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Abstract

This work develops novel algorithms for incorporating prior-support information into the
field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring
high-dimensional signals from few linear measurements. In applications, it is often the case
that we have some knowledge of the structure of our signal(s) beforehand, and thus we
would like to leverage it to attain more accurate and efficient recovery. Additionally, the
Compressive Sensing framework maintains relevance even when the available measurements
are subject to extreme quantization. Indeed, the field of One-Bit Compressive Sensing aims
to recover a signal from measurements reduced to only their sign-bit. This work explores
avenues for incorporating partial-support information into existing One-Bit Compressive
Sensing algorithms. We provide both a rich background to the field of compressed sensing
and in particular the one-bit framework, while also developing and testing new algorithms
for this setting. Experimental results demonstrate that newly proposed methods of this work
yield improved signal recovery even for varying levels of accuracy in the prior information.
This work is thus the first to provide recovery mechanisms that efficiently use prior signal
information in the one-bit reconstruction setting.
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Chapter 1

Compressed Sensing

1.1 Motivation

Compressed Sensing is a method for accurately acquiring high dimensional signals from a set

of relatively few linear measurements [CT06] [Don04] [CRT06]. Typical approaches to signal

acquisition exert serious computational efforts to acquire the entirety of the signal, only to

then discard much of it in favor of a compressed representation. Certainly it would be more

efficient to acquire only the information necessary to define the signal in its compressed form.

This idea of Compressed Sensing has applications across many domains including statistics,

machine learning, imaging, and the natural sciences.

1.2 Background Information

The problem posed by Compressed Sensing (CS) may be viewed as solving an under-

determined system of linear equations. Rudimentary Linear Algebra provides that the

reconstruction of general signals from an incomplete set of measurements is not possible.

Therefore we must enforce a particular structure on the desired signal. Indeed, we require

that our desired signal have relatively few non-zero entries, i.e. that it is sparse. This may

seem to be an extremely debilitating requirement. However, even signals that do not initially
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appear to be sparse have a sparse representation with respect to a different basis. Further-

more, non-sparse signals encountered in practice are often compressible, which implies that

they may be well-approximated by some sparse signal. We define our desired signal, x, to

be k-sparse if ‖x‖`0 ≤ k, where the `0 norm of x is simply a count of the number of non-zero

elements.

A measurement of x is seen as the result of applying a linear function to x. The process

of collecting multiple measurements can be represented by the multiplication of x by a

measurement matrix, denoted Φ. If x has length n and we take m measurements then Φ is

an m × n matrix. The point of CS is to accurately recover x from m � n measurements.

If we denote our set of m measurements as y then the problem becomes solving the highly

underdetermined linear system Φx = y for the sparsest solution.

Intuitively, it is clear that we would like the measurements generated from Φ to preserve

and be indicative of the geometry of x. In [CT05] Candès and Tao rigorously require this by

imposing the Restricted Isometry Property (RIP) on Φ, which requires that:

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22

for all k-sparse vectors x, where δk, referred to as the restricted isometry constant, is the

smallest number such that the above expression is satisfied. If Φ satisfies the RIP then in

order to recover a k-sparse signal we must take at least 2k measurements. Constructing a

measurement matrix that will satisfy the RIP with a satisfiable constant is a nearly impos-

sible task. Amazingly enough, randomly generated matrices, such as Gaussian matrices or

Partial Fourier matrices, satisfy the RIP with δ2k < 0.1 with exceptionally high probability.

When reconstructing x, we would like to find the sparsest signal that is consistent with the

measurements that we are initially given. A large portion of the work in the reconstruction

of x is finding its support: the location of the non-zero entries. This may be represented as
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a solution to:

minx‖x‖`0 : Φx = y.

Unfortunately, the above program is NP-Complete. However, [CRT06] [CT05] [Don06]

show that we may relax the program to instead minimize the `1 norm of the signal. The

following program produces the desired result and may be solved using convex optimization

methods:

minx‖x‖`1 : Φx = y.

This framework is also relevant when our signal is contaminated with noise, the above pro-

gram then requires that ‖Φx − y‖2 ≤ ε. Figure 1.1 shows the recovery of x resulting from

minimizing the above `1 program. The mean squared error (MSE) between the resulting

approximation and the exact signal is plotted as a function of m, the number of measure-

ments. Here and throughout, unless stated otherwise: entries of our measurement matrix

Φ are drawn from the standard Gaussian distribution, the support of our signal x is drawn

from a discrete uniform distribution of integers 1 through n, and the non-zero entries of x

are also generated from the standard Gaussian distribution.
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Figure 1.1: For n = 256 and k = 8, this graph plots the average MSE over 100 trials, for
different values of m, when using `1 minimization.

Notice that only taking m = 50 measurements when the signal length is n = 256 results

in an approximation with a MSE on the order of machine precision; this is indicative of near
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perfect recovery. Though techniques used for minimizing this `1 program are accurate, they

are often times slow and computationally expensive. In fact, equally accurate recovery may

be achieved from faster greedy algorithms.

In [NT09] Needell and Tropp present Compressive Sampling Matching Pursuit (CoSaMP)

as a greedy algorithm that, in the absence of noise, can recover a k-sparse signal to arbitrarily

high precision. Furthermore, the runtime of this algorithm is proportional to the cost of

simple matrix-vector multiplication. CoSaMP recovers x from the given measurements y, by

iteratively determining the support of x. At any given iteration, Φ∗Φx = Φ∗y is used as a

proxy for x, then a residual r = y − Φx̂ is computed. The support of this residual updates

our approximation x̂ by solving a simple least squares problem. Algorithm 1 describes the

steps of CoSaMP in greater detail.

Algorithm 1 Compressive Sampling Matching Pursuit. Given: measurement matrix Φ,
measurements of desired signal y, assumed sparsity level k

1: procedure CoSaMP(Φ, y, k)
2: x0 = 0 . Initialize trivial approximation of x
3: v = y . Initialize current measurements as the given measurements
4: i = 0 . Let i denote our iteration count
5: repeat
6: i = i+ 1 . Increment iteration count
7:

8: p = Φ∗v . Compute proxy
9: Ω = support(p2k) . Determine support of proxy
10: Γ = support(x0) . Determine support of current approximation
11: T = Ω ∪ Γ . Merge the two supports
12:

13: βT = Φ†
Ty . Use the p. inverse of Φ restricted to T to solve least squares

14: βcT = 0 . Assign elements off the estimated support to zero
15:

16: xi = βk . Prune β to greatest k elements and update approximation of x
17: v = y − Φxi . Update remaining measurements
18:

19: until no change in approximation or iteration count is sufficient
20: return xi
21: end procedure

Figure 1.2 shows the recovery results of CoSaMP for different sparsity levels and measure-
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ments taken. We see that `1 minimization outperforms CoSaMP when less measurements

are taken. Otherwise, their recovery accuracy is roughly the same, with CoSaMP using less

resources.

Figure 1.2: With the dimension of our signal 256, this graph from [Nee09] plots the percentage
of trials resulting in perfect recovery for different values of m and various sparsity levels s.

We have seen that there exist efficient algorithms for recovering signals that are sparse

with respect to an orthonormal basis. Unfortunately, in practice most signals of interest

have few entries that are zero. However, it is possible to construct a sparse representation

of these signals by using a redundant dictionary, D : usually a poorly conditioned, highly

redundant matrix.

When this is the case our desired signal x is re-expressed as x = Dα where α is a sparse

coefficient vector. Thus, our linear measurements are now of the form y = Φx = ΦDα. There

are two distinct approaches to solving this problem, the first is a coefficient focused approach

while the second is a signal based approach. A coefficient based strategy will aim to recover

α, while signal based approaches are concerned with recovering Dα. A major difficulty in

trying to recover α is that in order to apply classical Compressive Sensing techniques one

must require that D satisfy the RIP. This is simply not a practical expectation. Davenport,

Needell, Wakin in [DNW12] take a signal-focused approach and show that we need only

require Φ to satisfy the Dictionary Restricted Isometry Property (D-RIP). Explicitly, this
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requires that our measurement matrix Φ satisfies:

(1− δk)‖Dα‖22 ≤ ‖ΦDα‖22 ≤ (1 + δk)‖Dα‖22

for all k-sparse α, where again δk is the smallest number such that this expression is satisfied.

This is a much more feasible demand than requiring ΦD to satisfy the RIP.

In addition, [DNW12] presents Signal Space Compressive Sampling Matching Pursuit

(SS-CoSaMP), one signal-focused algorithm designed to recover signals sparse with respect

to a redundant basis. This algorithm iteratively updates support information relevant to the

signal approximation x̂. Similar to CoSaMP, we start with a residual r and some arbitrary

initial guess for x̂ and its support Γ. We construct a proxy p = Φ∗r and use a projection

method to find the support information corresponding to an approximation that is 2k-sparse

with respect to ΦD. Here too, a linear least-squares problem is solved and projected to the

nearest k-sparse approximation. The signal approximation is then updated with this support

information, the residual is computed, and the process continues. Presented in Algorithm 2

is a more complete description of SS-CoSaMP.

This algorithm requires the existence of a near optimal method for projecting our estimate

onto a vector that is sparse with respect to D. As an approximation for such a projection

method, we elect to use standard CoSaMP . However, this is not a provably optimal choice;

`1-Minimization and Orthogonal Matching Pursuit (OMP), as presented in [Zha11], are also

suitable choices. Setting n = 256 and our sparsity level to k = 8, Figure 1.3 plots the MSE

for different values of m. It has been empirically shown that SSCoSaMP, when CoSaMP is

chosen as the method for projection, works particularly well when the k non-zero entries of

the coefficient vector α are placed in a single randomly positioned block.
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Algorithm 2 Signal Space Compressive Sampling Matching Pursuit. Given: measurement
matrix Φ, dictionary D, measurements of desired signal y, assumed sparsity level k

1: procedure SS-CoSaMP(Φ, D, y, k)
2: x0 = 0 . Initialize trivial approximation of x
3: r = y . Initialize trivial residual
4: Γ = ∅ . Initialize trivial support estimate
5: i = 0 . Let i denote our iteration count
6: repeat
7: i = i+ 1 . Increment iteration count
8:

9: p = Φ∗r . Compute proxy p
10: Ω = support(CoSaMP (D, p, 2s)) . Use CoSaMP to find support information of

an approximation 2s-sparse with respect to D
11:

12: T = Ω ∪ Γ . Merge support estimates
13: x̃ = DT (ADT )

†y . Solve least squares approximation
14: Γ = support(CoSaMP (D, x̃, s)) . Similar use of CoSaMP
15:

16: xi = DΓD
†
Γx̃ . Update signal approximation

17: r = y − Φxi . Update residual
18:

19: until no change in approximation or iteration count is sufficient
20: return xi
21: end procedure

50 100 150 200 2500
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Signal Space CoSaMP

Figure 1.3: For n = 256 and k = 8, this graph plots the average MSE over 10 trials, for
different values of m, when using the SS-CoSaMP algorithm to recover signals that are not
inherently sparse.
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Chapter 2

Partial Support Information &

One-Bit Compressed Sensing

2.1 Partial Support Information Motivation

In the field of high-dimensional signal acquisition it may be the case that there are many

signals of interest, and it could be that they are correlated to one another in some fashion.

Perhaps, domain-specific knowledge provides us with a good idea of the structure of our

desired signal. In either case, it is only prudent that computational efforts are tuned to

leverage the given prior knowledge. More explicitly, prior knowledge sometimes comes in the

form of a support estimate which may be used in accordance with a traditional CS algorithm.

Compressive Sensing techniques that make use of such support estimates can be particularly

useful for the task of acquiring multiple signals or for the acquisition of signals in wavelet or

frequency domains.

2.2 Partial Support Background Information

We have discussed the compressive sensing technique of `1-minimization before, now let us

consider the instance where some structure of the desired signal, x, is known. Say that we
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have some estimate T̃ ⊂ {1, 2, . . . , n} of the true support T of x. [MS14] [FMSY10] extend

the conventional `1-minimization approach to a weighted `1 approach that effectively incor-

porates such a support estimate. Recall that the standard linear program for `1 minimization

is:

minx‖x‖`1 : Φx = y.

As an incorporation of our estimate T̃ , now consider the following program:

minx

n∑
i=1

wi|xi| : y = Φx where wi =


c ∈ [0, 1] if wi ∈ T̃

0 if wi /∈ T̃

.

The idea here is the same, we are still minimizing the `1 norm of the recovered signal, however

we now impose a penalty for placing non-zero entries in locations not specified in the support

estimate T̃ . Entries of the weight vector w are determined by the confidence that we put in

each element of T̃ . Locations that are thought to be more likely to be non-zero are given a

value closer to zero, and thus they are penalized less for taking on more significant values.

In [FMSY10], Friedlander et al. show that if the accuracy of T̃ is greater than 50%, then

the weighted `1 program recovers the signal when the traditional `1 approach also succeeds;

in instances when the accuracy exceeds 50% and the weights are small enough, the weighted

`1 approach will succeed when `1 minimization fails.

Furthermore, [GMY13] presents a very similar approach where an `p-norm, for p ∈ (0, 1),

is instead minimized. The authors show that using such an `p-norm yields stronger recovery

guarantees than the traditional `1-norm. In addition they show that a weighted `p approach,

when support information is available, has stronger guarantees than the aforementioned

weighted-`1 approach. However, by using the `p norm the minimization program becomes

convex and thus requires expensive numerical methods to attain only a rough approximation.
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2.3 One-Bit Compressed Sensing Motivation

The goal of Compressed Sensing is to acquire a high-dimensional signal using as little memory

as possible, hence why we attempt to recover x with as few measurements as possible. We

have, up to this point, assumed each of our measurements yi to have an infinite bit-depth,

i.e. yi ∈ R. In applications, however, this is never the case, any measurement is quantized

to a finite bit-depth when it takes on a physical representation; for one example, most

modern computers represent real numbers with 64-bits. When constrained by the physical

world, there exists an inverse relationship between the number of measurements that may be

taken and each measurement’s bit-depth. The most extreme form of quantization involves

representing a measurement by only one-bit: its sign bit. One-Bit Compressed Sensing aims

to recover sparse signals from a set of measurements subjected to such quantization [BB08].

The reduced cost of one-bit measurements offers sincere hardware advantages and allows a

larger number of measurements to be taken at a lesser cost.

2.4 One-Bit Compressed Sensing Background Infor-

mation

Extending our framework from traditional CS, our available measurements y = Φx are now

quantized to only their sign bit. We now have access to ȳ := sign(y) where ȳi = 1 if yi > λ

and ȳi = 0 if yi < λ. We define λ to be our threshold for comparison, without a loss of

generality we will assume λ = 0. As a result of such extreme quantization we sacrifice the

amplitude of our original signal x and thus aim to recover an approximation x̃ that is within

a positive scalar multiple of x (see [KSW14] [BFN+14] for recent results which overcome this

and other obstacles). However, we are now afforded the ability to take m > n measurements;

under the traditional CS framework taking this many measurements would completely defeat

the initial motivation.
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In [PV11], Plan and Vershynin present a convex program that is a simple extension of

the traditional `1-minimization discussed above. The authors show that a solution to the

following program yields robust recovery of x:

minz‖z‖`1 such that: sign(Φz) = ȳ and ‖Φz‖`1 = c.

The first constraint of the above program ensures that we receive a solution who’s quantized

measurements are consistent with the ones that we are initially given. The second constraint

ensures that we do not attain the zero vector as a solution. We measure the accuracy of this

approach by solving the above program for a fixed number of measurements and measuring

the average MSE between the returned approximation and x
‖x‖2 over 100 trials. These results

are displayed in Figure 2.1. Similar to the traditional CS setting, the minimization of the

above program is expensive and similar recovery may be attained by instead using a greedy

algorithm.

One greedy algorithm for the reconstruction of sparse signals from one-bit measurements

is the Binary Iterative Hard Thresholding Algorithm (BIHT) [JLBB11], an extension of

the traditional Iterative Hard Thresholding Algorithm (IHT) [BD09]. BIHT is an iterative

and very intuitive algorithm. Assuming that our desired signal is k-sparse, the objective of

BIHT is to return a solution that is k-sparse and consistent with the given measurements.

At each iteration, BIHT computes and takes a step in the direction of the gradient to attain

a new approximation. This approximation is then thresholded to retain only the k largest

in magnitude entries. Finally, after we have a consistent approximation or enough iterations

have elapsed, we normalize and return our solution. Algorithm 3 presents a more detailed

explanation of BIHT.
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Algorithm 3 Binary Iterative Hard Thresholding (BIHT). Given: measurement matrix Φ,
one-bit measurements ȳ, assumed sparsity level k

1: procedure BIHT(Φ, ȳ, k)
2: x0 = 0 . Initialize trivial approximation of x
3: i = 0 . Let i denote our iteration count
4: τ = c . Set gradient-descent step-size to desired constant c
5: repeat
6: i = i+ 1 . Increment iteration count
7:

8: Γ = xi +
τ
2
Φ′(ȳ − sign(Φxi)) . Compute and move approximation in the

direction of the gradient
9:

10: xi+1 = prune(Γ, k) . Hard threshold all but the greatest k in magnitude entries
of Γ to 0

11:

12: xi = xi+1 . Continue algorithm with new approximation
13: until approximation is consistent with ȳ or iteration count is sufficient
14: return xi

‖xi‖2 . Project approximation onto unit `2 sphere
15: end procedure
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Figure 2.1: This graph compares the performance of BIHT and `1 minimization as One-Bit
Compressive Sensing algorithms. Fixing the length of our signal n = 256 and sparsity-level
k = 8, the recovery of our normalized desired signal as measured by MSE is plotted as a
function of m, the number of measurements. Notice that we consider m > 256 in the one-bit
context because of the significantly decreased cost per measurement.
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Chapter 3

Bridging the Gap: One-Bit

Compressed Sensing with Partial

Support Information

3.1 Motivation

We have seen how partial support information can be used in accordance with traditional

Compressive Sensing algorithms to attain more accurate and effective signal recovery tech-

niques. Additionally, we have seen that even in the presence of the most severe form of

quantization the Compressive Sensing framework is still extremely relevant via one-bit re-

covery algorithms. The motivation for incorporating prior support estimates is certainly not

lost in the one-bit setting. In this section we explore novel methods for extending BIHT to

make use of a partial support estimate. This work builds upon previous techniques in the

one-bit and prior information setting, developing novel methods for the important setting of

extreme quantization with partial knowledge of the signal structure. Such a framework gives

much needed results for many applications such as imaging under wavelet signal structures,

distributed sensing, and many other statistical and engineering applications.
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3.2 Findings & Results

Recall that Binary Iterative Hard Thresholding (BIHT) is a greedy, iterative algorithm meant

for the recovery of sparse signals from one-bit measurements. At each iteration the algorithm

takes a step in the direction of the gradient, hopefully honing in on an approximation that

is consistent with the initial binary measurements. More explicitly, at the (i+1)th iteration,

Γ := xi +
τ
2
Φ′(ȳ − sign(Φxi)) is computed. Then Γ is hard thresholded to retain only

the k-greatest in magnitude entries; this pruning step ensures that a k-sparse solution is

returned. In the interest of incorporating a prior support estimate T̃ of unknown accuracy,

it is intuitive to modify this pruning step.

3.2.1 Hard and Soft Thresholding

As a first, most basic approach, let us assume that our support estimate T̃ is completely

accurate, i.e. T̃ ≡ T . At the pruning step, no matter our result, we could simply set all

entries of Γ not in T̃ to zero. Instead of locating the k largest entries of Γ and setting all

others to zero, we would naively only retain the entries of T̃ . The entries of our new estimate

would be determined as follows:

x̃i =


Γi if i ∈ T̃

0 if i ∈ T̃C

Figure 3.1 shows the result of this approach; observe how powerful a perfect support estimate

can be via this bold hard-thresholding strategy. As a similar approach, we could instead try

soft-thresholding the entries of Γ not in T̃ . This would involve multiplying the entries of

Γ not in T̃ by some constant 0 < c < 1. Figure 3.1 shows that soft-thresholding with our

perfect support estimate performs identically to when we were hard-thresholding. This result

is not hard to understand: after j iterations the elements not in T̃ have been scaled down by

cj, as j increases cj ≈ 0 and we are basically hard-thresholding. Of course, knowing the full
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support beforehand is not likely, but these examples show that this information can seriously

expedite the recovery of x.
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Figure 3.1: This graph shows the performance of BIHT when our support estimate is the
exact support and we employ soft and hard thresholding. Here our signal length is n = 256,
sparsity level k = 8, and the MSE averaged over 100 trials is plotted for various value of m,
the number of measurements. At each iteration, entries of Γ that are not on our support
estimate are scaled down by c, when c = 0 the result is hard-thresholding.

3.2.2 4-Set Representation

In practice our support estimate will seldom equal the true support, and thus at a given

iteration we should consider both T̃ and the locations of the k greatest in magnitude entries

of Γ, denoted Ṫ , when updating our estimate. Let us assume that we know our support

estimate to be (ρ× 100)% accurate. Now, in the pruning step of BIHT the entries of Γ may

be thresholded according to 4 distinct possibilities:

x̃i = Γiwi where wi =



1 if Γi ∈ T̃ ∩ Ṫ

1 if Γi ∈ T̃ ∩ ṪC

1− ρ if Γi ∈ T̃C ∩ Ṫ

0 if Γi ∈ T̃C ∩ ṪC
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Additionally, we can use this 4-set framework when our support estimate includes erroneous

elements. Say that we have a support estimate that contains (ρ×k) correct elements but also

includes (1 − ρ) × k incorrect elements. Figure 3.2 shows BIHT’s performance when using

this 4-set representation to incorporate prior support information. In the case of no false

positives, when no elements of our support estimate are incorrect, we see that performance

of BIHT is not bad: as ρ increases the MSE decays. Similarly, with the inclusion of false

positives, when some elements of our support estimate are incorrect, performance is intuitive:

improvements are seen when there are more correct estimates than incorrect estimates, i.e.

ρ ≥ 0.5; for lesser values of ρ the support estimate consists mostly of incorrect elements and

performance is worse than standard BIHT. Do notice that under this 4-set representation a

k-sparse approximation is not necessarily returned. If T̃ ∩ Ṫ = ∅, then in fact a 2k-sparse

solution is returned, certainly this will result in a less accurate solution. Perhaps this is

the reason for the slower rate of error decay in comparison with standard BIHT, as seen in

Figure 3.2.
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(a) No False Positives
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Figure 3.2: This figure shows the performance of BIHT when the 4 set representation of a
partial support estimate is used. In (a) we know our estimate to contain ρk correct elements,
in (b) there are an additional (1 − ρ)k incorrect elements. Here MSE is averaged over 100
trials and plotted as a function of m, the number of measurements. The desired signal’s
length is set to n = 256 and our assumed sparsity level is k = 8.
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3.2.3 Supervised Weighting

As a means for incorporating a partial support estimate and returning a k-sparse solution, we

use the weighting framework for traditional `1-minimization as presented in [MS14]. Again,

say that we believe our estimate T̃ to be (ρ× 100)% accurate. Let us create a weight vector

w where

wi =


1 if i ∈ T̃

1− ρ if i ∈ T̃C
.

Then, at some iteration of BIHT, once we compute Γ let us multiply component-wise Γ

and w to attain ψ. Now we locate the support of ψ, denoted Tψ := supportk(ψ), and hard

threshold the elements of Γ ∈ TCψ , i.e. set them equal to zero. This approach is very similar

to BIHT when there is no prior support estimate, except that here Γ is instead pruned to

retain the k greatest in magnitude elements of Γ � w. A more thorough break down of

this procedure is presented in Algorithm 4. We see that this supervised weighting approach

outperforms the 4-set formulation when false positives are and are not included. Figure 3.3

shows that for every value of m, when some prior information exists, the weighting approach

performs the same as or better than standard BIHT.

This weighting framework for incorporating partial support information into BIHT (BIHT-

PSW) performs well in the current context. However, we are assuming that the value for

ρ is correct. This is a very bold assumption that, in practice, is not likely to hold. In the

weighting step, the value of ρ determines how diminished the magnitude of an entry off the

support estimate will be. If we are more confident in certain entries being non-zero, then

other entries will be scaled by a constant closer to zero. Empirical results, as displayed in

Figure 3.4, show that using the correct value of ρ is crucial to the incorporation of a partial

support estimate.
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Figure 3.3: This figure shows the performance of BIHT when using a weight vector as means
for incorporating the partial support estimate. In (a) we know our estimate to contain ρk
correct elements, in (b) there are an additional (1 − ρ)k incorrect elements. Here MSE is
averaged over 100 trials and plotted as a function of m the number of measurements. The
desired signal’s length is set to n = 256 and our assumed sparsity level is k = 8.
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Figure 3.4: Notice the performance gap between the red (•) line and the cyan (�) line, for
each the same partial support estimate with 90% accuracy was used. However, instead of
setting ρ = 0.9 the cyan line has a value of ρ = 0.1. The signal length here is fixed to n = 256,
the sparsity level k = 8, and the average MSE over 100 trials is plotted as a function of m,
the number of measurements.

3.2.4 Unsupervised Re-weighting

The performance of BIHT-PSW is promising, it appears to be a valid incorporation of prior

support information: when a portion of the support is known improvement in recovery is
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Algorithm 4 Binary Iterative Hard Thresholding with Partial Support Estimate Weighting
(BIHT-PSW). Given: measurement matrix Φ, one-bit measurements ȳ, assumed sparsity
level k, support estimate T̃ , accuracy of support estimate ρ

1: procedure BIHT-PSW(Φ, ȳ, k, T̃ , ρ)

2: wi =

{
(1− ρ) if i ∈ T̃C

1 if i ∈ T̃
. Construct weight vector from T̃ and ρ

3: x0 = 0 . Initialize trivial approximation of x
4: i = 0 . Let i denote our iteration count
5: τ = c . Set gradient-descent step-size to desired constant c
6: repeat
7: i = i+ 1 . Increment iteration count
8:

9: Γ = xi + τ
2
Φ′(ȳ − sign(Φxi)) . Compute and move approximation in the

direction of the gradient
10:

11: Ω = supportk(Γ� w) . Locate support of Γ multiplied component-wise with w

12: xi+1
j =

{
Γj if j ∈ Ω

0 if j ∈ ΩC
. Update approximation

13: xi = xi+1 . Continue algorithm with new approximation
14: until approximation is consistent with ȳ or iteration count is sufficient
15: return xi

‖xi‖2 . Project approximation onto unit `2 sphere
16: end procedure

observed for all values of m. We hypothesized that this result could be leveraged even when

no support estimate is available. If we take M measurements of x and use BIHT to attain

some estimate x̃, then we may use the support of x̃, denoted T̈ , as an estimate for T . Then,

we could use T̈ to run BIHT-PSW, iteratively, and get a more accurate approximation. This

is the general idea behind the BIHT Unsupervised Re-weighting (BIHT-URW) algorithm,

presented in Algorithm 5. The performance of BIHT-URW is displayed in Figure 3.5, we

observe no improvement from standard BIHT, perhaps due to the arbitrary selection of ρ.

As a benchmark for optimal performance of BIHT-URW we create a weight vector from the

desired signal x, and run the algorithm as normal. This results in a significant improvement

in performance, although in comparison with the performance of BIHT-PSW when the full

support is known the improvement is less than expected. Again, we believe this to be a

result of an incorrect value of ρ.
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Figure 3.5: This figure displays the performance of BIHT-URW for various re-weighting
iterations. It seems that extra iterations do nothing to find a better approximation. Figure
(a) has a sparsity level of k = 8, while figure (b) has a sparsity level of k = 20. In both
figures, the cyan (♦) line is a result of creating a weight vector out of the desired signal x.
For both, n = 256 and the average MSE over 100 trials is plotted as a function of m, the
number of measurements.

Algorithm 5 Binary Iterative Hard Thresholding with Unsupervised Re-weighting. Given:
measurement matrix Φ, one-bit measurements ȳ, assumed sparsity level k, number of re-
weighting iterations n

1: procedure BIHT-URW(Φ, ȳ, k, n)
2:

3: T̈ = supportk(BIHT (Φ, ȳ, k)) . Use BIHT to generate an initial support estimate
4:

5: Wi =

{
0 < λ < 1 if i ∈ T̈C

1 if i ∈ T̈
. Construct weight vector from T̈

6: i = 0 . Initialize iteration count
7: while i < n do
8: i = i+ 1 . Increment iteration count
9: x̃ = BIHT-PSW(Φ, ȳ, k, T̈ , λ) . Use BIHT-PSW with T̈ to attain approximation
10: T̈ = supportk(x̃) . Update support estimate
11:

12: Wi =

{
λ if i ∈ T̈C

1 if i ∈ T̈
. Update weight vector from updated T̈

13: end while
14: return x

‖x‖2 . Project approximation onto unit `2 sphere
15: end procedure
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Chapter 4

Conclusion & Future Work

4.1 Conclusion

This paper began by exploring traditional Compressive Sensing algorithms for high-dimensional

signal acquisition. We discussed the extension of these algorithms to incorporate prior infor-

mation about the signal, given as a prior support estimate. A framework for signal recovery

in the presence of extreme quantization was developed and one-bit Compressive Sensing algo-

rithms were introduced. Finally, novel algorithms were developed and studied to incorporate

support estimates into one-bit CS algorithms. Explicitly, the BIHT algorithm was extended

in a number of ways to leverage such an estimate. First, we assumed the support estimate

was fully accurate and experimented with hard and soft thresholding the other entries. Sec-

ond, we accounted for the supports identified by BIHT, and those given in our prior estimate,

through thresholding based on the 4-set framework. This 4-set framework did not return

a k-sparse solution and was improved upon via BIHT-PSW, where the support estimate is

converted into a weight vector that is then used in the pruning process. We attempted to

extend the success of BIHT-PSW into the unsupervised setting through BIHT-URW, which

aims to use consecutive iterations of BIHT and BIHT-PSW to generate support estimates

and attain a more accurate approximation than standard BIHT. The lack of improvement
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seen with BIHT-URW is believed to be a result of the sensitivity of BIHT-PSW to the choice

of ρ, though further investigation is certainly required.

4.2 Future Work

The field of One-Bit Compressive Sensing is rapidly emerging, hence the need for a strong

framework for incorporating partial support estimates. Continuing with the ideas explored

in this paper, it is only natural that we further test these approaches empirically and strive

to understand them theoretically. Specifically, rigorous guarantees for the recovery of x from

one-bit measurements when there exists prior information have yet to be established. Tech-

niques used for incorporating partial support information need to be further developed and

investigated in conjunction with one-bit algorithms other than BIHT. We suspect that in the

unsupervised setting, the performance of BIHT-URW may be improved by using heuristics

to estimate and assign the value of ρ dynamically. Additionally, considering probabilistic

incorporations of prior support estimates would certainly be worth while.
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Appendix A

MATLAB Code

A.1 `1 Minimization

function MSE = L1(m)
%This function uses CVX to perform ell-1 minimization. As a function of m,
%the norm squared error is returned

% dimension parameters
n = 256;
k = 8;

% generate our measurement matrix
A = randn(m,n);

% generate our signal: x
x = zeros(n,1);
tmp = randperm(n);
x(tmp(1:k)) = randn(k,1);

% gather our measurements
Y = A*x;

% use CVX to perform the minimization
cvx begin

variable approx(n)
minimize(norm(approx,1))
subject to
norm(Y - A*approx,2) <= 10ˆ(-10);

cvx end

MSE = norm(abs(approx - x))ˆ2;
approx

end

A.2 CoSaMP
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function MSE = coSamp(m)
% This function recovers a high dimensional signal x using the CoSaMP
% algorithm

% recovers the signal x from its measurements y using CoSaMP algorithm
n = 256;
s = 8;

% Construct measurement matrix A and desired s-sparse signal x
A = randn(m,n);
x = zeros(n,1);
tmp = randperm(n);
x(tmp(1:s)) = randn(s,1);

% initial measurements of x
y = A * x;

% initialize trivial approximation of x
a = zeros(n,1);

% Initially, set the samples to be updated to be our given measurements
v = y;

for i = 1:250

% update proxy signal
p = A' * v;

% locate and restrict our proxy to its 2s largest elements
[~, it] = sort(abs(p),'descend');
Omega = it(1:2*s);

% determine support of a, i.e. the location of the s largest elements of a
[~, it] = sort(abs(a), 'descend');
suppA = it(1:s);

% merge supports of proxy signal and current approximation
T = union(Omega, suppA);

% restrict measurement matrix to columns indicated by our set of supports
AT = A(:,T);

% now we find the pseudo inverse of these columns (existence provided by
% RIP) and apply this to the initial measurement
temp = pinv(AT) * y;

% construct our next approximation
b = zeros(n,1);
b(T) = temp;

% now we prune b to only its greatest s elements and store it as our
% current approximation
[~, it] = sort(abs(b), 'descend');
b(it(s+1:length(b))) = 0;
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% update approximation and current measurements
a = b;
v = y - A*a;

end

% return mean squared error
MSE = norm(abs(a-x))ˆ2;
end

A.3 Signal-Space CoSaMP

function MSE = sscoSamp(m)
% This function supports the SSCoSaMP: signal space compressive sampling
% matching pursuit algorithm, where CoSaMP is used as the projection
% approximation

% define sparsity level and length of signal
s = 8;
n = 256;

% generate our dictionary
d = 4*n;
D = ifft(eye(d))*d/sqrt(n);
D = D(1:n,:);

% generate our measurement matrix
A = randn(m,n);

% generate our s sparse coefficient vector alpha
alpha = zeros(d,1);
tmp = randi(n-s);
alpha(tmp:(tmp+s-1)) = randn(s,1);

% generate x = D * alpha
X = D*alpha;

% compute noiseless measurements of the form y = Ax, where x = D*alpha
y = A*X;

% initialize trivial residual, signal approximation, and support
r = y;
x = zeros(n,1);
t = [];

for i=1:50

% create proxy
v = A'*r;

% first identification step
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temp = coSamp(v, D, 2*s);
[~,it] = sort(abs(temp),'descend');
omega = it(1:2*s);

% merging
T = union(omega, t);

% least squares step
DT = D(:,T);
ex = DT*pinv(A*DT)*y;

% second coSamp step
temp = coSamp(ex, D, s);
[~, it] = sort(abs(temp),'descend');
t = it(1:s);

% update approximation
Dt = D(:,t);
x = (Dt*pinv(Dt))*ex;

% update residual
r = y - A*x;

end

% return absolute error
MSE = norm(abs(X-x))ˆ2;
end

A.4 One-Bit `1 Minimization

function MSE = onebit L1(m)
%This function uses CVX to perform ell-1 minimization in the one-bit
%setting. As a function of m, the mean squared error is returned

% dimension parameters
n = 256;
k = 8;

% generate our measurment matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
x(tmp(1:k)) = randn(k,1);
x = x/norm(x);

% gather our measurements and convert them to one-bit representation
y = sign(A*x);

% use CVX to perform the minimization
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signs = sign(y);
cvx begin quiet
variable approx(n)
minimize(norm(approx,1))
subject to
A*approx.*signs >= 0
signs'*A*approx >= m
cvx end

% normalize approximation and return MSE
approx = approx/norm(approx);
MSE = norm(abs(approx - x))ˆ2;
end

A.5 BIHT

function MSE = biht(m)
% This function performs one-bit compressive sensing via the Binary
% Iterative Hard Thresholding algorithm

% dimension parameters
n = 256;
k = 8;

% generate our measurement matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
x(tmp(1:k)) = randn(k,1);
x = x/norm(x);

% gather our measurements, convert to one-bit representation
y = A*x;
y = sign(y);

% keep iteration count, initialize trivial approx., set gradient-descent step-size
i = 0;
x0 = zeros(n,1);
tau = .001;
while (i < 1000)

i = i + 1;
temp = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = prune(temp,k);
if (norm(abs(x1-x0))) < 10ˆ(-16)

break
end
x0 = x1;

end

% normalize approximation and return MSE
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x0 = x0/norm(x0);
MSE = norm(x0 - x)ˆ2;
end

function xk = prune(x, k)
% This function takes a signal x and returns a vector xk with the k largest
% in magnitude entries of x not set to zero

[~, indices] = sort(abs(x),'descend');
largest = indices(1:k);
xk = zeros(length(x),1);
xk(largest) = x(largest);

end

A.6 BIHT-PS, Full Support Known, Hard and Soft

Thresholding

function mse = biht fullSupportInfo(m)
% This function perfomrs one-bit compressive sensing via the BIHT algorithm,
% this considers the instance when the full support is known, during the
% pruning step entries that are not in the support are scaled do4n by a
% constant factor (.5, .25,...)

% dimension parameters
n = 256;
k = 8;
% m = 100; %optional

% generate our measurment matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
support = tmp(1:k);
x(support) = randn(k,1);
x = x/norm(x);

% gather our measurements, convert to one-bit representation
y = A*x;
y = sign(y);

i = 0;
x0 = zeros(n,1);
tau = .001;
while (i < 1000)

i = i + 1;
temp = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = prune priorInfo2(temp, support);
if (norm(abs(x1-x0))) < 10ˆ(-16)
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break
end
x0 = x1;

end
x0 = x0/norm(x0);
mse = norm(x0 - x)ˆ2;
end

function xk = prune(x, support)
% This function sets all entries of x that are not in the support to c times
% their initial magnitude. Note that if c = 0, then this is hard-thresholding
% In this instance the support information is perfectly accurate.
c = 0.50;
xk = zeros(length(x),1);
for i = 1:length(x)

if ~any(i == support)
xk(i) = c * x(i);

else
xk(i) = x(i);

end
end

end

A.7 BIHT-PS, 4-Set Representation

function mse = biht 4Set(m)
% This function performs one-bit compressive sensing via the Binary
% Iterative Hard Thresholding algorithm when a patial support estimate
% is incorporated via the 4set representation

% dimension parameters
n = 256;
k = 8;

% generate our measurment matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
Support = tmp(1:k);
x(Support) = randn(k,1);
x = x/norm(x);

% gather our measurements, convert to one-bit representation
y = A*x;
y = sign(y);

% define partial support estimate:

% add correct estimates
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rho = 0.9;
numElem = floor(k*rho);
tmp = randperm(k);
suppEstimate = Support(tmp(1:numElem));

% add incorrect estimates
suppComp = setdiff(1:n, Support);
numElem = k - numElem;
tmp = randperm(length(suppComp));
suppEstimate = [suppEstimate suppComp(tmp(1:numElem))];

i = 0;
x0 = zeros(n,1);
tau = .001;
while (i < 1000)

i = i + 1;
residual = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = prune(residual, suppEstimate, k, rho);
if (norm(abs(x1-x0))) < 10ˆ(-16)

break
end
x0 = x1;

end
x0 = x0/norm(x0);
mse = norm(x0 - x)ˆ2;
end

function newX = prune(x, S, k, rho)
% This function handles the pruning step for BIHT-PS where a partial
% support estimate is incorporated via the 4 Set Representation

% Sort residual to determine k largest in magnitude entries, this set of supports is T
[~, indices] = sort(abs(x),'descend');
T = indices(1:k);

% handles the intersection TˆC and SˆC, multiplies by zero
newX = zeros(length(x),1);

% handles the intersection of T and S, multiplies by 1
TnS = intersect(T,S);
newX(TnS) = x(TnS);

% compute Sc and Tc
Sc = setdiff(1:length(x), S);
Tc = setdiff(1:length(x), x);

% handles T intersect Sc, multiplies by 1 - rho
TnSc = intersect(T,Sc);
newX(TnSc) = x(TnSc).*(1-rho);

% handles Tc intersect S, multiplies by one
SnTc = intersect(S, Tc);
newX(SnTc) = x(SnTc).*rho;
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end

A.8 BIHT-PS, Supervised Weighting

function mse = bihtPS Weighting(m)
% This function performs one-bit compressive sensing via the Binary
% Iterative Hard Thresholding algorithm, a prior support estimate is
% incorporated as a weight vector

% dimension parameters
n = 256;
k = 8;

% generate our measurment matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
Support = tmp(1:k);
x(Support) = randn(k,1);
x = x/norm(x);

% gather our measurements, convert to one-bit representation
y = A*x;
y = sign(y);

% define partial support estimate:
% (i) include correct estimates
rho = 0.5;
W = repmat(1-rho, n,1);
numElem = floor(k*rho);
tmp = randperm(k);
correctEstimates = Support(tmp(1:numElem));
W(correctEstimates) = ones(numElem,1);

% (ii) include incorrect estimates
suppComp = setdiff(1:n,Support);
numElem = k - numElem;
tmp = randperm(length(suppComp));
wrongEstimates = suppComp(tmp(1:numElem));
W(wrongEstimates) = ones(numElem,1);

% BIHT:
i = 0;
x0 = zeros(n,1);
tau = .001;
while (i < 1000)

i = i + 1;
residual = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = prune(residual, W, k);
if (norm(abs(x1-x0))) < 10ˆ(-16)
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break
end
x0 = x1;

end

% normalize approximation and return MSE
x0 = x0/norm(x0);
mse = norm(x0 - x)ˆ2;
end

function newX = prune(x, W, k)
% This function handles the prune step of BIHT-PS with Weightings. The
% vector x is multiplied componentwise with W, the resulting greatest k in
% magnitude entries are then not set to zero in the initial vector x

X = W.*x;
[~, indices] = sort(abs(X), 'descend');
largest = indices(1:k);
newX = zeros(length(x),1);
newX(largest) = x(largest);

end

A.9 BIHT, Unsupervised Re-weighting

function mse = BIHT URW(m)
% This function perfoms one-bit compressive sensing via the Binary
% Iterative Hard Thresholding Unsupervised Re-weighting algorithm.
% Standard BIHT is used to attain a support estimate which is then
% used in conjunction with BIHT-PSW

% dimension parameters
n = 256;
k = 8;

% generate our measurment matrix
A = randn(m,n);

% generate our normalized signal: x
x = zeros(n,1);
tmp = randperm(n);
Support = tmp(1:k);
x(Support) = randn(k,1);
x = x/norm(x);

% gather our measurements, convert to one-bit representation
y = A*x;
y = sign(y);

% let the number of iterations of the reweighting process be denoted by j
j = 5;
if j > 0
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% Initial run of biht, used to generate first set of partial support weights
[~, firstApprox] = biht(A, y, k, x);
W = createWeights(firstApprox);

for q = 1:j
x0 = Weighted BIHT(A, y, k, W, x);
W = createWeights(x0);

end
else

[~, x0] = biht(A, y, k, x);
end

% normalize approximation and return MSE
x0 = x0/norm(x0);
mse = norm(x0 - x)ˆ2;
end

% create weight vector out of a given signal
function W = createWeights(signal)

n = length(signal);
rho = 0.5;
W = repmat(1 - rho, n, 1);
W(find(signal ~= 0)) = 1;
end

% Weighted BIHT
function x0 = Weighted BIHT(A, y, k, W)

n = size(A,2);
x0 = zeros(n,1);
i = 0;
tau = .001;
while (i < 1000)

i = i + 1;
residual = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = Weighted BIHT prune(residual, W, k);
if (norm(abs(x1-x0))) < 10ˆ(-16)

break
end
x0 = x1;

end
x0 = x0/norm(x0);
end

% Weighted BIHT pruning
function newX = Weighted BIHT prune(x, W, k)

X = W.*x;
[~, indices] = sort(abs(X), 'descend');
largest = indices(1:k);
newX = zeros(length(X),1);
newX(largest) = x(largest);
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end

% Standard BIHT
function x0 = biht(A, y, k)
n = size(A, 2);
x0 = zeros(n,1);
i = 0;
tau = .001;
while (i < 1000)

i = i + 1;
residual = x0 + (tau/2)*A'*(y - sign(A*x0));
x1 = prune(residual,k);
if (norm(abs(x1-x0))) < 10ˆ(-16)

break
end
x0 = x1;

end
x0 = x0/norm(x0);
end

% Standard BIHT pruning
function xk = prune(x, k)

[~, indices] = sort(abs(x),'descend');
largest = indices(1:k);
xk = zeros(length(x),1);
xk(largest) = x(largest);
end

36


	Claremont Colleges
	Scholarship @ Claremont
	2015

	One-Bit Compressive Sensing with Partial Support Information
	Phillip North
	Recommended Citation


	Compressed Sensing
	Motivation
	Background Information

	Partial Support Information & One-Bit Compressed Sensing
	Partial Support Information Motivation
	Partial Support Background Information
	One-Bit Compressed Sensing Motivation
	One-Bit Compressed Sensing Background Information

	Bridging the Gap: One-Bit Compressed Sensing with Partial Support Information
	Motivation
	Findings & Results
	Hard and Soft Thresholding
	4-Set Representation
	Supervised Weighting
	Unsupervised Re-weighting


	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography
	MATLAB Code
	1 Minimization
	CoSaMP
	Signal-Space CoSaMP
	One-Bit 1 Minimization
	BIHT
	BIHT-PS, Full Support Known, Hard and Soft Thresholding
	BIHT-PS, 4-Set Representation
	BIHT-PS, Supervised Weighting
	BIHT, Unsupervised Re-weighting


