
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

2-14-2016

Simulating Surfactant Spreading: Impact of a
Physically Motivated Equation of State
Dina Sinclair '17
Harvey Mudd College

Rachel Levy
Harvey Mudd College

Karen E. Daniels
North Carolina State University at Raleigh

This Article - preprint is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
Sinclair, Dina '17; Levy, Rachel; and Daniels, Karen E., "Simulating Surfactant Spreading: Impact of a Physically Motivated Equation
of State" (2016). All HMC Faculty Publications and Research. Paper 1076.
http://scholarship.claremont.edu/hmc_fac_pub/1076

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


PREPRINT 1
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Impact of a Physically Motivated

Equation of State
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email: levy@g.hmc.edu
2 Department of Physics, North Carolina State University, Raleigh, NC USA

(Received 14 February 2016)

For more than two decades, a single model for the spreading of a surfactant-driven thin

liquid film has dominated the applied mathematics literature on the subject. Recently,

through the use of fluorescently-tagged lipids, it has become possible to make direct, quan-

titative comparisons between experiments and models. These comparisons have revealed

two important discrepancies between simulations and experiments: the spatial distribution

of the surfactant layer, and the timescale over which spreading occurs. In this paper, we

present numerical simulations that demonstrate the impact of the particular choice of the

equation of state (EoS) relating the surfactant concentration to the surface tension. Pre-

vious choices of the model EoS have been an ad-hoc decreasing function. Here, we instead

propose an empirically-motivated equation of state; this provides a route to resolving some

discrepancies and raises new issues to be pursued in future experiments. In addition, we

test the influence of the choice of initial conditions and values for the non-dimensional

groups. We demonstrate that the choice of EoS improves the agreement in surfactant dis-

tribution morphology between simulations and experiments, and impacts the dynamics

of the simulations. The relevant feature of the EoS, the gradient, has distinct regions for

empirically motivated choices, which suggests that future work will need to consider more

than one timescale. We observe that the non-dimensional number controlling the relative

importance of gravitational vs. capillary forces has a larger impact on the dynamics than

the other non-dimensional groups. Finally, we observe that the experimental approach of

using a ring to contain the surfactant could affect the surfactant and fluid dynamics if it

disrupts the intended initial surfactant distribution. However, the meniscus itself does not

significantly affect the dynamics.

Key Words: AMS classifications: 35Q35 PDEs in connection with fluid mechanics, 76A20

thin fluid films, 76M12 finite volume methods, 76B45 capillarity (surface tension)

1 Introduction

Chemicals that lower the surface tension of a fluid are known as surfactants (shorthand for

surface active agents). The ability to predict and control the rate and extent to which surfactants

spread over the surface of a fluid is important to improving their use in many applications. For

example, they are present in healthy lungs to enable breathing, and are also used in industrial
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Figure 1. Images of fluorescently-tagged surfactant spreading from experiments [39, 38]

viewed from above; brighter regions have a larger concentration of surfactant. Left:

inward-spreading below Γc with laser line to show fluid profile with capillary ridges.

Middle: outward spreading above Γc with central “reservoir” region of high surfactant

concentration. Right: outward spreading below Γc with more uniform surfactant concen-

tration. Figure adapted from [39, 38].

applications as stabilizers and dispersants [25]. In human lungs, issues such as airway closure and

reopening [31] and the dynamics of mucus in the airway system [10, 20, 6, 27] are known to be tied

to the presence of surfactants. In particular, biomedical engineers and applied mathematicians

studying the liquid lining of the lungs of premature infants proposed a compelling model starting

with a well-known thin film equation and coupling the film to the surfactant through surface

stress [18, 19]. The stress on the fluid is created by concentration gradients in the layer of

insoluble surfactant (and thus a surface tension gradient in the fluid). This, in turn, induces

transport of that surfactant on the surface as the fluid moves [22, 23].

The model takes the form of two fourth-order nonlinear parabolic-hyperbolic partial differ-

ential equations. Mathematical interest in these model equations have led to several fruitful

approaches to solutions such as asymptotics, similarity solutions, and numerical simulations

[28, 15, 2, 21]. The solutions provide predictions of spreading behavior including a spreading

timescale as well as fluid and surfactant spatial distribution over time. To test the model, ex-

periments by physicists [16, 38] have provided new measurements of the motion of both the

surfactant molecules and the underlying fluid, directly testing the validity of the model. While

this has led to the identification of some limitations in the model [39], the new data also suggests

possible improvements.

This paper provides the first attempt to introduce evidence from the experiments back into the

model. For simplicity, we focus on two simple spreading geometries which we will call outward-

spreading [16] and inward-spreading [38]. In both sets of experiments, the system starts with

a uniform, millimetric film of glycerol placed on a silicon wafer within a cylindrical container.

A smaller retaining ring is placed at the surface of the fluid, in the center of the container. In

the outward-spreading experiments, the surfactant is placed inside the retaining ring so that it

spreads outward once the ring is lifted. In the inward-spreading experiments, the surfactant is

placed outside the ring and spreads inwards. In simulations, these two cases will be implemented

through analogous initial conditions.

In both cases, it is not just the surfactant layer that moves: the glycerol itself is advected by

the surfactant, pulled toward regions with less surfactant (higher surface tension). In order to

track the surface distribution of the surfactant molecules, experiments use a fluorescently tagged

lipid called NBD-PC [1]. To measure changes in the thickness of the glycerol layer, it is possible

to simultaneously illuminate the fluid using an oblique laser line. Details about the experimental
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procedures are provided in [16, 38]. Sample images are shown in Figure 1, with the laser visible

in (a).

The simulations presented in this paper provide evidence that using an empirically-based

equation of state improves agreement between solutions of the model and experimental obser-

vations. In general, the dynamics of the surfactant profile morphology differ above vs. below

the critical surfactant concentration Γc. This effect has also been observed in outward spreading

experiments, and suggests new inward spreading experiments. The simulations confirm that the

shape of the fluid surface is only weakly dependent on the choice of equation of state, explaining

why there has previously been reasonable agreement in the fluid profile between models and

experiments even without an empirically-based equation of state.

Importantly, the use of an empirically-based equation of state provides new insight into the

previous lack of agreement in the timescale of the simulations and experiments. First, because

the empirical equation of state has three distinct regions, a single timescale and spreading

parameter may not be adequate to reproduce the timescale in experiments. Second, although an

initial fluid meniscus does not seem to have a major effect on dynamics, a surfactant meniscus

could be created in experimental conditions and impact the timescale. Third, horizontal shifts in

the equations of state (including mis-identification of the critical monolayer concentration or the

choice of an unrealistic model), can have significant impacts on both the spatial and temporal

dynamics. In contrast, the choice of nondimensional parameters seems unlikely to be the cause

of lack of agreement. The simulation results will therefore help guide future modeling efforts, as

well motivate as new experimental explorations.

2 Mathematical Model

A set of equations first proposed by [19] has often been used to model surfactant spreading on

a thin viscous fluid film [16, 41, 5, 34, 42]. The equation for the shape of the upper fluid surface

(“fluid height”) h(x, y, t) is based on the well-accepted thin film equation, which models the

flow of a thin viscous fluid. The height equation additionally incorporates the assumption that

surfactant gradients induce surface stress through the tangential boundary condition. The second

equation for surfactant concentration Γ(x, y, t) assumes that the fluid advects the surfactant by

matching the velocities at the fluid-surfactant interface. An ad-hoc term incorporates surfactant

diffusion; an alternative derivation based on free-energy considerations has also been proposed

[32].

The resulting system of PDE in its common non-dimensional form is

ht +∇ ·
(

1

2
h2∇σ

)
= β∇ ·

(
1

3
h3∇h

)
− κ∇ ·

(
1

3
h3∇∇2h

)
(2.1)

Γt +∇ · (hΓ∇σ) = β∇ ·
(

1

2
h2Γ∇h

)
− κ∇ ·

(
1

2
h2Γ∇∇2h

)
+ δ∇2Γ. (2.2)

where h(x, y, t) is the fluid height and Γ(x, y, t) is the surfactant concentration. The gradient

operator is two-dimensional (∇ = ∂xx̂+∂y ŷ). We define r =
√
x2 + y2 for use in some expressions

below. For detailed derivations of this well-studied model, please see [26, 33].

2.1 Non-dimensionalization paramters

The nondimensionalization in the above equations is standard: x = xdim/L, y = ydim/L, h =

hdim/H, and Γ = Γdim/Γc, where L,H are the lateral and vertical length scale, respectively,



4 Dina Sinclair, Rachel Levy and Karen Daniels

and Γc is the critical monolayer concentration [24, 35]. Time is nondimensionalized as in [38],

motivated by [18]: tdim =
(
µL2

SH

)
t where µ is the dynamic viscosity and S ≡ σmax − σmin

is the spreading parameter set by the max/min values of the surface tension. The three non-

dimensional parameters in the model are β ≡ ρgH2

S
(the ratio of gravity to capillary forces,

based on fluid density ρ and gravitational acceleration g), κ ≡ σmaxH
2

SL2 (the ratio of total to

relative capillarity scaled by small parameter H/L), and δ ≡ µD
SH

(the inverse Peclet number,

based on diffusion constant D).

In the model equations, the ∇σ term incorporates the effect of gradients in surfactant con-

centration through a constitutive relationship σ(Γ) that relates surface tension σ and surfactant

concentration Γ. The choice of a particular equation of state (EoS) σ(Γ) will be a major focus of

this work. One important conclusion of our results, to be described in more detail below, is that

modifying the time non-dimensionalization to include multiple timescales may be be necessary.

The simulations take the following values, consistent with 94% pure glycerol at 20◦ [13, 14]:

glycerol density ρ = 1.2 g/cm3, dynamic viscosity µ = 14 poise, gravitational acceleration

g = 980 cm/s2, characteristic fluid depth H = 0.7 cm, and diffusion constant D = 104 cm2/s.

In order to directly compare simulations of inward and outward spreading, we use a single

characteristic lateral lengthscale L = 3 cm throughout this work. This corresponds to a value

similar to the dimension of the retaining ring in prior experiments [16, 38, 39]. Finally, the choice

of maximum (clean glycerol) surface tension σmax = 63.475 dynes/cm, σmin = 37.865 dynes/cm

which set the value of S = 25.61 dynes/cm will be made according to the discussion below

(see §2.3). Together, these choices set the non-dimensional model parameters β = 2.44× 10−1,

κ = 1.35× 10−3, and δ = 7.81× 10−4 which we will refer to as the standard parameters.

2.2 Initial and Boundary Conditions

The initial conditions are motivated by the laboratory experiments of [38] (see Figure 1). We use

several variations on a standard set of basic assumptions, all radially-symmetric. The standard

fluid height initial condition for both inward and outward spreading simulations is uniform initial

fluid height h(r, 0) = 1. The standard surfactant concentration initial condition places a uniform

layer of surfactant inside the retaining ring for outward spreading or outside the ring for inward

spreading. In both cases, surfactant spreading occurs towards regions with less surfactant, where

the surface tension is higher.

Inward spreading initial condition IC1 is used in Figures 3(a,c,e,g),4(a,c,e,g),5(a,c,e,g),6, and8,

h(r, 0) = 1.0 Γ(r, 0) =

{
0, r ≤ 1

0.7 or 2.0, r > 1

while for outward spreading IC2 is used in Figures 3(b,d,f,h),4(b,d,f,h),5(b,d,f,h),7, and9

h(r, 0) = 1.0 Γ(r, 0) =

{
0.7 or 2.0, r ≤ 1

0, r > 1

In §3.4, we will modify these basic initial conditions to examine the effects of an annular-

shaped surplus of fluid or surfactant in the vicinity of the retaining ring. This is motivated by

the observation in experiments of a fluid/surfactant meniscus drawn up by the ring as it is slowly

removed from the surface. For spreading with additional fluid thickness (Figure 10), a piecewise

constant initial condition simulates the presence of additional fluid at the ring location, while

the surfactant initial conditions for inward and outward spreading remain the same as defined
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above. We use the additional (due to meniscus) fluid height h+ as a parameter in IC3 (results

shown in Figure 10):

h(r, 0) =


1.0, r ≤ 1

h+, 1 < r ≤ 1.5

1.0, 1.5 < r ≤ L

For inward spreading with an additional surfactant in an annular region (see Figure 11)

we maintain a constant initial height of the fluid, and create a region of increased surfactant

concentration Γ+ which extends from r = 1 out to a distance 1 + r+. This is initial condition

IC4:

Γ(r, 0) =


0, r ≤ 1

Γ+, 1 < r ≤ 1 + r+

0.9, 1 + r+ < r ≤ L

Similarly, for outward spreading with an additional surfactant annulus in Figure 12 we use

IC5:

Γ(r, 0) =


0.9, r ≤ 1− r+
Γ+, 1− r+ < r ≤ 1

0, 1 < r ≤ L

For all simulations we use the boundary conditions

hx = hxxx = Γx = 0, x = −L and x = L; (2.3)

hy = hyyy = Γy = 0, y = −L and y = L (2.4)

and choose a spatial domain [−L,L] × [−L,L] for simulations large enough that the primary

fluid and surfactant waves are away from the boundary. There are 400 gridcells for each 2π

nondimensional units. Grid refinement tests for this code were performed in [9]. The default

value is L = π and a larger domain L = 2π is used if waves approach the boundary of the

smaller domain. Note that this approach mimics that of the laboratory experiments, in which

data are taken well away from the boundary formed by the walls of the cylindrical containment

well. Our simulation code computes with a fully-2D discretization in (x, y), to enables us to

monitor the results for significant deviations from axisymmetry. Since none occur [9], we plot

only a single independent spatial dimension (x), for simplicity.

2.3 Physically-Motivated Empirical Equation of State

As mentioned above, closing the system of equations requires an equation of state relating

the surface tension σ and the surfactant concentration Γ. Previous models for the equation of

state have been based on the fundamental premise that surface tension decreases as surfactant

concentration increases. For simplicity, the earliest versions of the model [19] employed the linear

equation of state (LEoS)

σ(Γ) = 1− Γ. (2.5)

While this LEoS has the advantage that the constant surfactant concentration gradient simplifies

the analysis of the model equations, the negative slope causes the surface tension to become

negative at large surfactant concentrations. To address this problem, a second model proposed in

[4] uses a multilayer equation of state (MEoS), which in its dimensional form has σ(0) = σmax and
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Figure 2. (a) Empirical data and the fit curve relating surfactant concentration and

surface tension [37]. From this data, we obtain the experimental values σ̃min =

37.416 dynes/cm, σ̃max = 63.026 dynes/cm, and Γc = 0.21µg/cm
2
. (b) Comparison of

nondimensional linear LEoS from Eq. 2.5, multilayer MEoS from Eq. 2.6, and empirical

EEoS from Eq. 2.7.

decreases asymptotically to σ(Γ) = σmin for large Γ. We use this MEoS in the nondimensional

form

σ(Γ) = (1 + ηΓ)−3, (2.6)

where η = σmax/S. Note that neither multiplicative nor additive factors affect the simulations

using the MEoS, since the former are removed by non-dimensionalization, and the later by

taking the gradient.

In previous work [38, 39], we compared simulations using the LEoS and MEoS to data from

spreading experiments. This work demonstrated that neither EoS resolved disagreements be-

tween simulations and experiments in either timescale or spatial distribution of surfactant. In

this work, we move beyond the ad-hoc linear and multilayer choices for EoS, choosing an equa-

tion of state which is consistent with empirical measurements, and simulating the effect of this

new choice of σ(Γ) on solutions of the mathematical model for a range of experimentally realistic

intial conditions. Surprisingly, this approach has not yet been explored. In addition, we examine

the role played by the nondimensional groups β, κ, and γ and test the sensitivity to initial

conditions, as has long been done in studies of surfactants and thin liquid films [11, 12, 30, 18].

To obtain empirical measurements of σ(Γ), the standard technique is a Langmuir-Blodgett

trough (or Pockels scale). This apparatus measures the surface pressure while barriers compress

the surfactant/lipid molecules located adsorbed to the surface of a liquid. For known container

dimensions and a known quantity of surface molecules, the set of pressure and area measurements

provide a plot σ(Γ). (Note: in the chemistry literature, the raw curve is often reported as the

π-A diagram directly relating the surface pressure π to the area occupied by the molecular

monolayer.) Using this technique, it is possible draw on empirical measurements to drive choice

of a particular mathematical form of σ(Γ) used in Eqns. 2.1,2.2.

To motivate a functional form for the empirical equation of state (EEoS), we examine data

for a monolayer of NBD-PC on glycerol collected by Strickland [37], as plotted in Figure 2a.

A few important distinctions from the more commonly-used MEoS (Eq. 2.6) are worth noting.

First, while the MEoS falls most steeply for low Γ and has a single trend, the EEoS form of σ(Γ)

has three distinct regimes corresponding to low, intermediate, and high Γ. The surface tension

falls most sharply for intermediate Γ, with the low and high Γ values remaining approximately
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(but not precisely) constant. Because the gradient of σ(Γ) appears in Eqns. 2.1,2.2, we will see

that the slopes in all three regimes have a significant impact on the simulation results.

Motivated by the experimental results, we consider a new model EoS which can capture

all three regimes. While a piecewise linear function with three regions would be analytically-

convenient (constant gradient), and capture primary features of the data except for the curva-

ture, it has the serious disadvantage of having discontinuous derivatives. In addition, the slope

of the EoS should never be zero, as the model would then predict a non-physical pile-up of fluid.

A negative slope would cause the same issue for large values of Γ as the LEoS. In considering

the shape of Figure 2a, we find that a hyperbolic tangent function

σ(Γ) =
S

2
tanh(k1(Γ− k2)) + k3 (2.7)

models the empirical data as our EEoS while also remaining continuous and differentiable. We

used the experimental data σ̃min = 37.416 and σ̃max = 63.026 from Figure 2a in an two-step

process to obtain an empirical value of S = 25.610. First, an optimization routine in Matlab

provided the fitted values k1 = −26.31, k2 = 0.14 and k3 = 50.67 in equation 2.7. Second, we

redefine the values of σmax = k3 + S/2 = 63.475 and σmin = k3 − S/2 = 37.865 so that they

correspond to the fitted curve that will be used in the simulations.

We nondimensionalize the EEoS using Γnondim = Γdim/Γc and σnondim = (σdim − σmin)/S.

The critical surfactant concentration Γc is the value of Γ at which the trough data indicate that

additional surfactant does not reduce the surface tension. This value is obtained by finding the

local minimum in the data at Γc = 0.21 in the EEoS (see vertical lines in Figure 2). This is

a lower value than previous papers, which used 0.3 as an approximation of Γc. To provide a

consistent comparison, we will use a MEoS (see equation 2.6) derived from the same values for

σmax, σmin, Γc and S, with η ≡ σmin/(σmax − σmin) = 1.48. Figure 2b has all three curves, the

LEoS, MEoS and EEoS.

The simulations of this paper are performed using an open-source code described in [7],

with code and documentation freely available on Github [8]. In previous work by this group

and others, model equations (2.1,2.2) have been solved using many approaches [42, 41, 38];

the advantage of our code is that it facilitates easy modification of terms in the equation and

boundary conditions and provides a package for convergence testing. The second-order scheme

is based on a finite volume approach (using Newton’s Method and BiCGStab), which takes

advantage of the free open source Clawpack package and enables the user to compute solutions

with small (or zero) coefficients on the regularizing terms.

3 Results

We present numerical solutions to the system of PDE (2.1,2.2) using an empirically-derived EoS,

realistic initial and boundary conditions, and appropriate model parameters β, κ, δ. We frame

our investigations as answers to four key questions:

(1) §3.1 Choice of EoS shape: How do the general dynamics of solutions for the multilayer

EoS (MEoS) differ from those for the empirical EoS (EEoS)?

(2) §3.2 Offsets to the EoS: What is the effect of shifting the EEoS vertically (offset in σ) or

horizontally (offset in Γ)?

(3) §3.3 Dependence on non-dimensional parameters: What is the effect on simulations with

the EEoS of varying the non-dimensional parameters?

(4) §3.4 Effect of retaining ring: Do simulations with the EEoS indicate that the retaining
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ring that creates the initial surfactant distribution has a strong effect on the spreading

dynamics?

We answer these questions by focusing on two features also observable in experiments: the fluid

height hc(t) ≡ h(0, t) at the center of the domain (which is affected by the capillary ridge) and

the location rs(t) of the leading edge of the surfactant as it spreads. In addition, we discuss the

implications of these results for future laboratory experiments.

In viewing simulation results, keep in mind that they are computed in two spatial dimensions

(x, y), but plotted as h(x, t) and Γ(x, t). As noted above, for symmetric initial conditions such

as ours, deviations from axisymmetry are not significant [9]. Also note that because the size

of surfactant molecules is insignificant compared to that of the fluid depth, the model assumes

the surfactant does not to add to the height in the fluid/surfactant system. Thus, the Γ(x, t)

plots represent the local surface concentration across the diameter of the well; physically, this

corresponds to a more-densely or less-densely packed layer.

All simulations are run with the standard parameters unless otherwise noted. The solutions

to the surfactant equation do not have compact support due to diffusion (β > 0 in the model as

well as reality). Therefore, we must choose an effective location of the leading surfactant front,

which we define as the location where Γ = 0.01.

3.1 Investigation 1: Choice of EoS shape

We begin by answering the most general question: what are the most significant effects of switch-

ing to the empirical equation of state (EEoS) in place of the more commonly used multilayer

equation of state (MEoS)? Figures 3 and 4 show typical results at above and below the critical

monolayer concentration, respectively. In both figures, we present solutions for inward (a,c,e,g)

and outward (b,d,f,h) surfactant spreading. The top quartet of plots (a-d) presents simulations

using the MEoS and the bottom quartet (e-h) presents simulations using the EEoS. Each profile

is a snapshot in time, from darkest at t = 0 to lightest at t = 2.

3.1.1 Inward spreading

During inward-spreading, the fluid develops an inward-moving annular capillary ridge as it is

pulled by the surfactant spreading into the central (clean) region (Figures 3a,c,e,g and 4a,c,e,g).

The fluid ridge coalesces into a single central maximum and then relaxes to an equilibrium at

the original uniform height (h(x, t) = 1). These general dynamics of fluid coalescence, central

growth and decay were previously observed in laboratory experiments using laser profilometry

[16, 38, 39], and are similar for either choice of EoS. However, there is an important distinction

in h(x, t): for simulations run with the MEoS (Figure 3a,b and 4a,b) the annular fluid capillary

ridge (double-peaked structure) coalesces more quickly than those with the EEoS. This result

explains why in [38] there was surprisingly good morphological agreement in the experiment and

simulation fluid profiles with the MEoS given the poor agreement in timescale and surfactant

distribution.

The surfactant concentration profiles Γ(x, t) are more distinct for the two EoS choices. For

surfactant layers with an initial condition above Γc (Figure 3), the EEoS surfactant profile has

leading “foot” that pushes into the central region, with a pronounced and steep leading edge. In

contrast, the MEoS surfactant curve retains a smoother profile at all times, within only a small

kink near the location of the ring (later associated with the dip in the fluid at that location).

(Note that this is different than the precursor “foot” observed in [40], which was a result of

interaction between surfactant and a solid substrate, not surfactant and thin liquid film.) Even
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Figure 3. Typical spreading dynamics for each equation of state with standard param-

eters and initial surfactant concentration Γ = 2.0 > Γc). The upper quartet of plots

(a,b,c,d) use the MEoS whereas the lower quartet (e,f,g,h) use the EEoS. Plots (a,b,e,f)

are fluid profile dynamics h(x, t) and (c,d,g,h) are surfactant concentration profiles Γ(x, t).

Left plots (a,c,e,g) have an inward spreading initial condition (IC1) and right plots

(b,d,f,h) have an outward spreading initial condition (IC2).

for surfactant layers with an initial condition below Γc (Figure 4), the EEoS is better able to

maintain strong gradients than the MEoS. Experiments for inward spreading have not been

performed with Γ > Γc; this is a prediction that could be tested in future experiments. In the

figures that follow, we will focus on the parameters used in Figure 3 (initial conditions above a

monolayer) since the surface flow in this case is more sensitive to the choice of EoS due to the

simultaneous presence of regions of high, middle, and low surfactant concentrations.

3.1.2 Outward spreading

During outward-spreading, the fluid develops an outward-moving annular capillary ridge as

it is pushed by the surfactant spreading into the outer (clean) region (Figures 3b,d,f,g and

4b,d,f,g). This feature is present independent of the choice of EoS, and for initial surfactant
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Figure 4. Typical spreading dynamics for each equation of state with standard param-

eters and initial surfactant concentration Γ = 0.7 < Γc). The upper quartet of plots

(a,b,c,d) use the MEoS whereas the lower quartet (e,f,g,h) use the EEoS. Plots (a,b,e,f)

are fluid profile dynamics h(x, t) and (c,d,g,h) are surfactant concentration profiles Γ(x, t).

Left plots (a,c,e,g) have an inward spreading initial condition (IC1) and right plots

(b,d,f,h) have an outward spreading initial condition (IC2).

concentrations above and below Γc. However, for the MEoS simulations, the height hc of the

central peak decays slowly even for simulations run much longer, whereas with the EEoS, there

is a central fluid depression that extends across the entire region in which the surfactant had

initially been deposited. The EEoS behavior is consistent with what is observed in experiments

[39], and thus is a better model.

As with inward spreading, the surfactant concentration profiles Γ(x, t) are even more distinct

for the two EoS choices. Again the surfactant layers with an initial condition above Γc produce

a foot-like layer that emerges from the central region, ending in a pronounced leading edge.

The sharp decrease in surfactant concentration coincides with the location of the fluid capillary

ridge. Below Γc the foot layer extends with no reservoir. As shown in Figure 1bc, these same

morphologies are present in the experiments. In the experimental (top view) images above Γc
a bright central region is surrounded by a lower-intensity foot behind the leading edge. In
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Figure 5. Comparison of hc(t) (a,b,e,f) and rc(t) (c,d,g,h) for simulations of Figure 3

(a,b,c,d) and Figure 4 (e,f,g,h) using IC1 and standard parameters.

the images below Γc no reservoir is present. These important features are not reproduced by

the MEoS-based simulations. Instead, the MEoS case shows a consistent shape as the initial

central surfactant layer decays and the leading edge seems to show little evolution. Therefore,

the reservoir and foot-like features provide a striking improvement in morphological agreement

between experiment and simulation by using the EEoS as compared to the MEoS.

In all cases (inward/outward, MEoS/EEoS), the fluid profile maintains its initial depression

at the surfactant boundary in the initial condition (corresponding to the retaining ring location

in the experiment). In Figure 3 the outward spreading (right) central height evolution is much

more distinctive between choices of EoS than in the inward spreading simulations. The MEoS

has a smooth decay over time, while the EEoS has a growth phase and a steep decay phase. The

surfactant leading edge plots also are more distinct; they have similar shapes, but the leading

edge with the EEoS has a lower velocity.

3.1.3 Timescale

Figure 5 illustrates how the key dynamics from Figs. 3 and 4 can be captured by considering

only the height of the central peak (hc) and the location of the leading edge of surfactant (rs).
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These plots compare the effect of MEoS and EEoS on these two dynamics. Importantly, they

need not agree. This suggests that a second timescale, beyond tdim = (µL
2

SH
)t, the one used in the

non-dimensionalization. This situation arises because only the gradient of the equation of state

appears in the system of PDE (2.1,2.2). In the LEoS this gradient is negative and constant, in the

MEoS the gradient is negative and gradually decreasing, and in the EEoS there are three distinct

regions. At low and high Γ, the gradient is negative and small, but for intermediate surfactant

concentrations the gradient changes dramatically in magnitude. It is therefore unlikely that a

single parameter S captures the magnitude of the gradient, and therefore there is no single

timescale. This observation may explain why, in all previous comparisons of simulations and

experiments, it has been necessary to re-dimensionalize the simulations using a different (shorter

by a factor of 2 to 10) timescale than the model §2.1 would predict [39, 37].

3.2 Investigation 2: Offsets to the EoS

The choice of a particular lipid will determine a unique EoS, specific to that lipid [24, 35].

However, the general shape shown in Figure 2 exhibits many features common to a number of

lipids. Therefore, it is important to ask what features of the solutions change when shifting the

EEoS vertically (offset in σ) or horizontally (offset in Γ). To exemplify a few basic behaviors, we

perform simulations in which we shift the EEoS 30% each direction: to the left σ(Γ + 0.3), right

σ(Γ − 0.3), up σ(Γ) + 0.3 and down σ(Γ) − 0.3. Because only the gradient of the EoS appears

in the model (as seen in equations (2.1,2.2), vertical shifts should not affect the results, which

is confirmed in our simulations. Understanding the effects of horizontal shifts will allow us to

test which features of the chosen EoS are essential for making quantitative comparisons with

experiments.

Inward spreading: As shown in Figure 6e, the simulations with the left-shifted EEoS σ(Γ + 0.3)

have a higher minimum value at the center at early times. The simulations with this EEoS shift

also make the dynamics faster with peak in hc(t) and closure in rs(t) occurring at earlier time in

Figures 6e,f. In the time snapshots of Figures 6a,b the left shift also causes earlier coalescence of

the annular capillary fluid ridge. In the surfactant profiles Γ(x, t) of Figures 6c,d, the left shifted

EEoS creates a smaller concentration of about 0.25 in the foot, whereas with the right shift

σ(Γ−0.3), the foot concentration is about 0.7. These features are observable in experiments. As

expected, there is no difference for vertical shifting and small differences for horizontal shifting

in Figure 6e,f.

Outward Spreading: We observe that outward spreading is much more sensitive to horizontal

offsets to the EoS than inward spreading, as shown in Figure 7. Here, we additionally include

larger (60%) shifts in the location of Γc, and do not consider vertical shifts because they have no

effect. We observe that shifting the EEoS to the left, σ(Γ + 0.3) and σ(Γ + 0.6), forms solutions

that look much like the central height and leading edge results for the MEoS of Figure 5. In

both cases the central height hc(t) has a consistently small gradient and the surfactant leading

edge rs(t) advances more rapidly than for the original σ(Γ). Note that this similarity occurs

because shifting the EEoS to the left shifts the region of the function with steeper gradient to

low surfactant concentrations (such as those near rs(t), which makes its gradient more like that

of the MEoS.

Shifting to the right, σ(Γ−0.3) and σ(Γ−0.6), moves the steeper portion of the EoS to larger

surfactant concentrations. For our initial conditions this accelerates the fluid growth and decay

phases so that hc(t) is quite steep, especially in the decay phase. However, the leading edge of

the surfactant rs(t) (where the surfactant concentration Γ is lower) advances more slowly, since

the large gradient in the EoS has been shifted to larger surfactant concentrations.
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Figure 6. Dynamics for standard parameters and initial condition (IC1) using left shifted

EEoS σ(Γ + 0.3) in plots (a,c) and right shifted EEoS σ(Γ − 0.3) in plots (b,d). Charac-

terizing (e) hc(t) and (f) rs(t) for four representative shifts in the EEoS.

3.3 Investigation 3: Dependence on non-dimensional parameters

The values for the non-dimensional parameters (β, κ, δ) in the model are derived from fluid

and physical properties of the system, and in general cannot be independently varied in an

experiments. Simulations provide a means to test the effects of each. We performed simulations

for one-quarter, half and double the standard parameter values for β, δ and κ, and found that the

only notable changes occurred as a function of β, which we will explore here for both inward and

outward spreading. These effects would be difficult to detect in experiments. Because β ≡ ρgH2

S
,

the only way to change β without changing the other parameters is to choose a fluid of a different

density ρ, but this choice of a new material would also change S.

Inward spreading: As shown in Figure 8a,b the dynamics of hc and rs are qualitatively similar,

independent of β. There are some small differences for a particular choice of β: smaller values

(lower gravity, density or H compared to spreading parameter S) can produce a larger fluid

peak at the center, more rapidly. We can quantify the similarity by considering the relaxation

from a central peak at time tpeak back to a uniform fluid height h(x, t) = 1. We observe that

these dynamics follow a logarithmic decay (see Figure 8c). If we take the time for the surfactant



14 Dina Sinclair, Rachel Levy and Karen Daniels

−3 −2 −1 0 1 2 3
0

1

2

3
Outward Spreading

r

h

t = 0
t = 0.25
t = 0.5
t = 1
t = 2

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

r

Γ
(Γ

c)

−3 −2 −1 0 1 2 3
0

1

2

3
Outward Spreading

r

h

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

x
Γ

(Γ
c)

−2 −1 0 1 2 3

Outward Spreading

r

t = 0
t = 0.25
t = 0.5
t = 1
t = 2

(a) (b)

(c) (d)

x

0 1 2 3 4 5
0.0

0.5

t

C
en

te
r 

H
ei

g

0 1 2 3 4 5

1.5

2.0

2.5

t

Le
ad

in
g 

E
dg

e 
(r

)

σ(Γ +0.6)
σ(Γ +0.3)
σ(Γ)
σ(Γ −0.3)
σ(Γ −0.6)

0 1 2 3 4 5
0.0

0.5

1.0

Outward Spreading

t

C
en

te
r 

H
ei

gh
t (

h
c)

0 1 2 3 4 5

1.5

2.0

2.5

t

Le
ad

in
g 

E
dg

e 
(r

s)

σ(Γ +0.6)
σ(Γ +0.3)
σ(Γ)
σ(Γ −0.3)
σ(Γ −0.6)

(e)

(f)

Figure 7. Outward spreading sample dynamics for standard parameters and initial con-

dition (IC2) using left shifted EEoS σ(Γ + 0.3) in plots (a,c) and right shifted EEoS

σ(Γ − 0.3) in plots (b,d). (e,f) Characterizing (e) hc and (f) rs for the EEoS σ(Γ ± 0.3)

and σ(Γ ± 0.6) with standard parameters.

to reach r = 0 to be a characteristic closure time, then the rs(t) dynamics are also independent

of the choice of β.

Outward spreading: Similar effects are observed for outward-spreading in Figure 9, with smaller

β resulting in a taller capillary ridge, but with a largely invariant timescale (compare Figure 9

to Figure 8 where the timescale varies). A slight trend of faster spreading for lower β is also

present.

3.4 Investigation 4: Effect of retaining ring

The first three investigations focus on solutions of the mathematical model, which has been

compared to experiments. This final investigation uses simulations to investigate the impact of

the experimental apparatus. A key difference between experimental and numerical investiga-
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Figure 8. Inward spreading simulations at fixed initial conditions (IC2), varying the

relative importance of gravitational and capillary forces, through the non-dimensional

parameter β. Plots of (a) central fluid height hc(t) and (b) surfactant leading edge location

rs(t). Self-similar behavior of the decay of the fluid at center (c) and motion of surfactant

leading edge (d). The time tpeak is defined as the time when hc(t) is at its maximum

value and closure time is defined as the time when the leading edge location is rs = 0.

The cyan (lowest solid) line in (c) is given by hc − 1 = −0.25 ln(t− tpeak) + 0.5.

tions is the necessity of using a retaining ring to set up the initial conditions when performing

experiments. When this ring is lifted, a meniscus forms and then releases back to the surface

after pinch-off. This raises the possibility that additional fluid or surfactant is present at the

original location of the retaining ring. Below, we examine the effect of this additional material

on the dynamics of inward/outward spreading. Initial conditions (IC3-5) are chosen to mimic

conditions that could occur experimentally, and determine whether these conditions could have

a significant impact on the timescale of the dynamics, as well as the spatial distribution of the

surfactant.
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Figure 9. Outward spreading simulations with nonstandard parameters to show the effect

of varying β on outward spreading using initial condition (IC3). Plots of (a) central fluid

height hc(t) and (b) surfactant leading edge location rs(t).

3.4.1 Fluid annulus

We first consider the case of starting from IC which place an additional annulus of fluid at the

location of the ring, to mimic the after-effects of meniscus pinch-off. As shown in Figure 10,

even adding 10% or 20% of additional fluid results in only a minor change to the hc and rs
dynamics, independent of whether inward or outward-spreading is considered. Thus, although

the ring visibly lifts a meniscus of fluid in the experiments, these simulations suggest that this

effect is unlikely to affect spreading dynamics for inward or outward spreading.

3.4.2 Surfactant annulus

Because the ring pulls up an annular meniscus of fluid over the span of many minutes, surfactant

has time to accumulate at this interface. When the meniscus pinches off, it could therefore leave

behind an annular region with a surplus of surfactant. An annulus of surfactant will have the

peculiar effect of superimposing both inward and outward spreading at the inner and outer edges

of the annulus, respectively. This effect is in addition to the underlying surfactant gradient due

to the original inward or outward initial conditions. As will be shown below, this will impact

the spreading dynamics.

Inward Spreading: Figure 11 shows the results of inward spreading simulations obtained by

varying both the concentration and width of the annular region. Increasing the concentration

of a fixed annulus width r+ = 0.25 or width of a fixed annulus concentration Γ+ = 2.0 increases

the rate of both growth and decay dynamics. The larger annulus produces a larger central fluid

maximum height hc at an earlier time in Figure 11c and more rapid inward surfactant spreading

in Figure 11d. With a large annulus concentration, excess surfactant acts as a reservoir (the

EEoS has a very small gradient at large surfactant concentrations).

Outward spreading: Figure 12 illustrates the effect of an annulus of surplus surfactant on the out-

ward spreading dynamics. As in the inward spreading case, larger surfactant volumes (whether
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Figure 10. Inward and outward spreading simulations with standard parameters and

initial condition (IC3) comparing central fluid height hc(t) (a,b) and surfactant leading

edge rs(t) (c,d) for no fluid annulus and with an annulus 10% and 20% above the original

level.

via increased annulus concentration in Figure 12a,c or increased width in Figure 12b,d) produce

a longer relaxation time for the fluid in the center, and more rapid outward spreading of surfac-

tant. Note that for a large annulus concentration (Γ+ = 4.0), the additional inward spreading

is most obvious. The fluid central fluid height increases as long as the annulus of surfactant is

still present, decreasing only once the surplus has spread outward. Smaller volumes of surfac-

tant equilibrate almost immediately, thus those curves are essentially monotonic while those for

larger volumes are not.

4 Conclusion

In this paper, we have tested the ways in which the choice of a realistic equation of state relat-

ing surface tension to surfactant concentration influences the outcome of numerical simulations.

While simplified equations of state have dominated previous studies, including our own, such as

[36, 29, 22, 21, 6, 2, 28, 23, 41, 9, 5, 42, 17, 3], we find that the spatiotemporal dynamics of sur-

factant spreading on a thin layer of viscous Newtonian fluid are in fact highly dependent on this

choice. Therefore, it is important to incorporate empirical measurements of σ(Γ) for the specific

materials under investigation. In particular, the correct choice allows for simulations to, for the

first time, capture the detailed morphology of a spreading front of surfactant (Investigation 1)

which have a distinctive reservoir if the initial surfactant concentration is above Γc.

We additionally observe that accurately measuring the correct value of Γc in the equation

of state (or picking a different surfactant) will impact predictions for timescales. This effect

arises because gradients in σ are much stronger for intermediate values of surfactant concentra-

tion (above the transition point from the gas phase and below the critical concentration). The

findings from Investigations 1 and 2 indicate that the use of the spreading parameter S is an

oversimplification, and other choices should be explored.

This is particularly important for outward-spreading (as compared with inward-spreading),
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Figure 11. Inward spreading with additional annulus of surfactant at the ring location.

(a,b) Standard parameters and initial condition (IC4) using a larger initial surfactant

concentration (Γ+ = 2.0) extending r+ = 0.25 beyond the ring location. The effect of

additional surfactant on hc and rs for (c,e) the same parameters, but with varying Γ+

and (d,f) the same parameters but varying r+.

but only in parameter regimes in which the gradient of σ(Γ) is strongly affected (Investigation

2).

Varying the nondimensional parameters κ and δ does not largely affect the central fluid height

evolution nor the surfactant leading edge location for inward or outward spreading. Varying β

does impact the dynamics, but the solutions can be scaled to show the similar behavior in the

system. (Investigation 3). The lack of sensitivity to β, κ, γ explains why prior attempts to resolve

timescale issue by adjusting the non-dimensional parameters have failed. (Even so, as long as

the correct values for the fluid are used in the model, there should be no flexibility to tune these

parameters to better match model and experiment.) A different nondimensionalization of the

timescale could solve some issues with quantitatively predicting spreading rates.

Finally, the use of empirically-relevant equations of state allows for simulations to aid ex-

perimentalists in addressing how their methods of creating repeatable initial conditions may

be impacting the results. We used the empirically-correct equation of state to test for possible

artifacts from the use of a retaining ring to generate initial conditions (Investigation 4). We

find that the presence of a fluid meniscus created by such rings will not have an effect on the

dynamics. However, if that meniscus also generates a region of surplus surfactant, this can gen-
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Figure 12. The dynamics of the central fluid height hc and the surfactant leading edge rs
for ouward spreading performed with an additional annulus of surfactant at ring location.

(a,b) Standard parameters and initial condition (IC5). Plots (c,e) have annulus width

r+ = 0.25 and vary Γ+. Plots (d,f) have fixed annulus surfactant concentration Γ+ = 2.0

and vary r+.

erate long-lived concentration gradients near the original location of the ring, and also affect the

velocity of the spreading front.

These findings will aid in providing improvements in the quantitative agreements between

simulations and experiments which have so far been elusive [39]. In addition, because they

are more time-efficient to perform than laboratory experiments, improved agreement will aid

experimentalists by providing a new tool for finding promising new regimes of behavior.
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