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Abstract 

Utilizing the industry portfolio classifications that Fama and French provide in 

their data library, I analyze the specific effects that the 1933 Bank Holiday has on various 

industries. My empirical results go beyond what Silber (2009) determines to be 

significantly positive abnormal market returns on March 15, 1933, which is the day after 

the Bank Holiday and the largest ever one-day increase in the stock market. I use the 

CAPM and the Fama-French 3-factor Model to find significant systematic risk decreases 

after the Bank Holiday in the Coal and Transportation industries, as well as systematic 

risk increases in Consumer Goods and Apparel. To determine the driving factors behind 

these changes in systematic risk and abnormal returns, I test the correlation between 

industry leverage ratios and differences in systematic risk changes after the Bank 

Holiday. The Bank Holiday helps stabilize the economy and the nation’s banking system, 

which I expect industries with larger debt obligations will benefit more after the Bank 

Holiday. Inconsistent with my expectations, I don’t find significant evidence that the 

systematic risks of highly leveraged industries decreases more than industries with lower 

leverage ratios. I develop my argument to leave room for changes in the model used to 

estimate systematic risks in order to identify the variables that are the true drivers of the 

systematic risk changes that I observe.  
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I. Introduction 

Friedman and Schwartz (1963 cited Bordo 2010) mark the period from August 

1929 through Roosevelt’s 1933 Bank Holiday as the Great Contraction, and considered it 

to be possibly the worst “business-cycle contraction” in U.S. history. The U.S. stock 

market crashed on October 24, 1929, and by March 1933, the stock of money in the U.S. 

fell by more than one-third (Friedman and Schwartz 1963). The instability of the U.S. 

economy created instability and panic in the nation’s banking system. Friedman and 

Schwartz (1963) describe the banking panics as “a contagion of fear” in which depositors 

became fearful that their money was not safe in banks. These fears lead to bank runs and 

banking panics that would spread across geographical regions and the ultimately the 

entire nation. The number of commercial banks in the U.S. fell by more than one-third at 

the beginning of the Great Contraction (Friedman and Schwartz 1963). In addition to 

regional banking panics, Wicker (1996 cited Bordo 2010) identified the 2,293 bank 

suspensions in fall 1931 and the 4,000 bank suspensions in winter 1933 as the two 

national baking panics of the Great Contraction. Figure 1 displays the number of all bank 

suspensions in the U.S. from 1921 to the year 1936. 

Immediately following President Roosevelt’s inauguration, and in the midst of the 

second national banking panic of the 1930s, Roosevelt ordered all the nation’s banks to 

cease banking activities starting on March 6, 1933 (Silber 2009 and Wicker 1996). The 

1933 Bank Holiday lasted from March 6, 1933 through March 14, 1933. The nation’s 

stock exchanges were also closed during the Bank Holiday. Before the banks and stock 

exchanges reopened on March 15
th

, the Emergency Banking Act of 1933 was signed by 

President Roosevelt. The Act essentially the government promising to insure deposits 
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(Silber 2009). On March 15, 1933 the New York Stock Exchange rose by over 15 

percent. It was the largest ever one-day increase by the New York Stock Exchange. In 

addition to the record one-day jump in the stock market, figure 2 shows evidence of the 

turnaround when two-thirds of the currency that had been withdrawn by the public since 

the banking panic began was re-deposited into banks by the end of the month (Silber 

2009). 

To understand why Roosevelt felt the urgent need to order the 1933 Bank 

Holiday, the prior month-long period of bank closures must be examined. Awalt (1969 

cited Silber 2009) marks February 14, 1933, as the day the nationwide banking system 

began to crumble. On that day, in order to stop the Union Guarding trust Company of 

Detroit from failing, a state-wide banking holiday was ordered by Michigan Governor 

William A. Comstock, which caused a ripple effect across the country over the course of 

the next month (Silber 2009). Evidence of the public withdrawing their money in cash is 

easily seen through the 30% increase in currency held by the public between February 8
th

 

and March 8
th 

(Silber 2009). 

 “On Sunday, March 5
th

, after a month-long run on American banks, the newly 

inaugurated President of the United States, Franklin Delano Roosevelt, proclaimed a 

four-day suspension of all banking transactions, beginning the following day” (Silber 

2009). The Bank Holiday also meant that the nations’ stock exchanges would temporarily 

cease all trading (Silber 2009). Roosevelt would ultimately extend the suspension for an 

additional three days through Tuesday, March 14
th

 (Silber 2009). Roosevelt’s goal of the 

Bank Holiday was to stop the panic and communicate to the American people that their 

money was safe in American banks (Silber 2009). In order to instil confidence in 
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America’s banking system and calm the panic of the American people, Roosevelt also 

implement the Emergency Banking Act of 1933  as concrete policy action to stabilize the 

nation’s banking system (Silber 2009). He needed to show the people that they were 

better off depositing their money, rather than holding it in cash. 

Roosevelt targeted two different audiences through his first Fireside chat, “On the 

Bank Crisis,” when he publically explained his decision to order the 1933 Bank Holiday 

(Silber 2009). This would be the first of 30 Fireside chats he would deliver to the 

American people over the course of his presidency. The following quote is the opening 

excerpt of “On the Bank Crisis,” delivered over the radio to the American people on 

Sunday, March 12, 1933: 

I want to talk for a few minutes with the people of the United States about 

banking -- with the comparatively few who understand the mechanics of 

banking but more particularly with the overwhelming majority who use 

banks for the making of deposits and the drawing of checks. I want to tell 

you what has been done in the last few days, why it was done, and what 

the next steps are going to be. I recognize that the many proclamations 

from State Capitols and from Washington, the legislation, the Treasury 

regulations, etc., couched for the most part in banking and legal terms 

should be explained for the benefit of the average citizen. I owe this in 

particular because of the fortitude and good temper with which everybody 

has accepted the inconvenience and hardships of the banking holiday. I 

know that when you understand what we in Washington have been about I 
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shall continue to have your cooperation as fully as I have had your 

sympathy and help during the past week. (“On the Bank Crisis”) 

Roosevelt’s first target audience was the financiers who understood how the 

banking system functioned (Silber 2009). He told them that the nation’s banks would be 

rehabilitated through the Emergency Banking Act of 1933, and the twelve Federal 

Reserve Banks would be able to “supply unlimited amounts of currency to reopened 

banks” (Silber 2009). Silber (2009) explains how the unlimited supply of currency to 

reopened banks “created de facto 100 percent deposit insurance,” and was a key factor in 

the stock market’s sharp jump when security exchanges reopened on March 15
th

. The Act 

is the concrete policy action that helped America’s financiers feel more comfortable 

making deposits and knowing it was insured by the government. 

Roosevelt’s second target audience was the average American, who needed 

reassurance that the nation’s banking system was strong and there was no need for panic 

(Silber 2009). Silber (2009) explains that the Bank Holiday was needed to allow the 

nation’s banking system time to breathe, and Roosevelt helped calm the American people 

through the way he spoke. Allen (1939) attributes the success of the reopening to 

Roosevelt’s ability to persuade the American people to trust him. Silber (2009) describes 

how Roosevelt informed the public in his first Fireside chat that the U.S. treasury would 

be evaluating the solvency of the banks, and that only financially healthy banks would be 

allowed to reopen. He said to the American people, “I can assure you that it is safer to 

keep you money in a reopened bank than under the mattress” (New York Times 3 Mar. 

1933, cited Silber 2009). The importance of Roosevelt’s persuasive communication skills 
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is further reiterated by Alter (2006 cited Silber 2009) by saying “[Roosevelt] made 

everyone understand it, even the bankers.” 

 

II. Hypothesis Development 

Hypothesis 1: Leverage ratios show how companies use a combination of debt 

and equity to finance their operations (“Leverage Ratio”). Highly leveraged firms have a 

greater risk of insolvency due to market downturns that may affect their ability to pay 

back creditors (“Solvency”). President Roosevelt’s rhetoric during the Bank Holiday and 

the backing of deposits through the Emergency Banking Act helped stabilize the nation’s 

banking system, as well as the economy (Silber 2009). The stabilization of the economy 

as a result of the Bank Holiday and the Emergency Baking Act is why I expect the 

systematic market risk of highly leveraged industries to decrease more after the Bank 

Holiday. In addition to estimating the Capital Asset Pricing Model’s systematic market 

beta risk, I estimate the Fama-French 3-Factor Model to measure the independent effects 

of each of the three risk factors on the outcome (LaMorte). Small and value firms tend to 

have less systematic risk than large and growth firms, which is why I expect the 

systematic size and value risk factors to decrease less in industries with high leverage 

ratios, as compared to large and growth firms (Acharya 2010). 

Hypothesis 2: My argument is that the 1933 Bank Holiday and the Emergency 

Banking Act of 1933 decreases systematic risks for industries that rely heavily on 

financing through debt. I expect that the effects of the systematic risk changes after the 

Bank Holiday are reflected through stock returns after the Bank Holiday. I expect that the 

stock returns of highly leveraged industries are more likely to have significantly positive 
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abnormal returns, and that stock returns of industries with less leverage are more likely to 

have significantly negative abnormal returns. I calculate abnormal returns before and 

after the Bank Holiday using the CAPM and Fama-French 3-Factor Model. Silber (2009) 

tests for changes in the systematic risk of the market after Roosevelt’s election by using 

Temin and Wigmore’s (1990 cited Silber 2009) argument, that after Roosevelt was 

elected his inflationary policies caused the increase in the stock market. I expect that the 

one-day changes in stock returns on March 15
th

 have more to do with the effects of the 

systematic risk changes resulting from the Bank Holiday and the Emergency Banking 

Act, and that the effects vary by industry due to differences in industry leverage ratios. 

 

III. Previous Literature 

 Bordo (2010) examines the causes of the two national banking panics in the U.S. 

from 1930-1933, and how banking panics were common-place in the U.S. before the 

1933 Bank Holiday. Banking panics weren’t something new to the early 1930s and the 

Great Depression. Banking panics occurred in the U.S. every decade between the early 

nineteenth century and 1914 (Bordo 2010). Bordo (2010) argues that unit banking and the 

absence of an effective lender of last resort are the two main factors contributing to the 

instability of the U.S. banking system. 

 Branch banking was considered by the American people in the 1930s to be a 

dangerous precedent for fear of the concentration of economic power, and interstate 

banking didn’t become the norm in America until the mid-1900s (White 1983, cited 

Bordo 2010). Unit banks did not have branches spread across multiple states. Because the 

portfolios of unit banks are concentrated in a confined geographical area, there is 
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increased risk that these banks would fail in times of a market downturn (Bordo 2010). 

The system of branch banking would allow banks to spread their portfolios across wide 

geographical areas, and decrease risk through increased diversification (Bordo 2010). 

Empirical studies connecting unit banking to banking panics have been thoroughly 

researched going back to the nineteenth century (White 1983, cited Bordo 2010). The 

analysis of Grossman (1994 cited Bordo 2010) and Grossman (2010 cited Bordo 2010) 

shows through cross-country regression evidence that there is a significant positive 

correlation between unit banking and banking instability. 

 Carlson and Michener (2009 cited Bordo 2010) show evidence that contradicts 

the argument that branch banking sets a dangerous precedent due to the concentration of 

economic power. California is one of the few states in the 1930s that allowed branch 

banking (Carlson and Michener 2009, cited Bordo 2010). They argued that their 

empirical data showed evidence that the increased market competitiveness of large 

networks of bank branches actually increased the probability of bank survivorship 

(Carlson and Michener 2009, cited Bordo 2010). However, they don’t argue that the 

increased diversification that comes with bank branching would have been the reason 

“that the U.S. banking system would have been less fragile in the 1930s” (Carlson and 

Michener 2009, cited Bordo 2010). Instead, they propose that branch baking would have 

had more efficient banks, and thus, would have created a more stable U.S. banking 

system in the late 1930s (Carlson and Michener 2009, cited Bordo 2010). 

 Bordo (2010) explains how the lack of a lender of last resort in America “since 

the demise of the Second Bank of the United States until the establishment of the Federal 

Reserve in 1914,” is one of the main reasons that banking panics had been common place 
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in America for decades. The go-to solution for ending banking panics had been to 

temporarily suspend the convertibility of deposits into currency (Bordo 2010). This 

practice of suspending the convertibility of deposits into currency was not healthy for the 

nation’s financial system. Ultimately, a reliable lender of last resort is needed for the 

country’s people to have confidence that their deposits were safe in banks. Even though 

one of the functions of the Federal Reserve when it was established in 1914 was to act as 

a lender of last resort, it’s obvious that it failed at this task between 1930 and 1933 when 

banking panics were occurring more frequently than in decades past. 

There is evidence that Roosevelt’s Bank Holiday and the Emergency Banking Act 

were successful. Silber (2009) determined that the 15.34 percent jump in the Dow Jones 

Industrial Average is significant after accounting for the trading suspension. Silber (2009) 

concluded this by running a simple t-test on the continuously compounded return of 

14.27 percent on March 15, 1933.  

 While Silber’s (2009) study does show that the market increase on March 15
th

 is 

statistically significant, it does not examine what industries are driving the market 

increase the most. This leaves room to provide statistical evidence that addresses the 

research question related to which industries of the market benefited from increased 

consumer confidence. Investors were able to look at the new policies and see that they 

benefited the economy, as well as specific industries. While many of the previous authors 

are correct that President Roosevelt’s comforting Fireside chats helped spur confidence in 

the American economy, it’s likely that investors recognized that the new deposit 

insurance benefited specific industries. Hence, in this paper, I contribute to the previous 
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literature by studying the specific industry effects associated with the 1933 Bank 

Holiday. 

 Temin and Wigmore (1990) argue that Roosevelt’s new policy regime after he 

took office in March 1933 is the cause of the stock market increase. Temin and Wigmore 

(1990) don’t attribute the one-day rise in the stock market on March 15
th

 to the Bank 

Holiday or the Emergency Banking Act of 1933. Instead, they attribute the changes in the 

stock market to “Roosevelt’s devaluation of the dollar and the resulting rise in farm 

prices and incomes” (Temin and Wigmore 1990). Roosevelt’s policy changes 

successfully devalued the dollar within six weeks after he took office as he sought to use 

inflation to boost the economy (Temin and Wigmore 1990). 

Taking into account Temin and Wigmore’s (1990) argument attributing regime 

changes and Roosevelt’s inflationary policies to the stock market increase, Silber (2009) 

uses an F-Test to analyze difference in the standard deviation of returns comparing before 

and after the election of President Roosevelt. Silber (2009) uses Temin and Wigmore’s 

(1987) argument to justify using November 8, 1932, the day Roosevelt was elected, as 

the split date for the estimation periods of systematic risk. Silber (2009) used an 

estimation period from January 4, 1932 through March 3, 1933 to estimate the normal 

standard deviation of excess returns. Silber (2009) split the estimation period of 

systematic risk on November 8, 1932, the date Roosevelt was elected President. Silber 

(2009) is interested in determining if there is a significant difference in the variability of 

the Dow Jones Industrial Average before and after Roosevelt’s election to office. Silber 

(2009) uses an F-test to determine that the pre-election standard deviation of 3.45 percent 

is significantly different from the post-election standard deviation of 2.48 percent. 
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IV. Data Construction 

 To study industry-specific effects surrounding the 1933 Bank Holiday, I use the 

Fama-French data library, which has stock return data categorized by industry dating 

back to 1926. CRSP SIC codes are used for industry classification.
1
 For the purposes of 

my event study, I use daily data because the event windows that I analyze are either one-

day or cumulative two-day returns. I use the Fama-French 30 industry portfolios daily 

data in my empirical tests for my event study (“Detail for 30 Industry Portfolios”). By 

choosing to use 30 industry portfolios classifications, instead of one of the data sets with 

fewer and broader industry classifications, I’m able to analyze and precisely estimate the 

effects of the Bank Holiday on the 30 industries.
2
 

IV.1 Event Windows 

My empirical tests aim to find the effects on the Fama-French 30 industry 

portfolios classifications due to the 1933 Bank Holiday and the implementation of the 

Emergency Banking Act of 1933 by President Roosevelt. My event study looks at a total 

of four different event windows before and after the nine-day long Bank Holiday. The 

first event window I look at is March 3, 1933, the day before the Bank Holiday. My event 

study aims to identify how different industries react on this day due to possible 

information leakage. The second event window that I look at is March 15, 1933, the day 

after the Bank Holiday and the first day of trading after the reopening of exchange 

markets. Silber (2009) showed using a simple t-test, that the 15.34 percent one-day 

increase in the Dow Jones Industrial Average is statistically significant. For this reason, 

                                                           
1
 Full industry titles and details of the SIC codes can be found in the Appendix or 

reference (“Detail for 30 Industry Portfolios”) 
2
 The justifications for the parameters I use to select my data are located in the Appendix. 
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March 15
th

 is probably the most interesting and important one-day event windows that 

my empirical research looks to analyze. The third event window that I consider is March 

16, 1933, the second day of trading after the Bank Holiday. This event window is 

important to look at because all of the Bank Holiday’s effects on daily stock returns may 

not have been realized on March, 15, 1933 due to market inefficiencies.  It’s possible that 

significant effects persist in some industries into the second day of trading after security 

exchanges reopened. The fourth event window is the cumulative two days after the Bank 

Holiday, March 15
th

 and March 16
th

. Because it’s possible that significant effects persist 

in some industries into the second day of trading after security exchanges reopened, it’s 

important to study the cumulative two days after the 1933 Bank Holiday. It’s difficult to 

determine which event window is the most important, which is why the relevance of the 

statistically significant results of each event window must be considered. 

 

IV.2 Estimation Periods of Systematic Risk 

My event study focusses on the differences in industry-specific returns before and 

after the 1933 Bank Holiday. This is why I choose to use the Bank Holiday to split my 

estimation period of systematic risk. Awalt (1969 cited Silber 2009) marks February 14, 

1933, as the day the nationwide banking crisis began to crumble. I used Awalt’s (1969 

cited Silber 2009) claim to justify selecting October 13, 1932 through February 11, 1933 

as the pre-event period to estimate systematic risk. I decided that a pre-event period of 

100 daily returns is enough data points to estimate a normal distribution by conventional 

standards. I wanted to set the pre-event estimation period for systematic risk before the 

nationwide banking crisis began to crumble, which is why the pre-event estimation 
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period does not include any daily returns between February 14, 1933 and the beginning 

of the Bank Holiday on March 6
th

. I also used a post-event period of 100 daily returns to 

estimate the systematic risk after the Bank Holiday. Because I use a buffer of 15 daily 

returns between the pre-event estimation period of systematic risk and the 1933 Bank 

Holiday, I decided it is appropriate to also use a buffer of 15 daily returns between the 

Bank Holiday and the post-event estimation period of systematic risk. The post-event 

estimation period of systematic risk runs from April 14, 1933 through July 31, 1933. The 

post-event buffer allows time for the market to fully realize and reflect the effects of the 

event. 

 

IV.3 Leverage Ratios 

I test my hypothesis that the systematic risk factors of highly leveraged industries 

will decrease more after the Bank Holiday by computing the leverage ratio of each 

industry, and then estimating the relationship of each industry’s leverage ratio to their 

corresponding systematic risk factors and abnormal returns.  

I started by looking at Moody’s Manuals, which provides financial reports back to 

1909. However, it does not provide industry averages of the company financial reports. 

Instead of sorting through each individual scanned report to create a database of leverage 

ratios, I used recent Compustat data to estimate leverage ratios for each industry. Also, I 

use long-term debt in my leverage ratio calculations, and that kind of specificity is not 

provided in 1933 financial reports. I do make sure to note the possibility that using a 

proxy for leverage ratios could possibly affect my results if the capital structure of 

industries changes over long periods of time.  
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 The most common leverage ratio is the debt-to-equity ratio (“leverage ratio”): 

Debt-to-Equity Ratio = Total Debt / Total Equity 

However, I decide not to use the debt-to-equity ratio in my analysis. I use long-

term debt instead of total debt to better measure the capital structure of each company 

(“Leverage Ratio”). I also chose to use market value of equity instead of the book value 

of equity to calculate leverage ratios. Using the book value of equity is problematic when 

calculating average leverage ratios in years where companies report negative book value 

of equity. Negative equity values make it difficult to accurately calculate average 

industry leverage ratios. I choose to use the long-term debt-to-market value ratio as the 

leverage ratio in my analysis (“Leverage Ratio”): 

 Long-term Debt to Market Value Ratio = Long-term Debt / (Share Price × 

Number of Shares) 

Compustat data on long-term debt and market value only overlaps back to 1998. I 

separate the Compustat data using the SIC codes of the 30 industry classifications that are 

used to separate the Fama-French industry returns data (“Detail for 30 Industry 

Portfolios”). I excluded the companies who’s SIC codes were not explicitly labeled in the 

Fama-French SIC code details from the industry leverage ratio calculations in order to 

stay consistent with the Fama-French industry classifications. I calculate each industry’s 

market value weighted average leverage ratio of each fiscal year-end from 1998-2014. I 

then take the average of each year to estimate a proxy for each industry’s average 

leverage ratio. 
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V. Statistical Analysis 

The first goal of my empirical research is to find how the systematic risk of each 

industry changed after the Bank Holiday. As stated in my hypothesis, I expect that the 

systematic risk of credit-hungry industries to decrease more than industries that are less 

credit-hungry. This is my expectation if President Roosevelt instilled confidence in the 

American people that the nation’s banking system was stable and that their current and 

future deposits were safe and secure in banks. The Emergency Banking Act of 1933 is the 

concrete action that provided unlimited government backing to deposits in banks, which 

helped add stability to the economy and banking system (Silber 2009).  

The second goal of my empirical research is to determine the Bank Holiday’s 

effects on industry stock returns by analyzing which industries show evidence of 

abnormal returns over various event windows. I analyze abnormal returns to complement 

my empirical research on the effects of leverage on the systematic risks of different 

industries.  

 

V.1 Differences in Risk Factors 

The first objective of my event study is to identify how the systematic risk of the 

Fama-French 30 industry classifications are affected differently by comparing the 

difference of their beta estimates from before and after the 1933 Bank Holiday. I estimate 

the Capital Asset Pricing Model (CAPM) regression formula:  

(rind,t-rf,t)=  (rm,t-rf)+eind,t  

In this CAPM regression formula rind,t represents the return on the industry on the 

event window, rf,t represents the risk free rate of return on the event window,     
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represents the beta systematic risk estimate over the corresponding estimation period, rm,t 

represents the return on the market on the event window, and eind,t represents the random 

error of the industry regression on the event window. I use the CAPM regression to 

estimate the systematic beta risk for each of the 30 industries over the pre-event 100 daily 

returns estimation period, as well as the post-event 100 daily returns estimation period. I 

chose not to include alpha in my regression formula because the constant, or intercept, is 

not pertinent to my regression output. I subtracted the post-event beta estimate from the 

pre-event beta estimate. I use two-tail t-tests to determine the significance of the 

differences between the pre- and post-event beta estimates. The t-statistic for the 

difference in beta estimates is calculated by dividing the differences in pre- and post-

event beta estimates by the standard error of the difference between pre- and post-event 

beta estimates. I used the variance of the difference formula: 

var(  1-  2)=var(  1)+var(  2)+2cov(  1,  2)  

In this variance of the difference formula var represents variance,   1 represents 

the pre-event industry beta estimate,   2 represents the post-event industry beta estimate, 

and cov represents covariance. In this case, 2cov(  1,  2)=0. Because I need to find the SE 

of the difference, I took the square root of both sides of the previous formula for the 

standard error of the difference:  

SEdiff=sqrt[(SE  1)
2
+(SE  2)

2
]  

In this standard error of the difference formula SEdiff represents the standard error 

of the difference between the pre- and post-event beta estimates for each industry, sqrt 

represents square root, SE  1 represents the standard error of the pre-event beta estimate, 

and SE  2 represents the standard error of the post-event beta estimate. Using the standard 
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error of the beta estimates from before and after the event window, which were shown in 

the CAPM regression outputs, I divide the difference of the pre- and post-event beta 

estimates by the standard error of the difference of the pre- and post-event beta estimates 

to calculate a t-statistic for each of the 30 industries. 

In addition to using the regression estimates of the CAPM to determine how the 

systematic risk of the Fama-French 30 industry portfolios changes after the event 

window, I analyze the Fama-French 3-Factor Model to determine how the Fama-French 

market, size, and value risk factors changed after the Bank Holiday. By analyzing the 

Fama-French 3-Factor Model alongside the CAPM, I am able to control for other 

systematic risks by measuring the independent effect of each of the three risk factors on 

the outcome (LaMorte). I estimate the Fama-French 3-Factor regression formula:  

(rind,t-rf,t)=  (rm,t-rf,t)+  (SMBt)+  (HMLt)+eind,t 

In this Fama-French 3-Factor regression formula rind,t represents the return on the 

industry on the event window, rf,t represents the risk free rate of return on the event 

window,     represents the estimate of the market risk coefficient over the corresponding 

estimation period, rm,t represents the return on the market on the event window,    

represents the estimate of the size risk coefficient over the corresponding estimation 

period, SMBt represents the size premium on the event window,    represents the estimate 

of the value risk coefficient over the corresponding estimation period, HMLt represents 

the value premium on the event window, and eind,t represents the random error of the 

industry regression on the event window. To estimate each risk factor before the event 

window, I estimate the Fama-French 3-Factor regression just as I did for the CAPM 

regressions for each of the 30 industries over the pre- and post-event 100 daily return 
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estimation periods. I chose not to include alpha in my Fama-French 3-Factor regression 

formula, just as I didn’t include alpha in my CAPM regression. Just as I did to determine 

which industries had significant changes in systematic risk after the event window, I use 

the differences between the pre- and post-event risk factor estimates and the standard 

error of the difference between pre- and post-event risk factor estimates to calculate a t-

statistic for each risk factor in each of the 30 industries. 

 

V.2 Abnormal Returns 

The second goal of my empirical research is to determine the Bank Holiday’s 

effect on industry stock returns by analyzing which industries show evidence of abnormal 

returns over various event windows. To calculate the CAPM abnormal returns, I estimate 

the same CAPM regression formula that I did when estimating the differences in beta:  

(rind,t-rf,t)=  (rm,t-rf)+eind,t  

I use the estimated beta regression output in the CAPM abnormal return formula:  

ARind,t=rind,t-(  (rm,t-rf,t)+rf,t)  

In this CAPM abnormal returns formula ARind,t represents the abnormal return of 

the industry on the event window, rind,t represents the return of the industry on the event 

window,     represents the beta systematic risk estimate over the corresponding 

estimation period, rm,t represents the return on the market on the event window, and rf,t 

represents the risk free rate of return on the event window. I calculated CAPM abnormal 

returns for all four event windows, first using pre-event beta estimates, and again using 

post-event beta estimates. The t-statistic for the abnormal return is calculated by dividing 



Ingram 21 
 

 
 

the industry abnormal return by the corresponding estimation period’s standard deviation 

of normal excess returns. 

I estimate the Fama-French 3-Factor Model abnormal returns using the same 

regression formula that I did when finding differences in the Fama-French risk factors:  

(rind,t-rf,t)=  (rm,t-rf,t)+  (SMBt)+  (HMLt)+eind,t  

I use the estimated risk factor regression outputs in the Fama-French 3-Factor 

abnormal return formula:  

ARind,t=rind,t-[  (rm,t-rf,t)+rf,t]-  (SMBt)-  (HMLt)  

In this Fama-French 3-Factor abnormal return formula ARind,t represents the 

abnormal return of the industry on the event window, rind,t represents the return of the 

industry on the event window,     represents the estimate of the market risk coefficient 

over the corresponding estimation period, rm,t represents the return on the market on the 

event window, rf,t represents the risk free rate of return on the event window,    represents 

the estimate of the size risk coefficient over the corresponding estimation period, SMBt 

represents the size premium on the event window,    represents the estimate of the value 

risk coefficient over the corresponding estimation period, and HMLt represents the value 

premium on the event window. I calculate Fama-French 3-Factor abnormal returns for all 

four event windows, first using pre-event beta estimates, and again using post-event beta 

estimates. The t-statistic calculation is the same for Fama-French 3-Factor abnormal 

returns as it is for CAPM abnormal returns. 

 

 

 



Ingram 22 
 

 
 

VI. Results 

I calculate the t-statistics for each industry to determine if the CAPM beta and 

Fama-French systematic risk factor differences are significant. I also test the significance 

of the industry abnormal returns. Because I test for both positive and negative differences 

in risk factors, as well as positive and negative abnormal returns, I use two-tailed t-tests. I 

use 5% significance levels in my event study explinations. My tables include significance 

levels at the 5%, 2%, and 1% level. 

The first goal of my empirical research is to determine the Bank Holiday’s effect 

on the systematic risks of the 30 Fama-French industries. I compare the difference of the 

CAPM systematic risk factor estimates, as well as the Fama-French systematic risk factor 

estimates, before and after the Bank Holiday. I subtracted the post-event beta and Fama-

French risk factor estimates from the pre-event estimates, meaning that a negative 

difference in estimates shows evidence that the systematic risks of the industries 

increased after the Bank Holiday. Likewise, a positive difference in estimates shows 

evidence that the systematic risks of the industries decreased.  

Table 1 shows which industries there is evidence that the CAPM beta and Fama-

French 3-Factor systematic risk estimates change after the Bank Holiday. I use the Fama-

French 3-Factor Model in addition to the CAPM to measure the independent effect of 

each of the three risk factors on the outcome, which allows me to adjust for other sources 

of systematic risk other than the market (LaMorte). Table 1 shows that the CAPM 

systematic beta risk after the Bank Holiday significantly decreased for five of the 30 

industries, and significantly increased for ten of the 30 industries. I compare the 3-Factor 

model to the CAPM to strengthen my argument for my significant results (LaMorte). I 
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find that Coal and Trans show evidence of a significant systematic market risk decrease 

using both the CAPM and the 3-Factor Model. I also find that Hshld and Clths have 

significant systematic market risk increases in both models. There is evidence of a 

significant systematic size risk increase in Coal and BusEq. My 3-Factor analysis also 

shows evidence of a systematic value risk decrease in Food, Steel, and Util. There is also 

evidence of a systematic value risk increase in Meals and Other. 

The second goal of my empirical research is to determine the Bank Holiday’s 

effect on industry stock returns by analyzing which industries show evidence of abnormal 

returns over various event windows. Table 2 shows which industries there is evidence 

that the CAPM and Fama-French 3-Factor Model abnormal returns are statistically 

significant. 

Kupiec and Mathios (1986) identify a problem with the “event test” methodology 

when post-event abnormal returns are calculated using a pre-event period to estimate 

systematic risk. They argue that changes in systematic risks “confound” abnormal returns 

and cause the measures to be biased (Kupiec and Mathios 1986). In their methodology, 

Kupiec and Mathios (1986) claim that using a post-event estimation period to estimate 

systematic risks corrects for this bias when calculating post-event abnormal returns, and 

vice-versa for pre-event abnormal returns. My event study uses both pre- and post-event 

periods to estimate systematic risks. I also calculate both pre- and post-event abnormal 

returns. I explain my empirical results of abnormal returns in table 2 using the event 

study methodology that Kupiec and Mathios (1986) claim corrects for the systematic risk 

sensitivity bias. Kupiec and Mathios (1986) claim that it actually over-corrects, but that 

the correction does provide more accurate empirical evidence. 
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I test for abnormal returns on March 3, 1933, the last trading day before the Bank 

Holiday, in order to observe possible information leakage before Roosevelt issued the 

Bank Holiday. I do not find any significant abnormal returns on March 3, which means I 

find no evidence of information leakage before the Bank Holiday. This is the case for 

both the CAPM and Fama-French 3-Factor Model results. This allows me to be confident 

in the accuracy of the rest of my abnormal returns data after the Bank Holiday. 

 

VII. Summary 

On March 15
th

, the day after the Bank Holiday, I find that Books and Hshld have 

significantly positive abnormal returns using both the CAPM and the 3-Factor Model, 

and that Steel has a significantly positive abnormal return only in the 3-Factor Model. I 

calculate abnormal returns on March 16
th

, the second day after the Bank Holiday, to 

account for market inefficiencies. I find that Books have a significant positive abnormal 

return on March 16
th

 only in the CAPM. The cumulative two-day abnormal return after 

the Bank Holiday accounts for immediate market reactions on March 15
th

, as well as 

possible market inefficiencies extend the effects of the Bank Holiday past March 15
th

. I 

find that Books and Hshld have significantly positive cumulative two-day abnormal 

returns after the Bank Holiday. 

In order to include results where a systematic risk sensitivity correction may not 

be appropriate, table 3 does not use a systematic risk-sensitivity correction when 

calculating abnormal returns using opposite-of-the-event estimation periods of systematic 

risk. The number of abnormal returns that are statistically significant is drastically fewer 

when I use the systematic risk sensitivity correction suggested by Kupiec and Mathios 
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(1986), as compared to when I don’t use the correction. This difference in the quantity of 

significant results is in line with what Kupiec and Mathios (1986) mention, that the 

systematic risk sensitivity correction actually over corrects for the bias resulting from 

changes in systematic risks, but that the correction provides a more accurate estimations 

overall. Consistent with the Kupiec and Mathios’s (1986) argument, I am able to explain 

the abnormal returns when only three industries have significant results when I use their 

correction, compared to the difficult task of explaining the significant results of 15 

industries when I don’t use the correction. 

 I am able to determine that some of the systematic risk changes and abnormal 

returns of certain industries are statistically significant after the Bank Holiday. I want to 

know what factors are driving these significant results, which is why my hypothesis aims 

to find the relationship between leverage ratios and systematic risk factors. To test this 

relationship, I need to find the correlation between the industry leverage ratios and the 

differences in each systematic risk factor. I use the following correlation formula to 

calculate the correlation coefficient of leverage ratios and each systematic risk factor 

(“PreMBA Analytical Methods”): 

 r(x,y)=COV(x,y)/sxsy 

 In this correlation formula r(x,y) represents the correlation of the leverage ratios x 

and differences in systematic risk factors y, COV(x,y) represents the covariance of the 

leverage ratios x and differences in systematic risk factors y, sx represents the sample 

standard deviation of the leverage ratios, and sy represents the sample standard deviation 

of the differences in systematic risk y (“PreMBA Analytical Methods”). Table 4 shows 

the correlation results of systematic risk factors and leverage ratios. The risk coefficient 



Ingram 26 
 

 
 

shows how much each systematic risk factor is expected to change given a change in the 

leverage ratio. The r-value is the correlation measure and shows the relationship of the 

systematic risk factors and leverage ratios. The p-value measures significance of the 

correlation. I find that the r-value is extremely low for all four of the systematic risk 

factors. There is no evidence of correlation of the systematic risk factors and leverage 

ratios at the 5% level given the extremely high p-values for each of the factors. This does 

not support my hypothesis and I see no significant evidence that the market factors of 

highly leveraged industries decrease significantly more, or that the size and value factors 

of highly leverage industries decrease significantly less. 

 Table 5 shows the correlation results of abnormal returns on different event 

windows and leverage ratios. None of the correlation results for abnormal returns are 

significant either. The closest to significance are the abnormal returns of the CAPM and 

the 3-Factor Model the day before the Bank Holiday, both of which have p-values of 0.11 

and 0.12 respectively. However, there are no significant differences in systematic risk 

factors or significant abnormal returns that I can use these almost significant results to 

explain. Because none of the risk factors were significantly correlated with leverage 

ratios, it is difficult to determine what changes in risk factors are driving the significant 

abnormal returns after the Bank Holiday. Until a significant correlation between the 

changes in systematic risks and a variable like leverage ratios can be found, it’s difficult 

to know what specific factors are driving abnormal returns as an effect of the Bank 

Holiday and the Emergency Banking Act. 
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VIII. Discussion 

 By calculating multiple event periods and multiple estimation periods of 

systematic risk, I was able to observe specific differences in systematic risk factors and 

abnormal returns after the Bank Holiday. My significant findings of abnormal returns and 

differences in risk factors do show evidence that the 1933 Bank Holiday and the 

Emergency Banking Act of 1933 did benefit certain industries more than others. 

However, I am not able to explain the specific driving factors behind the changes in 

systematic risk and the significantly positive abnormal returns because there ended up 

being almost no statistical significance in the correlation tests. 

 Figures 3 through 6 show the plotted trend line of the correlation of the 

differences in risk factors and leverage ratios. While none of the correlation results are 

significant, the risk coefficients of all four risk factors align with my hypothesis. The 

slope of the CAPM beta risk trend line in figure 3 is 0.03, just slightly positive. The slope 

of the Fama-French market factor trend line in figure 4 is also slightly positive at 0.12. 

Even though these aren’t significant figures, they directionally align with my hypothesis, 

which is that I expect systematic risk to decrease more in highly leveraged industries. 

Even though the correlation results of the Fama-French size and value factors are not 

statistically significant, their risk coefficients of -0.14 and -0.12 respectively also 

directionally align with my hypothesis.  

Since the risk coefficients in table 4 show almost no significance by conventional 

standards to support my hypothesis, but the risk coefficients directionally align with my 

hypothesis, there is the possibility that using a model other than the CAPM or the 3-

Factor Model may be appropriate. Another possible improvement to the model could be 
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creating a database of historical debt and equity values for each public company in the 

U.S. for certain periods before and after the 1933 Bank Holiday. Then the leverage ratios 

for each company could be calculated and then sorted by SIC industries the same way I 

did. This would allow the correlations to be calculated using leverage ratios from the 

same estimation period as the risk factor estimations, which was not what I chose to do 

by using a proxy to estimate leverage ratios with more recent data. By using a proxy for 

leverage ratios, my calculations assume that the capital structure of firms is consistent 

over long periods of time. This could have been a factor limiting the number of my 

significant results. Additional modeling beyond the factors analyzed in my research 

might find variables that significantly affect systematic risk exposure and abnormal 

returns in certain industries.
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X. Appendix 

Figure 1: This figure shows the total number of all bank suspensions in the U.S. from 

1921-1936.  

 

 

Source: Board of Governors of the Federal Reserve System (U.S.) , 1935-. "Bank 

Suspensions, 1921-1936." Fraser Federal Reserve Archive. Federal Reserve 

Bulletin, 1 Sept. 1937. Web. 
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Figure 2: This figure shows the amount of money (in billions) in circulation from 

January 4, 1933 through July 26, 1933. 

  

Source: Board of Governors of the Federal Reserve System (U.S.) , 1935-. 

"Banking and Monetary Statistics, 1941-1970." Fraser Federal Reserve Archive. 

Federal Reserve Bulletin, 1 Sept. 1937. Web. (Cited Silber 2009). 
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Figure 3: This figure shows the correlation and trend line of the difference in the pre- and post-

event CAPM beta risk estimates for each of the 30 industry portfolios. Table 4 shows the 

correlation statistics of this figure.  

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 

Figure 4: This figure shows the correlation and trend line of the difference in the pre- and post-

event Fama-French market risk estimates for each of the 30 industry portfolios. Table 4 shows the 

correlation statistics of this figure. 

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Figure 5: This figure shows the correlation and trend line of the difference in the pre- and post-

event Fama-French size risk estimates for each of the 30 industry portfolios. Table 4 shows the 

correlation statistics of this figure. 

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 

Figure 6: This figure shows the correlation and trend line between the difference in the pre- and 

post-event Fama-French value risk estimates for each of the 30 industry portfolios. Table 4 shows 

the correlation statistics of this figure. 

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Table 1: This table shows the market value weighted average leverage ratio (1998-2014) for each industry 

displayed alongside the difference in systematic risk factors before and after the Bank Holiday for each industry. The 

standard errors are shown in parentheses below the corresponding systematic risk factor estimates. A 2-tailed t-test was 

run to determine significance for the differences in pre- and post-event risk factors. *, **, and *** denote significance 

at the 5%, 2%, and 1% levels, respectively. 

   CAPM Beta Risk Factor Market Risk Factor Size Risk Factor Value Risk Factor 

Industry Leverage 

Ratio 

 Pre-

event 

Post-

event 

Difference Pre-

event 

Post-

event 

Difference Pre-

event 

Post-

event 

Difference Pre-

event 

Post-

event 

Difference 

Food  0.20   0.77 0.76 0.02   0.75 0.82 -0.07   -0.03 0.05 -0.08   0.01 -0.14 0.15 * 

      (0.03) (0.03) (0.04)   (0.04) (0.04) (0.06)   (0.05) (0.06) (0.08)   (0.05) (0.05) (0.07)   
Beer  0.14   1.30 1.32 -0.02   1.41 1.43 -0.03   0.33 0.42 -0.09   0.13 -0.25 0.38   
      (0.10) (0.15) (0.18)   (0.17) (0.20) (0.26)   (0.20) (0.31) (0.37)   (0.18) (0.27) (0.33)   
Smoke 0.17   0.60 0.54 0.05   0.62 0.54 0.08   -0.11 -0.03 -0.08   -0.17 0.02 -0.18   
      (0.06) (0.03) (0.06)   (0.10) (0.04) (0.10)   (0.11) (0.06) (0.13)   (0.10) (0.05) (0.11)   
Games 0.52   1.34 1.33 0.01   1.42 1.14 0.28   0.31 0.77 -0.45   0.16 0.40 -0.24   
      (0.11) (0.14) (0.18)   (0.19) (0.17) (0.26)   (0.23) (0.27) (0.35)   (0.20) (0.24) (0.31)   
Books 0.39   0.55 1.03 -0.47 *** 0.73 0.98 -0.25   0.79 0.49 0.29   0.48 0.11 0.38   
      (0.13) (0.11) (0.17)   (0.20) (0.14) (0.25)   (0.24) (0.22) (0.32)   (0.21) (0.20) (0.29)   
Hshld 0.13   0.69 0.92 -0.22 *** 0.66 1.01 -0.35 ** 0.02 -0.06 0.08   0.09 -0.20 0.29   
      (0.07) (0.05) (0.08)   (0.12) (0.07) (0.14)   (0.14) (0.10) (0.18)   (0.12) (0.09) (0.15)   
Clths 0.11   0.24 0.67 -0.43 *** 0.29 0.55 -0.27 * 0.18 0.31 -0.13   0.09 0.25 -0.16   
      (0.05) (0.07) (0.08)   (0.08) (0.09) (0.12)   (0.10) (0.14) (0.17)   (0.09) (0.12) (0.15)   
Hlth  0.20   0.79 0.75 0.04   0.86 0.81 0.05   0.08 0.16 -0.07   -0.06 -0.12 0.06   
      (0.06) (0.06) (0.09)   (0.11) (0.08) (0.14)   (0.13) (0.12) (0.18)   (0.11) (0.11) (0.16)   
Chems 0.27   1.25 1.08 0.17 *** 1.28 1.15 0.13   -0.01 -0.11 0.10   -0.08 -0.16 0.08   
      (0.03) (0.04) (0.05)   (0.06) (0.05) (0.08)   (0.07) (0.09) (0.11)   (0.06) (0.08) (0.10)   
Txtls 0.57   0.63 1.21 -0.59 *** 0.84 1.12 -0.28   0.58 0.45 0.14   0.19 0.20 -0.01   
      (0.07) (0.07) (0.10)   (0.12) (0.09) (0.15)   (0.14) (0.14) (0.19)   (0.12) (0.12) (0.17)   
Cnstr 0.39   1.17 1.14 0.03   1.35 1.11 0.24 * 0.24 0.38 -0.14   -0.11 0.08 -0.19   
      (0.05) (0.05) (0.07)   (0.09) (0.06) (0.10)   (0.10) (0.09) (0.13)   (0.09) (0.08) (0.12)   
Steel 0.42   1.46 1.31 0.15   1.30 1.26 0.04   0.12 -0.20 0.32   0.47 0.11 0.36 * 
      (0.08) (0.06) (0.10)   (0.13) (0.08) (0.15)   (0.15) (0.12) (0.19)   (0.13) (0.10) (0.17)   
FabPr 0.25   1.29 1.28 0.01   1.34 1.29 0.05   0.20 0.15 0.05   0.11 -0.04 0.14   
      (0.05) (0.04) (0.06)   (0.08) (0.05) (0.10)   (0.10) (0.08) (0.12)   (0.08) (0.07) (0.11)   
ElcEq 0.21   1.42 1.34 0.08   1.58 1.35 0.22   0.26 0.03 0.23   -0.05 -0.03 -0.01   
      (0.06) (0.05) (0.08)   (0.10) (0.07) (0.12)   (0.12) (0.11) (0.16)   (0.10) (0.10) (0.14)   
Autos 1.41   1.47 1.44 0.02   1.44 1.50 -0.06   -0.07 0.02 -0.09   -0.03 -0.12 0.09   
      (0.06) (0.05) (0.08)   (0.11) (0.06) (0.13)   (0.13) (0.10) (0.17)   (0.11) (0.09) (0.15)   
Carry 0.20   1.18 1.19 -0.02   1.26 1.15 0.11   0.11 0.27 -0.16   -0.05 0.10 -0.15   
      (0.05) (0.05) (0.07)   (0.09) (0.07) (0.11)   (0.10) (0.11) (0.15)   (0.09) (0.09) (0.13)   
Mines 0.18   0.41 0.87 -0.46 *** 0.49 0.78 -0.29   0.17 0.31 -0.14   0.01 0.18 -0.17   
      (0.08) (0.08) (0.11)   (0.14) (0.10) (0.18)   (0.17) (0.16) (0.23)   (0.15) (0.14) (0.20)   
Coal  0.80   1.78 1.24 0.54 *** 1.47 0.93 0.54 *** -0.12 0.53 -0.65 *** 0.54 0.67 -0.12   
      (0.09) (0.09) (0.13)   (0.16) (0.10) (0.19)   (0.18) (0.16) (0.24)   (0.16) (0.14) (0.22)   
Oil   0.19   0.73 1.00 -0.27 *** 0.75 0.88 -0.13   0.06 -0.19 0.25   0.01 0.24 -0.22   
      (0.05) (0.06) (0.07)   (0.08) (0.07) (0.11)   (0.10) (0.11) (0.15)   (0.09) (0.10) (0.13)   
Util  0.73   0.96 1.09 -0.13   1.05 1.30 -0.25 *** 0.01 0.04 -0.03   -0.18 -0.44 0.26 * 
      (0.03) (0.07) (0.07)   (0.05) (0.08) (0.10)   (0.06) (0.13) (0.14)   (0.05) (0.11) (0.12)   
Telcm 0.44   0.82 0.62 0.20 *** 0.79 0.67 0.12   -0.19 -0.22 0.03   -0.14 -0.11 -0.04   
      (0.03) (0.04) (0.05)   (0.05) (0.05) (0.06)   (0.05) (0.07) (0.09)   (0.05) (0.06) (0.08)   
Servs 0.10   0.02 0.17 -0.16   0.02 0.13 -0.11   -0.01 0.21 -0.22   -0.03 0.09 -0.12   
      (0.04) (0.10) (0.10)   (0.07) (0.13) (0.15)   (0.09) (0.20) (0.22)   (0.08) (0.18) (0.19)   
BusEq 0.08   0.89 0.93 -0.03   0.89 0.90 -0.01   0.03 0.36 -0.33 ** 0.03 0.05 -0.02   
      (0.04) (0.05) (0.07)   (0.08) (0.06) (0.10)   (0.09) (0.10) (0.13)   (0.08) (0.09) (0.12)   
Paper 0.35   0.95 0.75 0.20 *** 0.86 0.76 0.10   -0.22 -0.09 -0.14   -0.06 -0.02 -0.04   
      (0.04) (0.03) (0.05)   (0.07) (0.05) (0.08)   (0.08) (0.07) (0.11)   (0.07) (0.06) (0.10)   
Trans 0.40   1.52 0.93 0.58 *** 1.24 0.69 0.55 *** -0.22 -0.07 -0.16   0.33 0.51 -0.18   
      (0.05) (0.06) (0.07)   (0.08) (0.07) (0.10)   (0.09) (0.11) (0.14)   (0.08) (0.09) (0.12)   
Whlsl 0.25   0.25 1.83 -1.58 *** 0.81 1.56 -0.76   1.62 1.04 0.58   0.59 0.57 0.03   
      (0.42) (0.19) (0.46)   (0.73) (0.24) (0.77)   (0.85) (0.38) (0.93)   (0.75) (0.33) (0.82)   
Rtail 0.17   0.88 0.93 -0.05   0.85 0.95 -0.10   -0.04 0.05 -0.09   0.03 -0.05 0.08   
      (0.03) (0.03) (0.04)   (0.06) (0.04) (0.07)   (0.07) (0.06) (0.09)   (0.06) (0.05) (0.08)   
Meals 0.26   0.56 0.90 -0.34 * 0.93 0.62 0.31   0.74 0.92 -0.18   0.02 0.61 -0.59 * 
      (0.12) (0.11) (0.16)   (0.21) (0.13) (0.24)   (0.24) (0.21) (0.32)   (0.21) (0.18) (0.28)   
Fin   0.92   1.03 1.22 -0.19 *** 1.16 1.16 0.00   0.33 0.23 0.10   0.09 0.14 -0.05   
      (0.04) (0.05) (0.06)   (0.07) (0.06) (0.09)   (0.09) (0.09) (0.12)   (0.07) (0.08) (0.11)   
Other 0.97   0.28 1.04 -0.76 *** 0.69 0.87 -0.19   0.60 0.69 -0.08   -0.21 0.35 -0.56 * 
      (0.10) (0.10) (0.14)   (0.17) (0.13) (0.21)   (0.19) (0.20) (0.28)   (0.17) (0.17) (0.24)   
                   

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Table 2: This table shows the market value weighted average leverage ratio (1998-2014) for 

each industry displayed alongside the abnormal returns using the estimation periods suggested in 

the systematic risk sensitivity correction from Kupiec and Mathios (1986). Pre-event abnormal 

returns are shown using pre-event systematic risk estimations and post-event abnormal returns 

using post-event systematic risk estimations. The “Day Before” is March 3, 1933. The “Day 

After” is March 15, 1933. The “Second Day After” is March 16, 1933. The “Cum. Two Days 

After” is the cumulative two-day abnormal return of March 15 through March 16, 1933. A 2-

tailed t-test was run to determine significance of abnormal returns. *, **, and *** denote 

significance at the 5%, 2%, and 1% levels, respectively. 

   

CAPM Model Abnormal Returns Fama-French 3-Factor Model Abnormal Returns 

Industry 

Leverage 

Ratio 

Day 

Before Day After 

Second 

Day After 

Cum. Two 

Days After 

Day 

Before Day After 

Second 

Day After 

Cum. Two 

Days After 

Food  0.20 

0.14 

0.17 

0.52 

0.39 

0.13 

0.11 

0.20 

0.27 

0.57 

0.39 

0.42 

0.25 

0.21 

1.41 

0.20 

0.18 

0.80 

0.19 

0.73 

0.44 

0.10 

0.08 

0.35 

0.40 

0.25 

0.17 

0.26 

0.92 

0.97 

1.10 

 

4.08 

 

1.06 

 

3.64 

 

1.08 

 

4.11 

 

1.26 

 

3.79 

 Beer  -0.05 

 

-0.86 

 

0.20 

 

-0.46 

 

-0.11 

 

-1.30 

 

-0.57 

 

-1.32 

 Smoke 0.29 

 

2.21 

 

1.62 

 

2.71 

 

0.39 

 

2.25 

 

1.69 

 

2.79 

 Games -1.11 

 

-7.51 

 

1.37 

 

-4.34 

 

-1.19 

 

-8.95 

 

-2.27 

 

-7.93 

 Books -5.11 

 

16.13 *** 10.11 ** 18.55 *** -5.38 

 

15.31 *** 8.15 

 

16.59 *** 

Hshld -0.28 

 

11.40 *** 0.12 

 

8.14 *** -0.35 

 

11.64 *** 0.85 

 

8.83 *** 

Clths -0.03 

 

0.32 

 

0.63 

 

0.67 

 

-0.07 

 

-0.33 

 

-1.07 

 

-0.99 

 Hlth  0.98 

 

0.15 

 

-0.37 

 

-0.15 

 

1.03 

 

0.01 

 

-0.57 

 

-0.40 

 Chems 0.66 

 

-0.12 

 

-2.22 

 

-1.65 

 

0.71 

 

0.16 

 

-1.43 

 

-0.90 

 Txtls 0.19 

 

-6.25 

 

6.82 

 

0.40 

 

0.11 

 

-7.06 

 

4.79 

 

-1.61 

 Cnstr 0.39 

 

4.72 

 

1.11 

 

4.13 

 

0.49 

 

4.10 

 

-0.38 

 

2.63 

 Steel -0.23 

 

7.95 

 

-1.42 

 

4.61 

 

-0.55 

 

8.17 * -1.03 

 

5.05 

 FabPr 2.20 

 

6.03 

 

3.10 

 

6.46 

 

2.14 

 

5.83 

 

2.69 

 

6.03 

 ElcEq -1.38 

 

3.36 

 

2.44 

 

4.10 

 

-1.32 

 

3.35 

 

2.45 

 

4.10 

 Autos -4.26 

 

5.11 

 

0.29 

 

3.82 

 

-4.25 

 

5.17 

 

0.56 

 

4.05 

 Carry 1.77 

 

-0.27 

 

0.37 

 

0.07 

 

1.82 

 

-0.75 

 

-0.81 

 

-1.10 

 Mines 0.34 

 

1.53 

 

-3.69 

 

-1.53 

 

0.35 

 

0.93 

 

-5.21 

 

-3.02 

 Coal  -0.17 

 

-0.10 

 

-0.44 

 

-0.38 

 

-0.56 

 

-1.38 

 

-3.98 

 

-3.79 

 Oil   -0.26 

 

-2.47 

 

-0.62 

 

-2.18 

 

-0.26 

 

-2.36 

 

-0.60 

 

-2.10 

 Util  1.22 

 

-6.30 

 

-1.36 

 

-5.42 

 

1.34 

 

-6.03 

 

-0.33 

 

-4.50 

 Telcm -0.01 

 

-2.51 

 

0.04 

 

-1.74 

 

0.07 

 

-2.11 

 

1.05 

 

-0.75 

 Servs 0.85 

 

-2.39 

 

0.55 

 

-1.30 

 

0.86 

 

-2.77 

 

-0.40 

 

-2.24 

 BusEq -0.79 

 

-2.49 

 

1.42 

 

-0.76 

 

-0.81 

 

-3.07 

 

0.04 

 

-2.14 

 Paper 0.19 

 

0.70 

 

0.52 

 

0.87 

 

0.21 

 

0.84 

 

0.86 

 

1.20 

 Trans -1.64 

 

3.82 

 

-0.99 

 

2.00 

 

-1.90 

 

3.55 

 

-2.11 

 

1.02 

 Whlsl 3.22 

 

-9.79 

 

-4.30 

 

-9.96 

 

2.96 

 

-11.76 

 

-9.32 

 

-14.91 

 Rtail 0.65 

 

3.20 

 

2.58 

 

4.08 

 

0.63 

 

3.16 

 

2.54 

 

4.03 

 Meals -2.35 

 

5.21 

 

4.37 

 

6.78 

 

-2.29 

 

3.39 

 

-0.35 

 

2.15 

 Fin   1.86 

 

0.33 

 

1.63 

 

1.39 

 

1.83 

 

-0.12 

 

0.48 

 

0.26 

 Other -0.32 

 

-4.70 

 

-0.67 

 

-3.79 

 

-0.11 

 

-5.98 

 

-3.93 

 

-7.01 

  

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Table 3: This table shows the market value weighted average leverage ratio (1998-2014) for 

each industry displayed alongside the abnormal returns using the opposite estimation periods than 

are suggested in the systematic risk sensitivity correction from Kupiec and Mathios (1986). Pre-

event abnormal returns are shown using post-event systematic risk estimations and post-event 

abnormal returns using pre-event systematic risk estimations. The “Day Before” is March 3, 

1933. The “Day After” is March 15, 1933. The “Second Day After” is March 16, 1933. The 

“Cum. Two Days After” is the cumulative two-day abnormal return of March 15 through March 

16, 1933. A 2-tailed t-test was run to determine significance of abnormal returns. *, **, and *** 

denote significance at the 5%, 2%, and 1% levels, respectively. 

   

CAPM Model Abnormal Returns Fama-French 3-Factor Model Abnormal Returns 

Industry 

Leverage 

Ratio 

Day 

Before Day After 

Second 

Day After 

Cum. Two 

Days After 

Day 

Before Day After 

Second 

Day After 

Cum. Two 

Days After 

Food  0.20 

0.14 

0.17 

0.52 

0.39 

0.13 

0.11 

0.20 

0.27 

0.57 

0.39 

0.42 

0.25 

0.21 

1.41 

0.20 

0.18 

0.80 

0.19 

0.73 

0.44 

0.10 

0.08 

0.35 

0.40 

0.25 

0.17 

0.26 

0.92 

0.97 

1.14  3.85 * 1.04  3.46 * 1.32  4.12 ** 1.13  3.71 * 

Beer  -0.11  -0.56  0.23  -0.24  0.77  -3.80  -1.48  -3.74  

Smoke 0.45  1.37  1.54  2.06  0.38  2.61  2.46  3.58 * 

Games -1.09  -7.62 * 1.37  -4.42  -0.09  -10.73 *** -0.35  -7.83 * 

Books -6.57  23.60 *** 10.81 *** 24.33 *** -5.82  15.69 *** 6.27 * 15.53 *** 

Hshld -0.97  14.92 *** 0.45  10.87 *** -0.93  14.63 *** 0.11  10.42 *** 

Clths -1.36  7.15 *** 1.27  5.95 *** -1.01  5.34 *** 0.29  3.98 *** 

Hlth  1.08  -0.41  -0.42  -0.59  1.43  -1.14  -0.60  -1.23  

Chems 1.17  -2.76  -2.46  -3.70  1.11  -2.62  -2.22  -3.42  

Txtls -1.61  2.99  7.68 *** 7.55 *** -1.01  -2.75  4.78 ** 1.44  

Cnstr 0.48  4.26  1.07  3.77  1.06  2.06  0.36  1.71  

Steel 0.24  5.58  -1.64  2.78  -0.18  4.07  -3.39  0.48  

FabPr 2.25  5.80 * 3.08  6.28 * 2.52  3.79  1.96  4.07  

ElcEq -1.12  2.03  2.32  3.07  -1.05  -0.41  1.37  0.68  

Autos -4.19  4.73  0.26  3.53  -4.08  5.43  0.62  4.28  

Carry 1.71  0.00  0.40  0.29  2.10  -1.05  0.07  -0.70  

Mines -1.06  8.76 *** -3.01  4.07 * -0.67  7.10 *** -3.76 * 2.36  

Coal  1.49  -8.64 * -1.23  -6.98  1.91  -7.89  -2.15  -7.10  

Oil   -1.08  1.74  -0.22  1.08  -1.56  1.17  -0.50  0.47  

Util  0.80  -4.17 * -1.16  -3.77  1.17  -4.09  -0.71  -3.39  

Telcm 0.59  -5.60 *** -0.25  -4.14 * 0.31  -3.69 * 0.91  -1.97  

Servs 0.37  0.09  0.78  0.62  0.65  0.24  0.91  0.81  

BusEq -0.90  -1.95  1.47  -0.35  -0.33  -2.27  1.26  -0.72  

Paper 0.80  -2.41  0.23  -1.54  0.67  -0.24  1.32  0.76  

Trans 0.15  -5.39  -1.85  -5.12  -0.32  -3.52  -1.81  -3.76  

Whlsl -1.63  15.12  -1.97  9.29  -0.29  -0.91  -10.27  -7.91  

Rtail 0.51  3.91 * 2.64  4.63 ** 0.63  4.24 * 2.72  4.92 ** 

Meals -3.41  10.63 *** 4.88  10.96 *** -2.30  3.53  1.77  3.75  

Fin   1.27  3.35  1.91  3.72  1.56  0.14  0.32  0.33  

Other -2.65  7.28 *** 0.45  5.47 ** -1.75  1.68  -1.49  0.14  

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Table 4: This table shows the correlation of leverage ratios and differences in CAPM 

beta and Fama-French 3-Factor Model systematic risk factors. 

 

CAPM Beta FF Market FF Size FF Value 

Risk Coefficient 0.03 0.12 -0.14 -0.12 

r-value 0.04 0.1 0.11 0.09 

p-value 0.84 0.59 0.57 0.62 

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 

 

 

 

Table 5: This table shows the correlation of leverage ratios and abnormal returns using 

the CAPM and Fama-French 3-Factor Model. 

 

CAPM Model Abnormal Returns 
Fama-French 3-Factor Model 

Abnormal Returns 

 

Day 

Before 

Day 

After 

Second Day 

After 

Cum. Two 

Days After 

Day 

Before 

Day 

After 

Second Day 

After 

Cum. Two 

Days After 

Risk 

Coefficient 
-0.05 -0.01 0.00 0.00 -0.05 -0.01 -0.01 -0.01 

r-value 0.29 0.10 0.00 0.08 0.29 0.11 0.05 0.10 

p-value 0.11 0.58 0.99 0.68 0.12 0.56 0.79 0.60 

 

Data collected from the following sources to construct figure: (“Daily Stock File”), (“Detail for 30 

Industry Portfolios,”) and (“North America: Fundamentals Annual”) 
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Data Selection Process 

  

To study industry-specific effects surrounding the 1933 Bank Holiday, I use the 

Fama-French data library, which has stock return data categorized by industry dating 

back to 1926. “[Kenneth French and his team] assign each NYSE, AMEX, and NASDAQ 

stock to an industry portfolio at the end of June of year t based on its four-digit SIC code 

at that time. ([They] use Compustat SIC codes for the fiscal year ending in calendar year 

t-1. Whenever Compustat SIC codes are not available, [they] use CRSP SIC codes for 

June of year t.) [They] then compute returns from July of t to June of t+1” (“Detail for 30 

Industry Portfolios”). Compustat only reports daily security data back to 1983. As it 

pertains to my event study, where I’m only using data security returns between 1932 and 

1933, the CRSP SIC codes are used for industry classification. The Fama-French industry 

returns are available in both monthly and daily data. For the purposes of my event study, 

I use daily data because the event windows that I analyze are either one-day or 

cumulative two-day returns. The industry portfolios are available in broad data sets that 

assign all NYSE, AMEX, and NASDAQ stocks to just five industry portfolios. The 

industry portfolios are also available in industry assignments as specific as 48 portfolios. 

The Fama-French 30 industry portfolios data is the most specific industry assignment that 

has returns data for all the industries classification back to 1932, which is what I need to 

run the empirical tests for my event study. This is why I chose the Fama-French 30 

industry portfolios daily data in my empirical tests for my event study. By choosing to 

use the 30 industry portfolios classification, instead of one of the Fama-French data sets 

with fewer and broader industry classifications, I will be able to analyze most precisely 

estimate how each of the 30 industries are affected by the Bank Holiday.  
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Sic Codes - 30 Industries (“Detail for 30 Industry Portfolios”): 

 

1 Food -  Food Products 

2 Beer -  Beer & Liquor 

3 Smoke - Tobacco Products 

4 Games - Recreation 

5 Books - Printing and Publishing 

6 Hshld-  Consumer Goods 

7 Clths-  Apparel 

8 Hlth -  Healthcare, Medical Equipment, Pharmaceutical Products 

9 Chems - Chemicals 

10 Txtls - Textiles 

11 Cnstr - Construction and Construction Materials 

12 Steel - Steel Works Etc 

13 FabPr - Fabricated Products and Machinery 

14 ElcEq - Electrical Equipment 

15 Autos - Automobiles and Trucks 

16 Carry - Aircraft, ships, and railroad equipment 

17 Mines - Precious Metals, Non-Metallic, and Industrial Metal Mining 

18 Coal -  Coal 

19 Oil -   Petroleum and Natural Gas 

20 Util  - Utilities 

21 Telcm - Communication 

22 Servs - Personal and Business Services 

23 BusEq-  Business Equipment 

24 Paper - Business Supplies and Shipping Containers 

25 Trans - Transportation 

26 Whlsl -Wholesale 

27 Rtail - Retail 

28 Meals - Restaraunts, Hotels, Motels 

29 Fin -   Banking, Insurance, Real Estate, Trading 

30 Other - Everything Else 
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