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On Similarities and Differences between Proving and

Problem Solving

Milos Savic

Department of Mathematics, The University of Oklahoma, Norman OK, USA
savic@ou.edu

Abstract

A link between proving and problem solving has been established in the literature
[5, 21]. In this paper, I discuss similarities and differences between proving
and problem solving using the Multidimensional Problem-Solving Framework
created by Carlson and Bloom [2] with Livescribe pen data from a previous study
[13]. I focus on two participants’ proving processes: Dr. G, a topologist, and L,
a mathematics graduate student. Many similarities between the framework and
the proving processes of Dr. G and L were revealed, but there were also some
differences. In addition, there were some distinct differences between the proving
actions of the mathematician and that of the graduate student. This study
suggests the feasibility of an expanded framework for the proving process that
can encompass both the similarities and the differences found.

Keywords: undergraduate mathematics education; problem-solving; prov-
ing; proof construction

Proof and proving are central to advanced undergraduate and graduate
mathematics courses. Yet there is often little systematic discussion in these
courses on how proofs are constructed. Since proving and problem solving
overlap [5, 21], one might look at the problem-solving literature in order to
describe some aspects of the proof construction process. Here I use the Mul-
tidimensional Problem-Solving Framework created by Carlson and Bloom [2],
coupled with a data collection technique [13] specifically aimed at collecting
the real-time actions that a prover takes, to examine the proving actions of a
topologist, Dr. G, and a mathematics graduate student, L. I discuss the ad-
equacies and limitations of this framework for describing the observed proof
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construction processes. Using the framework, I also discuss the noticeable
differences between Dr. G and L’s proof construction actions. After that, I
propose some educational strategies that might be useful for making explicit
some specific actions taken during the proof construction process that do
not appear in the final written proof. Finally, I suggest directions for future
studies that can extend this research.

1. Background

Selden, McKee, and Selden [17] noted that proving “play[s] a significant
role in both learning and teaching many tertiary mathematical topics, such
as abstract algebra or real analysis” (page 128). In addition, professors teach-
ing upper-division undergraduate mathematics courses often ask students to
produce original (to them) proofs to assess understanding. When trying to
do so, some näıve students might not know where to start or how to handle
the proof construction process, thus they may not develop one or multiple
proving “schemes” or how “students ascertain for themselves and persuade
others of the truth of a mathematical observation” [7, page 243]. They may
not grasp the complexity of carefully writing a mathematical proof. For
example, students’ proving might employ picture “proofs” or use empirical
reasoning [4], which is an example of an empirical proof scheme [7]. While
either approach may be a good start on proving a certain theorem, students
that only use empirical proof schemes may need to understand and utilize
more proof schemes. Researchers have concluded that both aspiring and cur-
rent mathematicians seem to need flexibility in their proving styles in order
to be successful in mathematics [9, 20].

One analytical tool to assist students in constructing a proof, designed
by Selden and Selden [18], focuses on the problem-solving aspect; other as-
pects, according to the authors, can be enacted automatically in proving
with sufficient practice. They describe two aspects of a written proof, the
formal-rhetorical part and the problem-centered part. They write:

The formal-rhetorical part of a proof (what we have also referred
as the proof framework) is the part of a proof that depends only
on unpacking and using the logical structure of the statement of
the theorem, associated definitions, and earlier results . . . The
remaining part of a proof [is] the problem-centered part . . . that



62 Similarities and Differences between Proving and Problem Solving

does depend on genuine problem solving, intuition, and a deeper
understanding of the concepts involved [16, pages 308–309].

The word “problem” as used in the problem-centered part is meant in
the sense of Schoenfeld [15], who stated that a problem is a mathematical
task for an individual if that person does not already know a method of
solution for that task. Past mathematics education research has indicated
connections between proving and problem solving. For example, Furinghetti
and Morselli [5] stated that “proof is considered as a special case of problem
solving” (page 71). Also, Weber [21] considered “proof from an alternative
perspective, viewing proof construction as a problem-solving task” (page
351).

In the mathematics education literature, there are several other analytical
tools concerning the proof construction process, including “proof schemes”
(students’ ways of “ascertain[ing] for themselves or persuad[ing] others of the
truth of a mathematical observation” [7, page 243]), affect and behavioral
schemas (i.e., habits of mind that further proof production) [3, 5, 17] and
semantic or syntactic proof productions [22]; see [1] for a brief overview.
Many of these tools do not specifically consider temporal order. I wish to
use a problem-solving framework that utilizes not only how, but also when
a participant acts in the proof construction process.

Mathematicians themselves first examined problem solving in mathemat-
ics. For example, Hadamard [6] investigated what other mathematicians did
in their research, including how they approached a problem or proof in their
own research. He cited Poincaré’s problem-solving insight when stepping on
a bus (for further details, see [11]). Pólya [12] also described many ways to
go about problem solving that he summarized into four overarching steps:
“(i) understanding the problem, (ii) developing a plan, (iii) carrying out
the plan, and (iv) looking back.” In the mathematics education literature,
Schoenfeld [14], somewhat influenced by Pólya, described six processes when
engaging in a problem-solving activity: “read, analyze, explore, plan, imple-
ment, and verify” (page 61). He then analyzed several students’ attempts
at problem solving using these six processes. Carlson and Bloom [2] uti-
lized both Pólya’s and Schoenfeld’s ideas in creating their Multidimensional
Problem-Solving Framework, which I describe in the next section.
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2. The Multidimensional Problem-Solving Framework

The Multidimensional Problem-Solving Framework described by Carl-
son and Bloom [2] has four phases, each with the same four associated
problem-solving attributes. The four phases are orienting, planning, exe-
cuting, and checking. The four associated problem-solving attributes are
resources, heuristics, affect, and monitoring (see Table 1 below for details).

Below I describe each phase, as well as the problem solving attributes as-
sociated with each phase. These phases and attributes described by Carlson
and Bloom emerged during their analysis of the problem-solving processes of
eight research mathematicians and four mathematics or mathematics educa-
tion Ph.D. candidates. One of the problems posed in their study was

Problem 1: A square piece of paper ABCD is white on the front
side and black on the back side and has an area of 3 in.2 Corner
A is folded over to point A’ which lies on the diagonal AC such
that the total visible area is ? white and ? black. How far is A’
from the fold line? [2, page 71].

Table 1

Phase

Behavior
Resources Heuristics Affect Monitoring

Orienting

Sense

making,

Organizing,

Constructing

Mathematical

concepts, facts

and algorithms

were accessed

when attempting

to make sense

of the problem.

The solver also

scanned her/his

knowledge.

The solver often

drew pictures,

labeled unknowns

and classified the

problem. (Solvers

were sometimes

observed saying,

“this is an X kind

of problem.”)

Motivation to

make sense of

the problem was

influenced by their

strong curiosity

and high interest.

High confidence

was consistently

exhibited, as

was strong

mathematical

integrity.

Self-talk and

reflective be-

haviors helped

to keep their

minds engaged.

The solvers were

observed asking,

“What does this

mean?”; “How

should I represent

this?”; “What

does this look

like?”
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Planning

Conjecturing,

Imagining,

Evaluating

Conceptual

knowledge

and facts were

accessed to

construct conjec-

tures and make

informed decisions

about strategies

and approaches.

Specific computa-

tional heuristics

and geometric

relationships were

accessed and

considered when

determining a

solution approach.

Beliefs about the

methods of math-

ematics and one’s

abilities influence

the conjectures

and decisions.

Signs of intimacy,

anxiety, and

frustration were

also displayed.

Solvers reflected

on the effec-

tiveness of their

strategies and

plans. They

frequently asked

themselves ques-

tions such as,

“Will this take

me to where I

want to go?”,

“How efficient will

Approach X be?”

Executing

Computing,

Constructing

Conceptual

knowledge, facts,

and algorithms

were accessed

when executing.

Without concep-

tual knowledge,

monitoring of

constructions was

misguided.

Fluency with a

wide repertoire

of heuristics,

algorithms, and

computational

approaches were

needed for the

efficient execution

of a solution.

Intimacy with the

problem, integrity

in constructions,

frustration, joy,

defense mecha-

nisms and concern

for aesthetic

solutions emerged

in the context of

constructing and

computing.

Conceptual

understandings

and numerical

intuitions were

employed to

reflect on the

sensibility of the

solution progress

and products

when construct-

ing solution

statements.

Checking

Verifying,

Decision

Making

Resources, includ-

ing well-connected

conceptual knowl-

edge informed the

solver as to the

reasonableness or

correctness of the

solution attained.

Computational

and algorithmic

shortcuts were

used to verify

the correctness of

the answers and

to ascertain the

reasonableness of

the computations.

As with other

phases, many

affective behaviors

were displayed.

It is at the phase

that frustra-

tion sometimes

overwhelms the

solver.

Reflections on the

efficiency, correct-

ness, and aesthetic

quality of the solu-

tion provided use-

ful feedback to the

solver.

Table 1: Carlson and Bloom’s Multidimensional Problem-Solving
Framework [2, page 67].
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2.1. Orienting

According to Carlson and Bloom [2]1, the orienting phase includes “the
predominant behaviors of sense-making, organizing and constructing” (page
62). Examples of this phase included defining unknowns, sketching a graph,
or constructing a table. They stated that an individual might execute these
orienting actions with “intense cognitive engagement,” ultimately under-
standing the nature of the problem. Use of resources in the orienting phase
can include accessing mathematical concepts, facts, and algorithms. Use of
heuristics in the orienting phase can include drawing pictures, labeling un-
knowns, and classifying the problem. Affect experienced during the orienting
phase can include motivation to make sense of the problem, high confidence,
and strong mathematical integrity. Finally, use of monitoring in the orient-
ing phase can include self-talk and other reflective behaviors during sense
making, such as asking, “What does this mean?”

2.2. Planning

Carlson and Bloom coded a planning phase in a transcript when a par-
ticipant “appeared to contemplate various solution approaches by imaging
the playing-out of each approach, while considering the use of various strate-
gies and tools” (pages 62-63). In addition, they often observed a subcycle
of (a) conjecturing a solution, (b) imagining what would happen using the
conjectured solution, and (c) evaluating the validity of that solution during
planning phases. In Carlson and Bloom’s analysis, their participants could
exhibit this subcycle either verbally or silently, but the entire planning phase
occurred before the executing phase commenced. Resources used during the
planning phase included conceptual knowledge and other facts needed to
construct conjectures. Heuristics used, if visible to the researchers, included
computations and geometric relationships. Affect exhibited by participants
during the planning phase included beliefs about the methods or conjectures
being employed and about their own abilities to solve the current problem.
Monitoring exhibited by Carlson and Bloom’s participants during the plan-
ning phase included self-reflection about the effectiveness of their current
strategies.

1From here onwards all references to Carlson and Bloom are to [2].
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2.3. Executing

Carlson and Bloom noted that the executing phase involved “mathemati-
cians predominantly engaged in behaviors that involved making constructions
and carrying out computations” (page 63). Specific examples included “writ-
ing logically connected mathematical statements,” using concepts, facts, and
procedures. Resources used were the same kind of concepts, facts, and pro-
cedures that had been used during the prior planning phase. Heuristics used
during the execution of the solution included fluency with the algorithms
and approaches employed. Affect exhibited in the executing process involved
some emotional responses to the attempted solution, such as “frustration,
joy, defense mechanisms, and aesthetics in the solution” (page 67). Monitor-
ing involved the participants having some sensitivity to the progress of their
solutions.

2.4. Checking

The checking phase was observed when the participants verified their so-
lutions. These behaviors included “spoken reflections by the participants
about the reasonableness of the solution and written computations . . . con-
templating whether to accept the result and move to the next phase of the
solution, or reject the result and cycle back” [page 63]. Resources used dur-
ing the checking phase involved “well-connected conceptual knowledge” for
the “reasonableness” of their solutions. Heuristics used included knowledge
of “conceptual and algorithmic shortcuts.” Affect during the checking phase
was similar to other affective behaviors, but frustration might overtake a
participant if the solution seemed incorrect. Monitoring during this phase
involved thinking about the “efficiency, correctness, and aesthetic quality of
the solution” [page 63].

2.5. The cycle of problem solving

Carlson and Bloom stated: “it is important to note that the mathemati-
cians rarely solved a problem by working through it in linear fashion. These
experienced problem solvers typically cycled through the plan-execute-check
cycle multiple times when attempting one problem” (page 63). They also
noted that the cycle had an explicit execution phase, usually in writing,
and formal checking that used computations and calculations that were also
in writing. All cues exhibited by the participants and observed by the re-
searchers in task-based interviews, whether written, verbal, or non-verbal,
were used to distinguish between phases.
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3. Research Questions

In this work I approach proof construction as a subset of problem solving,
and as a consequence, I use the Carlson and Bloom framework to address
the following research questions:

• What are some of the differences and similarities between proof con-
struction and problem solving?

• What are some of the differences in proof construction actions between
an intermediate prover (graduate student) and an expert prover (math-
ematician)?

4. Research Setting

One topologist, Dr. G, and one graduate student, L, were given a set of
notes on semigroups and a Livescribe pen and paper, capable of capturing
both audio and real-time writing using a small camera near the end of the
ballpoint pen. These two were participants in a larger study of nine math-
ematicians and five graduate students [13], who were asked to answer two
questions, provide seven examples, and prove thirteen theorems using the
same notes. Use of this equipment was intended to allow the participants of
the study to feel comfortable in order to capture naturalistic proof construc-
tion activities. This was done in response to a challenge posed by Liljedahl
[10] to develop:

“A tracking method that allows for the accurate capture of the
problem solving process while at the same time not restricting
the participant’s sincere engagement in the problemtrue problem
solving requires that the participants be given lots of time and
space to engage, rest, and reengage with the problem” (page 203).

From the first use of the Livescribe equipment for proving or answering
tasks in the notes until the last minute of equipment use, Dr. G logged five
hours and 31 minutes, while L logged three days, 22 hours, and 11 minutes.
These total times included all breaks, as the participants did not continuously
attempt to answer the tasks in the notes. I focused the coding of the proof
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construction processes on Theorem 20: “A commutative semigroup with no
proper ideals is a group.” I chose to concentrate on the proving of this
theorem because most of the mathematicians and graduate students in the
study did not seem significantly challenged by the earlier exercises, while this
one turned out to be sufficiently challenging.

Theorem 20, which can be restated as “If S is a commutative semigroup
with no proper ideals, then S is a group”, is usually proved by showing that S
has the two properties that distinguish a group from a semigroup: existence
of an identity and inverses for every element of S. Since S is a semigroup,
S is not an empty set; hence there exists an element s ∈ S. A common
proof relies on showing that sS is an ideal, and since S has no proper ideals,
sS = S. From this set equality, a prover can manipulate the resulting element
equations. For example, se = s for some e ∈ S. Hence, e acts like an identity
for the element s, but a prover must still prove that e is the identity for all
elements of S. Also, to prove inverses exist for all elements, one can see that
given e ∈ S is the identity element, then there is a t ∈ S such that st = e,
and so s−1 = t, and the proof is concluded.

From the first use of the Livescribe pen for their proof attempts of The-
orem 20 until the last, Dr. G spent three hours and 17 minutes, while L
spent just 41 minutes. Dr. G also attempted to prove Theorem 21 (If K is a
minimal ideal in a commutative semigroup S, then K is a group) and answer
Question 22 about isomorphisms of groups. I considered those portions as
part of Dr. G’s proving process of Theorem 20 due to the fact that moving on
did not necessarily mean that Dr. G had given up or stopped subconsciously
working on the proof.

I selected Dr. G’s data because he spoke a significant amount of the time
while proving, and he also encountered impasses when proving this theorem.
I chose L’s data because he was one of only two graduate students who
attempted a proof of this theorem, and his was the only graduate student
proof that could be analyzed using the Carlson and Bloom framework. The
audio/video recordings were transcribed so that the audio and the actions on
the Livescribe paper corresponded. All abbreviations written in the reported
data are copied from participants’ writing on the Livescribe paper. Once the
proving sessions were transcribed, coding was done using the Carlson and
Bloom framework. A sample of the transcription, with coding, can be seen
in Table 2 below.
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Writing Speaking Attribute Phase

(1) Th 20: A comm semigp
w/ no proper ideals is a
gp. (1 minute pause)

Resources Orienting

(2) Hmm . . . I’m taking
a break, breakfast,
etc. Back to this later.
Must think on this.

Monitoring Planning

BREAK 7:04 AM – 8:07 AM Planning
(3) Ok, I thought about this

while on a cold walk in
the fog.

Heuristics Planning

(4) Pf: Given g ∈ S,
a semigp., consider the
ideal g . . . .

Resources,
Heuristics

Executing

(5) (Then he stops and puts
“comm.” between “a”
and “semigp.”)

Monitoring Checking

(6) gS = {gs|s ∈ S}.
Since S has no proper
ideals, gS = S, so
∃g−1 ∈ S 3 gg−1 =

Resources,
Heuristics

Executing

(7) (32 second pause, then he
strikes through the whole
proof)

Monitoring Checking

(8) First need an identity, not
given. (Then he goes
back to the expression
“gg−1 =” and writes a
question mark with a cir-
cle around it.) Turn page.

Resources,
Monitoring

Planning

Table 2: Sample coding of the proof construction process of Dr. G.
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4.1. A Description of the Coding of the Sample

At 7:02 AM Dr. G started the proof construction process of Theorem
20; he had proved the theorems in the rest of the notes in the two hours
prior to this first attempt. He wrote the theorem on paper (line 1), probably
orienting himself to what he needed to prove. There was a one-minute pause,
during which I infer that he was orienting himself to the theorem. Since he
had proved Theorems 13-19 of the notes quite quickly, his decision to take
a walk at 7:04 AM might have been because he had not quickly seen how
to attempt this proof. I assume that during the walk he might have been
planning how to prove Theorem 20, probably using the conjecture-imagine-
evaluate subcycle mentioned above. At 8:07 AM, he started executing the
idea that he had generated during the walk (line 3). He corrected his work
by inserting “comm.” to be precise, something that I coded as checking and
monitoring (line 5). Then Dr. G went back to executing his idea, using an
element, g, in the semigroup and multiplying it by the whole semigroup to
create an ideal (line 6). There was a 32-second pause, and then he crossed
out the entire proof that he had just written (line 7). This was coded as
checking. In fact, at 8:09 AM, he wrote why he crossed out this (first) proof
attempt:] he needed an identity, which had not been given (line 8). I coded
this as planning (resources and monitoring), because Dr. G apparently used
what he knew about groups to check this attempt and apparently recognized
what he needed to have for a successful proof. Dr. G and L’s full transcripts
were coded in a similar manner using a decision process that inferred certain
proof-construction situations. Samples of both transcripts are located in
Appendices A and B.

4.2. Coding for reliability

For reliability, I asked two other colleagues to code three small excerpts of
the transcripts using the Carlson and Bloom framework. There were certain
segments that merited discussion, and we came to an agreement in all of those
instances. Using their assistance, I then established a set of conventions to
help refine the coding process. They were as follows:

A. Both participants had instances in their proof construction sessions
that were pauses in their work. I defined a pause as a period of time
(at least ten seconds) in the live data sessions during which the prover
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did not speak or write. I had asked the participants to prove the
theorems at their own leisure with unlimited time, so I was not present
to ask them contemporaneously about pauses in their proving. If a
participant made corrections immediately after a pause, then I would
code the pause as checking. If after a pause, the participant had an
idea or could continue his progress, then I would code the pause as
planning prior to the executing phase. I also coded participants’ pauses
based on what I thought a participant was accomplishing, using my
own inferences about their proof construction process.

a. When a participant turned off the Livescribe pen and later turned
it back on, I considered that a break. All breaks were considered
planning. This is because almost immediately after a participant
turned on the pen after a break, he or she had an idea to try,
which is accounted for in the Carlson and Bloom framework as
executing. For example, in Dr. G’s transcript (Table 1), the break
from 7:04 AM–8:07 AM was coded as planning.

b. Many pauses during the proof construction process were consid-
ered planning, because of the executing phase that occurred im-
mediately afterwards.

B. Speaking was never considered executing. Any phase coded as executing
occurred within the participants’ written work, and was only coded this
way when it furthered (either correctly or incorrectly) their attempted
proof.

C. Any crossing out or elimination of any part of the executing phase was
considered checking. An example of this, which occurred on line 7 in
Dr. G’s transcript, can be found in Figure 1.

D. Many problem-solving attributes were difficult to code, since, unlike
Carlson and Bloom in their study, I was not present when the par-
ticipant was proving. Affect, in particular, was difficult to gauge. I
attempted to associate the attribute that best matches what I heard
from the audio recordings and saw on the Livescribe paper.
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Figure 1: Dr. G’s crossed-out work on Theorem 20.

5. Results

The Multidimensional Problem-Solving Framework aligned well with much
of what the two participants (Dr. G and L) did during the proof construction
process. Using the phases (Orienting, Planning, Executing, and Checking)
and the problem solving attributes (Resources, Heuristics, Affect, and Moni-
toring), I coded both transcripts that pertained to Theorem 20 and analyzed
the situations that agreed and those that disagreed with those in Carlson
and Bloom’s framework.

5.1. Instances of agreement with Carlson and Bloom’s framework

For most portions of the transcripts, Carlson and Bloom’s Multidimen-
sional Problem-Solving Framework could be used to code and describe the
proof construction process. There were multiple situations in both transcripts
that involved both the planning subcycle (conjecturing, imagining, evaluat-
ing) and the larger cycle of planning, executing, and checking. I illustrate
these below.
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5.1.1. Planning subcycle

In his spoken discussion of Theorem 21 (“If K is a minimal ideal of
a commutative semigroup S, then K is a group”), Dr. G demonstrated a
planning subcycle (described in Section 2.2 and seen in Table 3 below):

Writing Speaking Subcycle Phase

(26) If it has a zero element, then
that will be a minimal ideal.
Does that make it a group?

Conjecturing Planning

(27a) (Silence for 13 seconds) Imagining Planning

(27b) Well no, Evaluating Planning

(28) what about the non-negative
integers?

Conjecturing Planning

Table 3: An example of the Conjecturing-Imagining-Evaluating subcycle.

5.1.2. Example of a full cycle of planning-executing-checking

In his proof of Theorem 20, L demonstrated the full planning-executing-
checking cycle, as seen in Table 4 (lines 8-11) below. L did not speak during
his entire proof construction process, so I conjectured the phases using only
his written work.

Writing Attribute Phase

(7) First we want to show S has an identity 1. Monitoring Executing

(8) (pauses one minute and 5 seconds) Planning

(9) If possible. Monitoring Executing

(10) Suppose S has no identity. Then for every
a ∈ S, ab 6= a for all

Resources Executing

(11) (pauses for 25 sec, then lines out “Then for
every a ∈ S, ab 6= a for all”)

Monitoring Checking/
Planning

(12) Let a ∈ S. Let A = {ab : b ∈ S, ab 6= a}. Resources Executing

Table 4: An example of the Planning-Executing-Checking cycle.
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5.2. Instances of differences with Carlson and Bloom’s framework

5.2.1. Cycling back to orienting

At one point, Dr. G was trying to create a counterexample for Theorem
21 (“If S is a semigroup with a minimal ideal K, then K is a group”) and in
fact had to reorient himself to an understanding of the definition of a minimal
ideal. This can be seen in Table 5 below.

Writing Speaking Attribute Phase

(30) I mean, isn’t the ideal generated by
zero just zero? It’s a minimal ideal,
methinks.

Resources Planning

(31) Let’s just go back and check this. Monitoring Planning

(32) (ruffles paper, then silence for 13
seconds) Where’s the definition of
minimal again? I can’t find it. Yeah
doesn’t properly contain any other
ideal. Sure, and your ideals are all
non-empty by requirement. So, ok
let me write this down.

Resources Orienting

Table 5: An example of reorienting.

5.2.2. Planning-executing-checking cycle is non-linear

L had certain instances in his proof construction process where there
was both planning and checking. Also, the phases were non-linear, meaning
that executing did not always follow from planning, and checking did not
always follow from executing. This discrepancy with the Carlson and Bloom
framework is displayed in Table 6 below.

5.3. Attributes associated with phases

During the coding, attributes were associated with each phase. For ex-
ample, in Table 6, on line 27, L was in the checking phase, and the attribute
associated with that phase was monitoring. This was due to his involved
thinking about the “efficiency, correctness, and aesthetic quality of the solu-
tion” [2, page 63], since he returned to a certain point in the proof and wrote
a correction (b′′ instead of a) to ensure the aesthetic quality of the proof.
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Writing Attribute Phase

(27) (writes over a in (25, last line) to be b′′,
then 20 sec pause)

Monitoring Checking

(28) This contra gives me the contradiction that
S has no proper ideal. So a has an identity.

Resources Executing

(29) (pauses for four minutes and five seconds) Planning

(30) If a 6∈ S has the property that ab′′ 6= b′′a 6=
b′′ for all b′′ ∈ S

Resources Executing

(31) (crosses out a 6∈ S (30) and writes above
a ∈ S)

Monitoring Checking

Table 6: An example of not doing the final checking.

I have collected and counted all instances of the attributes enacted by the
two participants during their Proof of Theorem 20, and have listed them in
Table 7 below.

Participant Dr. G L

Resources 43 17
Heuristics 9 2
Affect 17 0
Monitoring 22 13

Table 7: Attributes enacted by the participants.

6. Discussion

6.1. Successes and limitations of the coding

The four phases of the Carlson and Bloom framework were generally rel-
evant to the proof construction processes exhibited by Dr. G and L. At first
glance, the two participants were always in one of the phases (Orienting,
Planning, Executing, and Checking) during their entire proof construction
sessions for Theorem 20. This suggests that the four phases of problem
solving are very important for the proof construction process. This further
suggests that an expansion of Carlson and Bloom’s framework could poten-
tially provide the mathematics education community a proof construction-
process framework, complete with additional problem-solving attributes that
a prover experiences.
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Though the Carlson and Bloom framework offers much promise, there is
clearly room for productive improvement. In particular there is reason to
suggest new phases in the process. Some additional problem-solving phases
may include incubation (taking a break) and instances of multiple phases
(checking and planning) occurring during a pause in the midst of proving
or during a break from proving. An incubation phase may or may not in-
volve conscious work on the proof. As Pólya [12] stated: “The fact is that
a problem, after prolonged absence, may return to consciousness essentially
clarified, much nearer to its solution than it was when it was dropped out of
consciousness” (page 198). A student or mathematician does not do math-
ematics continuously, so an enhanced proof-construction process framework
should attempt to reflect the subconscious work that may or may not ever
be revealed. Furthermore, there may be a need for more flexibility between
phases in a proof-construction framework. As noted in Table 6, L did not
cycle as the Carlson and Bloom problem-solving framework indicates.

Overall Carlson and Bloom’s framework describes the process of prob-
lem solving well. They provide ample examples from their study to support
their framework. When confronted with a problem like those that Carlson
and Bloom posed (see Problem 1 above), mathematicians can rather eas-
ily and quickly get conversant with the constraints (orienting) and then go
about solving the problem (planning-executing-checking). However, in my
study [13], the mathematicians were given a theorem to prove (Theorem
20), and had to go about orienting themselves for quite some time. Some
mathematicians (e.g., Dr. G) executed their ideas (e.g., about modifying the
hypotheses) early to see where that might lead, but then had to look at the
theorem again to analyze in detail why the hypotheses needed modifying.
This could have been the result of either not believing that the theorems
in the notes were true or re-orienting to develop more intuition. In fact, if
one questions whether a statement (in this case, a theorem) could be true or
false, one must next decide whether to prove or find a counterexample. This
is somewhat different than mathematical problem solving, where, unless a
problem is posed as a true-or-false question, some textbook problems can
often implicitly be assumed to have a solution.

Finally, Carlson and Bloom audiotaped the mathematicians in their study
while they were solving the problems, and were also in the room to take notes
and answer questions. In my study, however, participants were given a set
of notes with unlimited time and not much direction, except to do what
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they normally would do when proving theorems and considering examples
or questions. As a result, I was unable to observe their non-verbal actions,
something that I conjecture provided Carlson and Bloom considerable help
with their coding. This was a limitation of my study. On the contrary, I was
able to capture incubation periods and insight, which were not accounted for
in the Carlson and Bloom framework. This influenced my coding. Breaks
are a crucial part of creativity and problem-solving for mathematicians [13],
yet were not considered in Carlson and Bloom’s problem-solving framework.

6.2. Observed differences between the mathematician and the graduate stu-
dent

When analyzing all participants [13] in the data collection (nine mathe-
maticians and five graduate students), I found that coding the proof attempts
on Theorem 20 would give the best comparison of how expert provers and
intermediate provers attempt a proof. Six of the nine mathematicians in
my larger study experienced impasses when attempting a proof of Theo-
rem 20, but only two out of five graduate students even attempted a proof.
Constructing a proof of Theorem 20 was not trivial for any of my partic-
ipants, and this provided a nice comparison between the attempts of Dr.
G and L. Notice that Dr. G analyzed situations dealing with the theorem,
such as “Why should the nonexistence of proper ideals force existence of an
identity?” Dr. G often questioned the constraints of the hypotheses of the
theorem. He went a step further and even thought that he might be able to
construct a counterexample. According to the coding, L oriented himself at
the beginning of the proof construction period for Theorem 20, and did not
question the truth of the theorem, nor the constraints given. My conjecture
is that the mathematician (Dr. G) has had substantial experience both with
conjecturing his own theorems and adjusting the precise wording of those
theorems after attempting unsuccessfully to prove them. He must have had
to reorient himself rather often when engaging in mathematical research.

Another observable difference between Dr. G and L was how each handled
the checking phase. Most checking phases of L were incorporated with the
planning phase, where after multiple pauses during the proving of Theorem
20, he both crossed out a certain amount of his previous proof attempt and
immediately proceeded to move to the next executing phase. There was not
as much observable mixture of phases in Dr. G’s proof construction process.
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This may have been due to the amount of speaking that Dr. G did, which
helped separate the planning and checking phases. But the more important
aspect of Dr. G’s checking phases were that he tried to make sense of his failed
proof construction attempts and gain insights from them. For example, in
Table 2, Dr. G stated, “First need an identity, not given (line 8).” Here
he noticed that his previous proof construction attempt required an identity
element, so he had to adjust his next proof construction attempt to accom-
modate that requirement. During L’s proof construction attempts, he would
make minor adjustments after each attempt but maintained the same main
idea (supposing there is no identity) during most of the 41 minutes spent on
that proof. Checking of the structure of the proof might have helped L gain
more information from his proof construction attempts.

Finally, a significant difference between the graduate student and the
mathematician was the use of the monitoring attribute. Dr. G exhibited the
attribute 22 times during the proof construction process, while L displayed
it only 13 times. This may be due to L not talking during proving, but Dr.
G did write certain monitoring questions, such as, “Why should the nonex-
istence of proper ideals force existence of an identity?” (Appendix A, line
9). The number of monitoring attributes found was not as significant as
the quality of monitoring. Dr. G’s above question is an example of a larger
mathematical understanding, and would be considered, in my opinion, an in-
sightful mathematical question. L’s monitoring was of a more specific nature,
usually involving a correction of his work. For example, in Table 6, lines 27
and 31, L corrected some notation. This difference is convincing enough to
suggest that insightful mathematical monitoring may not be emphasized ex-
plicitly enough in undergraduate/graduate proof-based courses. Significant
questions such as “Can the hypothesis be weakened and the conclusion still
remain true?” might lead students to alter their proof construction process or
think about theorem-stating carefully. Monitoring may also be a byproduct
of persistence, which has been shown to be an influential factor for graduate
students who successfully complete their Ph.D.s in mathematics [8].

7. Future Research

Instructors’ use of Livescribe pens along with Carlson and Bloom’s frame-
work when teaching might assist students in considering their actions during
the proof construction process. For example, a professor or a graduate assis-
tant could create a proof using a Livescribe pen. This creation process could
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demonstrate many of the phases and attributes shown by Dr. G. The pro-
fessor could then make a real-time “movie” of his or her proof construction
process (edited for time considerations). Then the assignment for the stu-
dents would be to code the movie using the framework. The purpose would
be to make students aware of certain phases and attributes, thus hoping to
make the students mindful of those phases and attributes in the future. In
particular, one could determine whether some students recognize, or fail to
recognize, the checking phase or the monitoring attribute in their own prob-
lem solving or proving. An example of this phenomenon occurred with L’s
work in Table 6, when he finished his proof without any checking. Making
phases of the proving process explicit might help undergraduate students
make the transition to proof-based classes more quickly, thus shifting the fo-
cus of those initial upper-division proof-based courses, like abstract algebra
or real analysis, towards their principal purpose of illuminating content.

Additionally, an enhanced data collection technique that could capture
more phases and attributes would help in developing an enhanced proof
construction-process framework. My study gathered written data in real
time with synchronized audio, but there was no collection of gestures, in-
cluding when the participants viewed the notes to orient themselves to the
statement of a theorem or to gather ideas during a planning phase. In Carl-
son and Bloom’s study, the participants were in an interview room for a
more-or-less fixed time working continuously on the problems posed. Be-
cause their participants had no time for a break or other distracting activity,
their data collection technique might have influenced their participants’ cre-
ativity. A combination of the two data collection techniques (Livescribe pen
and videoed interview sessions) would be much more informative, but would
take more time and resources than I had.

I propose that there are three phases when constructing a proof: plan-
ning, executing, and checking, with orienting included in planning. This
framework would be more of a Venn diagram (see Figure 2), with all three
phases pairwise-overlapping each other, but there would never be a situa-
tion where planning, checking and executing would occur at the same time.
Planning and checking were in many pauses that L had (e.g., Table 4, line
11), and executing and checking were prevalent in the mind of Dr. G (or
else he could not have seen his small error in Table 2, lines 4-6). Since you
must have something executed in order to check an attempt, there has to be
an initial proving attempt from the planning phase to the executing phase.
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Figure 2: Proposed proof production framework.

I conjecture it might be the only directional phase shift in the framework.
Finally, I claim that, while separated in the coding, L planned and executed
his work simultaneously (Table 4, lines 7-9). The Venn diagram could take
care of these “grey areas.” An enhanced proof construction framework might
allow mathematics education researchers to analyze their proof and proving
data in a new way.

There might also be refinements of the checking and planning phases in a
future enhanced proof construction-process framework. There were instances
of local planning or proceeding on only a small part of a proof, and global
planning or approaching a proof with a certain proving attempt [19]. An
example of local planning was exhibited when Dr. G went through the plan-
ning subcycle in Table 3 and asked himself whether a semigroup that he had
created was a group. An example of global planning was when L considered
whether to prove Theorem 20 directly or by contradiction in Table 4 (lines
7-10). Checking could also be split into local checking (e.g., finding minor
errors) and global checking (i.e., seeing if a proof attempt is sound). For
example, local checking occurred in the middle of Dr. G’s first proof attempt
when he stopped executing to write “comm.” between “a” and “semigroup”
(Table 1, line 5). Global checking happened about a minute later, where he
crossed out his entire proof attempt (seen in both Table 2 line 7 and Figure
1).
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When using such a framework in the classroom, a teacher could isolate
the phases (Orienting, Planning, Executing, and Checking) or the problem-
solving attributes (Resources, Heuristics, Affect, and Monitoring) that need
to be worked on, and focus instruction on that particular phase/attribute.
Likewise, discussing the phases and attributes of a proof construction frame-
work with students might assist them with their proof meta-cognition, which
could assist them in their subsequent proof courses. This envisioned en-
hanced proof construction-process framework would be focused more on stu-
dents’ maneuvers through the phases and attributes, and less on correct or
incorrect proofs. Notice that Dr. G had some incorrect statements, but in the
checking phase and the monitoring attribute he identified what was missing
and what was needed to advance his proof.

8. Conclusion

The Carlson and Bloom Multidimensional Problem-Solving Framework
did help describe much of the proof construction of the professor’s (Dr. G) and
the graduate student’s (L) proving processes. Indeed, I claim that there is a
large overlap between proving and problem solving. However, there were also
certain portions that did not match well with Carlson and Bloom’s framework
due to instances of subconscious, conscious, and silent, or non-linear work.
Also, the differences between Dr. G and L that were highlighted by the
coding included how each handled checking or re-evaluating previous work.
Dr. G seemed to use the checking phase much more to his advantage than L,
who went through several proving paths without analyzing or utilizing the
incorrectness of his previous attempts. One could potentially use problem-
solving or proof-constructing frameworks in the classroom to highlight areas
for improvement in a student’s proving process. I conjecture that focusing on
the proof-construction process could have a lasting effect on the correctness
of a student’s proofs in their future.
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A. Excerpt of Dr. G’s Proving Process of Theorem 20

Writing Speaking Attribute Phase

(1) Th 20: A comm semigp w/
no proper ideals is a gp. (1
minute pause)

Resources Orienting

(2) Hmm . . . I’m taking
a break, breakfast,
etc. Back to this later.
Must think on this.

Monitoring Planning

BREAK 7:04 AM – 8:07 AM Planning

(3) Ok, I thought about this
while on a cold walk in the
fog.

Heuristics Planning

(4) Pf: Given g ∈ S, a semigp.,
consider the ideal g . . . .

Resources,
Heuristics

Executing

(5) (Then he stops and puts
“comm.” between “a” and
“semigp.”)

Monitoring Checking

(6) gS = {gs|s ∈ S}. Since S
has no proper ideals, gS =
S, so ∃g−1 ∈ S 3 gg−1 =

Resources,
Heuristics

Executing

(7) (32 second pause, then he
strikes through the whole
proof)

Monitoring Checking
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Writing Speaking Attribute Phase

(8) First need an identity,
not given. (Then he
goes back to the ex-
pression “gg−1 =” and
writes a question mark
with a circle around it.)
Turn page.

Resources,
Monitoring

Planning

BREAK 8:09 AM – 9:44 AM Planning

(9) Later. I’m suspicious
that this is true. Why
should the nonexistence
of proper ideals force
existence of an identity?

Monitoring Planning

(10) But I don’t know many
examples, so I don’t see
a counterexample. (Si-
lence for a minute, fol-
lowed by ruffled papers,
then silence)

Resources,
Heuristics

Organizing

(11) I’ll do some talking. Ok, so, I don’t have
to be quiet for anyone
sleeping anymore, got
a little music in the
background. And I’m
just going to talk a
little bit. So I’m toss-
ing around this idea
of whether a semi-
group with no proper
ideals has to have
an identity, in which
case I could prove it’s
a group,

Resources Planning

(12) but I don’t see why
it would have to have
an identity.

Monitoring Planning
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Writing Speaking Attribute Phase

(13) Umm, I was trying to think
of you pick an element in
the semigroup and then the
ideal that it generates has
to be the whole thing.

Resources Planning

(14) But couldn’t it translate . . .
couldn’t it multiply to each
element to give an element
other than itself, so that
neither would be the iden-
tity ever.

Resources Planning

(15) Why can’t that happen? Monitoring Planning

(16) (writes over the word
“talking”)

(writes over the word
“talking” again)

So it’s sort of like a is a
translation, but then if you
. . . you think you would
get sub translation ideals of
certain translations, except
if you don’t the semigroup
would be very small, like
only one element.

Resources,
Heuristics

Planning
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B. Excerpt of L’s Proving Process of Theorem 20

Writing Attribute Phase

(1) Theorem 20: If S is a commutative semi-
group with no proper ideal, then S is a
group.

Proof:

Resources Orienting

(2) (Turns page to his proofs of Theorem 18,
Theorem 19, then to page with his proofs
of Theorem 14, 15, and 16, then to page
with proof of Theorem 17, then back to
proof)

Resources,
Heuristics

Orienting

(3) (pauses one minute and 30 seconds) Planning

(4) Let S be a commutative semigroup with
no proper ideals.

Resources Executing

(5) We want to show S is a group. Monitoring Executing

(6) (pauses one minute and 27 seconds) Planning

(7) First we want to show S has an identity 1. Monitoring Executing

(8) (pauses one minute and 5 seconds) Planning

(9) If possible. Monitoring Executing

(10) Suppose S has no identity. Then for every
a ∈ S, ab 6= a for all

Resources Executing

(11) (pauses for 25 sec, then lines out “Then for
every a ∈ S, ab 6= a for all”)

Monitoring Checking

(12) Let a ∈ S. Let A = {ab : b ∈ S, ab 6= a}. Resources Executing

(13) (pauses one minute and 25 seconds) Planning/
Checking

(14) If a is not an idempotent element then A 6=
∅. Also, A is a proper ideal of

Resources Executing

(15) (pauses for three minutes and five seconds,
then lines out “Let a ∈ S. Let A = {ab :
b ∈ S, ab 6= a}. If a is not an idempotent
element then A 6= ∅. Also, A is a proper
ideal of,”)

Monitoring Checking

(16) (pauses 35 seconds, then lines out “If pos-
sible. Suppose S has no identity,” then
pauses for 10 seconds)

Monitoring Planning
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