
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2016

Fog Computing with Go: A Comparative Study
Ellis H. Butterfield
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Butterfield, Ellis H., "Fog Computing with Go: A Comparative Study" (2016). CMC Senior Theses. Paper 1348.
http://scholarship.claremont.edu/cmc_theses/1348

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70983887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

Claremont McKenna College

Fog Computing with Go: A Comparative Study

submitted to
Professor Arthur H. Lee

by
Ellis Hiroki Butterfield

for
Senior Thesis
Spring 2016

April 25, 2016

Abstract

The Internet of Things is a recent computing paradigm, de-
fined by networks of highly connected things – sensors, actu-
ators and smart objects – communicating across networks of
homes, buildings, vehicles, and even people. The Internet of
Things brings with it a host of new problems, from manag-
ing security on constrained devices to processing never before
seen amounts of data. While cloud computing might be able
to keep up with current data processing and computational
demands, it is unclear whether it can be extended to the
requirements brought forth by Internet of Things.

Fog computing provides an architectural solution to address
some of these problems by providing a layer of intermedi-
ary nodes within what is called an edge network, separating
the local object networks and the Cloud. These edge nodes
provide interoperability, real-time interaction, routing, and,
if necessary, computational delegation to the Cloud.

This paper attempts to evaluate Go, a distributed systems
language developed by Google, in the context of requirements
set forth by Fog computing. Similar methodologies of pre-
vious literature are simulated and benchmarked against in
order to assess the viability of Go in the edge nodes of Fog
computing architecture.

i

ii

Contents

Abstract . i
List of Figures . v
List of Tables . vii

1 Introduction 1
1.1 Background Information . 1
1.2 Challenges . 3
1.3 Importance . 4

2 Fog Computing 5
2.1 Characteristics . 5
2.2 Protocol . 7
2.3 Applicability . 8

3 Go 9
3.1 History of Go . 9
3.2 Goroutines . 10
3.3 Go Channels . 11
3.4 Go Compilation . 12
3.5 Go Packaging . 13
3.6 Other Go Features . 14

4 Architecture, Implementation, and Evaluation 17
4.1 Architecture . 17
4.2 Implementation . 19
4.3 Evaluation . 20

5 Discussion 23

Bibliography 25

iii

iv

List of Figures

1.1 Example Smart Home . 2

2.1 Fog Computing Architecture 6

4.1 CoAP Message Format [1] . 19

v

vi

List of Tables

4.1 Fog Characteristics and CoAP 18

vii

viii

Chapter 1

Introduction

The number of objects connected to the Internet is growing at an exponen-
tial rate. By 2017, it is predicted that there will be 7 trillion devices serving
7 billion people [2]. These devices will be part of the “Internet of Things”
(IoT), the highly connected network of heterogeneous devices, sensors, ac-
tuators, and smart objects, communicating between themselves and with
humans. These devices introduce a new set of problems. They rely on Inter-
net technologies but are constrained by very different factors than typical
computing stations that access worldwide and local networks. Internet of
Things is a wide definition that encompasses several layers of hardware and
networks, each with unique and interesting problems to be explored.

1.1 Background Information

The definition of IoT is broad, encompassing a variety of contexts, each with
unique architectures, devices, and challenges. The idea of IoT however is eas-
ily understood within the context of a domain already quite penetrated by
the IoT paradigm — the smart home. An example modern-day smart home
consists of a large number of smart devices such as smart televisions, smart
thermostats, smart lights, and smart security: cameras, smoke detectors,
and door locks. These devices will vary in computational complexity and
capability. Generally, the simplest types of IoT devices are wireless sensors
such as limited connectivity smoke and light detectors. More advanced de-
vices might include smart refrigerators with greater processing power and
local network and internet connectivity. Smarter still are devices such as
Amazon’s Echo [3], which can control lights and switches, order food online,
and play music, all via voice commands.

1

Figure 1.1: The figure above is an example of a smart test home run by
Allion Test Labs. Though the example illustrates a smart home primarily
connected through WiFi, the type of wireless connections in IoT can also
include simple radio, Bluetooth based, cellular connections, and more [4].

2

1.2 Challenges

The following is a non-exhaustive list of challenges currently facing Internet
of Things implementations.

Energy Efficiency: Many IoT devices are not connected to persistent
sources of power. Improvements in battery technology are much slower than
increases in computational requirements. Smart ways of reducing unneces-
sary communication and processing hold the key for longer lasting battery
life.
Security: This is a broad category that can refer to the security measures
of devices themselves, such as tamper resistance, as well as network secu-
rity, such as securing communication and device identity authentication.
Constrained devices lacking in computational or energy resources may not
be capable of implementing complex security schemes used in conventional
computers and thus new protocols or architectures must be researched [5].
Naming and Identity Management: Standard notions of IP addressing
cannot work in the realm of IoT given the huge number of possible devices
in a single network [5]. New protocols and methods of identity management
must be implemented to handle communication between Wireless Sensor
Networks (WSNs) and the Cloud. How can devices be uniquely identified
across networks and matched to real or virtual entities?
Interoperability: The large number of heterogeneous devices within a net-
work will necessarily make machine-to-machine (M2M) communication dif-
ficult. Protocol standardization becomes especially important in solving the
problem of interoperability and will be discussed later in this paper.
Architecture: A standard or reference model architecture for IoT has yet to
be developed. The European Lighthouse Integrated Project has attempted to
fix this by “providing an architectural reference model for the interoperabil-
ity for IoT systems, outlining principles and guidelines for the technical de-
sign of its protocols, interfaces and algorithms” [6]. These guidelines, though
robust, do not appear to be adopted much in mainstream IoT services so far,
at least within the United States. Architectural models proposed in litera-
ture consist of many multi-layer structures, most often a 5-layer structure,
consisting of an objects layer, object abstraction layer, service management
layer, application layer, and business layer [7].

3

1.3 Importance

The Internet of Things is rapidly penetrating everyday life. Large compa-
nies such as Microsoft, Apple, Google, and Amazon are quickly entering
the IoT market [8] [9] [10] [11]. Many startups are competing in this space,
such as Electric Imp [12] and RetailNext [13]. Offerings range from con-
sumer applications such as Google’s Nest [14] to professional commercial
solutions [15]. Furthermore, the US National Intelligence Council lists Inter-
net of Things in the Six Technologies with Potential Impacts on US Interests
out to 2025 alongside Biogerontechnology, Energy Storage Materials, Biofu-
els and Bio-Based Chemicals, Clean Coal Technologies, and Service Robotics
[16]. Lastly, in their Internet of Things forecast, International Data Corpora-
tion predicts the IoT market will be worth $7.1 trillion dollars by 2020 [17].

This paper evaluates the Go language in the context of a specific archi-
tectural implementation of IoT known as Fog computing. I follow an imple-
mentation by Cirani et al. [18] based on Cisco research [19] and attempt to
show that Go not only performs better, but is also positioned to solve the
problem of Fog computing better, due to unique language constructs and
the trajectory of its development. The implementation by Cirani et al. uses
a Java based implementation of CoAP (Constrained Application Protocol)
on a Raspberry Pi Model B single board computer. This paper replicates the
methodology with slight modifications and with an implementation simply
referred to as “FogPi”. Chapter 2 reviews the application and limitations
of Fog computing architecture. Chapter 3 provides an overview of the Go
language. This section covers design choices, features unique to the lan-
guage, and why it stands as a desirable choice for Fog computing. Chapter
4 discusses the FogPi architecture and features, the testing implementation,
and evaluation. Lastly, Chapter 5 discusses the results and implications for
future work.

4

Chapter 2

Fog Computing

Fog computing is an architecture that extends the paradigm of cloud com-
puting to Internet of Things by placing higher-powered nodes between smart
object (SO) networks and the cloud computing and data storage backbones.
It is a concept developed by researchers at Cisco [19] defined as “a highly vir-
tualized platform that provides compute, storage, and networking services
between end devices and traditional Cloud Computing Data Centers, typi-
cally but not exclusively located at the edge of network.” Fog computing can
be thought of as an adaption of edge computing to the IoT context. These
edge nodes form an intelligent layer, managing communication, computa-
tion, and access between outer smart object nodes, capable of determining
whether extra cloud computation is necessary. Fog computing aims to pro-
vide a powerful layer for real-time low latency services.

2.1 Characteristics

Cisco defines certain characteristics for Fog computing which distinguish its
role as a unique and necessary extension to the cloud computing model [19].
The following are some of the the key features to Fog computing:

• Wide Scale Distribution/Geographic Reach — Fog nodes reside closer
to smart objects, playing the roles of routing, computational delega-
tion, communication, and resource access.

• Mobility Support — Nodes within the network are not expected to be
geographically static. Device identity is decoupled from location and
IP.

5

• Wireless Access — Nodes are not expected to be hardwired to the
Internet and thus rely on wireless networks for communication between
smart objects and Fog nodes, as well as between Fog nodes to the
Cloud.

• Heterogeneity — Fog nodes are expected to perform in a multitude of
differing environments and contexts and will exist in a variety of form
factors.

• Interoperability — Fog nodes must be capable of seamlessly commu-
nicating and cooperating with a variety of nodes and services.

Figure 2.1: Fog Computing Architecture

Bonomi et al. [19] list several examples for Fog computing such as a
Connected Vehicle, Smart Grid, and WSNs. Environments that have yet
to implement Fog computing but might benefit from the paradigm include
Thin Server Architecture [20] and Advanced Manufacturing Systems [21]
[22].

6

2.2 Protocol

Fog computing is a description of an architecture that resides at the applica-
tion and service management layer. The Cisco paper [19] neither implements
nor suggests any specific protocol for Fog computing. There are numerous
IoT protocols currently in development and use, some more applicable than
others to Fog computing. This paper’s implementation uses the Constrained
Application Protocol for reasons discussed later. However some other poten-
tial options and features are listed here.

2.2.1 MQTT - Message Queue Telemetry Transport

MQTT uses a publish/subscribe pattern with a central broker mediating
communication and information storage between the two layers. The pro-
tocol was initially developed by Andy Stanford Clark and Arlen Nipper in
1999. The message queueing is suitable for unreliable or low bandwidth use.
It was originally developed using TCP but has since been adapted to use
UDP in MQTT-SN, a sensor network variant [23]. There are several vari-
ants of MQTT — RabbitMQ [24], Mosquitto [25], IBM MessageSight [26]
— which vary in features and may implement additional features upon the
standard.

2.2.2 AMQP - Advanced Message Queuing Protocol

AMQP is an open standard application layer protocol which relies on TCP.
Its primary use is providing interoperability between servers. It is message-
centric middleware which has been heavily used in the banking industry.
It is a robust system which tracks messages and guarantees they get from
endpoint to endpoint regardless of node failure [27]. It is heavyweight and
more established than other protocols but has potential uses in IoT contexts
where message reliability is the primary focus.

2.2.3 DDS - Data Distribution Service

DDS is a protocol developed specifically for M2M communication. It is de-
veloped by Object Management Group (OMG) to address the needs of big
data applications using a publish/subscribe model. Similar to AMQP, DDS
is used in mission critical systems such as banking where reliability and
fault tolerance are important. However, DDS is a data-centric model which
focuses on making sure the data of any one node is known by all other nodes
accurately and quickly. It also supports UDP multicast alongside TCP [28].

7

2.3 Applicability

The applicability of Fog computing has been investigated by Yanuzzie et
al. [29] and Preden et al. [30] These papers analyze Fog computing at a high
level, only considering use cases and potential challenges without delving
into implementation. More in-depth research has been done by Sakar and
Misra [31], in which they develop mathematical models that demonstrate
that where large numbers of low-latency devices exist, Fog computing re-
duces latency as well as energy dissipation due to reduced data transmission.
Research into security for this paradigm has explored various theoretical
vulnerabilities [32] [33]. However, there has been little research into actual
implementation of Fog computing. Cirani et al. [18] explored one such im-
plementation of Fog computing, creating a Fog node dubbed “IoT Hub”.
Their results demonstrated low memory and processing requirements. The
research section of this paper hopes to show an improved approach using
the Go language.

8

Chapter 3

Go

This chapter goes over the history and development behind the Go language.
Constructs particular to Go make it uniquely suitable for use in Fog nodes.
This chapter covers these various features and why they are particularly
suitable for this problem.

3.1 History of Go

The Go programming language was conceived by engineers Robert Griese-
mer, Rob Pike, and Ken Thompson in 2007. The language is statically typed,
compiled, garbage-collected, and provides primitives for concurrency and
synchronization. The language was initially developed to deal with prob-
lems arising from growing numbers of computational clusters, highly net-
worked systems, and multicore processors. Simply put, Go was developed
to make software development for huge systems more productive and scal-
able [34]. The language was developed with the idea that “less is more” [35].
Go is an attempt at making systems programming more expressive and as
a result is more opinionated and restrictive. Despite being developed as a
counterpart to the highly verbose and complex C++, Pike states that most
users of the language are Python and other dynamically typed, interpreted
language users. He posits that those who are accustomed to using C++
don’t care to give up their level of control over features such as memory
allocation and pointer arithmetic, whereas Python and Ruby users gain a
much faster, concurrent language, without giving up their expectations of
expressiveness [35].

9

3.2 Goroutines

A goroutine is a built-in primitive created to aid in concurrency. Goroutines
provide the ability to make any function in Go concurrent by simulating
thread-like functionality. However, goroutines are far lighter weight than
threads, a feat achieved by multiplexing multiple goroutines into one OS
level thread1. The creation of a goroutine only requires 2 kilobytes of stack
space and grows by allocating and freeing heap space when required [36].
An OS level thread for Linux/x86-32 by default starts with a stack size
of 2 megabytes [37]. Furthermore, the blocking of a single goroutine does
not cause other goroutines within the same thread to block. Goroutines are
intended to make threading and concurrent models easier to access and man-
age than traditional thread creation and management. One caveat of using
goroutines is that, unlike traditional threading models, they do not signal
when they are complete due to the multiplexing nature of the routines.
Go channels are used instead to communicate values within a Go program
and between goroutines [38]. The lightweight nature of goroutines is ideal
for programs, no matter how small, that have to deal with large amounts
of concurrent data processing quickly and efficiently. Fog nodes that have
to deal with client-subscriber models and M2M communication will be ex-
pected to operate asynchronously in order to be performant. The ability for
a programmer to use concurrent constructs such as goroutines not only leads
to greater productivity, but also takes much of the memory management for
threading outside the direct control of the programmer. Automatic memory
management of this type is ideal for dealing with large numbers of unsta-
ble connections and delegating routines for connecting, parsing data, and
transmitting it.

Goroutines are called by prepending function calls with the go keyword.
Functions called with the go keyword are automatically made into goroutines
which shall run concurrently within the process. An example of a goroutine
can be seen below [39]:

func say(s string) {

for i := 0; i < 5; i++ {

time.Sleep(100 * time.Millisecond)

fmt.Println(s)

}

}

1Not to be confused with green threading which involves a virtual machine emulating
system level threads

10

func main() {

go say("world")

say("hello")

}

3.3 Go Channels

Go channels are also primitives built into the language to provide support for
concurrency and synchronization. Channels are created by allocating mem-
ory for them with the make command, similar to C, and defining the datatype
the channel passes. Channels are synchronous by default, causing execution
to block until both the sender and receiver of the channel are ready. They
can be made asynchronous however, by providing a buffer size argument.
Channels can be extended to be channels of channels, expanding function-
ality. A common use is to implement safe parallel demultiplexing [38].

Channels are illustrated in the following example [40]

func sum(s []int, c chan int) {

sum := 0

for _, v := range s {

sum += v

}

c <- sum // send sum to c

}

func main() {

s := []int{7, 2, 8, -9, 4, 0}

c := make(chan int)

go sum(s[:len(s)/2], c)

go sum(s[len(s)/2:], c)

x, y := <-c, <-c // receive from c

fmt.Println(x, y, x+y)

}

11

Channels are used in a variety of contexts within programs written
in Go outside of passing values between goroutines. They can be used as
semaphores, as a signaling mechanism to start or stop goroutines, or even
as a pool and delegation tool for Job-Worker patterns. Below is a stripped
down example from this paper’s work for running code at an interval.

func refreshResources() {

ticker := time.NewTicker(time.Second *60)

for {

select {

case <- ticker.C:

// refresh Resource Directory on channel read

default:

// do nothing

}

}

}

Despite the versatility of Go channels, Go still promotes and uses stan-
dard methods of synchronization for shared resources such as mutexes and
waitgroups located within their sync package [41]. Despite the general ap-
plicability of Go channels, much like any other language construct, it is best
used in appropriate contexts. Channels are better for passing ownership of
data, distributing units of work, and communicating asynchronous results,
whereas mutexes are better for protected data situations such as states or
caches [42].

3.4 Go Compilation

The Go language is a statically typed, compiled language, despite having
expressiveness similar to dynamically typed, interpreted languages such as
Python and Ruby. Go binaries are provided for all major operating systems:
OSX, Linux, and Windows [43]. Most importantly, Go can be cross-compiled
for a multitude of instruction sets and operating systems [44]. The lists pro-
vided below are non-exhaustive:

Instruction Sets:

• amd64 (x86-64)

12

• 386 (x86 or x86-32)

• arm (ARM)

• arm64 (AArch64)

• ppc64, ppc64le (64-bit PowerPC big- and little-endian)

Operating systems:

• FreeBSD

• Windows

• Linux

• OSX (Darwin)

• Solaris

The large support for cross-compilation and development environments
for Go is paramount to creating fast, compatible programs for the large num-
ber of heterogeneous systems within Internet of Things. Outside of wireless
sensors and highly constrained smart objects, Internet of Things objects will
likely support modified operating systems. For the purposes of this project,
support for the arm instruction set is of particular importance for Raspberry
Pi OS, a trimmed down Debian system. Windows 10 [45] and Linux variants
on “things” are supported as well. Lastly, one of the central drivers behind
Go’s development was the concept of fast compile times [34]. Go was con-
structed such that dependency analysis for programs is easy, avoiding the
use of header files, a time-consuming procedure for C and C++ [46]. This
feature is paramount for distribution of code on large numbers of devices.
To be able to quickly compile code natively for a large number of instruc-
tion sets makes Go incredibly versatile, eliminating the need for a virtual
machine or interpreter.

3.5 Go Packaging

Go’s development as a highly networked systems language means that it
provides many well developed packages related to networking and I/O. The
net package provides an interface for network I/O with TCP and UDP,
domain name resolution, and Unix sockets [47]. Within this package exists a
variety of incredibly useful subpackages including, but not limited to, http2,

2HTTP client and server implementations

13

cgi3, pprof4, rpc5, and url6. Go was developed as an open-source language
as well with 118,742 packages accessible remotely online via github.com 7.
During compilation, any remote packages not contained on the device can be
downloaded automatically and built via the go get command. Once built,
these packages can be referred to by their remote url.

// Gets and builds remote package

go get github.com/golang/example/stringutil

// Example remote package import statement

import "github.com/golang/example/stringutil"

3.6 Other Go Features

3.6.1 First Class Functions

Functions are first class objects 8. Those coming from a JavaScript back-
ground will be accustomed to callback style programming available in Go.
Surveys conducted by StackOverflow, one of the most popular programming
Q&A websites, presented JavaScript as the most popular language in the
world [48]. Furthermore, Node.js9, a JavaScript runtime used for web server
technology, is a very popular event-driven, non-blocking IO program built
on Google’s Chrome V8 engine. The ability to attract developers with sim-
ilar expressiveness and functionality [49] is important to cementing Go as a
language in the IoT domain.

3.6.2 Automatic Memory Management

When dealing with concurrency models and large numbers of references to
possible objects, memory management becomes difficult to handle and de-
bug. Go garbage collection (GC) in early stages of development was not
very good, often exhibiting large pauses and spikes during cleanup. Garbage
collection within Go is particularly challenging for the language’s developers

3Implements Common Gateway Interface
4HTTP server runtime profiling data
5Remote Procedure Calls
6URL parsing and query escaping
7This is the number of repositories as of April 14th, 2016 via the search “language:

Go”
8Functions can be passed as arguments to other functions
9Already used in the IoT context by high-powered startup Electric Imp

14

because, unlike languages like Java which might use 10 threads and synchro-
nize with locks, Go GC has to somehow work in the presence of thousands
of goroutines and channels [50]. Since then, Go has massively improved its
GC [51]. It now employs a concurrent, tri-color, mark-sweep collector, a GC
system quite different than conventional enterprise algorithms, but better
suited to the unique nature of Go [52].

3.6.3 Interfaces

Go utilizes interfaces rather than class type systems common to traditional
Object Oriented (OO) languages. Go supports structs and some features of
Object-Oriented design, but lacks the notion of classes and type hierarchy.
Interfaces are lightweight to implement and reduces the tracking of relation-
ships between types common in OO languages, reducing compilation and
runtime complexity. A Go interface is a set of methods as well as a type.
Thus, types can satisfy many interfaces at once, akin to multiple inheritance
[38]. Lacking traditional notions of classes and subtyping is actually quite
valuable in the context of IoT. Given the potentially large heterogeneity of
objects, representing objects in code using traditional classes would prove
cumbersome and interfaces would be largely used anyway. Interfaces can
model devices simply as they create abstractions which consider the func-
tionality common between datatypes rather than fields common between
datatypes.

15

16

Chapter 4

Architecture,
Implementation, and
Evaluation

4.1 Architecture

The design choices for the Raspeberry Pi Fog node for the purposes of
this paper attempted to recreate functionality analogous to the study in
comparison by Cirani et al. [18]. This section will discuss the design of the
Fog node and how Go fits within these paradigms.

This specific implementation of Fog computing utilizes the CoAP pro-
tocol, “a specialized web transfer protocol for use with constrained nodes
and constrained (e.g., low-power, lossy) networks”, designed by the IETF
(Internet Engineering Task Force) [1]. The primary design is for M2M ap-
plications, many of which fall directly into the Fog computing model.
Important features of CoAP include [53]:

• Fulfillment of M2M requirements for networks with constrained nodes
via CoAP-to-CoAP (C2C).

• User Datagram Protocol (UDP) — UDP is smaller than Transmission
Control Protocol (TCP) and easier to send and manage for smaller
nodes. The total size of each message is intended to fit within one IP
packet, though some support for multi-packet messages exists [54].

• Asynchronous message passing.

• Small message overhead — Headers are only 4 bytes.

17

• Support for URI paths and querying.

• Basic caching and proxy support — Cross-protocol proxy support pro-
vides basic mapping from HTTP requests to CoAP requests (H2C)
and vice-versa through an intermediary. Caching allows an interme-
diary node to store values and limit unnecessary communication with
devices so as not to tax resource constrained devices and limit network
traffic.

• Resource and Service Discovery — CoAP dictates methods for service
discovery, requiring a default coap URI port to be open on CoAP-
compatible servers, as well as multicast for endpoint discovery where
endpoints are SOs and CoAP nodes.

• DTLS Security — A security protocol between clients and servers that
allows UDP messages to be sent over a secured connection.

Fog Computing CoAP

Low latency UDP and simple messaging model [55]

Access point and proxying C2C and H2C proxying [56]

Management of large-scale sensor networks Resource Directory [57]

Real-time interactions Request/Response Semantics [58]

Heterogeneity CoRE Link Format [59]

Interoperability Uniform coap URI [60]

Subscriber Models Resource Observation [61]

Table 4.1: Fog Characteristics and CoAP

The interface for CoAP is modeled after Internet HTTP requests. Fur-
thermore, it follows the REST (Representational State Transfer) paradigm
common to web development, but adapted to fit the constraints of weaker
smart objects. Like REST, CoAP implements GET, PUT, POST, and DELETE
methods which function similarly to their HTTP counterparts. However,
CoAP messages differ drastically from HTTP messages as seen in Figure
4.1.

Despite using UDP, CoAP has similar functionality to TCP to deal with
packet loss and general reliability. CoAP messages can be considered con-
firmable or non-confirmable, dictating whether or not they need acknowl-
edgments. As an example, the communication between a Fog node and a
switch node will need confirmation to ensure proper functionality whereas

18

receiving messages from location sensors might be non-confirmable, reduc-
ing communication for the weaker sensor. The request-response model also
supports message piggybacking, which means responses can included on top
of acknowledgment messages [58].

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Ver| T | TKL | Code | Message ID |

+-+

| Token (if any, TKL bytes) ...

+-+

| Options (if any) ...

+-+

|1 1 1 1 1 1 1 1| Payload (if any) ...

+-+

Figure 4.1: CoAP Message Format [1]

The Token field is used to match responses with requests. The Options portion
of the payload is 0 or more option codes contained in both response and request
messages containing information such as Max-Age, Uri-Path, and Content-Format.

4.2 Implementation

The research for this paper used code adapted from a bare-bones library
by Dustin Sallings [62]. The library itself provided message parsing as well
as basic server and client capabilities. Proxying, caching, and a variety of
other features were implemented on top of this library for the purposes of
this paper.

FogPi was installed and run on a Raspberry Pi Model B v1.1 revision
a21041. Due to cost constraints, an actual test-bed of live devices was not
used, and was instead simulated. The following describes the setup for this
experiment:

1. A Windows 10 laptop running with an Intel Core i5-4200 CPU @
1.60 GHz was connected to FogPi over a 1Gbps Ethernet connection.
Wireless connection was unavailable during testing but unnecessary to
test processing and memory usage.

19

2. A mock smart object server was deployed on the laptop to simulate
the 100 smart objects within the Cirani et al. live test bed [18]. The
differences in capabilities were simulated via the type of messages and
frequency with which they were sent.

3. A client program was run on the laptop from which HTTP requests
could ping FogPi for information about the SOs within FogPi’s “net-
work”.

4. The FogPi code was copied to the Raspberry Pi unit and started man-
ually for the purposes of testing. On run, it would immediately begin
accepting messages from the client and smart object server as well
sending responses.

5. Data was collected over a one hour interval. CPU profiling and mem-
ory information was collected, utilizing built-in tools to the language,
namely pprof [63].

The Fog node created for the purposes of this study implemented border
router, resource directory, caching, and C2C/H2C proxy functions, analo-
gous to the Cirani et al. study [18]. It did not include origin server or resource
discovery functionality.

4.3 Evaluation

The code for FogPi was written on a Windows machine and then cross
compiled to the arm architecture for Linux systems using the command
env GOOS=linux GOARCH=arm GOARM=7 go build server.go. The program

was copied over to the Raspberry Pi unit via ssh. The size of the binary on
compilation was approximately 6.3MB. For comparison, the Californium
Java binary alone, a library used by Cirani et al., is 4.93MB. For devices
with constrained memory, this size may prove unfeasible.

The refresh interval noted in Cirani et al. was simulated with 100 requests
to the smart object server every 60 seconds for each object in the resource
directory. Furthermore, every second, a request from the client server pinged
FogPi. During testing, FogPi memory usage fluctuated between 0.33MB and
0.95MB. CPU usage peaked at approximately 50%, though averaged around
38%. This peak usage came from the program’s management of goroutines
on initialization and when the stack was increased, a fairly expensive but
infrequent operation. Cirani et al. experienced approximately 26MB of heap
memory usage with an average of 5% CPU usage with peaks around 35% [18].

20

FogPi clearly outperformed this implementation in terms of heap memory
usage but used quite a bit more computational resources. This can be at-
tributed to several factors. Firstly, our study had clients ping for an entire
Resource Directory response every second. It is unclear what the request-
response rates were in the Cirani et al. study but it was likely considerably
less than a per second basis. Secondly, I suspect that as a result of being a
distributed systems language, Go attempts to maximize the amount of CPU
being used with a mindset similar to Erlang as echoed by this quote from
Programming Erlang [64].

Use Lots of Processes. This is important – we have to keep
the CPUs busy. All the CPUs must be busy all the time. The
easiest way to achieve this is to have lots of processes. When I
say lots of processes, I mean lots in relation to the number of
CPUs. If we have lots of processes, then we won’t need to worry
about keeping the CPUs busy.

The use of many goroutines in FogPi was unoptimized and perhaps taxed
the system more than it might have needed to. These findings are echoed by
open source benchmarks providers where Go CPU loads tend to be slightly
higher but memory usage lower compared to similar Java programs [65].

Though Go was never installed on the Raspberry Pi device, the binary
size for Go 1.6.1, the most recent release [43], is only 67 MB. The smallest
version of the embedded Java SE platform as of writing is 102.21MB, almost
double the size [66]. However, it is likely that one would only install the Java
virtual machine on embedded devices; in which case the binary size is about
3.5MB [67], slightly smaller than the total compiled FogPi binary.

21

22

Chapter 5

Discussion

In this paper, I have presented a Fog node implementation in Go, run on
a similar platform as presented by Cirani et al. [18]. The results of my
experiment have shown that Go is suitable for this domain if not more
competitive than Java. The Fog node that was developed for the purposes
of this paper has a lot of room for improvement. Origin server and resource
discovery, both pivotal parts of CoAP, were left out of FogPi in this version.
Future work will expand on creating a more robust node for greater analysis
of Go in the constrained IoT context.

For purposes of analyzing the benefits of Go, certain benchmark tests
could have been expanded to include the broader requirements of Fog com-
puting outside the comparative benchmarks done within this paper. Notably,
in a Fog computing solution for interfacing mobile device clouds by Shi et
al. [53], the Erlang language was used for their CoAP server due to their
dissatisfaction with performance of C-, Python-, and Java-based CoAP so-
lutions for Raspberry Pi. Within the study, throughput, average round trip
time, and timeout probability for clients was measured on their CoAP server.
Erlang is language with similar characteristics to Go: concurrent, garbage
collected, compiled, and developed with distributed systems in mind [68].
For a truly comparative study, I believe that comparing similar performance
metrics for FogPi against Shi et al. would place Go’s computational perfor-
mance and concurrency handling in a better context. One critique of Shi et
al. is the lack of any metrics for memory usage. Fog computing edge nodes
are expected to be more performant than the smart object network that they
manage. However, these edge nodes are still expected to be relatively con-
strained. Even a Raspberry Pi, considered a moderately powerful IoT device,
has far less RAM and total storage than conventional computers [69].

Neither Cirani et al. [18], Shi et al. [53], nor this study, were adequate

23

in testing major components of Fog computing, specifically mobility sup-
port and its role as an intelligent layer. For mobility support, protocols such
as LISP [70] or HIP [71] should have been considered and implemented to
decouple smart object identity from location. Future works should expect
to validate a Fog node’s ability to handle large amounts of requests in con-
junction to providing a layer of computation. Fog computing is intended to
reduce computational load as well as latency. In the context of these studies,
adequate testing might be to run vector or matrix computation, mimicking
the data structures of location sensor data. Processing coordinate data will
provide a reasonable use case and evaluate language level computational
abilities. In this role, there is evidence that Go outperforms Java due to its
goroutine functionality [72]. Computation of this sort brings into question
Fog computing priorities. On one hand, event-driven architecture provided
by concurrent languages makes sense given the nature of sensor readings and
the request-response model. However, in many cases, computation required
for sensor data falls into regular parallelism1 [73]. In this case, the proper
language might fall into the class of parallel languages such as Cilk [74] or
Chapel [75].

Go is an incredibly powerful language. Its concurrent primitives make
adding concurrency to programs seamless. Above all, the language is more
expressive than other high performance compiled languages. Another thing
to consider is that Go is a relatively new language, having had its first stable
release in 2012 [76]. For a language less than 5 years old, its performance is
near top tier languages with years of technical investment.

In the broader context of IoT, Go is definitively a solid choice for middle-
ware IoT devices. Go is a fast-moving language with major updates released
on a 6 month average cycle that come with huge performance gains. I expect
that Go will become a major language in IoT and Fog computing in the near
future for its performance, memory usage, and its ease of development.

1A problem where it is easy to find independent sub-tasks

24

Bibliography

[1] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Rfc 7252,” 2014.

[2] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad,
“Proposed security model and threat taxonomy for the internet of
things (iot),” in Recent Trends in Network Security and Applications,
pp. 420–429, Springer, 2010.

[3] Wikipedia, “Amazon echo.”
https://en.wikipedia.org/wiki/amazon_echo, 2016.

[4] Technical Direct, “Allion smart home test environment,” 2015.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] “Mission iot-a: Internet of things architecture.”
http://www.iot-a.eu/public/introduction/missioncollage.

[7] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the
internet of things architecture, possible applications and key
challenges,” in Frontiers of Information Technology (FIT), 2012 10th
International Conference on, pp. 257–260, IEEE, 2012.

[8] “Tap into the internet of your things with azure iot suite.”
http://www.microsoft.com/en-us/server-cloud/

internet-of-things/azure-iot-suite.aspx.

[9] “AWS IoT - Amazon Web Services.” https://aws.amazon.com/iot/.

[10] “Internet of things.” https://cloud.google.com/solutions/iot/.

[11] “Homekit.” http://www.apple.com/ios/homekit/.

25

[12] Electric Imp, “Connectivity that transforms.”
http://www.electricimp.com/.

[13] RetailNext, “Analytics for any retail professional.”
http://retailnext.net/.

[14] Nest, “Home.” https://nest.com/.

[15] PTC, “ IoT Solutions .”
http://www.ptc.com/internet-of-things/solutions.

[16] N. NIC, “Disruptive civil technologies: Six technologies with potential
impacts on us interests out to 2025,” 2008.

[17] D. Lund, C. MacGillivray, V. Turner, and M. Morales, “Worldwide
and regional internet of things (iot) 2014–2020 forecast: A virtuous
circle of proven value and demand,” International Data Corporation
(IDC), Tech. Rep, 2014.

[18] S. Cirani, G. Ferrari, N. Iotti, and M. Picone, “The iot hub: a fog
node for seamless management of heterogeneous connected smart
objects,” in Sensing, Communication, and Networking-Workshops
(SECON Workshops), 2015 12th Annual IEEE International
Conference on, pp. 1–6, IEEE, 2015.

[19] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pp. 13–16, ACM, 2012.

[20] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic
from the firmware to the cloud: Towards the thin server architecture
for the internet of things,” in Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth International Conference
on, pp. 751–756, IEEE, 2012.

[21] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, and B. H. Li, “Cciot-cmfg:
cloud computing and internet of things-based cloud manufacturing
service system,” Industrial Informatics, IEEE Transactions on,
vol. 10, no. 2, pp. 1435–1442, 2014.

[22] Z. Bi, L. Da Xu, and C. Wang, “Internet of things for enterprise
systems of modern manufacturing,” Industrial Informatics, IEEE
Transactions on, vol. 10, no. 2, pp. 1537–1546, 2014.

26

[23] “Mqtt.” http://mqtt.org/.

[24] “Rabbitmq - messaging that just works.”
https://www.rabbitmq.com/.

[25] “An open source mqtt v3.1/v3.1.1 broker.” http://mosquitto.org/.

[26] “Secure gateway to the internet of things and high-performance
mobile messaging.”
http://www-03.ibm.com/software/products/en/messagesight.

[27] “Advanced message queuing protocol.” https://www.amqp.org/.

[28] “The proven data connectivity standard for the iot.”
http://portals.omg.org/dds/.

[29] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and
M. Nemirovsky, “Key ingredients in an iot recipe: Fog computing,
cloud computing, and more fog computing,” in Computer Aided
Modeling and Design of Communication Links and Networks
(CAMAD), 2014 IEEE 19th International Workshop on, pp. 325–329,
IEEE, 2014.

[30] J. Preden, J. Kaugerand, E. Suurjaak, S. Astapov, L. Motus, and
R. Pahtma, “Data to decision: pushing situational information needs
to the edge of the network,” in Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2015 IEEE
International Inter-Disciplinary Conference on, pp. 158–164, IEEE,
2015.

[31] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a
green computing paradigm to support iot applications,” IET
Networks, vol. 5, no. 2, pp. 23–29, 2016.

[32] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on, pp. 1–8, IEEE, 2014.

[33] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing:
Mitigating insider data theft attacks in the cloud,” in Security and
Privacy Workshops (SPW), 2012 IEEE Symposium on, pp. 125–128,
IEEE, 2012.

27

[34] R. Pike, “Go at google: Language design in the service of software
engineering.” http://talks.golang.org/2012/splash.article.

[35] R. Pike, “Less is exponentially more.” http://commandcenter.

blogspot.com.au/2012/06/less-is-exponentially-more.html,
Jun 2012.

[36] “Go 1.4 release notes.” https://golang.org/doc/go1.4#runtime.

[37] “pthread create(3) - Linux manual page .”
http://man7.org/linux/man-pages/man3/pthread_create.3.html.

[38] “Effective go.” https://golang.org/doc/effective_go.html.

[39] “A tour of go.” https://tour.golang.org/concurrency/1.

[40] “A tour of go.” https://tour.golang.org/concurrency/2.

[41] “Package sync.” https://golang.org/pkg/sync/.

[42] R. Beton, “Mutexorchannel.”
https://github.com/golang/go/wiki/mutexorchannel.

[43] “Downloads.” https://golang.org/dl/.

[44] “Installing go from source.”
https://golang.org/doc/install/source#environment.

[45] “The internet of your things.”
https://developer.microsoft.com/en-us/windows/iot.

[46] “Frequently asked questions (faq).” https://golang.org/doc/faq.

[47] “Package net.” https://golang.org/pkg/net/.

[48] “Stack overflow developer survey 2015.”
http://stackoverflow.com/research/developer-survey-2015.

[49] L. D. Paulson, “Developers shift to dynamic programming languages,”
Computer, vol. 40, no. 2, pp. 12–15, 2007.

[50] R. Hudson, “Go gc: Latency problem.”
https://talks.golang.org/2015/go-gc.pdf, 2015.

[51] M. Kevac, “Go gc times from 1.4 to 1.5 (tip).” https:

//twitter.com/mkevac/status/620872308446625792/photo/1.

28

[52] R. Hudson, “Go gc: Prioritizing low latency and simplicity.”
https://blog.golang.org/go15gc.

[53] H. Shi, N. Chen, and R. Deters, “Combining mobile and fog
computing: Using coap to link mobile device clouds with fog
computing,” in 2015 IEEE International Conference on Data Science
and Data Intensive Systems, pp. 564–571, IEEE, 2015.

[54] C. Bormann, “Block-wise transfers in CoAP draft-ietf-core-block-17
Work in Progress.”
https://tools.ietf.org/html/draft-ietf-core-block-17.

[55] Z. Shelby, K. Hartke, and C. Bormann, “Messaging Model .”
https://tools.ietf.org/html/rfc7252\#section-2.1.

[56] Z. Shelby, K. Hartke, and C. Bormann, “Cross-protocol proxying
between coap and http.”
https://tools.ietf.org/html/rfc7252\#section-10.

[57] C. Bormann, “CoRE Resource Directory
draft-ietf-core-resource-directory-07.” https://tools.ietf.org/

html/draft-ietf-core-resource-directory-07.

[58] Z. Shelby, K. Hartke, and C. Bormann, “Request/Response
Semantics.” https://tools.ietf.org/html/rfc7252\#section-5.

[59] Z. Shelby, “Constrained RESTful Environments (CoRE) Link
Format.” https://tools.ietf.org/html/rfc6690.

[60] Z. Shelby, K. Hartke, and C. Bormann, “CoAP URIs.”
https://tools.ietf.org/html/rfc7252\#section-6.

[61] K. Hartke, “Observing Resources in CoAP draft-ietf-core-observe-08
Work in Progress.”
https://tools.ietf.org/html/draft-ietf-core-observe-08.

[62] D. Sallings, “go-coap.” https://github.com/dustin/go-coap, 2012.

[63] “Package pprof.” https://golang.org/pkg/pprof/.

[64] J. Armstrong, Programming Erlang: software for a concurrent world.
Pragmatic Bookshelf, 2007.

29

[65] The Computer Language Benchmarks Game, “Java programs versus
Go.” http://benchmarksgame.alioth.debian.org/u64q/compare.

php?lang=java.

[66] “Oracle java se embedded downloads.” http://www.oracle.com/

technetwork/java/embedded/embedded-se/downloads/index.html.

[67] “Oracle java me embedded downloads.” http://www.oracle.com/

technetwork/java/embedded/javame/embed-me/downloads/

java-embedded-java-me-download-2162242.html.

[68] “Build massively scalable soft real-time systems.”
https://www.erlang.org/.

[69] “Raspberry Pi 2 Model B.” https:

//www.raspberrypi.org/products/raspberry-pi-2-model-b/.

[70] “Lisp overview....” http://lisp.cisco.com/lisp_over.html.

[71] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, “Host identity
protocol version 2 (hipv2),” tech. rep., 2015.

[72] N. Togashi and V. Klyuev, “Concurrency in go and java: Performance
analysis,” in Information Science and Technology (ICIST), 2014 4th
IEEE International Conference on, pp. 213–216, IEEE, 2014.

[73] C. Jardak, J. Riihijärvi, F. Oldewurtel, and P. Mähönen, “Parallel
processing of data from very large-scale wireless sensor networks,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pp. 787–794, ACM, 2010.

[74] “Cilkplus.” https://www.cilkplus.org/.

[75] “The chapel parallel programming language.”
http://chapel.cray.com/.

[76] “Release history.” https://golang.org/doc/devel/release.html.

30

	Claremont Colleges
	Scholarship @ Claremont
	2016

	Fog Computing with Go: A Comparative Study
	Ellis H. Butterfield
	Recommended Citation

	tmp.1461792900.pdf.KrT5_

