
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2013

Applications of Fourier Analysis to Audio Signal
Processing: An Investigation of Chord Detection
Algorithms
Nathan Lenssen
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Lenssen, Nathan, "Applications of Fourier Analysis to Audio Signal Processing: An Investigation of Chord Detection Algorithms"
(2013). CMC Senior Theses. Paper 704.
http://scholarship.claremont.edu/cmc_theses/704

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70983668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

CLAREMONT McKENNA COLLEGE

SUBMITTED TO

AND

DEAN GREGORY HESS

BY

FOR

SENIOR THESIS

CPierce
Sticky Note
Accepted set by CPierce

CPierce
Sticky Note
Accepted set by CPierce

Abstract

The discrete Fourier transform has become an essential tool in the analysis of

digital signals. Applications have become widespread since the discovery of the

Fast Fourier Transform and the rise of personal computers. The field of digi-

tal signal processing is an exciting intersection of mathematics, statistics, and

electrical engineering. In this study we aim to gain understanding of the math-

ematics behind algorithms that can extract chord information from recorded

music. We investigate basic music theory, introduce and derive the discrete

Fourier transform, and apply Fourier analysis to audio files to extract spectral

data.

1

Contents

1 Introduction 4

2 Introduction to Music Theory 5
2.1 Pitches and Scales . 6
2.2 Triads and Chords . 7
2.3 Chord Inversions . 8

3 The Chord Detection Algorithm 10

4 Introduction to the Fourier Transform 11
4.1 Frequency and Time Domains . 11
4.2 The Continuous Fourier Transform 13
4.3 The Discrete Fourier Transform . 14
4.4 Sinusoids . 15
4.5 Orthogonality of Sinusoidals (Continuous) 17
4.6 Orthogonality of Sinusoidals (Discrete) 18
4.7 The Delta (δ) Function . 20
4.8 Fourier Transforms of δ Functions . 22

5 A Derivation of the Discrete Fourier Transform 24
5.1 Spike Trains and the Discrete Fourier Transform 24
5.2 Reciprocity Relations of the Discrete Fourier Transform 26
5.3 The Discrete Fourier Transform . 28

6 The Chromagram 29
6.1 The Fast Fourier Transform . 29
6.2 Spectrograms and Chromagrams . 31

7 Conclusion 32

8 Acknowledgments 33

A MATLAB Code for Spectrogram 34

2

1 Introduction

Music is a highly structured system with an exciting potential for analysis. The vast

majority of Western music is dictated by specific rules for time, beat, rhythm, pitch,

and harmony. These rules and the patterns they create entice mathematicians, statis-

ticians, and engineers to develop algorithms that can quickly analyze and describe

elements of songs. In this study we will be addressing the problem of chord detection

through attempting to answer the question: “How can we fit an audio file with chord

labels?” With the ability to quickly determine the harmonic structure of a song, we

can build massive databases which would be prime for statistical analysis. A human

preforming such a task must be highly versed in music theory and will likely take

hours to complete the annotation of one song, but an average computer can already

perform such a task with reasonable accuracy in a matter of seconds [8]. In this study

we explore the mathematics underlying such a program and demonstrate how we can

use such tools to directly analyze audio files.

In section 2 we provide the reader with a brief introduction to music theory. To

understand our question, one must have some basic knowledge of the music frame-

work and vocabulary. We discuss pitches and scales and use them to define what we

mean by a chord. Also, we explore nuances of chords that make automated detection

such a fascinating and difficult problem.

Continuing with background information, section 3 introduces a general model cur-

rently used to detect chords from raw audio clips. An understanding of the analysis

process is crucial to the appreciation of the mathematics. We break down the model

into signal analysis and chord fitting components and provide a brief background into

what each entails.

3

Section 4 contains an introduction to the mathematics necessary to derive the dis-

crete Fourier transform. The discussion is centered around the difference between the

time and frequency domain of a function. We also provide a background on the delta

function which serves as a bridge from continuous functions to discrete vectors.

In section 5 we take the mathematics we have developed in section 4 and derive

the discrete Fourier transform. We need the discrete version of the Fourier transform

because computers cannot process continuous, analogue signals. We must have some

mathematical tool that can deal with discrete, sampled ones. The discrete Fourier

transform enables us to decompose our input signal into a form that can be handled

by the chord fitting portion of our model.

In section 6 we discuss the speed of the discrete Fourier transform and introduce

the fast Fourier transform. The fast Fourier transform is then utilized in MATLAB

to construct a chromagram or pitch-intensity plot of an audio file.

2 Introduction to Music Theory

Before we delve into the mathematics behind chord recognition, it is important for

the reader to have an understanding of what musical structures we are utilizing. In

this section we will provide a brief introduction to modern Western musical theory.

We build up this theory from a single note or pitch, describe how these pitches relate

to each other in scales, and how these scales are summarized by chords. We discuss

the difficulties that arise with octaves since the human ear perceives notes that are

n-octaves apart as being the same note family or chroma. Through our investigation

we will set the stage for the task of extracting chord data from a raw audio wave.

4

Figure 2.1: A chromatic scale beginning and ending of C. Notice there are 13 notes
because C is played at both the top and bottom [10].

2.1 Pitches and Scales

In this study we define a pitch as the human perception of a sound wave at a specific

frequency. For instance, the tuning note for a symphony orchestra is A4 which has

a standardized frequency of 440Hz. In the notation A4, A indicates the chroma or

quality of the note while 4 describes the octave or height. We discuss the uses of

the chroma and octave information further in a later section. It is hard to describe

anything complex with individual pitches so we define a scale as a sequence of pitches

with a specific spacing in frequency. As we follow the pitches of a scale from bottom

to top, we start and end on the same note one octave apart (e.g. from C3 to C4).

Pitches an octave apart sound similar to the human ear because a a one octave jump

corresponds to a doubling in the frequency of the sound wave. Western music defines

the chromatic scale as each of the chroma ordered over an octave as 12 notes. These

12 notes are spaced almost perfectly logarithmically over the octave. We can use a

recursive sequence to describe the chromatic scale [6]

Pi = 21/12Pi−1 (2.1)

With a pitch at frequency Pi in relation to the preceding note at frequency Pi−1. We

can visualize the chromatic scale by striking every white and black key in order up

an octave on a piano or by the scale depicted in Figure 2.1.

By using the chromatic scale as a tool, we can construct every other scale in Western

5

Scale “Color” Defining Steps
Chromatic RHHHHHHHHHHHHR
Major RWWHWWWHR
(Natural) Minor RWHWWHWWR
Diminished RHWHWHWHWR
Augmented RAHAHAHR

Table 2.1: Interval construction of the four core scales. Note that the intervals apply
for when ascending in pitch only. When determining the descending scale, the order
of intervals is reversed.

music through the use of intervals. An interval refers to a change in position along

the 12 notes of the chromatic scale. We define the interval of a “half step” or H as

a change in one pitch along the chromatic scale. A two half step interval is a “whole

step” and denoted by W. We also use interval of three half steps known as an “aug-

mented second” denoted by A. Scales are defined by a sequence of these intervals with

the condition that the total sum of steps must equal 12. This guarantees that we start

and end on the same chroma known as the root R. In this study we discuss the four

most prevalent scales in western music: major, minor, augmented, and diminished.

The intervals that describe these scales can be found in Table 2.1. The table can

be used by picking any starting note for the root and following the intervals. For

instance a C minor (Cm) scale is C,D,E[,F,G,A,B[,C.

2.2 Triads and Chords

Multiple pitches played simultaneously are defined as a chord. Chords are essential

in music analysis because they compactly describe the entire melodic and harmonic

structure of a section of music. That is, a chord indicates what notes and combina-

tion of notes should be played at a moment in time. A triad is a specific and simple

chord containing the first, third and fifth note of a scale (I III V). Figure 2.2 shows

the triads for each of the four scales in the key of C. These triads describe the major

6

Figure 2.2: Triads in the key of C [12].

(maj), minor (min), diminished (dim), and augmented (aug) chords in our model.

While triads are a useful way to understand the tonal structure of music, four notes

are often needed to completely describe tonal character. Adding and possibly alter-

ing the seventh note of the scale (VII or 7) creates new and essential chords. The

three chords that we need a seventh to describe are the major seventh (maj7), minor

seventh (min7), and dominant seventh (dom7). The major and minor seventh chords

follow directly from the major and minor scales. They each contain the I III V VII of

their respective scale. The dominant seventh chord does not follow one of the scales

we have described. With respect to the major scale it contains the I III V VII[. The

theory behind the dominant seventh chord is a consequence of the theory of musical

modes, which is more complex than is necessary for the understanding of our study.

We have now described all of the chord families that our model will be detecting.

The number of possible chords is determined by combinations with the chromatic

scale. These families are sufficient at capturing the majority of western music. In

this study we also have 21 possible roots and the possible chord names can be found

in Table 2.2 [8].

2.3 Chord Inversions

Currently we have 7 chord families and 21 roots giving us a total of 147 different

chords to distinguish between. However this number is assuming that we always have

7

Chord Families maj, min, maj7, min7, dom7, aug, dim

Roots
A[, B[, C[, D[, E[, F[, G[,
A, B, C, D, E, F, G,
A], B], C], D], E], F], G]

Table 2.2: The naming parameters for chords in our model. A chord is named by one
chord family and one root[8].

Figure 2.3: The root and inversion triads in the key of C[11].

the root as the lowest note in the chord. In reality chords with root on bottom do not

occur all of the time. Instead one of the chords inversions or rearrangements is found.

An inversion can algorithmically be described as the chord that has been transformed,

by taking the root and raising it an octave. Then the previously second lowest note is

now on bottom. This is known as the first inversion. If we apply that process again,

we are left with the second inversion and third lowest note on bottom. For a triad we

have two inversions before we are back to the original chroma arrangement. When

chords involve a seventh, we have three inversions. Thus the total amount of chords

we now how to distinguish between is

C = (21 roots)[(4 triads)(2 inversions) + (3 7th chords)(3 inversions)] = 357 (2.2)

Distinguishing between this amount of distinct possible chords is quite a task, partic-

ularly since the octave information of a note cannot help us narrow down the chord

choice. In the next section we will explore how mathematicians and engineers take

raw audio files and determine the chord progressions.

8

3 The Chord Detection Algorithm

Throughout this study we will be analyzing a chord recognition model developed by

Sheh and Ellis in 2003 [8]. While we are discussing one specific model, the general

process in current chord analysis is relatively standard [6, 8]. This model can be

broken down into two major components: signal analysis and chord fitting. The goal

of the signal analysis portion of the model is to break down a raw audio signal into

chroma intensities. These intensities are then fed into the chord fitting portion where

we determine the most likely chord representations for the music.

The primary mathematical tool used to decompose the raw audio signal is the Fast

Fourier Transform (FFT), which is an optimized discrete Fourier transform algorithm.

We use the FFT to determine the fundamental frequencies and therefore pitches that

are present in our raw signal. However as explained in the previous chapter, the

octave of the pitch is generally irrelevant to the chord identity. Thus, we will need

to transform the pitches obtained through the FFT into octave-independent chroma.

The chroma information of an audio file is known as the Pitch Class Profile (PCP) [8].

Once we have determined the PCP of our input, we use it to determine the best fitting

chords to our music. To do this we implement a Hidden Markov Model that has been

trained by a large set of pre-annotated audio files. The optimal chord assignments

given a PCP are determined through the expectation maximization algorithm[5].

Since the computer has no idea of what a “beat” is, we must align the chord labels

that the expectation maximization algorithm determines with specific time points in

the original audio track. The Viterbi alignment algorithm can be used to forcibly

align the chord labels, creating a fully analyzed track [5, 8].

9

As stated previously, the focus of this study is on the signal processing portion of

the chord detection algorithm. We now explore the FFT by building an understand-

ing of the underlying mathematics. In doing so, we reveal how Fourier analysis is

useful in determining the chroma structure of an audio file.

4 Introduction to the Fourier Transform

4.1 Frequency and Time Domains

Before we delve into the math surrounding the Fourier transform, it is helpful to un-

derstand what it is doing at an intuitive level. The development of the mathematical

construct now referred to as the Fourier transform was motivated by two problems in

physics that are very prevalent and observable. These problems are the conduction

of heat in solids and the motion of a plucked string whose ends are fixed in place

[1, 2]. We instantly see the relevance to our study as string instruments such as a

violin or piano produce sound by amplifying the vibrations of such a fixed string. The

history of the development of the Fourier series and transform is interesting and rich.

A reader interested in its development is recommended to read the introductions of

these books [1, 2]. History aside, the most crucial information we take away from the

development of Fourier analysis is that functions can be represented in both the time

domain as well as the frequency domain.

But what do we mean by the time and frequency domains? The connection between

the two is easiest to see in a periodic system such as the vibrating string example.

You would likely describe the motion of such a string by talking about how the po-

sition of points on the string are changing as time progresses. More rigorously, we

can model the motion using a differential equation where the initial condition is the

10

Figure 4.1: The first four standing waves of a vibrating, fixed string [7].

initial displacement. A differential equation can to describe how the elastic forces of

the string evolve the position of the string over time [1]. By solving such differential

equations, we can represent the motion of the string by a function f(t) where t is time.

This function f(t) is known as the time domain representation of the motion of the

string; it provides us with information on how the string behaves as time progresses.

For our plucked string example it is easy to visualize the time domain as that is

how we perceive its motion with our eyes. The string is vibrating in some repetitive,

sinusoidal pattern. Imagine we plucked the string in precisely the way that made the

string vibrate only at the fundamental harmonic illustrated in Figure 4.1. We repre-

sent this pattern in the time domain by a single sinusoid with frequency ν0. Notice

that we can completely describe the motion of the string by this frequency ν0 and the

amplitude of the oscillation.

Thus, the frequency domain F (ν) of this specific string has just one spike at ν = ν0

with the height of the spike equal to the amplitude of the wave. The example of the

fundamental harmonic allows us to visualize what the frequency domain is conveying,

but in real systems we never have exactly and only one frequency. We then construct

our frequency domain representation through an infinite series of these harmonics

11

weighted in such a way that they represent the motion of the string. This series is

known as the Fourier series and provides the basis for the Fourier transform. Through

the Fourier transform we are able to obtain the frequency domain of a time domain

function. The Fourier transform is invertible with the inverse Fourier transform re-

turning the time domain function from a frequency domain function.

Before we delve into the mathematics behind the Fourier transform, it is useful to

understand why it is so crucial to our study. Audio signals are recorded and listened

to in the time domain; they are the intensity of the sound as a function of time.

However, pitches and therefore chords are represented by single frequencies as shown

in section 2. Therefore we use a Fourier transform to convert the time domain input

signal into a frequency representation which can be analyzed for intensities of specific

pitches. The relationship between the pitches at a given time is then analyzed to

determine the chord that is being played. With some intuition of the purpose of the

Fourier transform and its role in our study, we proceed to investigating its mathe-

matics. It is important to note that the Fourier transform is a transformation in the

complex plane. We will see that even for real-valued inputs such as audio signals, the

Fourier transform will return a complex-valued frequency domain representation.

4.2 The Continuous Fourier Transform

As introduced in section 4.1, the Fourier transform is a mathematical tool that can

be used to transform a function from the time domain f(t) to the frequency domain

F (ωk). We define ωk as the angular frequency through its relationship with the

ordinary frequency ν as

ωk ≡ 2πkν (4.1)

12

The Fourier transform is an invertible transformation. The inverse Fourier transform

takes a frequency domain function and returns its representation in the time domain.

We define the Fourier transformation as

F (ωk) ≡
∫ ∞
−∞

f(t) e−2πikt dt k ∈ (−∞,∞) (4.2)

The presence of the complex sinusoidal is clear by recalling that eiωt = cos(ω t) +

i sin(ω t). From equation 4.2 we can derive the inverse Fourier transform. Our inverse

transform is

f(t) =

∫ ∞
−∞

F (ωk) e
2πikt dk k ∈ (−∞,∞) (4.3)

We have presented this section to provide the reader with the basic structure of the

Fourier transformation, but will not provide any more detail on the continuous case

in this paper. These equations provide the base for our algorithms to find the spectra

of waves, but since digital signals are not continuous we need to find a way to use

the Fourier Transformation on discrete sequences rather than continuous functions.

Thus, we are motivated to define and derive the discrete Fourier transform.

4.3 The Discrete Fourier Transform

When faced with a set of numbers or vector instead of a continuous function, we

must use an algorithm that does not involve an integral. As we know, the sum is

the discrete analogue to the integral. Thus we define and eventually show that the

discrete Fourier transform (DFT) over a complex vector fn of length N as

Fk ≡
N
2∑

n=−N
2
+1

fne
−i2πnk/N k = 0 : N − 1 (4.4)

13

This should look quite similar in form to the continuous version of the Fourier trans-

form in equation 4.2. We still have the exponential kernel and are now performing a

careful sum instead of a integral. Likewise, our inverse DFT has the form

fk =

N
2∑

n=−N
2
+1

Fne
i2πnk/N k = 0 : N − 1 (4.5)

With these equations in mind we now present the derivation of them from the con-

tinuous Fourier transform. We do so in a way that is motivated by the nature of

our input sound signals before and after they have been sampled from continuous

functions into vectors.

4.4 Sinusoids

Before we dive into our derivation of the DFT, we take note of an interesting property

of the sine and cosine functions. Our inclusion of this topic may not make sense at

the time to a reader without experience in Fourier analysis, but the usefulness of our

discussion will present itself shortly. We define a sinusoid as a function of the form

x(t) = A sin(2πft+ φ) (4.6)

When discussing audio signals we let

A = Amplitude

2πν = frequency(Hz)

t = time (s)

φ = initial phase (radians)

2πνt+ φ = instantaneous phase (radians) [9]

14

Fourier transforms are built on the complex properties of sinusoids which follow from

Euler’s Identity

eiθ = cos(θ) + i sin(θ) (4.7)

e±i2πνx = cos(2πνx)± i sin(2πνx) (4.8)

Equation 4.7 is Euler’s Identity in its most basic form. We include Equation 4.8 as

this is how we will be using the identity in this study. We will be discussing specific

modes or wavelengths of sinusoids defined by their frequency.

We now aim to prove that sinusoids are orthogonal with respect to their frequency.

Before we present the orthogonality property for sums of sinusoids we must define the

Kronecker delta and the modular Kronecker delta. The Kronecker delta is a function

of two variables m,n that returns

δmn =

1 if m = n

0 else

The modular Kronecker delta is slightly different and will be used in the discrete

orthogonality theorem. In this case “mod” refers to normal modulo arithmetic

δ̂N(k) =

1 if k = 0 mod N

0 else

With these definitions in hand we are now prepared to present the orthogonality

theorems [2].

15

4.5 Orthogonality of Sinusoidals (Continuous)

The Fourier transform builds a basis in the frequency domain by taking advantage of

the idea that sinusoids of different frequencies are orthogonal. We claim that over an

interval 2π with m,n ∈ Z that,

∫ π

−π
cos(mt) cos(nt) dt = πδmn (4.9)

To show this we must investigate two cases: m = n, and m 6= n. When m = n we

may write ∫ π

−π
cos(mt) cos(nt) dt =

∫ π

−π
cos2(nt) dt (4.10)

By recalling the symmetry of the cosine function we may reduce our integral as

∫ π

−π
cos2(nt) dt = 2

∫ π

0

cos2(nt) dt (4.11)

Since 2 cos2(x) = 1 + cos(2x) we have

2

∫ π

0

cos2(nt) dt =

∫ π

0

1 + cos(2nt) dt

=

(
t+

sin(2nt)

2n

) ∣∣∣∣π
t=0

= π (4.12)

Since n is an integer and all multiples of 2π result in the sine function having zero

value. We have shown half of our claim from equation 4.9.

When m 6= n the calculus is a little messier, but can again be simplified by trigono-

metric identities. We start the same way as above by recalling the symmetry about

16

the origin of the cosine function.

∫ π

−π
cos(mt) cos(nt) dt = 2

∫ π

0

cos(mt) cos(nt) dt (4.13)

By the property of products of cosines we may write

2

∫ π

0

cos(mt) cos(nt) dt =

∫ π

0

cos((m− n)t) + cos((m+ n)t) dt

=

(
sin((m− n)t)

m− n
+

sin((m+ n)t)

m+ n

) ∣∣∣∣π
t=0

= 0 (4.14)

Since m,n ∈ Z so m + n ∈ Z and m− n ∈ Z. For the same reasoning as the m = n

case, both of the sine functions are zero and the result is zero. We have proven our

claim from equation 4.9. In a similar way we can show the orthogonality of sine

functions and discover that

∫ π

−π
sin(mt) sin(nt) dt =

∫ π

−π
cos(mt) cos(nt) dt = πδmn (4.15)

With the continuous orthogonality of sines and cosines, we have a platform to un-

derstand and accept sinusoids as a basis for the frequency domain representation of

a function. Since they are orthogonal we may use linear combinations of sinusoids

to create a spanning set and represent our time domain function in the frequency

domain. However, this representation will not be sufficient for the DFT and we need

to explore the orthogonality of sinusoidals further.

4.6 Orthogonality of Sinusoidals (Discrete)

In the DFT we work with sums instead of integrals. Thus we have to provide a new

orthogonality property for this discrete case. We can be clever and use the exponential

17

function to prove directly that the kernels of our Fourier series will be orthogonal.

Theorem 4.1. Orthogonality of Sinusoids: Let j and k be integers and let N be a

positive integer. Then

N−1∑
n=0

ei2πnj/Nei2πnk/N = Nδ̂N(j − k) (4.16)

Proof. First consider the N complex numbers ei2πk/N for k = 0 : N − 1. These are

known as the Nth roots of unity as they satisfy the equation

(
ei2πk/N

)N
= ei2πk = 1 (4.17)

We know that the roots of unity are zeros of the complex polynomial zN − 1. This

polynomial may be factored as

zN − 1 = (z − 1)(zN−1 + zN−2 + . . .+ z + 1)

= (z − 1)
N−1∑
n=0

zn (4.18)

Now let z = ei2π(j−k)/N . We now have two cases: when (j − k) = 0 mod N , and

when (j − k) 6= 0 mod N . Since ei2πk/N − 1 = 0 we have in the first case,

N−1∑
n=0

zn =
N−1∑
n=0

ei2π(j−k)/N =
N−1∑
n=0

1 = N (4.19)

In the second case when (j − k) 6= 0 mod N we must have

N−1∑
n=0

zn =
N−1∑
n=0

ei2π(j−k)/N = 0 (4.20)

By 4.19 and 4.20 we have shown the discrete orthogonality of sinusoids [2].

18

Again, orthogonality is significant because in enables us to form an orthogonal basis

of sinusoids that build our frequency domain. The coefficients on linear combinations

of sinusoids obtained by the DFT are the values in the frequency domain that describe

fundamental frequencies embedded in our input signal.

4.7 The Delta (δ) Function

Due to the nature of computers we are cornered into using DFTs for music and signal

processing. When an analogue sound wave is stored in a computer, it must be sam-

pled. The mathematics of sampling is a large field and we will leave the discussion of

sampling algorithms and analogue-to-digital converters for future work. In this study

all that needs to be understood is that we have some sampler that takes a continuous

signal f(t) as an input over time t ∈ [0, T]. The sampler then returns a time-series

vector that contains values according to some sampling frequency with a uniform gap

∆t between samples. We can view this vector as a continuous “function” that is a

peace-wise collection of Dirac delta functions δ, each centered at some multiple of our

sampling period n∆t. We say “function” because δ is not a function by the rigorous

definition, but rather a distribution or generalized function[2]. The delta function, or

spike as it will often be referred to in this study, is a special mathematical construct

with a number of properties that are intuitive and useful to our study of DFTs. We

now outline a few of its most relevant properties to our study, understanding that

this list is by no means exhaustive.

First, the δ function is non-zero at every point but 0 where it is infinite. That

is,

δ(t) =

∞ if t = 0

0 if t 6= 0

(4.21)

19

This property illuminates why we use the term spike. The δ function is an infinitely

thin, infinity tall peak centered around zero. When we want our delta function to

occur at a value of t 6= 0, we may shift as we would any other function. Thus a δ

function centered at t = a can be written as δ(t− a).

Second, the area under the delta function is 1. That is,

∫ ∞
−∞

δ(t) dt = 1 (4.22)

This property can be exploited to reveal the useful general sifting property in which

we can use δ functions to discretize integrals.

∫ ∞
−∞

f(t)δ(t− a) dt = f(a) (4.23)

The relevance of the general sifting property to our study cannot be overstated. In

addition to being essential to our forthcoming derivation of the DFT from the Fourier

transform, we can immediately notice its potential as a crude sampling tool. With a

continuous input signal f(t), we can use the general sifting property and δ(t− a) for

an evenly spaced sequence of a values to get the instantaneous values of our original

function. While certainly not a sophisticated method, it provides a relevant and sim-

ple application that demonstrates the power of the δ function.

With the δ function defined, we can now move on to investigate what its Fourier

transform looks like. We present its Fourier transform and inverse Fourier transform

that will serve as tools to define a spike train and eventually the DFT.

20

4.8 Fourier Transforms of δ Functions

While the two examples presented in this section are interesting, their usefulness in

our investigation will not immediately be apparent. However these simple applications

of the Fourier transform and its inverse will be instrumental in our derivation of the

DFT. We begin by looking at the Fourier transform of a single spike centered at zero.

By the general sifting property,

F (t) =

∫ ∞
−∞

δ(t) e−i2πνt dt = e0 = 1 (4.24)

This means that a spike in the time domain translates to an flat line in the fre-

quency domain or a even weight among all frequencies. This is a somewhat physi-

cally curious result that can be reconciled by understanding that for every frequency,

cos(2πν · 0) = 1 and at every other value of t, the sinusoids take on every value

between 0 and 1.

We also see an interesting result when we have a spike at the origin in the frequency

domain. Intuitively this spike symbolizes that our time dependent function is made

up of a single sinusoid with frequency zero, or a straight line. We can confirm this by

looking at the inverse Fourier transform of a δ function

f(t) =

∫ ∞
−∞

δ(t) ei2πνt dt = e0 = 1 (4.25)

These results are useful and interesting, but do not provide us with the connection

between a spike and a sinusoid necessary to build the DFT. It appears that a spike in

the frequency domain at any location besides the origin will correspond to some sort

of sinusoid in the time domain. We can see this is true by taking the inverse Fourier

21

transform of a δ function shifted by some frequency ν0 which yields

f(t) =

∫ ∞
−∞

δ(ν − ν0)ei2πνx dx = ei2πν0x

= cos(2πν0x) + i sin(2πν0x) (4.26)

By clever addition of pairs of Inverse Fourier transforms, we can determine what spikes

are necessary in the frequency domain such that their inverse Fourier transform are

real-valued sine and cosine functions. We notice that to get a sine function in the time

domain we must construct spikes in such a way that their sine components cancel.

Recalling the definition of cosine from Euler’s formula we get,

f(t) =

∫ ∞
−∞

[
1

2
δ(ν − ν0) +

1

2
δ(ν + ν0)

]
ei2πνx dx

=
1

2

∫ ∞
−∞

δ(ν − ν0)ei2πνx dx+
1

2

∫ ∞
−∞

δ(ν + ν0)e
i2πνx dx

=
ei2πν0x + e−i2πν0x

2

= cos(2πν0x) (4.27)

Similarly for our sine function we have the inverse Fourier transform

f(t) =

∫ ∞
−∞

[
1

2i
δ(ν − ν0)−

1

2i
δ(ν + ν0)

]
ei2πνx dx

=
1

2i

∫ ∞
−∞

δ(f − f0)ei2πνx dx− 1

2i

∫ ∞
−∞

δ(ν + ν0)e
i2πνx dx

=
ei2πν0x − e−i2πν0x

2i

= sin(2πν0x) (4.28)

We summarize these results by describing how the cosine and sine functions respond

to a Fourier transform. Our cosine function of frequency ν has a Fourier transform of

22

two positive real-valued spikes at ±ν in the frequency domain. A sine function of fre-

quency f has a Fourier transform that lies purely in the imaginary frequency domain

with a negative spike at +ν and a positive spike at −ν. The sine function serves as a

demonstration of the necessity of complex numbers in the Fourier transform. A real

valued sine wave is described by a completely imaginary frequency representation.

5 A Derivation of the Discrete Fourier Transform

5.1 Spike Trains and the Discrete Fourier Transform

As we have defined a spike as a δ function, a spike train is simply a collection of δ

functions. In section 4.7 we mentioned how sampling can be interpreted as collecting

the amplitudes of evenly spaced delta functions. That is nothing more than the

construction of a spike train from a continuous function. For application to the DFT,

we fix the spacing of these spikes in time as ∆t. Thus the nth spike is located at

tn = n∆t. We define our spike train over time h(t) as

h(t) =
∑
n

fnδ(t− tn) (5.1)

In this form the vector fn represents the intensity or magnitude of the spikes. By

recalling the general sifting property of delta function, we can rewrite a spike train

as,

h(t) =
∑
n

fnδ(t− tn) =
∑
n

f(tn)δ(t− tn)

=
∑
n

f(t)δ(t− tn) (5.2)

23

Thus, we can easily construct the spike train of a function by summing a series of

evenly space delta functions multiplied by our original continuous function. More-

over, this view of the spike train is easily translated to a programming language such

as MATLAB for simple and intuitive testing of our DFT algorithms.

With the definition of a spike train we can begin to reveal the DFT by investigating

its Fourier transform. Assume we have a evenly spike train of length N on an time

interval of length L. We center the function at zero so that the interval covered is

[−L/2, L/2]. Since the points are evenly space in time, we know that the nth point

is located at tn = nL/N with n = −N/2 + 1 : N/2. Now we will see what happens

when we take the continuous Fourier transform of this spike train. Again making use

of the general sifting property of δ functions we have,

F (ν) =

∫ ∞
−∞

 N
2∑

n=−N
2
+1

ftδ(t− tn)

 e−i2πνt dt

=

N
2∑

n=−N
2
+1

fn

∫ ∞
−∞

δ(t− tn)e−i2πνt dt

=

N
2∑

n=−N
2
+1

fne
−i2πνxn (5.3)

Thus the Fourier transform of a spike train is simply the sum of exponentials weighted

by their intensities in the spike train [2]. We now have an expression that is very close

to our definition of the DFT given in Equation 4.4. To make Equation 5.3 match, we

need to define and use the reciprocity relations of the discrete Fourier transforms.

24

5.2 Reciprocity Relations of the Discrete Fourier Transform

To uncover the reciprocity relations we will use the same sequence in the time domain

as used in the previous section: a vector of length N evenly spaced over a total time

of L. Again we are centered at t = 0 so the time interval runs over [−L/2, L/2]. If

our temporal spacing is ∆t then the points are defined as tn = n∆t. We will use a

similar method in discretizing the frequency domain. We again use a vector of length

N evenly spaced points over a length Ω. We are centered at ν = 0 so our interval

of frequencies is [−Ω/2,Ω/2]. If our spacing of frequencies is ∆ν then the points are

defined as νk = k∆ν. We search for the reciprocity relations that relate the time and

frequency domains using the parameters ∆t and L for the time domain and ∆ν and

Ω for the frequency domain.

Since we only have a discrete number of points in the frequency domain, we are

limited in the number of sinusoids we can use to represent our time domain function.

Likewise, we are looking at our time domain function over a finite and well-defined

time interval L. Clearly the longest sinusoid we can resolve in this amount of time

is one with L as its period or the fundamental harmonic. Frequency is the recipro-

cal of period and we will call this longest period our fundamental frequency. The

fundamental frequency is also the step size in our frequency domain. That is,

∆ν =
1

L
(5.4)

Thus the frequencies we will recognize will all be multiples of ∆ν and have integer

periods over our time interval. It is then clear that the length described in our

frequency domain is just the number of points multiplied by the frequency step or

Ω = N∆ν. Using this in conjunction with equation 5.4 we have our first reciprocity

25

relation,

Ω = N∆ν =
N

L
=⇒ AΩ = L (5.5)

This relation shows that the lengths of the temporal and frequency domains are in-

versely proportional and jointly fixed with respect to the input vector length N . In

practice, we interpret Equation 5.5 by noting that taking temporal data over a longer

range of time means that the DFT yields a smaller range of frequencies and visa versa

[2].

With the first reciprocity relation in Equation 5.5 and the constraints we have placed

on our time and frequency domains, we can easily find the second reciprocity relation.

Recall that in the temporal domain we have N points evenly spaced by ∆t over the

interval [−L/2, L/2]. Therefore we must have N∆t = L. Also recalling from equation

5.4 that ∆ν = 1/L we can present our second reciprocity relation as,

1

∆ν
= L = N∆t =⇒ ∆t∆ν =

1

N
(5.6)

This relation reveals very similar information to the first. The spacings of the tem-

poral and frequency domain are inversely proportional and fixed by the number of

points or the length of the vector.

Now that we have defined the reciprocity relations that govern the properties of the

DFT when moving between the temporal and frequency domains, we can go back to

equation 5.3 and reveal the exact form of the DFT presented in equation 4.4. Keep in

mind that the usefulness of the reciprocity relations extends far beyond the derivation

of the DFT. They are fundamental in dictating the behavior of DFTs when moving

between the temporal and frequency domains.

26

5.3 The Discrete Fourier Transform

We begin with a reminder of where we left off in the derivation of the DFT in section

5.1. Equation 5.3 left us with

F (ν) =

N
2∑

n=−N
2
+1

fne
−i2πνxn (5.7)

Using the assumption that we have N points over a time length of L we know that

the step spacing in the frequency domain must be νk = k∆ν = k/L in which k =

−L/2 + 1 : L/2. We use this to show that 5.7 can be rewritten as,

F (ν) =

N
2∑

n=−N
2
+1

fne
−i2πνkxn

=

N
2∑

n=−N
2
+1

fne
−i2πnk/N (5.8)

Where this is the DFT as we have defined it previously in Equation 4.4. Thus we

have shown that we can view the discrete Fourier transform as simply the Fourier

transform of a spike train. We proceed by investigating how we employ the DFT and

apply it to music signal analysis.

27

6 The Chromagram

Since the DFT is a sum across of indexed values in the exponential kernel, we can

express it as the linear equation

F = Wf (6.1)

Where f is the input data in the time domain, F is the output in the frequency

domain, and W is the all of the exponentials for k = 0 : N − 1 from equation 5.8 in

a square, nonsingular matrix

W =

e−i2π(0)/N e−i2π(0)/N e−i2π(0)/N · · · e−i2π(0)/N

e−i2π(0)/N e−i2π(1)/N e−i2π(2)/N · · · e−i2π(N−1)/N

e−i2π(0)/N e−i2π(2)/N e−i2π(4)/N · · · e−i2π(2(N−1))/N

...
...

...
. . .

...

e−i2π(0)/N e−i2π(N−1)/N e−i2π(2(N−1))/N · · · e−i2π((N−1)(N−1))/N

(6.2)

Since, W is nonsingular, we may express the inverse DFT as

f = W−1F (6.3)

Through using this method of matrix multiplication, we can calculate the DFT in

O(n2) time where n is the length of our input vector. However with sampled music,

our inputs will be enormous and we would like to find a method that allows us to

compute the DFT in a faster amount of time.

6.1 The Fast Fourier Transform

In 1965, James Cooley and John Tukey published an algorithm that fundamentally

changed the digital signal processing landscape [3]. By exploiting symmetries of the

28

Figure 6.1: A quick comparison of O(n2) and O(n log2 n) processing speed.

DFT, they were able to reduce the running time of DFTs from O(n2) to O(n log2 n).

This algorithm is the first fast Fourier transform (FFT) named for this increase in

computational speed. As can been seen in Figure 6.1 this cut in processing time is

quite significant for a input vector of length 50. In this study we are using audio that

have sampling frequencies of 11025 Hz. Thus in a three minute song, we have about

2,000,000 input points. In this case, our O(n log2 n) FFT algorithm provides us with

a frequency representation of our data

n2

n log2 n
=

(2 · 106)
2

(2 · 106) log2 (2 · 106)
≈ 100, 000 times faster.

Clearly this boost in speed that the FFT provides is huge. We can calculate a FFT

in MATLAB in fractions of a second when a full DFT would take hours. Thus the

FFT facilitates the spectral analysis or frequency domain analysis of large data such

as audio files.

29

Figure 6.2: The spectrogram (top) and chromagram (bottom) of an ascending scale.

6.2 Spectrograms and Chromagrams

By looking at the FFT of overlapping segments of time in our audio file, we can

construct the Short-Time Fourier Transform (STFT). Each of the FFTs in the STFT

reveal the frequency domain representation or spectrum of a small time interval of our

input signal. When combining all of these time segments with the proper synthesis,

we can construct data on the intensities of frequencies as time progresses [9]. The

STFT allows us to add a time dimension to our DFT which enables us to observe

how the frequency domain changes over time. Since frequencies are representative of

pitches, we can use the spectrograms to determine the chroma played at a moment

of time in our signal. The creation of these spectrographs is crucial in determining

how chords are changing in music. As stated previously, we do not care about the

octave information of the sound. We determine the chroma intensity by collecting all

intensities of a note regardless of its octave. The algorithm of collecting these chroma

is referred to as a chromagram, and it contains the information that we pass to our

Hidden Markov Model to determine the chord represented.

In this study we will be using MATLAB code written by Professor Dan Ellis at

Columbia University [4]. With his code, we were able to create a spectrograph of a

30

∼ 12 second audio clip of a piano playing an ascending chromatic scale. The results

of our analysis are demonstrated in Figure 6.2. On top we have the spectrogram of

the sound. From this plot it is clear when each note was struck as well as the general

upward trend in frequency as the scale ascends. Through an algorithm developed by

Professor Ellis we were able to extract the chromagram from the spectrogram [4]. For

information of the MATLAB code used in this algorithm please see Appendix A.

In the bottom plot in Figure 6.2 we can see when each key was struck and we can

see some sort of upward trend. However, we observe a behavior that when reaching

the 12th chroma, the major intensity block jumps back down to the 1st. This jump

is clear around t = 9 and is explained by our disregard for octave information when

discussing chroma. Since we are only describing the note name, a jump from B] to C

is a jump from 12 to 1 in the chroma space. Clearly, our chromagram is accurately

describing the pitch characteristics of a chromatic scale and we have the first step in

our chord detection model.

7 Conclusion

In this study we have laid a foundation for understanding the mathematics behind

a chord recognition model. We have provided the reader with a general knowledge

of music and a description of the current methods for chord recognition. In addi-

tion, we derived the DFT from the Fourier transform and gained an appreciation for

the applications of Fourier analysis in signal processing. Finally, we have shown an

understanding of MATLAB and demonstrated how its FFT function can be used to

create a chromagram from an audio file. Despite this progress our original question

“How can we fit an audio file with chord labels?” remains considerably unanswered.

While we now can deconstruct a raw time domain signal into its chroma, we have not

31

developed any method for attaching chord labels. As we proceed further with this

study, we will investigate how a hidden Markov model can be used to do such fitting

and complete our understanding of the model.

8 Acknowledgments

I would like to thank Professor Deanna Needell for her guidance and support as my

advisor on this project. I would also like to thank the CMC mathematics department

for providing me with a wonderful college experience in a major I never thought I

would pursue. A special thanks to Professor Dan Ellis of Columbia for answering my

emails so throughly when I became exited in the topic of music analysis. Many thanks

to Andrew Langdon for the aid in developing such a fascinating topic. A shout-out

to my parents and brothers for all of their support and love over the years.

32

A MATLAB Code for Spectrogram

% Chroma Feature Analysis and Synthesis
% AUTHOR: Dan Ellis [dpwe@ee.columbia.edu]
% DATE CREATED: 2007/04/21 14:03:14
% EDITED BY: Nathan Lenssen [nlenssen13@cmc.edu]
% DATE EDITED: 2013/03/05
%
% This code reads in a .wav file and constructs a spectrogram and
% Chromagram. It requires functions that can be obtained from
% http://www.ee.columbia.edu/˜dpwe/resources/matlab/chroma−ansyn/
% chroma−ansyn.tgz

% Read an audio waveform
[d,sr] = wavread('piano−chrom.wav');
% Calculate the chroma matrix. Use a long FFT to discriminate
% spectral lines as well as possible (2048 is the default value)
cfftlen=2048;
C = chromagram IF(d,sr,cfftlen);
% The frame advance is always one quarter of the FFT length. Thus,
% the columns of C are at timebase of fftlen/4/sr
tt = [1:size(C,2)]*cfftlen/4/sr;
% Plot spectrogram using a shorter window
subplot(211)
sfftlen = 512;
specgram(d,sfftlen,sr);
% Always use a 60 dB colormap range
caxis(max(caxis)+[−60 0])
title('Original Sound')
% Now the chromagram, also on a dB magnitude scale
subplot(212)
imagesc(tt,[1:12],20*log10(C+eps));
axis xy
caxis(max(caxis)+[−60 0])
title('Chromagram')

33

References

[1] Rajendra Bhatia. Fourier Series. The Mathematical Association of America
(Incorporated), 2005.

[2] William L. Briggs and Van Emden Henson. The DFT, An Owner’s Manual
for the Discrete Fourier Transform. The Society for Industrial and Applied
Mathematics, 1995.

[3] James Cooley and John Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 1965.

[4] Daniel P.W. Ellis. Chroma feature analysis and synthesis. http://www.ee.

columbia.edu/~dpwe/resources/matlab/chroma-ansyn/, [Online; accessed
22-February-2013].

[5] Ben Gold, Nelson Morgan, and Daniel P.W. Ellis. Speech and Audio Signal
Processing: Processing and Perception of Speech and Music. Wiley and Sons
Inc, 1999.

[6] Kyogu Lee. Automatic chord recognition from audio using enhanced pitch class
profile. in Proceedings of International Computer Music Conference, 2006.

[7] Catherine Schmidt-Jones. Standing waves and musical instruments. http://

cnx.org/content/m12413/latest/StandingWaveHarmonics.png, [Online; ac-
cessed 28-March-2013].

[8] Alexander Sheh and Daniel P.W. Ellis. Chord segmentation and recognition
using em-trained hidden markov models. John Hopkins University, 2003.

[9] Julius O. Smith. Mathematics of the Discrete Fourier Transform (DFT). W3K
Publishing, http://www.w3k.org/books/, 2007.

[10] Wikipedia. File:chromatische toonladder.png. http://en.wikipedia.org/

wiki/File:Chromatische_toonladder.png, [Online; accessed 10-March-2013].

[11] Wikipedia. File:root position, first inversion, and second inversion c major
chords.png. http://en.wikipedia.org/wiki/File:Root_position,_first_

inversion,_and_second_inversion_C_major_chords.png, [Online; accessed
12-March-2013].

[12] Wikipedia. File:type of triads-2.png. http://en.wikipedia.org/wiki/File:

Type_of_triads-2.png, [Online; accessed 12-March-2013].

34

	Claremont Colleges
	Scholarship @ Claremont
	2013

	Applications of Fourier Analysis to Audio Signal Processing: An Investigation of Chord Detection Algorithms
	Nathan Lenssen
	Recommended Citation

	TitlePage
	Blank
	ThesisV3

	DATE: APRIL 29, 2013
	SEMESTER / YEAR: SPRING 2013
	YOUR NAME: NATHAN LENSSEN
	READER 2:
	AND:
	READER 1: PROFESSOR DEANNA NEEDELL
	THESIS TITLE: APPLICATIONS OF FOURIER ANALYSIS TO AUDIO SIGNAL PROCESSING:AN INVESTIGATION OF CHORD DETECTION ALGORITHMS

