and underlines the importance of the interaction between the novice 

and more knowledgeable people within their field, as well as their own peers.  

Though cognitive apprenticeship is based on the ideas of a constructivist 

understanding of knowledge, computer science does require a large amount of 

knowledge to be transferred to students. Within the cognitive apprenticeship model, there 

is an emphasis on having the student gain independence and discover the solutions 

to problems on their own. Because of this, the cognitive apprenticeship is the method in 

which the ideas and the necessary skills for students to develop computational intuition 

are taught. It is not the manner in which a specific concept such as a certain data structure 

or the syntax of a language is learned from a professor, these represent transfer of 

knowledge.  It is during the process of problem solving and applying the knowledge 

                                                           
20 A. Collins, J.S. Brown, and S.E. Newman. “Cognitive apprenticeship: Teaching the crafts of reading, 

writing, and mathematics.” In Knowing, learning, and instruction: Essays in honor of Robert Glaser, edited 

by L.B. Resnick. (Hillsdale: Lawrence Erlbaum Associates, 1989), 453-494 
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transferred to them that the students are constructing new knowledge.  This discovery of 

the link between the concepts and how to implement a solution are very squarely in the 

realm of constructionist theory by Piaget and Vygotsky. 

Piaget’s ideas of education allow for the students to bring prior knowledge to 

build understanding for themselves. Within this idea is the focus on how the learner 

reaches the conclusions or solves the problem.21 Vygotsky, creating his theory of 

development around the same time, places an emphasis on social factors that help and 

contribute to learning.22 Both ideals allow for the transfer of knowledge between a 

student and a teacher, but it is ultimately left to the student to apply this knowledge and 

solving problems; students are able to construct knowledge that is not explicitly stated to 

them.  

To Do Computer Science 

Chapters 1 and 2 focus on how the problem solving process in computer science 

is developed. These chapters focus on the introduction and teaching of heuristics to the 

students.  Chapter 1 specifically discusses what computer science is and how professors 

and students conceptualize the field. The concept of what computer science is helps 

define the field within a practice of science, as well as point to specific aspects and 

beliefs about what the field is that computer scientists hold. These specific beliefs about 

what computer science is and how it is used, points to important aspects of the 

methodology of solving problems using computer science. How computer science is 

                                                           
21 S. A. McLeod. ”Lev Vygotsk.” Simply Psychology. 
22 S. A. McLeod. “Jean Piaget.” Simply Psychology. 
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defined provides the basis for why computational intuition is important and how it is used 

in solving the types of problems computer scientists are looking at.  

Chapter 2 discusses the social interactions that the students have with their 

professors, students, and the tutors. Here is where I draw on the pedagogy of cognitive 

apprenticeship to understand, not only how specific skills and concepts are transferred to 

the students, but the role that social interactions take to help students understand the 

heuristics behind solving problems within computer science. By building an 

understanding of how students are taught problem solving, it will be easier to understand 

how the students are taught computational intuition.  

Chapter 3 focuses on the homework assignments and how they are considered a 

primary area in which experience is gained. It is within homework assignments where 

computational intuition is used, applied, and developed by the students.  It is here that 

“trained judgment” is the easiest to demonstrate and discuss within computer science, 

especially as this is where professors most often indicate how they expect their students 

to be able to use trained judgment. 

Throughout these chapters, I will discuss the various aspects of computational 

intuition, and the practices throughout computer science education that teach the students 

these various characteristics that make up computational intuition. There are different 

ideas about how to teach computer science, ways of thinking, problem solving skills and 

methodologies that students learn throughout their time at the Claremont Colleges. 
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However, these are all taught in hope that students develop the computational intuition 

necessary for the computer science students to be successful later in life.  
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Chapter One: 

What is Computer Science? 

When discussing computer science and the formation of the computational 

intuition it is important to note how computer science professors and students define 

computer science. The way that these groups define computer science implies certain 

values that are considered important to the field of computer science, and what is taught 

throughout the classes. This in turn points to some of the main aspects of how computer 

science students are expected to develop their computational intuition and solve problems 

that are assigned in computer science courses.  

 While examining these definitions, there are two different viewpoints to consider, 

the outsider (someone who is not from the community) and the insider (someone who is 

part of the community). On one hand, there are stereotypical associations of what it 

means to do computer science. On the other, there is how computer scientists conceive 

the field of computer science and what it means to be a computer scientist. The way that 

professors and students define computers science also describes how students understand 

what they are studying and are building computational intuition.  

The manner in which professors and students define computer science often goes 

beyond the short characterizations that are found in dictionaries. These definitions of 

computer science range from “the study of computers and their uses”23 to “the science 

that deals with the theory and methods of processing information in digital computers, the 

                                                           
23 Merriam-Webster, s.v. “Computer Science”, accessed November 11, 2015. 
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design of computer hardware and software, and the applications of computers.”24  In 

addition, there are also the stereotypes and what it means to be a computer scientist; 

however, these stereotypes often miss both what computer scientists do and how they go 

about their work. These stereotypes, and the way that computer scientists are often 

depicted in popular culture, frequently involve the notion that a computer scientist only 

sits in front of a computer and programs all day.25 There is also the idea that computer 

scientists are unsociable and do not talk to anyone.26  Beyond those definitions and 

stereotypes, it is the definition of computer science that the computer scientist gives that 

provides the basis of understanding some fundamental components of computer science 

across the various sub disciplines.  

Research has shown that the way in which people view computer science is a 

contributing factor to why students choose to leave or stay in the field, or even decide 

whether or not to enter the field at all.  In a study about the retention of students in 

computer science, Biggers et al, asked students what computer science was. They found 

that students who left were more likely to think that computer science was primarily 

coding, and often viewed the field as asocial, and is composed of repetitive tasks.27 This 

perception came from taking only introductory courses that were programming heavy and 

did not necessarily introduce “bigger picture ideas about what computer science is.”28  It 

                                                           
24 Dictionary.com, s.v. “Computer Science”, accessed November 1, 2015. 
25 A program is a sequential set of instructions written by the computer scientist that allows them to tell the 

computer what they want it to do.  
26 Lorie Carter. “Why students with an apparent aptitude for computer science don't choose to major in 

computer science." ACM SIGCSE, date accessed December 10, 2015, 22. 
27 Bigger, Brauer, and Yilmaz, “Students perceptions of computer science”, 406.  
28 Ibid, 406 
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was because of these early experiences that students often believed that computer science 

was only coding and that meant many of the students lost interest in the subject.29 These 

stereotypes described in the paper by Biggers et al, and the dictionary definitions are 

more of an outsider view of computer science that most people are exposed to. However, 

it is the insider view of the definition of computer science that is important to recognizing 

how computer science students understand what computer science is, how to approach 

their work and what computational intuition is.  

The “Insiders” 

When the professors and students are interviewed and are asked to describe or 

define computer science, they consider it to be an unwieldly task. This gave the 

impression that the answer could not necessarily be pinned down in a concise manner. In 

fact, one professor admitted “that [they] didn’t know if there was a good definition of 

computer science.”30 Computer science is still a relatively new academic discipline with 

the first academic department in computer science arising post World War II. This was 

after many developments in computer science occurred in the areas of military research 

and technology.31  As a discipline, computer science has come to consist of many sub-

                                                           
29 Bigger, Brauer, and Yilmaz, “Students perceptions of computer science”, 406. 
30 Professor Interview, Claremont Colleges 
31 Jeffery Shallit, “A Very Brief History of Computer Science”, University of Waterloo, 1995 , This page 

has a good brief history of computer science if needed. When discussing history of computer science, 

within the context of my research, it was most often discussed in the sense that computer science is a 

relatively young field. However, the history of computer science education in particular seems to be little 

written about, and the extent of how far back computer science and computing are understood tend to 

change depending on how far back  and what exactly authors are considering to be computer science or 

computing.  General historical consensus does point to the first academic computer science programs as 

showing up post WWII.  
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disciplines that extend to a wide range of topics.32 These various sub-disciplines can 

range from “theoretical components, like algorithm design or even kind of going back 

and looking at various aspects of what’s physically going on with circuits and stuff… 

very broad and hard to define.”33  On one hand, there might be computer scientists who 

are working on a more practical application of computer science such as software 

development like making apps for phones.  On the other hand there are people who are 

working on more theoretical and mathematical theories of computer science or “you have 

people who say they are doing computer science, and are doing human computer 

interaction in a very abstract way.”34  These people may not even be working with 

computers, but are still considered to be doing computer science.35 However, the 

characteristics that students and professors used to define computer science are 

characteristics that can be seen across sub-disciplines.  At its base, computer science is a 

field which is studying what computers do and what they can potentially do.  

Professors draw attention to the connection that computer science has to other 

fields. They point to how these skills, which are learned in computer science classes, 

have become important to fields beyond computer science, and how computers can even 

perform tasks found in other fields. One professor describes the interactions between 

                                                           
32 “Areas in Computer Science”, Cornell University, accessed August 15. 2015. This site gives examples of 

the different subfields within computer science. Explanation of some of the various subfields within 

computer science to be interrelated and separate at times, depending on the field.  As undergraduates these 

interests in the various fields are what they are exposed to throughout their time at college. Often for 

graduate school, students choose a sub-discipline to study.   
33 Female, Student Interview, Claremont Colleges  
34 Professor Interview, Claremont Colleges. Human computer interaction is a sub-field of computer science 

which researches the design and use of computer technologies focusing on the ways that humans and 

computers interact with one another.  
35 Professor Interview, Claremont Colleges 



24 
 

computers and other fields by how “computers themselves, can exhibit creativity in the 

arts and sciences…. There are also interactions with other areas, psychology, and the 

arts… just about anything you can name really.”36 These interactions with other areas of 

interest include both the fields in science, technology, engineering and mathematics 

(STEM fields) as well as fields outside side of the STEM category such as economics, 

sports, and humanities.  It is this fact that ties into some of the professors’ opinions on 

why more students should take computer science classes. The interdisciplinary nature of 

the field is actually beneficial to both the computer scientist as well as the students. Non-

computer science students and students of other science majors can help bring different 

understandings to computer science classes. One example was of an anthropology major 

that might bring interesting points about human behavior and user design that computer 

scientists might not think of.37 These non-major students are also being exposed to skills 

that could help them in the future as the use of computers and the knowledge of computer 

science might become more important to these other fields.  

Students often highlighted this diverse nature of the field as a main factor for their 

interest in computer science.  Many students admit that they see computer science as a 

“tool to be applied to other things.”38 It is perceived as a way to innovate and create new 

and exciting technologies, and it is broad enough that a person can integrate their 

personal interests in it. For many of the non-majors, the very reasons for taking computer 

science courses is their ability to see connections by linking an understanding of 

                                                           
36 Professor Interview, Claremont Colleges 
37 Professor Interview, Claremont Colleges 
38 Female Student Interview, Claremont Colleges. 
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computer science to their other areas of interest.  Computer science and the knowledge of 

it is a tool to help these students realize their own interests and goals.  

Computing 

The word computing was one of the central concepts that both students and 

professors often considered fundamental to the definition of computer science.  

Computing is vaguely defined in dictionaries as “the use of a computer to process data 

and calculations” and the “act of calculating or reckoning.”39  It is the way in which 

computer scientists use computers to solve the problems they are presented with, often 

using mathematics, and create a sequence of steps that are known as algorithms. The term 

computing is one of the terms that are considered central to what computer science is. It 

is also one that can refer to a multitude of areas, as one of the professors pointed out; 

computing “can mean a lot of things.”40  This can involve discussing what the limits of 

computation are and looking at what is and is not possible. Even computer scientists 

working on areas that may not seem related to computation are arguably still thinking 

about it, and studying it.41  

By defining one of the main aspects of computer science as computing, the term 

computing is intrinsically tied to the idea of “computational thinking.”  The term 

computational thinking is a specific type of heuristic and an element of the development 

of computational intuition in computer science. It is a method of approaching 

complicated and open ended problems using logical analysis to break down the problem 

                                                           
39 Dictionary.com, s.v. “Computing”, accessed November 1, 2015. 
40 Professor Interview, Claremont Colleges 
41 Professor interview, Claremont Colleges 
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in to smaller parts and then and creating a serious of steps that solves the problems. The 

ability to be a computational thinker is one that is very important for students to learn.42 

Thinking computationally is one part of the computational intuition or way in which 

computer scientists describe their problem solving endeavor: 

“How can you solve that using a computer? Recognizing the types of 

tactics you can use.... step by step. Because programs are followed logically in a 

step by step order and they do only exactly what you tell them to do, not what you 

intend for them to do. But what you actually program.  And getting the actual step 

by step translating from how you would vaguely solve problem to how a 

computer is the computational thinking.”43 

This is especially important as computational thinking puts the focus on 

examining how does the computer scientists get the computer to do what they actually 

want it to do. There is both the process of developing an idea of how to solve the problem 

and then figuring out how to implement your solution in order to make the computer 

accomplish exactly what the computer scientist wants it to do.  

 This translation processes and the thinking that goes behind it, is part of the 

development of the computational intuition of the computer scientist. It is the ability to 

understand how to make the computer actually do what the computers scientists’ goal is, 

and it is fundamental to computer science. Beside the general ideas of how one might 

solve problems and potentially creating an algorithm for it. The computer scientists use 

coding and programming to actually “talk to” the computers and give it the step by step 

instructions, to perform whatever the task might be.  

 

                                                           
42 Professor Interview, Claremont colleges 
43 Student Interview, Claremont Colleges 
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What Is Coding? 

Often many people think of computer science as creating a computer program or 

coding. However, not all computer science is programming. In fact, computer science is 

often considered more of the theoretical and abstract aspects of the theory behind 

computing. Programming or coding is considered the practical aspect of computer 

science and is necessary for the larger field of computer science; a person who writes 

these programs are often called a programmer. Programming and understanding how to 

write computer code is heavily focused on in the introductory sequences and is often a 

precursor to many of the more theoretical aspects of computer science. 

 Coding is stereotypically the most common word that comes to mind when 

discussing computer scientists and it also seems to be a word that those who are 

unfamiliar with computer science are unacquainted with. Code and programs are behind 

most of the components of today’s products that include any type of electronics from 

computers, to hardware such as cable boxes, and the applications on phones. Effectively, 

a code is a “sequence of symbols…. that someone typed in, or copied, or pasted from 

elsewhere.”44   A program is a set of instructions, written in code, that tell the computer 

what to do and in what order. 

To perform a specific task or solve a problem through computation requires a 

computer as well as someone who is able to program it. However, there are other aspects 

that are used to help create these programs. There are other items used within the 

                                                           
44 Paul Ford, “What is Code?”, Bloomberg, June 11, 2015.  
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computer such as the compiler (what makes the code run), an IDE (what the programmer 

write their code in), an interpreter or shell and the programming languages that the 

programmer uses.45 All have effects on how the programmer writes the code and how 

that code may or may not work.46   The choice of the programming language is even 

dependent on what the task is as some programming languages are better for specific 

tasks over others.47  

It is up to the computer scientists to interact with the various components of the 

computer and programming to determine the manner in which they choose to represent 

the task so that it allows the computer to accomplish what they want. All the while, 

computers will “not leave wiggle room, and are totally unrelenting in their criticisms of 

you as a programmer.”48 This means the programmer must be precise in what they say 

and the programming language they choose determines how they will say or code it.  

There are many different programming languages that one can use to create this 

set of instructions that the computer executes. The code varies and is based on the 

programming language chosen. Often the code can look unusual and makes no sense to 

someone who has not encountered it before, or there are some programming languages 

                                                           
45 IDE or integrated development environment is an application where programmers can write their code in 

for software development. They often have source code editor, tools, and debuggers (what they use to get 

the bugs or problems out of the code). An Interpreter is for programming languages that takes the source 

code and translates it into something that that computer can understand and executes it line by line.  
46 A compiler and programming languages are both manmade objects that are used to interact with the 

computer.  They are something that another computer scientist has created to interact with the computers. 

There are also other tools such as debuggers whose use is to help figure out what is wrong with the code, 

and possible sources of these errors.  
47 There are many different types of programming languages that a programmer can choose from. 

Instructions can be given in binary, assembly, or languages that look almost like English. Assembly is a 

lower level programming language that can tell the computer directly what to do.  
48 Professor Interview, Claremont Colleges.  
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that look similar to English.  The compiler is the go between from the computer scientist 

and the computer. Programming languages need to be translated into lower-level 

instructions. This is the job of the compiler and the interpreter to take “the symbols you 

typed into a file and transforms them into lower-level instructions.”49  It is only then that 

the computer can execute whatever it is that the computer programmer has written, and 

barring any errors or mistakes, it should work.  

One aspect of computer science is knowing, or knowing how to find out, and 

think about all of these different aspects in coding, as this is the manner in which 

computer scientists learn how “to communicate things to computers,” so that tasks at the 

end of the day are performed or are communicated.50    

What is Computer Science? 

In this chapter I have revealed how computer science students and professors 

begin to understand the subject. Central to the concept of computer science is the idea of 

computing and computational thinking, a specific type of heuristic, as well as having the 

ability to work with computers and learning to communicate with them. The professor 

and the students point to a wide range of uses and subfields within the discipline of 

computer science. It is the fact that these students and professors see the many 

applications of computer science that makes it so difficult to create a succinct definition.  

They ultimately included in their definition the overarching concepts that are necessary in 

all of the sub-fields that exist in the field of computer science.  

                                                           
49 Ford, “What is Code?” 
50 Student Interview, Claremont Colleges 
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  This definition of computer science is important as I examine how professors 

and students interact to both transfer and build knowledge of this discipline in the 

classroom. The focus of these courses is so the students are able to learn the different 

parts of what computer science is and be proficient in the various aspects.  As the 

students move through their careers at the Claremont Colleges, they interact with 

professors and other students, and learn more about what computer science is and gain 

experience to develop their computational intuition. 
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Chapter Two: 

Apprenticeship in the Classroom 

How professors define computer science, affects what the professors determine is 

important for the student to get out of their classes. What the students learn in the 

classroom, through doing their homework and even looking online, helps create a base of 

knowledge and experience through which the students can rely on as they move forward. 

The class problems and homework provide two different functions. The first is applying 

and testing the students understanding of the concepts that they have learned so far. The 

second purpose of the homework is for the students to gain the experience needed to 

develop their computational intuition. The building of computational intuition is attained 

with a way of learning called cognitive apprenticeship. The focus on this method of 

teaching is in the interactions that the students have with both professors and peers and 

allowing for social learning where the students to develop their computational intuition. 

Cognitive apprenticeship presents a model where the student learns from the 

professors and their peers through a process of modeling skills and solutions and then 

trying to solve their own problems. Over time, students gain experience and are able to 

solve and discover the solutions on their own, and develop their computational intuition 

to understand how to do computer science. What is important about cognitive 

apprenticeship is the focus on the interactions between the students and others.  

Taking from Vygotsky, learning is a social process, and it is the interactions 

between students, the professors and their peers that allow the student to learn. 

Furthermore, it is not just the classroom where students are learning, but also the process 
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of working on homework assignments to gain experience by solving computer science 

problems using the computational intuition that they are building.  The interactions 

between the professors, tutors, students and peers represent a framework of collaboration 

that allows the learners to create a better understanding than could be attained alone.51 

Furthermore, the actions of just listening to a lecture are often not enough to transfer 

knowledge to students even though lectures are often the main manner in which 

professors introduce new material to students. Lectures have a tendency to be the 

presentation and explanation of a unique piece of knowledge that can be applied in many 

different scenarios based on the problem at hand. An emphasis is placed on the 

homework as an important area for student to build their knowledge and the interactions 

between the young computer scientists and more advanced members of the fields are an 

important aspect of this.  

The students gain skills through the introduction to the way that the groups think 

about their field of study and the development of their relation to others within their field. 

This transfer of knowledge is important and similar to other sciences; young computer 

scientists need to be taught how to work in their field. In examining the transfer of this 

knowledge in physics, Sharon Traweek discusses how knowledge does not only include 

“formal education, but also in the daily routines…”52 Similar to how physics students 

learn their understanding of their field, as taught through conducting and observing 

controlled “experiments.” Computer science is taught through participation in controlled 

                                                           
51 J. G. Greeno, A.M. Collins, and L. B. Resnick.   “Cognition and learning.”  In Handbook of Educational 

Psychology, edited by D.C. Berliner and R.C. Calfee. (New York:  Macmillan, 1996), 15-46. 
52 Traweek, Beamtimes and Lifetimes 76. 
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homework assignments. These are important because they are problems that the 

professors know the solutions or possible solutions to. This allows the students to know if 

they are applying their knowledge correctly and if their heuristics and trained judgment 

lead to working answers. It is during these computer science classes and homework 

assignments where the skills students learn are applied in different ways and they are able 

to discover how to solve problems.53   

To understand how the students learn computational intuition it is important to 

examine the knowledge and experience they gain through interactions that they 

participate in. The transfer of knowledge itself occurs through the process of people 

interacting with one another by sharing ideas and working together on problems that are 

assigned. There are many different ways these relationships between one another are 

developed and encouraged, such as informally working with other students, talking to 

professors or tutors and even requiring some homework to be worked on with a partner. 

Working with a partner within computer science is common and is encouraged as often 

one student or developer might have different knowledge or strengths than their partner, 

as well as help generate ideas or think of solutions that a person might not produce on 

their own, and catch mistakes that might be made. Computer science is often thought of 

as a highly individual subject where the lone programmer works through problems and 

projects that are assigned to them.54 Though many of the students say they enjoy working 

by themselves more than with partners, there is still a high level of interaction between 

                                                           
53 Traweek, Beamtimes and Lifetimes, 76 
54 Carter, “Why students with an apparent aptitude for computer science don't choose to major in computer 

science.”,  30 
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the students, tutors, and professors as they work on their homework or projects 

throughout their schooling. The colleges provide help in the form of tutors which are 

referred to by different names at each of the Claremont Colleges such as: tutors, grutors, 

or mentors; however, throughout this chapter I will be referring to all of them as tutors.55  

These various interactions within the educational activity and the inherently social 

process engages the students and they in turn utilize their past knowledge and the 

experience gained in these interactions to help them develop their computational 

intuition.  The more interaction the students have with people within their field, the more 

they are able to gain information and knowledge to solve problems. Professors often 

utilize different techniques, combining lectures and homework assignments to transfer 

knowledge and promote the development of the computational intuition in the students. 

They often start with the explanation of the subject matter, and how to use the skill or 

concept they are teaching, and then move the students to eventually produce their own 

work (homework or projects) to demonstrate their knowledge and build experience. What 

I shall next be discussing is what a normal day of class within a lower level computer 

science classroom might look like. 

  

                                                           
55 Each school uses a different terminology for what they call the other students who help peers on 

homework in classes they have already taken. CMC calls their students tutors, PO mentors, and HMC 

grutors. Grutors stands for grading tutor as the students are often the ones who are both grading and 

providing the tutoring help. Most schools use the tutors to grade homework and provide extra help to the 

students, though importantly tutors do not grade exams that are given throughout the classes.  
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The Classroom 

At the beginning of the class, which in this case is the second course in the 

introductory computer science sequence, students make their way into the room and find 

their seats; they chat with each other discussing everything from gossip to the homework 

they are working on for this class. Often the students take their computers out and go 

online while waiting for the professors to come into the room.56  The professor walks into 

the classroom and begins to set up the lecture slides for class that day.  A few minutes 

into the official start of class, the professor begins the lecture. The professor talks for a 

bit, discussing important data structures that the students need to know and then the 

professor calls on students to have them recall what the topics of the last classes were. 

This part of the lecture is mostly dominated by the professor, as they discuss the topic of 

today’s classes. In front of me, the various students flit between different internet 

webpages, doing everything from looking at the homework and lecture notes, to talking 

to friends on Facebook, and even online shopping. These habits are maintained 

throughout the lecture, and are probably why some of the computer science professors 

ban the use of laptops in their classrooms.  

Today the topic is Binary Search Trees (BST), which is a data structure within 

computer science.57 The students being taught the various elements of a binary search 

tree, such as how the data is stored and the concepts and thought processes that are 

                                                           
56 Interestingly, not all CS classes allow computers to be brought into the classrooms. Some professors find 

this distracting to learning the material in classes. 
57 BST is a data structure that stores things in a form of the tree, making it easy to search for specific data 

within the tree.  The tree as a root and the internal nodes store a key. Each key has two sub-roots which are 

often denoted as the left and right subtree, and the key is always greater than the left sub-root. The 

information in a BST is often denoted by a node which is a single element in the tree.  
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behind the creation of the BST.  One aspect of the BST is the traversal of the tree, which 

is the way in which the program would print the different aspects of the tree. While 

describing this process, the professor asks the students to anticipate what number would 

be printed next. Throughout the class, the students ask clarifying questions about what 

the professor is presenting, but the class continually moves forward. After explaining the 

main aspects of the data structure, the students watch as the professor turns to them and 

asks them to demonstrate their knowledge of what they just learned. 

The professor has the students work in small groups and asks them to figure out 

how to create a function that would delete a specific element in a tree would work within 

the BST. The students turn to their neighbors and a low murmur of voices fill the room as 

the students discuss the answer to the question. The professor waits patiently at the front 

of the room for about five minutes before calling the attention of the class. The professor 

calls on a student and has them answer a question, commenting on the student’s ideas and 

allowing other students to propose their ideas.58 After the question has been satisfactorily 

answered, the professor continues the lecture by alternating between giving information 

to the students, having them work in small groups, and answer questions. The professor 

tries to have all of the students answer a question, and creates an environment where 

students need to recall previous information and apply it to what they are learning now. 

This is what the typical day is like in a computer science classroom. The class 

periods often follow the same sort of interactions between the professors and the students 

                                                           
58 Professors utilize many different methods of class participation. One class uses a notecard method so 

every student is called on at least once in a class. Other professors wait for students to raise hands, and 

some just call randomly.  
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in the classes. However, the manner in which these interactions exist in the classroom is 

often dependent on the individual practices the professors establish in their classrooms 

and interaction with their students. There are parts of the class that are lecture to provide 

specific knowledge to the students, while other parts allow for the students to 

demonstrate that they are actively listening. These classroom experiences are one of the 

key means for the students to start gaining skills and understanding different aspects of 

computer science that they will later employ as they work on their homework. 

The interaction between professors and students mostly occurs in two different 

forms. The first, and most common, is during the class period when the professors are 

teaching their classes. The second area of professor-student interaction is during office 

hours, which are hours outside of class where professors guarantee that they will be in 

their office for students to come ask questions. However, many students point out that 

they mainly talk to their professors during the class periods and rely on alternate help 

during homework hours such as the use of tutors.  Alternatively, there are other 

opportunities and places to find helpful information that the students might require within 

the educational structure of the computer science programs.  

So Where Are the Textbooks? 

 An important distinction between computer science at the Claremont Colleges and 

other sciences is the lack of consistent use of textbooks within computer science classes. 

Commonly at the undergraduate level, the sciences will have students learning out of a 
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textbook; it is the way that “each new scientific generation learns to practice its trade.”59 

However, at the Claremont Colleges, textbooks are often not used. Professors might 

sometimes recommend them to the students as an additional resource; however, for the 

most part students do not use them. This is different from many other fields of science 

where these textbooks often represent an accumulation of knowledge within the subject 

that students “mainly rely on” until they are working on their own research in graduate 

school.60 

 Sharon Traweek points to how within physics textbooks students are not only 

learning knowledge they are learning that the “interpretation of physics is not to be 

challenged.”61 There are the stories that these students are learning about the “heroes of 

science, and their own limited capacities.”62 The use of textbooks is not only that which 

teaches the students, but tells them the stories of how and who has created modern 

physics.  

 Yet, computer science at the Claremont Colleges does not have these textbooks, 

though often students might learn of famous computer scientists or about who created 

which programming languages. The books that the professors do recommend are often 

primers and filled with the rules of a specific programing language.  The explanation for 

why few of these textbooks are used is found in two differing reasons. The first is that the 

professors provide most of the relevant information that is necessary for the students. The 

                                                           
59 Kuhn, The Structures of Scientific Revolution. (Chicago: University of Chicago Press, 2012.), 1 
60 Ibid, 164  
61 Traweek, Beamtimes and Lifetimes,  75  
62 Ibid, 75. 
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second fact is that much of the information that students would be looking for in 

textbooks is easily available online.  This means that the classroom, the professors, their 

peers and the internet is often the student’s source for gaining their knowledge.  

The Professors 

The classroom provides the opportunity for a professor to share with their 

students a specific piece of knowledge. This is done through the process of introducing 

students to the concept, demonstrating the concept with examples, then seeing if the 

students can apply what they have learned to another problem, often demonstrated 

through the homework assignment. Though there is a large amount of time spent with the 

professor talking about aspects of what the students are learning, the professors provide 

opportunities to students to discuss with each other or work together both inside and 

outside of class. Students learn concepts and how to apply these concepts by working 

through examples or problems that are given to them by their professors. These problems 

are designed to demonstrate a student’s understanding of the knowledge. Throughout this 

process, students find themselves interacting with many different people to find the 

answers.  

These processes through which the professors facilitate a student’s learning, 

especially throughout the process of working on homework, are similar to the 

constructivist pedagogy of cognitive apprenticeship. Within this relationship there are the 

interactions between the professors, the tutors, and the students which lead the students to 

answers or learning how to problem solve within computer science.  The focus on 
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cognitive apprenticeship is not only one in which the professors share knowledge but also 

the “heuristics (or know how) vital to using such knowledge in practice.”63  Computer 

science is often defined as a subject that values “problem-solving” and considers the 

ability of its students to problem-solve using computers as one of the most important 

aspects gained through learning. More often than not, the students learn skills that they 

are expected to apply throughout their education and later in their careers in computer 

science. The concept of being able to apply the knowledge is especially important 

because it is during the process of applying the knowledge that the students recognize 

that they are learning new information for themselves as they solve problems through 

their interactions with others.  

The homework assignments are where students can apply what they learned and 

are, for the most part, the interactions that occur with peers, tutors, and professors about 

homework are the focus of the cognitive apprenticeship. The ability to teach skills and 

concepts in relation to actual situations in which they are applied is an important aspect to 

the success of a cognitive apprenticeship models.64 As the students move through their 

education, often the homework assignments and projects that are assigned become more 

complex. It is during homework, that students are able to apply the skills and concepts 

they have learned in class to more real-world contexts and situations. 

 The first aspect of a cognitive apprenticeship occurs as the professor, within the 

classroom, explains a piece of knowledge to the students and perhaps models it or works 
                                                           
63 Gergen, Kenneth J., Relational Being. (Cary: Oxford University Press, USA, 2009), 251 
64 J.S. Brown, A Collins. And A Duguid. “Situated cognition and the culture of learning” Educational 

Researcher 18, no 1 (1989): 32. 
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through a problem with the students. Throughout this process, the professor will 

explicitly state or write down the steps that they are taking to show the students. 65 Using 

the earlier example of what occurs in the classroom, this modeling is represented by the 

professor describing the different aspects of the BST which is more informative than 

modeling. However, after explaining the structure of the BST, the professor will walk the 

students through a problem using the structure of the BST, so that they have an example 

of how to solve a problem.   

 From there, the professor may have students work on their own problems, in the 

class with their neighbor, or later when the students are working on their homework. Here 

is where the students demonstrate their ability to understand the heuristics or problem 

solving skills, combined with the concepts that they have learned in the classes. During 

these times the professors are available during office hours to help the students work 

through any problems or difficulties that they might be having with the new knowledge. 

This is an important aspect of the cognitive apprentice, where the students are applying 

the knowledge they have learned under someone who is considered an expert.66 This 

makes these interactions with the professor’s crucial moments, where the professor can 

gauge the student’s understanding and where they need help. Though, depending on the 

days, homework schedules, and if there is a test coming up, these office hours might be 

more or less busy, affecting whether these interactions are one-on-one or a small group. 

                                                           
65 Collins, Brown, and Newman, 482 
66 Ibid, 463 
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Often on the day or so before a homework assignment is due or a test is scheduled, there 

can be quite a lot of people to be found crowding into a professors’ office for help.  

 It is during these office hours and tutoring hours that the professors engage in 

coaching the students. This means the professors are giving the students necessary help, 

feedback or hints to solving the problems, or perhaps demonstrating methodologies in 

how to solve or approach the problems.67 Students will come to these office hours with 

questions about concepts or their code. These questions could be anything from 

discussing the logic of how to solve a problem or finding a syntax error and helping to 

debug code when everything goes wrong.  It is within this vision of coaching that the 

social nature of both computer science and learning is demonstrated. The professors are 

not the only ones who are providing these functions and there are others within the 

educational support system that are important as experts and provide help. These are the 

student tutors who provide help for other students who are taking classes that they have 

already taken. The professors and the tutors will not give the students the answers to their 

questions, but will instead try to guide the students towards how to solve the problem or 

clarify confusion.   These hints and instructions both allow a method for a student to 

continue to try and problem solve on their own, while also providing any necessary 

support for the students. Eventually the student will be able to solve their problems on 

their own, and will not require as much help from the professors or the tutors.  

                                                           
67 Collins, Brown, and Newman, 463 
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Tutoring from other students is considered by many of the students, one of the 

key means in which they interact with another person to solve problems.  Tutors are part 

of the education support system built into the various computer science departments at 

the Claremont Colleges and are students who have already taken and mastered the class. 

They are considered an extension of the professors and work in close direction with the 

professors. In fact, students at the Claremont Colleges will often interact with the 

provided tutors to a greater degree than going to professor’s office hours to seek their 

help.  

 The next methods of cognitive apprenticeship are articulation and reflection.  This 

is where the students get to demonstrate their knowledge, often through homework or 

tests, and are able to compare their solutions or discuss with the professors or tutors.68 As 

the students move through their education, the problems that are given to them increase 

in difficulty. This allows the students to both to articulate what they have learned as well 

as demonstrate how much of the thinking process they have absorbed. Furthermore, 

during the process of tutoring and working with the students, the tutors and professors 

force the students to think out loud, which both allows the students to think through the 

logic of the problem and often solve the problem they are having.69  

                                                           
68 Anne K. Bedner, et al. “Theory Into Practice: How Do We Link?” In Constructivism and the Technology 

of Instruction: A Conversation, edited by Thomas M. Duffy and David H. Jonassen. (Hillsdale, NJ: 

Lawrence Erlbaum Associates, Publishers, 1992), 28. 
69 Collins, Brown, and Newman, 482. 

 



44 
 

 However, tutors and professors are not the only means in which the students are 

able to get help and information. There are also interactions between the students, their 

own peers, and the internet that help with learning and seeking out computer science 

knowledge. 

Skill Development Outside the Classroom 

One important aspect of computer science is that the professors, tutors and the 

scaffolding creating by the cognitive apprenticeship model are not the only sources of 

knowledge and information. However, these interactions maintain the importance of 

social interactions and the construction of knowledge by an active learner. In fact, 

students are encouraged to use other sources that they can go to for help or to ask 

questions. Students often find themselves working with other students who are in the 

same class; these partnerships can be formal or informal working relationships. The final 

source of information is the internet, though there are strict requirements on what a 

student can or cannot search for. Students are allowed to search for information such as 

an error message to figure out what it means or possible solutions or specific syntax that 

are associated with it. Students are not supposed to search for information such as the 

solution for specific problems they are given. To not follow these rules as set out is 

counterintuitive to the classroom goals of having students be able to solve problems 

themselves, as students will not learn everything. Furthermore, to take code form a source 

or look up solutions is something similar to committing plagiarism.  Different sources of 

information are used in addition to the professors and tutors.  
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Outside of the classroom, students often find themselves working with or 

interacting with their own classmates in a collaborative learning environment. These 

collaborative learning environments are important to the constructivist way of learning. 

These interactions help the students work towards learning what they need to help them 

solve their homework problems.  The amount of interaction between one student and 

other students can vary depending on what classes they are taking and the students own 

personality; however, there is quite a bit of interaction between the students. These 

interactions can involve trading jokes that are computer science related or working 

through homework problems that students might be having trouble with. Though there is 

a community as the students hangout outside of class, there is the importance of 

interactions while working on homework. Often students might discuss certain issues or 

ideas and methods of approaching a problem in more informal ways than what is 

necessarily called “pair-programming” which is addressed later. They often will discuss 

certain coding problems as well as possible solutions to these problems. These are still 

collaborative endeavors that allow for a level of knowledge transfer between students. 

Gergen discusses how collaborative writing can help a student by offering 

“complementary information, perspectives, and opinions, thus teaching each other and 

contributing to a richer and more informed product.” 70 The goal of working together is to 

expose the students to different viewpoints or ways of approaching the problem, through 

                                                           
70  Gergen, Relational Being,  260 
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this, the students “try and understand the alternative view.”71 Encouraging the students to 

work together, whether it be informally or formally, allows for students to share the 

knowledge or ideas that other students may have. This is the same process that occurs in 

the form of collaborative programming called pair-programming.  

Students may interact with other students in a practice called pair-programming 

which can be a formal or informal process. Professors may make it a mandatory or 

optional. This process of formally working with other students is a situation created 

where the students work together and solve problems as a group. Pair-programming is a 

process where there are two programmers working together on one computer. The person 

who types on the computer and writes code is called the driver and the other person who 

reviews the code as it is being typed is the navigator. The two students in the pair work 

on the entirety of the assignment together, thinking through the logic of the problem and 

discussing approaches to solve the problem. As the students go through the homework, 

they switch off on the roles of the driver and the navigator every thirty minutes, allowing 

both students to participate in both roles. 

 This method of working on computer science programs is often encouraged or 

mandated because of the knowledge transfer benefits that are seen through the process of 

it. This is especially true in a situation where one student might hold more knowledge 

                                                           
71 Thomas M. Duffy and David H. Jonassen, introduction to Constructivism and the Technology of 

Instruction, ed. Thomas M. Duffy and David H. Jonassen, (Hillsdale: Lawrence Erlbaum Associates, 

Publishers, 1992), 27 
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than the other student and is able to answer questions about a particular topic.72 Though 

within the class setting many of the students have fairly similar knowledge levels, they 

often do not have identical knowledge, “a certain amount of knowledge transfer takes 

place in all PP [pair-programming] sessions.”73   

Pair-programming, whether it is formal or informal, helps build a collaborative 

environment which allows for social learning and multiple perspectives. Where there is a 

goal of sharing arguments and evaluating the evidence for them. Pair-programing forces 

both of the students to discuss and think about the ways to solve the problem they are 

given which is helpful because the two students may have two slightly different methods 

of approaching the solution of the problem. Throughout this process, students learn from 

one another, and evaluate the reasoning behind what their partner is saying. Often, there 

are multiple ways to solve a problem, so together they negotiate the various methods and 

ideas. They may or may not agree, but each is using the knowledge they have gained to 

help make these decisions. In addition, one computer scientist may know more than the 

other and is able to help make a better decision and in the process teaches the other 

computer scientist a new way to solve the problem. As the students discuss how to solve 

the differing solutions, they weigh the pros and cons of the different methods of solving 

                                                           
72 Laura Plonka,Helen Sharp, Janet van der Linden, Janet, and Yvonne Dittrich. “Knowledge transfer in 

pair programming: An in-depth analysis.” International Journal of Human- Computer Studies 73 (2015), 

66 In a situation with a paired-programming dynamic of an expert and a novice, working together often 

takes on aspects of cognitive apprenticeship. As the expert works with the novice they often perform the 

task of modeling, or verbalizing thoughts, and coaching while observing the novice work. This 

demonstrates how the cognitive apprenticeship model is how novice computer scientists continue to 

develop their skills even after they graduate from college.  
73 Ibid, 77 
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the problems, which in turn develops a student’s heuristics methods and add experience 

to their trained judgment.   

From there, the computer scientists might start the actually coding of the program. 

Here is where the navigator can catch syntax and other errors, and discussions of how to 

actually code the program comes into question. This also includes the process of 

debugging the code or being able to find the areas where the problems in the code are 

arising.  It is during both the debugging phase and writing the program phase where 

students may start using a search of the internet for help. Internet searches are often used 

for help with syntax and whether or not a specific language might have a built in function 

that could be helpful or perhaps even decoding what error messages that a student might 

be getting.74 Google and communities like Stack Overflow represent sources of 

information where one can find help on their piece of code, or perhaps find similar 

problems to the ones that a student might currently be having.75 Internet searches and the 

process of being able to find accurate answers from a site is considered one of the most 

important skills and represents access to a wider computer science community beyond the 

one that exists at the schools. Professors state this skill as important and sometimes have 

students perform exercises where the students are tasked with finding information online 

or practicing the best methods of doing Google searches. This often involves taking 

something like error messages that a student might be getting and searching for it, and 

                                                           
74 Functions are something that executes a task. A built in function will combine the instructions to do the 

task in a single line of code.  
75 Stack overflow is a websites were people with specific problems are able to ask their questions submit 

code, receive answers and review of their code, as well as answer questions that occur on the website. This 

can allow a student who has a question to see if there are similarities, if the solution might be similar as 

well as a wide range of answers within the comments section.  



49 
 

showing that the student can find helpful articles which might solve the problem. 

Professors might give examples of helpful searches or what websites might hold the best 

answers.  

Computer science students are given a wide range of tools that they are able to 

use outside of the classroom to find answers and knowledge they might be looking for. 

Throughout their time of socializing with other students and even other computer 

scientists on the internet, they are benefitting and learning skills or new problem solving 

approaches they might not have thought of before as they work on their homework. The 

sociality of computer science is one of the main ways in which students learns. There is 

of course, the one glaring aspect missing from these ways of students getting information, 

textbooks, especially since they are so common in other scientific subjects.  

All to Develop Computational Intuition 

  I have examined how knowledge is transferred between the professor, the tutors, 

other students and the internet, through the interactions and relations that the students are 

building throughout their time during and outside classes. Often the professors’ lectures 

are one of the main methods in which concepts may get introduced to students, especially 

as textbooks are not that commonly used within the Claremont Colleges. Computer 

science is often taught to the students using a methodology of cognitive apprenticeship, 

where the students are interacting with the professors to help build knowledge and 

experience solving problems. One important aspect is the multitude of people that 

students can interact with to find help or discuss problems. The students throughout the 
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class are taught concepts from the professors, trying to applying the knowledge they have 

learned, and working with members of the community to solve problems.  

This cognitive apprenticeship and social learning helps create and develop the 

computational intuition that the students need. This is a certain way of thinking and 

approaching the problems within computer science, using the tools and concepts that the 

students have learned from class, each other, and the internet. The professors and the 

students both agree that computer science requires a “different way of thinking,” which is 

ultimately the manner in which the students are learning throughout their classes and 

experiences. Within computer science, homework is used for two different aspects. This 

chapter has shown how homework works within the idea of cognitive apprenticeship and 

social learning. In the next chapter, I will continue to concentrate on homework and focus 

more on how homework assignments are one of the main areas in which students build 

the experience necessary for computational intuition, specifically good heuristic 

reasoning and trained judgment.    
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Chapter 3: 

Homework 

Though there is much information, knowledge, and the development of 

computational intuition that occurs within the interactions of the students with their peers 

and their professors, homework is the primary means in which the students build their 

experience when they are working on various projects using computer science both inside 

and outside of class. Computer science students are working with their peers, class tutors, 

and professors on homework, as well as participating in hackathons, and other computer 

science related activities; during which the students are developing the necessary skills, 

or computational intuition.76 The professors hope to develop computational intuition in 

their students so that they grow as computer scientists and learn how to both approach 

problems and increase their understanding of computer science.  It is through the 

computer science education that the students gain an understanding of computational 

intuition, both the heuristics and the trained judgment, and are later able to make 

judgments about choices about their approach to problems that are given to them. 

Throughout the computer science student’s education, the ability of the students to apply 

heuristics and trained judgment occur in different ways, but homework is maintained as a 

key area in which students develop as well as demonstrate their skills in both areas.  

There are many different methods for developing computational intuition in 

computer scientists. This can involve working on activities like hackathons, summer 

                                                           
76 A hackathon is an event that computer programmers and software developers collaborate in software 

projects, normally over an intensive time during an event. Often there may be a presentation where the 

different groups present on the item that they put together. At the Claremont Colleges the hackathon is put 

on by students for other students and normally occur once a semester.  
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internships where they are expect to perform specific tasks, as well as working on 

problems of their own. The primary method in which computational intuition is 

developed within the education of the computer scientists at the Claremont Colleges is 

through the homework problems that are assigned to the students. Homework 

assignments are the manner in which students are able to demonstrate their knowledge in 

a context that might be considered more practical, and the situated work is something 

similar to what they might see later in life.77 This is especially important to the idea of 

cognitive apprenticeship that was mentioned earlier, because the use of social interaction 

is central to the transfer of skills, knowledge, and problem solving tactics. The students 

need to be given homework that moves them past what is considered to be more abstract 

ideas.78 

How to “Do” Computer Science 

Chapter One’s discussion on what computer science is shows us that it is chiefly a 

problem solving endeavor. So it comes as no surprise that homework assignments within 

computer science normally involve aspects of problem-solving.  This ability to problem 

solve is one in which the students think logically, utilizing computational intuition.  

Different classes have different types of homework, which help train the eye and mind of 

the computer scientist. Homework problems for a class such as Algorithms are going to 

be different than homework for a class like Data Structures.  At the end of the day these 

                                                           
77 This is part of a learning theory called situated learning by L. Lave. This is the idea that learning needs to 

be situated in the context and culture that it would occur.  Like many other theories from the constructivist 

philosophy, there is a focus on the community and interactions between other people within the 

community.  
78 Brown, Collins, and Duguid. “Situated cognition and the culture of learning” 32-42. 
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classes all demonstrate a problem solving endeavor that eventually can be implemented 

with a computer.  

While students practice their problem solving on these homework assignments, 

they are acquiring experience with new heuristics and knowledge necessary to solve a 

problem. Within this, there are heuristics that the students learn and develop on their own 

and others that computer science professors will teach them. Techniques such as the 

ability to reduce one problem to another and seeing the relationships between one 

problem and other problems that students have already seen and solved are part of the 

heuristically reasoning that is often taught in classes. It is considered critical to be able to 

recognize similarities and reuse existing knowledge and ideas. The hope is that at the end 

of their classes students will understand how to pull this existing knowledge from 

previous experiences together to solve problems and be able to reduce larger problems to 

less complex and familiar ones.79 

Being able to connect a problem that the students are currently working on with 

those that are closely related is a concept also developed in other fields that are focused 

on problems solving and where there is a focus on teaching students heuristics. Within 

mathematics, one of the ways Polya argues that problem solving occurs is to “find the 

connection between the data and unknown.”80 This is the thought that most problems are 

connected to other related problems that someone might already know how to solve. In 

undergraduate physics training, the same idea is applied where students are shown “how 

                                                           
79 Professor Interview, Claremont College 
80 George Polya, how to Solve It, (Princeton: Princeton University Press, 1957), XVI  
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to recognize that a new problem is like this or that familiar problem.”81 Though within 

computer science the concept of “reducing a larger problem” is where the students might 

take a larger more complicated problem, and see that it might be made up of smaller 

more familiar problems. Often problems “defy one-shot solutions; they must be broken 

down.”82 Breaking down problems, or computational thinking, is one of the heuristic 

methods through which problems are often solved. 

During the homework and problem solving process, there is the prospect that 

mistakes are going to be made. These “mistakes made along the way must be accepted as 

inextricable from the problem-solving process.”83 Since heuristics does not necessarily 

give the correct answer all of the time; the students are learning how to adapt to achieve 

their goal. This gives a high likelihood, that along the way students are going to make 

mistakes as they are solving problems. A point that was often highlighted in conversation 

with both professors and students was the notion of being comfortable with making 

mistakes. This was a trait that was especially discussed by professors, who said that “it is 

helpful to be comfortable with experimenting and sort of making mistakes and just sort of 

exploring and just being curious and all those sort of liberal artsy kind of things.”84  This 

curiosity and willingness to make errors points to the manner in which students can 

experience and build the computational intuition that they must learn.  

                                                           
81 Traweek. Beam Times and Lifetime, , 77 
82 Martinez, “What Is Problem Solving?”, 606. 
83 Ibid, 607 
84 Professor Interviews, Claremont Colleges 
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Making mistakes and being okay with failure is especially important as a great 

deal of computer science is filled with parts of programs that do not work correctly and 

therefore need debugging. Students often discussed how the ability to work through 

frustration and not give up on a problem is intrinsic to being successful in computer 

science. At times, computer science tasks can become tedious. Being able to work with 

the inherent frustration and the attitude a student takes towards it, can affect how much 

the student may or may not like computer science.  

This, of course, is not a comprehensive or exhausted list of the various heuristic 

techniques or behaviors necessary to do computer science, but these are some 

expectations of skills, concepts, and behaviors that professors and students find important 

in building the experience necessary to become a mature computer scientist. The 

concepts that professors try to teach their students, especially in lower level classes, often 

involve learning the syntax of specific programming languages, and how to write 

programs or functions in those languages. In other classes, concepts of how to build and 

use different data structures and understand memory management in a specific language 

are taught with the hope of applying it to what the students do later in their life. This is 

especially useful as some languages deal with the memory management in computers 

differently, or problems might occur when changing from one programming language to 

another. However, they also try to instill in their students more abstract skills and way to 

solve problems.85 

                                                           
85 Professor Interview, Claremont Colleges 
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The skills that the professors expect their students to demonstrate include the 

tangible knowledge of how to code in a different language, but also the understanding of 

how to approach problems in different ways. Throughout tests, quizzes, homework, and 

classwork problems, professors attempt to give the students time to not only help build 

their computational intuition, but also help the students demonstrate what they already 

have learned.  This experience helps develop the computational intuition by building 

trained judgement within the students. Throughout the homework, the professors expect 

students to make decisions on how to solve problems, as well as make informed and 

justifiable choices as they develop their solutions. As the students move through to upper 

division classes, they are expected to make these decisions while dealing with more 

complex problems.  

The Expectation of Trained Judgement 

Throughout the homework assignments, students are expanding their 

understanding in their current computer science class as well as building off what they 

have learned from previous classes. Within their assignments, students are often 

evaluating many different options and ways of approaching the problem, weighing 

information that they find online, and discussing problems that they have previously 

solved in hopes of making informed decisions throughout the process of their assignment. 

Professors expect students to make these choices about various paths they can take 

through the use of the trained judgment they are developing. As the students move into 

more advanced classes, they have more experiences and have higher expectations about 

what they know and their trained judgment. 
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This ability to maintain an informed decision extends not only to the creation of 

the students’ own answer during practice problems, but includes the ability to analyze 

other people’s code or algorithms. It is especially important as one of the main skills and 

precepts within computer science is the computer scientists’ ability to reuse or recycle 

code that has already been created, rather than necessarily having to recreate everything 

from scratch.86 For example, professors will help students to understand what certain 

algorithms or pieces of code are better than others for certain situations as well as what 

other factors may affect coding choices.87 In many ways, as the computer scientist works 

at solving the problem, they are using previously solved problems and analyzing which 

choices will produce the best result for solving a specific problem.  

The ability to understand how efficiently a program may run or how to make it 

run more efficiently is also viewed as an important skill set to develop and is often 

represented throughout the students’ classroom and homework experience.88  Not only 

are students expected to know how to examine and analyze an existing algorithm for 

efficiency, they are expected to analyze the value of their own work. As one professor 

stated, “there are better answers and less good answers…” and students have to make 

                                                           
86 Within the education system there are limits to what students can borrow from. The students cannot copy 

code, but professors recognize internet searches as an important source to understanding how to solve parts 

of problems, especially with error messages as well as sometimes copying code found on the internet for 

assignments at the professor’s discretion. 
87  A lot of different factors can affect the runtime of a piece of code, these can include how much data you 

might be looking through, how the data is stored of the computer, what the code is actually doing, and 

many other factors. When analyzing a piece of code or even when writing your own program, these are all 

aspects that are necessary to consider during the design phase.  
88 Efficiency within computer science is often about the algorithms (known step-by-step), which relates to 

the amount of computational resources. The computational resources include aspects such as the number of 

steps necessary, the amount of storage, memory space, and more. For there to be maximum efficiency of an 

algorithm, the algorithms normally use the minimum amount of resources necessary.  
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decisions and judgements about what the best answer is, whether it’s analyzing an 

existing algorithm or creating their own.89 In one example the professor had to stress to 

his class how important it is to be able to choose the better answer: 

“There was a slightly ambiguous thing I gave them, but if you thought about it... it 

was a task involving binary search trees, and they have all seen that already in 

either their second year or second class.90 It is a concept that is familiar and 

fundamental to computer science. I said implement deletion. I am not going to 

give you one, look it up, I don’t care. Many of them implemented an algorithm 

that had the wrong asymptotic, it was too slow, it didn’t do what it was supposed 

to do. I was so confused, like this obviously wasn’t the right thing… and others 

were like… well can you have more than one element in the tree. And I was like 

look at the invariant that I wrote down, look at what I wrote, what do you think, 

did you consider this? And they were like, oh I guess not…”91 

 

 In this example, the professor has an expectation of the students to fulfill the task 

that was given to them. This task was not necessarily well defined, however, the 

professor had an expectation of the students to have enough trained judgment, that when 

given a task where they had free reign, they would complete it well enough. The 

decisions that computer scientists make to code their program, approach their problem, or 

what other code they may reuse can have drastic effects on how their program runs or 

how “correct” the professors think the students performed their homework. It is not 

necessarily sufficient whether or not a specific program might work, as there are choices 

that students make that can affect the way that the professors and students grade their 

work.  

                                                           
89 Professor Interview, Claremont Colleges 
90 Binary search trees are a way of storing data within computer science. After storing the data you are able 

to lookup, delete, and add more items to the tree.  
91 Professor Interview, Claremont Colleges 
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Within the classroom environment, professors teach their students methods to 

analyze code and think about problems so the students are able to create a perception of 

how good their solutions are on their own. What is taught in class is expected to be 

utilized during the homework that is assigned.  Throughout the students learning, there is 

hope that the students will be able to work on their homework as a trained expert and to 

start demonstrating the skills of the “trained expert… [who] grounds his or her 

knowledge in guided experience…”92 In the above example from the professor, the 

students were told to make an informed choice of which algorithm that the student was 

going to use. Often there might be many different algorithms that a student could use to 

solve a problem or part of a problem. They might complete the task in a similar way, but 

some choices are better than others. Through the development of the students’ “trained 

judgment” they are able to make these decisions in more informed and useful ways.  

 Throughout the computer science education, there is an expectation that the 

computer scientists will build a computational intuition. As students go on to upper 

division classes and are required to complete more complex assignments, this knowledge 

that is built in earlier classes is something they are expected to draw on.93  

The Judgment 

 Homework and solving problems in class is one of the ways that both professors 

and students describe as the main method in which computational intuition is developed. 

Homework is the exercises where student are able to apply the heuristics they learn or 

                                                           
92 Daston and Galison, Objectivity, 359. 
93 Professor Interview, Claremont colleges 
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develop their own, as well as the place where students are supposed to demonstrate their 

trained judgment and ability to make informed decisions throughout the process of 

working on projects. Throughout the students’ education at the Claremont Colleges, these 

students are building the experience necessary for a successful future within the computer 

science field, whether this is in industry or academics.  Professors try to create situations 

and problems for students that help them gain experience and develop the necessary 

problem solving skills. This means providing the students problems that they might 

actually see if they students go into graduate school or industry.  

 Although there is knowledge that needs to be taught or transferred to students 

throughout lectures, the development of computational intuition needs to occur through 

the experiences that students have through homework and projects. Gaining experience 

within the field of computer science and knowing when to apply the various different 

aspects of computer science is important to the creation of the students trained judgment 

and is central to moving forward as computer scientists. It is this trained judgment, and 

the heuristics of how to solve problems that students will take with them as their 

computational intuition as they move forward, and continue to develop and gain more 

experiences throughout their careers.  
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Conclusion 

Throughout this thesis, I have discussed how the computer scientist is trained and 

develops their computational intuition. The computational intuition of the computer 

scientists involves many different aspects, there is what computer scientists call 

“computer science intuition,” computational thinking, heuristics and trained judgment. 

Computational intuition is taught to the students by their professors as they work together 

on homework. This way of learning is often social, where the interactions between the 

professors, tutors, and other students help learners gain an understanding of the 

“computer science intuition”. This characterization of computer science is shaped by how 

computer science intuition is defined.  It helps define what professors teach in classes and 

eventually how students understand computer science as a field. It is this method of 

thinking that computer scientists at the Claremont Colleges have stated as being one of 

the most essential items that should be taught and gained throughout their education.  

 By understanding computational intuition as an idea of how to solve problems 

through the use of computers, the computer scientists understanding of the field clearly 

affects the manner in which computer science is taught and how professors approach it. 

The focus on homework seems more applicable to understanding this way of thinking, 

while the classes teach necessary skills and concepts. I will leave you with this final 

metaphor. Computer science is like a tool box, where the computer scientist has all of 

their skills and concepts (tools) needed to solve a problem. The computational intuition is 

how the computer scientist determines which tools they will use from their tool box and 

how they will use those tools to solve their problem. 
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The computer science education system is discussed in length, both inside and 

outside of the Claremont Colleges computer science classrooms. Questions of what 

makes a successful computer science class and successful computer science students are 

also important to questions of transferring computational intuition to the next generation 

of computer scientists. This question of successful computer science classes is one that is 

being continually asked in today’s society and there is increasing interest in computer 

science education. Classes, though they may teach specific skills and concept within their 

class periods, are also continuously driving forward this idea of creating a computational 

intuition in the students 

The ability to develop a computational intuition is clearly an important part of the 

education of a computer scientist. Closer work on understanding the link to the 

development of computational intuition or the lack of it in those who do not like or drop 

out of the computer science field over time is needed. Is it the success or lack of 

development of the “computer science intuition” that contributes to those who leave or 

stay in computer science for various reasons?  

Furthermore, the concept of computational intuition is closely tied to research 

about how computer science is performed, and how computer scientists solve the 

problems they are presented with. Though this computation intuition does not necessarily 

go into the specific subfields within computer science, it may warrant a look at the 

development of the intuition along those lines. Different subfields might focus on the 

same ideas of problem solving, building off of the undergraduate understanding, but how 

are the ways of solving problems changed within these subfields?  
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 This study had several limitations, mainly the short duration over which the 

fieldwork was completed which in turn could affect the scope of the study itself. One 

problem arises from the limited number of students within the Claremont Colleges, as the 

people who I interviewed were almost all computer science majors and did not 

necessarily capture the view of non-computer science majors taking computer science 

classes. Within the interviews, students from three out of the five colleges are 

represented, with students from the other two either not volunteering or volunteering after 

fieldwork had concluded. Furthermore, fieldwork was limited to introductory classes, at 

two of the schools. I could not do fieldwork in upper division computer science classes or 

a class at the third school due to the lack of time and scheduling problems.  

 The development of the computational intuition is an idea that is closely tied to 

the overarching goals that many of the computer science departments have when training 

their students. This computational intuition supports a certain methodology of 

approaching problems and thinking about them, allowing students to solve problems in 

computer science. The adoption of the computational intuition by students signals a wider 

understanding of computer science as a field and the behaviors that are expected of 

students as they work on their projects, homework, graduate work or enter the workforce.  
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