
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2015

A Cryptographic Attack: Finding the Discrete
Logarithm on Elliptic Curves of Trace One
Tatiana Bradley
Scripps College

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Bradley, Tatiana, "A Cryptographic Attack: Finding the Discrete Logarithm on Elliptic Curves of Trace One" (2015). Scripps Senior
Theses. Paper 716.
http://scholarship.claremont.edu/scripps_theses/716

http://scholarship.claremont.edu
http://scholarship.claremont.edu/scripps_theses
http://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu

A Cryptographic Attack: Finding the Discrete
Logarithm On Elliptic Curves of Trace One

Tatiana Bradley

Lenny Fukshansky, Advisor
Christopher Towse, Reader

Submitted to Scripps College in Partial Fulfillment
of the Degree of Bachelor of Arts

March 13, 2015

Department of Mathematics

Abstract

The crux of elliptic curve cryptography, a popular mechanism for securing
data, is an asymmetric problem. The elliptic curve discrete logarithm prob-
lem, as it is called, is hoped to be generally hard in one direction but not
the other, and it is this asymmetry that makes it secure.

This paper describes the mathematics (and some of the computer sci-
ence) necessary to understand and compute an attack on the elliptic curve
discrete logarithm problem that works in a special case. The algorithm,
propsed by Nigel Smart, renders the elliptic curve discrete logarithm prob-
lem easy in both directions for elliptic curves of so-called ”trace one.” The
implication is that these curves can never be used securely for cryptographic
purposes. In addition, it calls for further investigation into whether or not
the problem is hard in general.

Contents

Abstract i

Acknowledgments iii

1 Introduction: Cryptography, Elliptic Curves, and an Asymmetric
Problem 1
1.1 A Quick Introduction to Public Key Cryptography 1
1.2 Elliptic curves . 2
1.3 The group law . 4
1.4 Asymptotic analysis and Big-O Notation 6
1.5 Discrete Logarithm Problems 7

2 Some Geometry and Algebra 11
2.1 Projective Coordinates . 11
2.2 Introduction to the p-adics . 12
2.3 Working with the p-adics . 14

3 Elliptic Curves over the p-adics 18
3.1 Computing lifts and reducing modulo p 18
3.2 The formal group Ê(pZp) . 21
3.3 The groups En(Qp) . 23
3.4 Mapping between Ê(pZp) and E1(Qp) 25
3.5 The formal logarithm . 26

4 Solving the Discrete Logarithm Problem over Curves of Trace One 28
4.1 Summary of algorithm . 28
4.2 Example Computation . 31
4.3 Final notes . 32
4.4 Python Script . 33

Bibliography 37

Acknowledgments

Firstly, I would like to give a huge thank you to my advisors Lenny Fuk-
shansky and Chris Towse.

Professor Towse sparked my initial interest in cryptography, which led
not only to this thesis but my decision to pursue Computer Security in
graduate school next year. In addition, his help in the initial stages were
instrumental to formulating the scope and structure of this paper, and de-
veloping the breadth of knowledge necessary to write it.

Professor Fukshansky graciously agreed to dive into an unfamiliar area,
and did a phenomenomal job helping me understand the last tricky points
I needed to bring everything together. Also, his coffee-making skills are
second to none.

Finally, thank you to my best friend Rose DuCharme, for keeping me
from hyperventilating, and my parents, for supporting and encouraging
me in my roundabout journey towards mathematics.

Chapter 1

Introduction: Cryptography,
Elliptic Curves, and an
Asymmetric Problem

1.1 A Quick Introduction to Public Key Cryptography

Cryptography concerns itself with transforming data (a plaintext) into a
so-called ciphertext that cannot be transformed back into its original state
without access to secret information.

What distinguishes a public key encryption from any other form is that
the operations used to transform the plaintext to the ciphertext are com-
pletely different from those that transform the ciphertext into the plaintext.
The main advantange of this asymmetry is that it allows for agents to com-
municate secretly without ever needing to exchange private data, as the
information needed to send a message can be published without revealing
the method needed to decipher it.

The crux of any public key cryptosystem is the transformation, which is
almost always a mathematical operation, that takes a plaintext to a cipher-
text but does not work (easily) in reverse. Such a function must be like a
trapdoor: it must be easy to get into, but hard to get out of.

One such a function, the elliptic curve discrete logarithm problem, was
initally proposed independently by Neal Koblitz and Victor S. Miller in

Introduction Elliptic curves 2

1985 for use in cryptography, and is in wide use today. Unfortunately, as
we will see, there are some cases in which this function is not a trapdoor at
all.

This paper concerns itself with the algorithm proposed by Nigel Smart
that quickly solves the ECDLP problem for a certain type of elliptic curve,
with a special property called ”trace one”. We give an overview of the
mathematics needed to understand the method, and show how a computer
may easily perform it. Note that in practice, this sort of curve is easily
avoided, and this method does not mean that elliptic curve cryptography is
useless in general. We will not describe any actual cryptosystems, but those
interested in this may see [HMV04], and excellent reference on the specific
mechanisms for encrypting and decrypting data using elliptic curves.

1.2 Elliptic curves

Before we can understand the elliptic curve discrete logarithm problem, we
must have a sense of what an elliptic curve is. It is a set of points that satisfy
a certain equation, that has algebraic (and geometric) structure.

The equation we must satisfy is as follows:

Definition 1.1. Let K be a field. We define a Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K and E is non-singular, meaning it has no multi-
ple roots.

Definition 1.2. For K a field, the K-rational points on a Weierstrass equa-
tion E over K are the pairs (x, y) ∈ K ×K that satisfy E, together with O,
the point at infinity (described in the Section 1.3 and again in Section 2.1).
The set of K-rational points and is denoted E(K), and describes an elliptic
curve.

An elliptic curve can be defined over any field K, but we make most
use of the cases when K is a finite field Fp where p is prime, or K is some

Introduction Elliptic curves 3

subset of the p-adics Qp (which are introduced in Chapter 2).

Definition 1.3. Recall that the characteristic of a field K, denoted char(K)
is the order of the smallest prime subfield of K, or 0 if K has no smallest
prime subfield (for example, R or Q).

Thus fields Fp where p is prime have characteristic p. When char(K) 6= 2

or 3, we can change variables to arrive at a simplified Weierstrass equation:

E : y2 = x3 + ax+ b,

where a, b ∈ K. The simplified equation will suffice for our purposes. E is
non-singular if the discriminant, ∆ = −16(4a3 + 27b2), is not zero.

Example 1.4. Let Ẽ be defined over F19 by the equation:

Ẽ : y2 = x3 + x+ 4.

(Note that our convention, which is not necessarily standard, is to use Ẽ to
denote an equation defined over a finite field).

This is a valid Weierstrass equation because the discriminant is non-
zero:

∆ = −16(4 · 13 + 27 · 42) = −6979 6= 0.

The 19 F19-rational points that satisfy Ẽ are:

O (0, 2) (0, 17) (1, 5) (1, 14)
(5, 1) (5, 18) (6, 6) (6, 13) (8, 7)
(8, 12) (9, 1) (9, 18) (10, 8) (10, 11)
(11, 4) (11, 15) (14, 8) (14, 11).

These points form the set Ẽ(Fp), which, as we will see shortly, is a
group. Note that the number of points on an elliptic curve is not always
the same as the characteristic of its underlying field, and that this curve has
the special property of having ”trace one.”

Definition 1.5. Let E be an elliptic curve over a finite field Fp. The trace t

Introduction The group law 4

is defined by:
#E(Fp) = p+ 1− t,

where #E(Fp) is the number of elements in E(Fp).

Remark. The trace is equal to one if and only if E(Fp) (including O) has
exactly p elements. This is the case in which we are able to solve the ECDLP
quickly, as we will see in Chapter 4.

1.3 The group law

The set of points on an elliptic curve forms an abelian group under a spe-
cial operation, which we call ”addition”. We first describe this addition
geometrically, and then define it algebraically in a more formal way.

The geometric group law

Since the geometric group law only makes sense over a subset of R, and
not over the fields we will deal with, we give only an informal overview of
it. To add two points P and Q on an elliptic curve E(K):

1. Draw a straight line between P and Q, and find the third point of
intersection R, which must exist as a point in E(K).

2. Reflect R about the x-axis. This point, denoted −R, is equal to P + Q,
is also in E(K).

To add a point P to itself, follow the same method except begin by
drawing a tangent line through P .

Note that in certain cases, the line drawn will be vertical. When this
happens, the third point of intersection is called O, the ”point at infinity.”
This has the result that a point added to its negation isO, which means that
O is a natural identity element.

Introduction The group law 5

The algebraic group law

Let K be a field with char(K) 6= 2 or 3, and let E : y2 = x3 + ax + b with
a, b ∈ K. We define the operation + (called point addition) on E(K), the
set of K-rational points of E (including O).

If P = (xP , yP) and Q = (xQ, yQ) are in E(K) then:

1. (Identity.) O + P = P and P +O = P .

2. (Additive inverses.) −P = (xP ,−yP) is the the additive inverse of P
and P + (−P) = O.

3. (Point Doubling.) If P is not its own inverse, then P + P = 2P =

(x2P , y2P) where
x2P = N2 − 2xP ,

y2P = N(xP − x2P)− yP ,

where N =
3x2P + a

2yP
.

Of course, if P = −P , then 2P = O.

4. (Point Addition.) If P 6= Q and P 6= −Q then P + Q = R = (xR, yR)

where
xR = M2 − xP − xQ,

yR = M(xP − xR)− yP ,

where M =
yQ − yP
xQ − xP

.

Note that the operations used to define the computation of x and y coor-
dinates are field operations. So, to do point operations, we must know the
arithmetic of the underlying field. In the case of K = Fp, we use modular
arithmetic.

Notation. Let P be a point on an elliptic curve. We use the notation [n]P to
denote scalar multiplication of P by a non-zero positive integer n. In other

Introduction Asymptotic analysis and Big-O Notation 6

words,
[n]P = P + P + ...+ P (n times).

1.4 Asymptotic analysis and Big-O Notation

We take a moment here to introduce a well-known way of describing the
performance of an algorithm, called ”big-O” notation.

Suppose we have some function f(n) and we wish to know how long
it takes to run. We could let a compute f(n) for many different values of n
on a computer, measure the time it takes to run each, and try to extrapolate
a pattern from how long these computations take. (This process is called
benchmarking). One of the problems with this is that computer-specific (or
random) factors can change the results, which makes it harder to compare
algorithms without running many tests in a controlled environment. An-
other is that not every possible value of n can be checked, so a pattern that
appears may be misleading. One solution is to use asymptitic analysis (also
called complexity analysis) to abstract away these annoying details.

Informally, the way to do this is to count up all the ”work” a function
does in terms of a measure of problem size (usually denoted n), and find
an expression for this work. The standard unit of work is any operation
or combination of operations that can be done in so-called ”constant time”
by a computer, i.e., and operation where the number of steps needed is not
related to the problem size. Some examples of constant time operations
are integer arithmetic and comparison. Once we have an expression for
the work, we extract the dominant term (i.e., the term that dominates as
n tends to infinity), removing any constants, and call that the asymptotic
running time.

Example 1.6. Let matrix_sum(n) be a function that computes the sum of
all elements of an n × n matrix by iterating over each element and adding
it to a running sum.

What is the work involved? We need to initialize a sum variable to 0,
which takes one unit of work, and visit each one of th n2 cells, which takes

Introduction Discrete Logarithm Problems 7

n2 work. As we visit each cell, we must add it to the total sum, for an extra
n2 work. So an expression for the work is W = 1+2n2. The dominant term
is n2 (removing constants), so the asymptotic running time of our function
is O(n2).

Here we state the formal definition of big-O for completeness. Note that
this can be extended naturally to include any number of size parameters,
but we will not need any more than one in this paper.

Definition 1.7. Let f(n) and g(n) be functions whose domain is N. If there
exist constants c and N such that n > N implies f(n) < c(g(n)), we say
that f ∈ O(g). In other words, f is bounded above by g.

In our example above, f(n) was W = 1 + 2n2 and g(n) was n2.

Remark. As was hinted in the definition above, big-O is merely an upper
bound on a function. So, for example, we could truthfully say that a con-
stant time operation like integer addition was in O(n2), because the work
involved is certainly bounded above by n2. However, it would be more in-
formative to say that integer addition was inO(1). There is another symbol
Θ, which is used to indicate a function that is both an upper and lower
bound on another function. However, we still use big-O notation in this
paper because it is much more often seen in the literature, and we do not
give unneccessarily loose upper bounds.

1.5 Discrete Logarithm Problems

Elliptic curves are useful for public-key cryptography because the group
operations give us an (approximately) one-way function, which we discuss
here.

1.5.1 The Finite Field Discrete Logarithm Problem

To motivate the name “discrete logarithm”, we present here the classic dis-
crete logarithm problem.

Introduction Discrete Logarithm Problems 8

Suppose we have a finite field Fp where p is prime, and some integer
a that is in the field. In addition, let g ∈ Fp be a primitive root modulo p.
(Recall that a primitive root is an element of Fp which generates F∗

p). Then
there exists some field element n such that

a ≡ gn mod p.

The discrete logarithm problem is to find the exponent n. (This turns out to
be hard, and is the basis for some cryptosystems). This setup looks fairly
close to what we think of as a logarithm, but it is ”discrete” because n must
be one of the distinct field elements.

1.5.2 The Elliptic Curve Discrete Logarithm Problem

Definition 1.8 (Elliptic Curve Discrete Logarithm Problem). Let E be an
elliptic curve over a finite field Fp, and let P be a point on E. Suppose we
have a point Q on E that is some scalar multiple of P , i.e.,

[n]P = Q, n ∈ N.

The elliptic curve discrete logarithm problem (ECDLP) is to determine the
natural number n, given E, P and Q.

Note that this positions multiplication by [n] as analogous to exponeni-
ation, and point addition as analogous to multiplication.

There is no known algorithm to solve this problem in the general case
in better than O(

√
n) time. When key sizes are enormous, this operation

becomes prohibitively expensive.
On the other hand, the problem of determining [n]P given n and P is

not hard. One simple (to describe) way to do this is by using successive
squaring.

Definition 1.9 (Successive Squaring for Elliptic Curves). Suppose we have
an elliptic curve E(K), a point P ∈ E(K) and a nonnegative integer n. We
can compute [n]P recursively by calling SuccessiveSquare(n, P).

Introduction Discrete Logarithm Problems 9

This algorithm leverages the fact that point doubling is just as fast as
adding, but can give us large multiples of P quickly by doubling repeat-
edly.

This is a modification of an algorithm that computes large powers mod-
ulo p by repeated squaring.

SuccessiveSquare(m, Q)

INPUT:

m - Non-negative integer

Q - point on elliptic curve

OUTPUT:

mQ - point that is Q + Q + ... + Q m times

If m = 0, return the point at infinity.

If m = 1, return Q.

If m is even, return [m/2](2Q) by calling

SuccessiveSquare(m/2, 2Q).

If m is odd, return [(m-1)/2](2Q) by calling

SuccessiveSquare((m-1)/2, 2Q) and add Q.

Note that ”/” denotes integer division. This asymptotic running time of
this algorithm is O(log n) group operations, a considerable improvement
on brute force computation of P + P + P + ... which takes O(n) group
operations. We are saying ”group operations”, because computer hardware
cannot necessarily do arithmetic on very large numbers in constant time, so
we want to leave open the possibility that doing a group operation is not
negligible.

Example 1.10. Let us revist the curve we saw in Example 1.4. As we know,
the point (5, 1) is in the group Ẽ(Fp) (with Ẽ defined as before). Denote
this point P̃ . Suppose we want to compute [15]P̃ via successive squaring.

Since m = 15 is odd, we break the problem into

[7]([2]P̃) + P̃ .

Introduction Discrete Logarithm Problems 10

Now, because 7 is odd, we break the problem further into

[3]([2]([2]P̃)) + P̃ + P̃ ,

which becomes (since 3 is odd) :

[2]([2]([2]P̃) + P̃ + P̃ + P̃ .

Notice that we have reduced a problem that would have taken 15 steps
to just 6 steps: 3 doubles and 3 additions. The final answer is (8, 1), which
is, as we expected, a member of the group.

Those familiar with complexity analysis may be surprised that the run-
ning time O(

√
n) to compute the discrete log is considered slow enough to

be viable for cryptography. The key idea is not that
√
n is slow in itself, but

that it is asymptoticallymuch slower than the log n time needed to perform
a multiplication. Those interested in using elliptic curves in cryptography
just need to make n very large.

To get a feel for the magnitude of the difference in speed, suppose n
were 2128, and we had a computer that could do 109 operations per second.
It would take just log2 2128 = 128 operations to calculate [n]P , which would
take .13 microseconds. On the other hand, our computer would have to
perform

√
2128 = 1.84 × 1019 operations to retrieve n from [n]P , which

would take just under 585 years.

Chapter 2

Some Geometry and Algebra

2.1 Projective Coordinates

We have so far discussed elliptic curves as solutions to an equation in two
variables x and y. We now introduce an alternate coordinate system, called
projective coordinates, that has some nice properties.

Definition 2.1 (Projective Space). Let K be a field, and let V be any sub-
space of Kn where n is an integer greater than zero. For any elements x, y
in V , we define an equivalence relation ∼ by

x ∼ y if x = αy for some nonzero α in K.

Projective space over K is P is:

P(V) = V/ ∼ .

Hence the point [x] in P(V) is the set of all vectors αx in V where α is a
nonzero element of K.

Using the affine coordinate system and the simplified Weierstrass equa-
tion we introduced previously, we considered zeros of the function

f(x, y) = y2 − x3 − ax− b

Some Geometry and Algebra Introduction to the p-adics 12

to be points on an elliptic curve. In other words, we wanted pairs (x, y) ∈
K2 such that f(x, y) = 0.

Let us introduce a new variable Z to homogenize the equation as fol-
lows:

F (X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3.

(A homogeneous equation is one in which all terms have the same de-
gree).

Points (X : Y : Z) with X,Y, Z ∈ K that satisfy this equation are called
projective points, and the set of all such points form an alternate way of
describing the K-rational points on E. We may easily convert an affine
point (x, y) to a projective one by lettingZ = 1 and keeping x and y, i.e., (x :

y : 1). In addition, by our eqivalence relation, if we divide each coordinate
of a projective point by the same non-zero constant in K, we end up with
the same point we started with.

One interesting thing is that we now have an algebraic representation
of the point at infinity O. It is (0 : 1 : 0), the only projective point with
Z-coordinate equal to 0.

2.2 Introduction to the p-adics

We now introduce the field Qp, whose elements are called p-adics. For a
prime number p, Qp is a completion of the rationals with respect to the
p-adic absolute value, which we define shortly.

Before giving any formal definitions, we note that a p-adic number
looks something like this:

akp
k + ak+1p

k+1 + ...+ a0 + a1p+ a2p
2 + ...,

where p is a fixed prime, and ak, ..., a0, ... are integers between 0 and p− 1.
Note that there are always a finite number of negative powers of p, and
a possibly infinite number of positive powers. We will see that the large
powers of p are actually ”small” with respect to the p-adic absolute value.

Some Geometry and Algebra Introduction to the p-adics 13

Definition 2.2. For a rational number a and a prime number p, separate out
all factors of p from a and write:

a = pr
m

n

where r, m and n are integers, and p does not divide m or n. The exponent
r is called the p-adic ordinal of a, denoted ordp(a).

In other words, the ordinal is the highest power of p dividing a. This
may be negative, positive, or 0.

Note that for any rational number a = x
y , we have ordp(a) = ordp(y)−

ordp(x).

Definition 2.3. For a prime p, we define a function |.|p : Q → Q≥0 where
for a ∈ Q:

|a|p =

{
p−ordp(a) a 6= 0

0 a = 0.

The function |.|p is called the p-adic absolute value.

Proposition 2.4. The p-adic absolute value is a norm on Q, and induces a metric

dp(a, b) = |a− b|p

for a, b ∈ Q.

Proof. Let a, b be elements of Q. We want to show that |a− b|p is a metric on
Q. Three properties must hold:

1. (Non-negativity.) dp(a, b) ≥ 0, with equality only when a = b.

2. (Commutativity.) dp(a, b) = dp(b, a).

3. (Triangle Inequality.) dp(a, b) ≤ dp(a, c) + dp(c, b) for any c in Q.

1. When a = b, we know |a− b|p = |0|p, which is defined to be 0. When
a 6= b, then |a − b|p is p−ordp(a−b), where ordp(a − b) is an integer.
Raising a positive number to an integer power always results in a
positive and non-zero value.

Some Geometry and Algebra Working with the p-adics 14

2. We must justify that |a − b|p = |b − a|p. This is clearly true in the
case where a = b. When a 6= b, this is equivalent to the claim that
ordp(a − b) = ordp(b − a). Since a − b = −(b − a), the two numbers
differ only in sign. The ordinal of a number and its negative are equal,
as they are each divisible by the same highest power of p.

3. We here show a stronger property, that |a − b|p ≤ max |a|p, |b|p. Thus
we will show that the p-adic norm induces an ultrametric on Q. First
observe that the property clearly holds when a, b, or (a − b) is equal
to zero. So, assume that these three values are non-zero. Then we can
write a =

m

n
and b =

r

s
for integers m,n, r, s in lowest terms. Thus

a−b = ms−rn
ns . Therefore ordp(a−b) = ordp(ms−rn)−ordp(ns). Now

each of ms and rn have some ordinal, which is the highest power of
p that divides them. We can take the smallest of these out of ms− rn,
meaning that ordp(ms− rn) ≥ min (ordp(ms), ordp(rn)). Thus

ordp(a− b) ≥ min (ordp(ms), ordp(rn))− ordp(ns),

and recombining these terms (which still preserves the minimum, as
we are subtracting a constant from both terms) we have that:

ordp(a− b) ≥ min (ordp(ms/ns), ordp(rn/ns))

= min (ordp(m/n), ordp(r/s)) = min (ordp(a), ordp(b))

From this fact it is easy to deduce that |a− b|p ≤ max |a|p, |b|p.

The takeaway is that Qp is a field, and is the completion of the rationals
with respect to the p-adic absolute value. The proof of this fact is quite
involved, and can be found in [Gou93].

2.3 Working with the p-adics

Definition 2.5. A p-adic number a is called a p-adic integer if ordp(a) ≥ 0.
The set of all p-adic integers is a group, and denoted Zp (not to be confused

Some Geometry and Algebra Working with the p-adics 15

with the cyclic group Z/pZ).

Remark. A p-adic integer is always of the form

a0 + a1p+ a2p
2 + ...,

i.e., all powers of p are non-negative.

Notation. The set pnZp where n ≥ 0 is a subgroup of Zp and has elements
of the form a0p

n + a1p
n+1 + ... and ordp(x) ≥ n for all x ∈ pnZp.

Properties of ordinals and absolute values

These facts have been shown in the proof of Proposition 2.4, but we state
them here for easy reference. Let a, b ∈ Qp. Then:

ordp(a+ b) ≤ min {ordp(a), ordp(b)} and ordp(ab) = ordp(a) + ordp(b).

|a+ b|p ≥ min {|a|p, |b|p} and |ab|p = |a|p + |b|p.

Convergence

Convergence is easier to show in Qp than in R because there is no condi-
tional convergence. Thus it is sufficient to show that the terms of a sum
tend to zero with respect to the p-adic absolute value in order to show that
the sum converges in Qp.

Characteristic of the p-adics

The field of p-adics Qp has characteristic 0, not p. This is due to the fact that
Q, which has characteristic 0, is a subfield of Qp.

Arithmetic

Since the p-adics are a field, we hope to be able to do addition and multi-
plication, as well as take additive and multiplicative inverses. All of these
are possible, but they are not easy for a human to do by hand.

Some Geometry and Algebra Working with the p-adics 16

To give a sense of how arithmetic works, and motivate the next chapter,
we give an example of point doubling over the p-adics.

Example 2.6. Recall Ẽ from Example 1.4. Let

E : y2 = x3 + x+ 4,

just like Ẽ, but view the paramters a = 1 and b = 4 as elements of Q19

rather than F19.
It turns out that P = (5 + O(193), 1 + 13 · 19 + 10 · 192 + O(193)) is a

point satisfying E. How would we compute [2]P using the point doubling
formula? We know from Section 1.3 that if p = (x, y), then [2]P = (x2, y2)

where
x2 = N3 − 2x,

y2 = N(x− x2)− y,

where N =
3x2 + a

2y
.

Let us compute N first. The numerator is

Nnum = 3(5 +O(193)) + 1 = 16 +O(193),

and the denominator is

Ndenom = 2(1 + 13 · 19 + 10 · 192 +O(193)) = 2 + 7 · 19 + 2 · 192 +O(193).

Then
N =

Nnum

Ndenom
= 8 + 10 · 19 + 12 · 192 +O(193).

Now we may compute the coordinates:

x2 = N3−2x = 8 + 10 ·19 + 12 ·192 +O(193) = 8 + 8 ·19 + 18 ·192 +O(193),

y2 = N(x− x2) = 13 + 5 · 9 + 9 · 192 +O(193).

Note that we are using big-O not to say anything about running time but

Some Geometry and Algebra Working with the p-adics 17

just using the definition to indicate that that the rest of the terms are bounded
above by a certain function (with respect to the p-adic absolute value).

For more information on the p-adics at an introductory level, see [Gou93].

Chapter 3

Elliptic Curves over the p-adics

Since Qp is a field with characteristic 0, we can talk about elliptic curves
over the p-adics, and all of the theory we built up in the previous sections
applies. In particular, we may use the simplified Weierstrass equation that
applies to fields that do not have characteristic 2 or 3.

From here on we use Ẽ(Fp) to mean the group of points satisfying a
Weierstrass equation Ẽ defined over a prime field Fp, and E(Qp) to denote
the group of points satisfying the same equation over the p-adics (for the
same value of p).

Recall that the goal of this paper is to show how the ECDLP (see Section
1.5) may be computed for elliptic curves of trace one. In this chapter, we
build up most of the theory needed to understand this computation. This
understanding of the theory owes much to [Mon02] and [Sil86].

We wish to establish a map from Ẽ(Fp) to Z/pZ that transforms some
Q ∈ Ẽ(Fp) to n ∈ Z/pZ such that [n]P = Q for a specified P ∈ Ẽ(Fp). It
turns out this is feasible when #Ẽ(Fp) = p. We do this by transforming the
points, via a series of maps, into Z/pZ.

3.1 Computing lifts and reducing modulo p

The first map is from Ẽ(Fp), our original curve, to a related curve over the
p-adics, E(Qp). To move from Ẽ(Fp) to E(Qp), we compute what is called

Elliptic Curves over the p-adics Computing lifts and reducing modulo p 19

a lift. A point P ∈ E(Qp) is called a lift of a point P̃ ∈ Ẽ(Fp) if it reduces
mod p to P̃ .

Reducing modulo p from E(Qp) to Ẽ(Fp)

We first must describe formally what it means to reduce a point modulo p.
This will be a map from E(Qp) to Ẽ(Fp). Because we are allowed to take
out non-zero multiples in projective coordinates, any point P in E(Qp) can
be written in as (X : Y : Z), where X,Y and Z are p-adic integers and at
least one is not divisble by p. We define a map rp : Zp → Z/pZ that reduces
a p-adic integer modulo p in the expected way, by extracting the coefficient
on the p0 term. Then, to reduce a point mod p, we simply reduce each of its
coordinates mod p: thus P̃ = (rp(X) : rp(Y) : rp(Z)).

Lifting from Ẽ(Fp) to E(Qp)

Computing a lift is more involved. This operation is not unique, as there
may be multiple lifts of a given point in Ẽ(Fp), but to compute the discrete
log, we only need one. As it happens, any choice of lift will give the same
(correct) value of the discrete logarithm, provided that it does not cause
an error such as divison by 0. We describe one way to compute lifts here,
which fails with probability 1/p, which is tiny in any real application. If it
does fail, we may take an alternate lift.

Let P̃ be a point satisfying:

Ẽ : y2 = x3 + ax+ b

where a, b ∈ Fp and p 6= 2, 3. In affine coordinates, we may write P̃ = (x̃, ỹ)

for x̃, ỹ ∈ Fp. We wish to find p-adic integers x and y such that P = (x, y) ∈
E(Qp), where E is Ẽ viewed over the p-adics.

Let us rewrite the Weierstrass equation as a function f in two variables
x and y:

f(x, y) = y2 − x3 − ax− b.

Then x and y satisfy E if and only if f(x, y) = 0.

Elliptic Curves over the p-adics Computing lifts and reducing modulo p 20

Now, the easiest way to choose x and y would be to simply let x = x̃

and y = ỹ. Unfortunately, this choice would cause our algorithm to break
down in later stages. However, we may choose x = x̃. The harder one is y.

Since y is a p-adic integer, it has an expansion of the form

y = h0 + h1p
1 + h2p

2 + ...,

where the hi are between 0 and p− 1.
Because we require f(x, y) = 0, it must also be that f(x, y) ≡ 0 mod

pi for any i > 0 (and indeed any modulus). Therefore f(x, y) ≡ 0 mod p.
Writing this explicitly, we have that

(h0 + h1p+ h2p
2 +O(p3))2 − x̃3 − ax̃− b ≡ 0 mod p.

Reducing gives:
(h0)

2 − x̃3 − ax̃− b ≡ 0 mod p,

which implies that we may set h0 = ỹ.
Now by the same token (and replacing h0 with ỹ):

(ỹ + h1p+ h2p
2 +O(p3))2 − x̃3 − ax̃− b ≡ 0 mod p2,

which reduces to

(ỹ + h1p)
2 − x̃3 − ax̃− b ≡ 0 mod p2,

and with some algebraic manipulation gives us that

(ỹ − x̃3 − ax̃− b) + 2ỹh1p ≡ 0 mod p2.

We would like to solve for h1 mod p. Notice that the first part of the left
hand side of the above congruence is precisely f(x̃, ỹ), which we know to
be congruent to 0 mod p, and thus divisible by p. Therefore we can rewrite
the expression as

f(x̃, ỹ)

p
+ 2ỹh1 ≡ 0 mod p,

Elliptic Curves over the p-adics The formal group Ê(pZp) 21

which can be rearranged to obtain a value for h1:

h1 ≡ −
f(x̃, ỹ)

2pỹ
mod p.

We may proceed in a similar way to compute any other value of hi.
We here present without detailed explanation the formula for h2, which we
will need in our computation of the discrete logarithm:

h2 ≡ −
f(x̃, ỹ + h1p)

2p2(ỹ + h1p)
mod p.

3.2 The formal group Ê(pZp)

The next step is to map from E(Qp) to Ê(pZp), a formal group with ele-
ments in pZp.

Before we describe the formal group law on Ê(pZp), we need to build
up some theory. Again, consider a curve E defined over E(Qp) with equa-
tion:

E : y2 = x3 + ax+ b.

Notice that x and y are algebraically dependent, since they are related by
E. Thus we we may parameterize the equation.

To do this, we introduce a new parameter z and use a change of vari-
ables from the xy plane to the zw plane, where:

z = −x
y
, w = −1

y

(Note that the new parameter z is distinct from the parameter Z we used

in projective coordinates.) Then, noting that y = − 1

w
and x =

z

w
, we can

rewrite E as:

E :
1

w2
=
z3

w3
+ a

z

w
+ b,

and multiplying by w3 gives us:

w = z3 + azw2 + bw3.

Elliptic Curves over the p-adics The formal group Ê(pZp) 22

This equation is still in terms of w, however, and we would like it to rely
only on z. Recursively substituting the right-hand side into any occurences
of w on the right gives us a power series in z.

To see how this works, here is the first substitution:

w = z3 + az(z3 + azw2 + bw3)2 + b(z3 + azw2 + bw3) = z3 + az7 + bz3 +

From this power series w(z) we arrive at expressions (called Laurent
series because they have negative powers) for x and y in terms of z.

x(z) =
z

w
=

1

z2
− az2 + ...,

y(z) = − 1

z3
+ az +

We want x(z) and y(z) to converge in Qp. We claim that this is true when
z is an element of pZp and the coefficients a and b ofE are p-adic integers. If
our claim is correct, we will have established an injective map from pZp to
E(Qp), which takes a parameter z in Zp, and finds a point P = (x(z), y(z))

that is on E(Qp). Note that we may also map a point in E(Qp) back to pZp

by our definition of z, namely that z = −x(z)/y(z).

Proof. We now show that x(z) and y(z) converge in Qp if z ∈ pZp and
a, b ∈ Zp. Notice that

|x(z)|p ≤ max {|z−2|p, | − az2|p, ...} = max {|z|−2
p , |a|p|z|2p, ...}

We know |z|p ≤ p−1 and |a|p, |b|p ≤ 1 by the conditions we put on them.
Thus |z|−2

p ≥ p2 while |a|p|z|2p ≤ p−2.
Thus there is a finite upper bound on the absolute value of x(z), so it

converges. A similar argument tells us the same for y(z).

Elliptic Curves over the p-adics The groups En(Qp) 23

Definition 3.1. ForE an elliptic curve defined over Qp, we define the group
Ê(pZp) as the set pZp with addition law

z1 ⊕ z2 = F (z1, z2)

where F (z1, z2) is a formal power series that depends on the parameters
a, b from the Weierstrass equation, which is why the group is called Ê. We
do not actually need an explicit expression for F to do our computation. To
see how it would be derived, see [Sil86].

3.3 The groups En(Qp)

We now take a brief interlude from our series of maps to introduce an im-
portant class of subgroups of E(Qp), and some of their properties.

Definition 3.2. Let E(Qp) be an elliptic curve. The group E1(Qp) is defined
to be:

E1(Qp) = {P ∈ E(Qp) | P̃ = O}.

In words, E1 is the set of points on E that reduce modulo p toO. This leads
naturally to the following proposition:

Proposition 3.3.
E(Qp)/E1(Qp) ' E(Fp).

Proof. Define a map r : E(Qp)→ E(Fp) where r(P) = P̃ . By definition, the
kernel of this map isE1(Qp). The result follows from the First Isomorphism
Theorem.

Definition 3.4. The subgroup En(Qp) (for n ∈ N) of E(Qp) is defined:

En(Qp) = {P ∈ E(Qp) | ordp(xP) ≤ −2n} ∪ {O},

where xP is the x-coordinate of P .

Remark. The group En(Qp) is a subgroup of Ek(Qp) for all k ≤ n.

Elliptic Curves over the p-adics The groups En(Qp) 24

For the case that n = 1,

E1(Qp) = {P ∈ E(Qp) | ordp(xP) ≤ −2} ∪ {O},

which turns out (as we would hope) to be equivalent to Definition 3.2. This
may seem mysterious, but before we justify it let us determine why it is
that if ordp(x) is negative, it must be even. Assume that a and b are p-adic
integers, i.e., that ordp(a) ≥ 0 and ordp(a) ≥ 0 . We know x and y must
satisfy

y2 = x3 + ax+ b,

so by properties of p-adic ordinals must also satisfy

2ordp(y) ≥ min {3ordp(x), ordp(a) + ordp(x), ordp(b)}.

with equality if there are no ties for the minimum. Because ordp(x) < 0 and
ordp(a), ordp(b) ≥ 0, the minimum must be 3ordp(x), with no ties. Thus

2ordp(y) = 3ordp(x),

which with some manipulation implies that

ordp(y) = −3n, ordp(x) = −2n

for some natural number n.
So why is it that points of the form P = (p−2n+ ..., p−3n) reduce modulo

p to O? Write
P = (c1p

−2n + ... : d1p
−3n + .. : 1)

in projective coordinates, and then take out a factor of p−3n. Then

P = (c1p
n + ... : d1 + ... : p3n).

Reducing mod p gives P̃ = (0 : d1 : 0), which is equivalent toO, as we may
take out the non-zero scalar d1.

Elliptic Curves over the p-adics Mapping between Ê(pZp) and E1(Qp) 25

3.4 Mapping between Ê(pZp) and E1(Qp)

We have already established that we may map between Ê(pZp) and E(Qp)

using the Laurent series for z, x(z) and y(z) we presented in the previous
section. We state this formally now with a slight modification, and give the
stronger claim that it is a group isomorphism.

Proposition 3.5. The map

νp : Ê(pZp)→ E1(Qp)

νp(z) = (x(z), y(z))

is a group isomorphism.

Remark. We are actually more interested in the inverse map:

ν−1
p : E1(Qp)→ Ê(pZp)

ν−1
p (x, y) = −x

y
,

as it will allow us to continue solving the discrete logarithm.

We will not prove this proposition, but point out some interesting things
about it. Firstly, we may apply the map ν−1

p to any group En(Qp), and the
co-domain will be Ê(pnZp). But, if we wish to end up in Ê(pZp), which
we do, we must begin in E1(Qp). We can see why this is by looking at the
smallest terms in the Laurent series x(z) and y(z), which are 1

z2
and − 1

z3
.

We know that z ∈ pZp, meaning it is divisible by p. Thus the x(z) term
must be divisible by p−2, and thus ordp(x) ≤ −2, which means that the
point (x(z), y(z)) is, by our second definition of E1(Qp), a member of that
group.

Thus we cannot use ν−1
p directly to map our points inE(Qp) into Ê(pZp),

so we need a way to map E(Qp) → E1(Qp). This is possible when our ini-
tial curve Ẽ(Fp) has trace one, and we will describe how to do it in Chapter
4.

Elliptic Curves over the p-adics The formal logarithm 26

Of course Ê(pZp) is hardly the group we want to end up in, so we must
find more maps to get us to Z/pZ.

3.5 The formal logarithm

In this section we will introduce a map called the formal logarithm, de-
noted logF that takes us from the formal group Ê(pZp) to plain pZp with
the usual addition law. This is the second-to-last step in our compuation of
the discrete logarithm.

We first introduce a certain differential form called an invariant differ-
ential.

Definition 3.6. An invariant differential on a formal group defined over a
ring is

ω(T) = P (T)dT,

where P (T) is a power series in T that satisfies

w ◦ F (T, S) = w(T),

where F (T, S) is the formal group law.

Note that such an invariant differential will always exist.
Of course, we are dealing with the formal group Ê(pZp) under the

group law F that we introduced in Definition 3.1. Let ω(T) be a power
series c0 + c1T + c2T

2 with the ci chosen such that ω(T) is an invariant
differential on Ê(pZp). Define

logF : Ê(pZp)→ pZp

logF (T) =

∫
ω(T).

Proposition 3.7.

logF (F (T, S)) = logF (T) + logF (F (T, S)).

Elliptic Curves over the p-adics The formal logarithm 27

In other words, logF is a group homomorphism.

Proof. By our definition of logF , we know logF (F (T, S)) =
∫
ω(F (T, S)),

which by the fact that ω is an invariant differential, is equal to
∫
ω(T). Tak-

ing the integral of ω(T), we get logF (T) + g(S), where g is some function
that does not depend on T but may depend on S.

To determine the value of g(S), let T = 0. Then F (T, S) = S, because
F is a group law and T is set to be the identity. Thus logF (F (T, S)) =

logF (S) = logF (0) + g(S) = 0 + g(S). Therefore g(S) = log(S), and com-
bining our results we arrive at:

logF (F (T, S)) = logF (T) + logF (S).

What this really ends up looking like is:

logF (T) = T +
c1
2
T 2 +

c2
3
T 3 + ...,

where c1, c2... ∈ pZp.

Remark. In fact, logF is a group isomorphism from Ê(pZp) and pZp. Fur-
thermore, for any n, logF is restricted to be an isomorphism between Ê(pnZp)
and pnZp. Since En(Qp) ' Ê(pnZp) (see discussion after Proposition 3.5),
we now know that En(Qp) ' pnZp. Thus

En(Qp)/En+1(Qp) ' pnZp/p
n+1Zp ' F+

p , (3.1)

where F+
p is the additive group of Fp.

We are now ready to do some synthesis and fill in the missing pieces.
We do this in the next chapter, and show a small example of the full algo-
rithm.

Chapter 4

Solving the Discrete Logarithm
Problem over Curves of Trace
One

In this section we wil summarize and demonstrate the fast algorithm ini-
tially proposed by Nigel Smart in [Sma99] for computing the discrete loga-
rithm on curves of trace one, and discuss its running time and implications.

4.1 Summary of algorithm

We now summarize the method for finding the discrete log on a curve of
trace one, and fill in any results not shown in the previous chapters. Recall
our setup for the discrete logarithm problem. We have an elliptic curve
Ẽ/Fp with p 6= 2 or 3 and

Ẽ : y2 = x3 + ax+ b

where a, b ∈ Fp. For two points P̃ , Q̃ ∈ Ẽ(Fp) that satisfy

[n]P̃ = Q̃, (4.1)

Solving the Discrete Logarithm Summary of algorithm 29

we wish to determine the natural number n. Notice that, because O is the
identity,

Q̃− [n]P̃ = O.

The first step is to obtain lifts of P̃ and Q̃ by the method described in
Section 3.1. We denote these lifts P and Q respectively, and they lie in
E(Qp), where E is the same as Ẽ, but the parameters a, b are interpreted as
elements of Qp.

Now recall that the reduction map Ẽ(Fp)→ E(Qp) is a homomorphism.
Thus the reduction mod p ofQ−[n]P is the same as the sum of the reduction
of P (times [n]) and the reduction of Q. By equation (4.1), we deduce that

Q− [n]P = R,

where R is an element of E1(Qp) since it reduces mod p to O.
Now we claim that multiplying a point in E(Qp) by [p] maps it into

E1(Qp) and similarly, multiplying a point in E1(Qp) by [p] maps it into
E2(Qp). This is the step that requires our curve to be of trace one. Recall
from Proposition 3.3 and (3.1) that:

E(Qp)/E1(Qp) ' Ẽ(Fp),

E1(Qp)/E2(Qp) ' F+
p .

Thus each of the quotient groups E(Qp)/E1(Qp) and E1(Qp)/E2(Qp) have
order p, since by assumption #Ẽ(Fp) = p.

The identity of E(Qp)/E1(Qp) is the coset E1(Qp). Consider the coset
S+E1(Qp) where S is an element ofE(Qp). Since S+E1(Qp) ∈ E(Qp)/E1(Qp),
it must have order dividing p, which means that [p](S+E1(Qp)) = E1(Qp).
But it is also true that [p](S+E1(Qp)) = [p]S+E1(Qp). Thus [p]S ∈ E1(Qp),
which is what we wanted to show. The proof is similar to show that multi-
plication by [p] maps E1(Qp) into E2(Qp).

We conclude that
[p]Q− [n]([p]P) = [p]R,

Solving the Discrete Logarithm Summary of algorithm 30

where [p]R ∈ E2(Qp) and [p]Q, [p]P ∈ E1(Qp).
Now we are in good shape, because we know how to work withE1(Qp).

Recall that the map ν−1
p takes E1(Qp) to Ê(pZp), and the map logF takes

Ê(pZp) to pZp. We define the composition of these maps as follows:

ψp : E1(Qp)→ pZp

where ψp(P) = logF ◦ν−1
p (P) for all P ∈ E1(Qp). It turns out we only need

to compute ψp mod p2, because we do not need any more terms to find n.
Let S = (x, y) be a point in E1(Qp). First observe that ν−1

p (S) = −x
y

is

an element of Ê(pZp), so it is divisible by p. We can now write ψp(S) =

logF (−x
y

). Now recall that

logF (T) = T +
d1
2
T 2 +

d2
3
T 3 +

But since our input to logF is −x
y

, which is divisble by p, all of the squared

and higher terms are divisible by p2. We are working modulo p2 so we may
ignore them. Thus

ψp(S) = logF (−x
y

) ≡ −x
y

mod p2. (4.2)

Continuing to solve the discrete log, we take the ψp([p]P) and ψp([p]Q),
to get values in pZp. Notice that ψp([p]R) = ψp([p]Q) − n(ψp([p]P)) is an
element of p2Zp because ψp maps elements of E2(Qp) to p2Zp. So we have
that

ψp([p]Q)− n(ψp([p]P)) ≡ 0 mod p2.

Now, because ψp([p]P) and ψp([p]Q) are elements of pZp, their p-adic
expansions are of the form:

ψp([p]P) = c1p+ c2p
2 +O(p3)

ψp([p]Q) = d1p+ d2p
2 +O(p3)

Solving the Discrete Logarithm Example Computation 31

where the coefficients ci, di are in Z/pZ.
Thus

n ≡ ψp([p]Q)

ψp([p]P)
mod p.

To solve the p-adic division problem, we note that

n(c1p+ c2p
2 +O(p3)) = d1p+ d2p

2 +O(p3),

and thus nc1p = d1p mod p2. Therefore n =
c1
d1

+O(p2). So the final answer

is:
n ≡ c1

d1
mod p,

and we have our discrete logarithm.

4.2 Example Computation

Here we show an example of computing the discrete logarithm of a curve
of trace one over a small field. These computations were performed using
a Python script, and made use of the Sage Math python modules, which
have built-in support for p-adic and finite field arithmetic.

Recall our curve Ẽ from Example 1.4 defined over F19 by:

Ẽ : y2 = x3 + x+ 4,

which has trace one, as it has 19 elements.
Now let P̃ = (5, 1) and Q̃ = (8, 1). We showed in Example 1.10 that

[15]P̃ = Q̃, but suppose all we knew was that

[n]P̃ = Q̃

for some natural number n. How would we solve the discrete log problem
and determine n without using brute force?

Since Ẽ(F19) has trace one, we may apply the method we have just de-
veloped.

Solving the Discrete Logarithm Final notes 32

1. Computation of lifts. First, we take lifts of P̃ and Q̃ by the process
described in Section 3.1.

P = (5 +O(193), 1 + 13 · 19 + 10 · 192 +O(193))

Q = (8 +O(193), 7 + 14 · 19 + 3 · 192 +O(193))

2. Multiplication by p. We now multiply by [p], which we may do quickly
using the successive squaring algorithm from Section 1.9, which makes
use of the group law from Section 1.3, applied using p-adic arithmetic
as described in Section 2.3.

[p]P = (9 · 19−2 + 12 · 19−1 +O(190), 8 · 19−3 + 17 · 19−2 +O(19−1))

[p]Q = (16 · 19−2 + 12 · 19−1 +O(190), 7 · 19−3 + 18 · 19−2 +O(19−1))

3. Computing ψp. We then compute ψp using Equation 4.2.

ψp(P) = 6 · 19 + 2 · 192 +O(193)

ψp(Q) = 14 · 19 + 13 · 192 +O(193)

4. Wrapping up. Finally, we extract the first coefficient from ψp(P) and
ψp(Q) to obtain:

n =
6

14
= 15 mod 19.

Thus [15]P = Q, as we expected.

4.3 Final notes

Note that in some cases, the method described above does not quite work.
In the final step, we divide by d1, the p coefficient of ψp(Q), which must be
non-zero. If it is zero, we must start over and compute a different lift of P
and Q.

Solving the Discrete Logarithm Python Script 33

4.3.1 Running time

If we use the successive squaring technique to multiply by [p], the running
time of Smart’s algorithm isO(log p) group operations where p is the prime
modulus of the finite field Fp. Note that most of the operations, such as
computing lifts and taking Ψ involved take constant time (i.e., their run-
ning time does not depend on p). The most expensive operation is the mul-
tiplication by [p], which as we have discussed, takes on the order of log p

operations.

4.3.2 Implications

The take-away from this discussion is that the discrete logarithm on elliptic
curves of trace one is not a one-way function. It is just as easy and fast (for
a computer, at least) to compute the discrete log as it is to do the multiplica-
tion by [n] in the first place. Therefore, curves used for cryptography must
not have trace one.

Luckily, this is easy to avoid. There are methods to determine the num-
ber of points on an elliptic curve that do not require explicitly finding the
points (see [BSS99] Chapter VI) and it is not particularly common for a
curve to have trace one, as, by Hasse’s Theorem, the group order satisfies

|p+ 1−#E(Fp)| ≤ 2
√
p,

so there is quite a possible range of possible orders.

4.4 Python Script

We present here the Python script used to do the computations shown in
the previous section, which can be used to reproduce the results shown, or
to do experiments with any other elliptic curve.

Note that someone with just a basic knowledge of programming, and
access to the neccessary algorithm specifications, could write code similar

Solving the Discrete Logarithm Python Script 34

to that below. Thus, even though the mathematics is advanced, the practi-
cal method truly is simple.

from sage.all import *
def discrete_log(P, Q, E, p):

Create fields

F = GF(p)

Q_p = Qp(p, prec = 3, \

type = ’capped-rel’, print_mode = ’series’)

print P

print Q

Compute lift

liftP = lift(P, E, F, Q_p)

liftQ = lift(Q, E, F, Q_p)

print liftP

print liftQ

Multiply by [p]

multP = successiveSquare(p, liftP, E)

multQ = successiveSquare(p, liftQ, E)

print multP

print multQ

Compute psi(P) and psi(Q)

psiP = psi(multP)

psiQ = psi(multQ)

print psiP

print psiQ

Compute final answer

pval = F(psiP.add_bigoh(2) / p)

qval = F(psiQ.add_bigoh(2) / p)

print pval

print qval

log = qval / pval

print log

def lift(P, E, F, Q):

x = P[0]

y = P[1]

a = E[0]

Solving the Discrete Logarithm Python Script 35

b = E[1]

p = int(F.order())

newx = Q(x)

h0 = y

h1numer = ((y ** 2) - (x ** 3) - (a * x) - b) / p

h1 = int(- F(h1numer) / F(2 * y))

h2numer = (((y + h1*p) ** 2) - (x ** 3) - a * x - b) / (p ** 2)

h2 = int(- F(h2numer) / F(2 * (y + h1*p)))

newy = Q(h0 + h1*p + h2*(p**2))

return [newx, newy]

def psi(P):

x = P[0]

y = P[1]

return - (x / y)

def successiveSquare(m, P, E):

if m==0: return "INF"

elif m==1: return P

elif (m % 2 == 0):

return successiveSquare(m/2, double(P, E), E)

else:

return add(P, successiveSquare(m/2, double(P, E), E), E)

def double(P,E):

if P == "INF": return P

elif P == neg(P): return "INF"

x = P[0]

y = P[1]

a = E[0]

N = ((3 * (x ** 2)) + a) / (2*y)

newx = (N ** 2) - 2 * x

newy = N * (x - newx) - y

return [newx, newy]

def neg(P):

return [P[0], -P[1]]

def add(P, Q, E):

if P == "INF": return Q

elif Q == "INF": return P

elif P == Q: return double(P, E)

Solving the Discrete Logarithm Python Script 36

elif P == neg(Q): return "INF"

xp = P[0]

yp = P[1]

xq = Q[0]

yq = Q[1]

M = (yq - yp) / (xq - xp)

xr = (M ** 2) - xp - xq

yr = M*(xp-xr) - yp

return [xr, yr]

Bibliography

[BSS99] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryp-
tography, volume 265 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 1999.

[Gou93] Fernando Q. Gouvêa. p-adic numbers. Universitext. Springer-
Verlag, Berlin, 1993. An introduction.

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide
to elliptic curve cryptography. Springer Professional Computing.
Springer-Verlag, New York, 2004.

[Mon02] Jean Monnerat. Computation of the discrete logarithm on
elliptic curves of trace one: Tutorial. Technical Report
EPFL/IC/2002/49, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland, 2002.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106
of Graduate Texts in Mathematics. Springer-Verlag, New York,
1986.

[Sma99] N. P. Smart. The discrete logarithm problem on elliptic curves of
trace one. J. Cryptology, 12(3):193–196, 1999.

	Claremont Colleges
	Scholarship @ Claremont
	2015

	A Cryptographic Attack: Finding the Discrete Logarithm on Elliptic Curves of Trace One
	Tatiana Bradley
	Recommended Citation

	tmp.1426289816.pdf.7aB5h

