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ABSTRACT 

 

This paper studies the use of Monte Carlo simulation techniques in the field of 

econometrics, specifically statistical inference. First, I examine several estimators by 

deriving properties explicitly and generate their distributions through simulations. Here, 

simulations are used to illustrate and support the analytical results. Then, I look at test 

statistics where derivations are costly because of the sensitivity of their critical values to 

the data generating processes. Simulations here establish significance and necessity for 

drawing statistical inference. Overall, the paper examines when and how simulations are 

needed in studying econometric theories.  
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1. INTRODUCTION 

In most economic applications, researchers are interested in statistical inference, in other 

words, the ability to infer relationships in a population from a sample. In order to do so, it 

is crucial to understand to what extent parameters in a model vary across samples. For 

example, you may not be particularly interested in the sample behavior of specific 

election polls carried out by a variety of organizations. The actual objective is to draw 

general conclusions about the population—who the population will actually vote for—

from the election polls. Because it is impractical to ask all the potential voters, due to the 

time, cost, and unexpected circumstances, the election polls serve only as a practical 

starting point. 

Statistical theory has provided an answer to the issue of a sample variation 

through analytical derivations of sample distributions in many applications. Sample 

means or regression coefficients follow a normal distribution when certain population 

parameters, such as population variances, are known. This allows you to construct 

confidence intervals, which, in turn, provide a range of probable population values. Even 

in more complicated set-ups where such population parameters are unknown, some of the 

resulting distributions converge to a normal distribution as long as certain assumptions, 

for example regarding the sample size, are met. However, there are other circumstances 

where analytical derivations are impossible, at least with the mathematical knowledge 
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that is available to us currently. In these situations, the only way to determine sample 

variation comes from a simulation technique called Monte Carlo methods. 

The purpose of this paper is to investigate the various usages of Monte Carlo 

methods in drawing statistical inferences when mathematical derivations of sample 

distributions are both possible and unavailable. While it may seem at first that 

applications of Monte Carlo methods are not useful when analytical derivations are 

available, usage of Monte Carlo methods represents both a pedagogical device to explain 

sample variation as well as creating an illustration. 

I proceed as follows. First, I analyze how properties of estimators are derived 

analytically and also through simulations. I focus on Ordinary Least Squares (OLS) and 

several other estimators when there is single unknown population parameter, 

unbiasedness as a representative property of an estimator. Then, two representative 

statistics used to test characteristics of sample distributions are investigated to see how 

analytical derivations become computationally expensive and simulation becomes 

necessary. The importance of a test statistic is established as well through Monte Carlo 

simulations. A final section concludes. 
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2. BACKGROUND 

In this section, I motivate the use of Monte Carlo methods by introducing the importance 

of distributions in drawing statistical inferences. Then, I proceed with a brief history of 

Monte Carlo methods. 

 

2.1 Statistical Inference from a Distribution 

Jan Kmenta, one of the first highly successful authors in econometrics, categorizes 

statistics into two: “descriptive statistics and statistical inference”.
1
 While descriptive 

statistics try to come up with explanations for a phenomenon, inferential statistics provide 

tools to assess the reliability of the proposed explanations, such as how well the sample 

estimator represents the population parameters. For example, consider a model that 

generates “ideal” weights for females based on heights, which gives a convenient way to 

calculate the medication dosages for obese patients: 

                  (      )                  (            ) 

In this model, weight is estimated based on one’s height. Setting up the equation to study 

weight is a part of descriptive statistics. Here, the         is an estimate of the 

population parameter of the relationship between height and weight. 

An estimator is a rationale of how we will set up an equation to explain a variable 

of interest, which we call dependent variable. Using a different estimator may produce 

                                                
1
 Kmenta (1971) 
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different estimator distribution properties which may lead to contrasting judgments on 

statistical inferences.  Properties of an estimator distribution provide information about 

the sample distribution and how it changes with varying sample size, which include 

unbiasedness, efficiency, skewness, kurtosis, and asymptotic normality.  

● Unbiasedness: the estimator has the sampling distribution with a mean equal to 

the population parameter. 

● Efficiency: the estimator has the lowest variance among other estimators. 

● Skewness: measure of the asymmetry of the estimator distribution  

● Kurtosis: measure of the “peakedness” of the distribution. 

● Asymptotic Normality: distribution of the estimator becomes normal with an 

increase in sample size. 

To get a better understanding of the importance of distributions on statistical 

inference, take the simple regression model as an example. You might also be interested 

in interpreting certain sample statistics relative to the population parameters. If the 

sample statistic does not behave as expected from the model, how “unexpected” is it 

likely to be observed? Statistics such as the t-statistic are used to address the deviation of 

a sample statistic from the population parameter. Nevertheless, these numbers are hard to 

interpret because their implications vary significantly. It can be easily assumed that t-

statistics are distributed according to the standard t-distribution which approaches the 

normal distribution with increasing sample size. If one of the assumptions regarding the 

standard t-distribution fails, however, then the distribution changes, and critical values 

are no longer valid.   

In a regression model, the t-statistic is calculated as follows: 
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   ̂   
  ̂     

    ( ̂ )
 

Consider two models with different distributions for the t-statistic, one being normally 

distributed while the other is Cauchy distributed. If the calculated t-statistic was 1.96 in 

both situations, then we may draw wildly different inference about the population. A 

Cauchy distribution has thicker tails compared to a normal distribution, and hence 1.96 

standard deviations away from the mean implies lower significance. In fact, a t-statistic 

of 1.96 implies that there is only a 2% chance that such a sample statistic will be found in 

the model under a normal distribution; the same sample statistic implies that there is an 

almost 20% chance under a Cauchy distribution. To obtain statistical significance as high 

as you get from a t-statistic of 1.96 under a normal distribution, the t-statistic under a 

Cauchy distribution requires a t-statistic of 12.7.
2
  

So how do we figure out appropriate critical values for the models if distributions 

are unknown? For models that satisfy certain assumptions, distributions of statistics can 

be analytically derived; if not, numerical simulation allows us to draw statistical 

inference from the numbers generated. Because it is almost impossible to obtain 

sufficient data points from the real world to develop the distribution, simulation 

techniques have become a popular way to improve understanding of unknown 

distributions. 

 Analytical derivations of distributions are convenient because they can result in 

numerous applications that can be utilized in other models; however, they are often 

impractical to generate as most of the models in the real world do not share the 

                                                
2
 See Appendix A1; standard t-distribution has Cauchy distribution when degree of freedom equals 1, and 

normal distribution when degree of freedom equals infinity. 
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assumptions necessary for the derivations, given that we have enough information about 

the data to assess the assumptions. With the technology to run thousands of simulations 

within a second, numerically producing the distribution with huge number of data points 

became a more time-efficient and effective solution for statistical inference. 

 In addition, these estimators require several crucial assumptions to make the 

process of constructing the model possible. With slight modifications to the assumptions, 

the critical values become invalid. Even worse, not all test statistics are independent of 

the data generating processes. One key usage of simulations is to validate these 

assumptions for the models. Tests are constructed with hypotheses related to the 

assumptions, and with the resulting test statistics, the distribution of the test statistic 

allows us to determine the validity of the assumptions. By examining two test statistics –

the Durbin-Watson statistic and the Dickey-Fuller statistic – I study the degree to which 

they are sensitive to the specific data generating processes. 

 

2.2 History of Monte Carlo Simulation 

Although simulation methods using randomness were used by some mathematicians and 

scientists,
3
 the Monte Carlo method was first officially introduced in 1946 by Stanislaw 

Ulam when he was working as a physicist at Los Alamos Scientific Laboratory.
4
 As they 

were trying to calculate the density of nuclear particles which determine the energy, 

Ulam proposed a method using random experiments, which was ultimately introduced in 

the Journal of the American Statistical Association as the Monte Carlo method. 

                                                
3
 Harrison (2010) 

4
 Wikipedia, (“Monte Carlo Methods”, accessed on January 3

rd
, 2015 
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Metropolis and Ulam (1949) established the Monte Carlo method with its 

usefulness in solving physical problems. In its introduction, the study discusses how the 

method enables them to answer problems that cannot be solved through conventional 

deterministic approach. For problems that involve intermediary parts, the traditional 

approach of statistical or analytical mechanics cannot provide a practical solution. Similar 

problems in other fields of study are also presented, such as computing a volume of a 

region in a higher dimension, where one needs to count 10
n
 lattice points in a unit cube 

with points satisfying n number of inequalities. Instead, with laws of large numbers and 

asymptotic properties of proposed models, it becomes possible to avoid impractical 

procedures to solve the problems, and this is where the Monte Carlo method plays an 

important role.
5
 

With the advent of advanced computer technology, running Monte Carlo 

simulations on computers became much less expensive; it is also getting widely used in 

other fields of study including Econometrics. This paper further investigates Monte 

Carlo’s necessity and significance specifically in Econometrics by looking analytically at 

different estimation models and statistics.  

  

                                                
5
 Metropolis and Ulam (1949) 
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3. DERIVATION OF ESTIMATOR PROPERTIES 

The current section looks at properties of different estimators with both mathematical 

derivations and computer simulations. 

 

3.1 Assumptions 

For the estimation models throughout this paper, I construct regression equations with 

one regressor; for the autoregressive models, I construct regression equations with one 

lag of the dependent variable. So I assume the standard form of a regression equation to 

be                 and that for an autoregressive model to be                

   . 

I take Gauss-Markov assumptions to be valid in this paper unless stated otherwise. 

Gauss-Markov assumptions are imposed with the OLS estimator which follows in the 

next section – they include  ( )   ,    ( )    
 , and    (     )        , where   

is the error term. The first property insures that the mean of the error terms is zero; 

second the homoscedasticity in error; and third no autocorrelation in the residuals. The 

Durbin-Watson statistic which tests for autocorrelation is discussed in section 4. 

All simulations are replicated 10,000 times unless specified otherwise. The lines 

appearing on top of most histograms presented illustrate the normal density with the same 

mean and standard deviation as the data. The distribution of   ̂  is omitted since we are 
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interested in the slope rather than the intercept, and the distribution properties of the 

intercepts are described in the table in detail. t-statistics and Jarque-Bera test statistics are 

added. The t-statistic measures how far a sample statistic is away from the population 

parameter in units of standard errors; the Jarque-Bera test statistic measures how much 

the distribution differs from a normal distribution with the same mean and standard 

deviation as the data.
6
 

 

3.2 Estimation of a Mean 

Consider a situation where we need to estimate the population mean from a set of 

samples. For a population,          , we estimate the mean   from the equation 

derived from the sample mean    in            . 

 First consider the Ordinary Least Squares (OLS) estimator. The least squares 

estimation method minimizes the squared distance between the actual data point and the 

estimate, or the sum of squares of error terms, ∑  ̂
 
.  

To minimize squared sums of the error terms, we take the first order derivative 

with respect to   :  

∑  
   ∑(      )

  

            ∑(      ̂ )    

  ̂  ∑    

 ̂   
∑  
 
   ̅ 

                                                
6
 See Appendix A1 for standard t-table, and A2 for Jarque-Bera table. 
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Here, we can see that the sample mean is the least squares estimator of the population 

mean. 

 To test its unbiasedness, consider the expected value of  ̂ . 

 ( ̂ )   (
∑  
 
)   

 (∑      
 )

 
 

              
   
 
     

It is clear that we do not need to run a simulation to find out our estimator is unbiased. If 

we run Monte Carlo experiment to get the distribution of the estimator for pedagogical 

purposes, we get the following.
7
 

 

In addition to the least squares estimator, we can always take another estimator, 

such as a median. Result for the distribution of a median shows that the sample median is 

not an unbiased estimator of the population mean – the t-statistic is statistically 

significant to reject the null hypothesis of the median being equal to the mean.  

                                                
7
 For STATA codes of the simulations, see Appendix A3. 
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 True 

Mean 

Obs Mean StDev Skewness Kurtosis
8
 t-

statistic 

JB-

statistic 

mean 70 100 70.00 0.99 -0.04 2.96 0 0.030 

median 70 100 69.89 1.25 -0.04 3.05 9.12 0.032 

 

This leads to an introduction of median-unbiasedness. In general when bias is 

concerned, it is bias from the mean; bias can also be measured with respect to median. 

Median-unbiased estimators have different properties than mean-unbiased estimators, 

such as invariance under linear transformations.
9
 In this paper, I use the term bias with 

respect to the mean. 

 

3.3 Estimation of a Fixed (Non-Random) Independent Variable 

Now, assume that we have an explanatory variable for our dependent variable and we 

would like to test how well different estimators provide different sample distributions that 

estimate the population parameters.  

                                                
8
 A normal distribution has a kurtosis of 3. 

9
 Van der Vaart (1962) 
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First, I look at situations where    is a fixed in repeated sample. When we drop this 

assumption in the next section,    will hold different values for different replications. 

Under this condition, we look at three different estimators to see how we can derive the 

unbiasedness of the estimator distributions analytically and run simulations to replicate 

the results. The three estimators are least squares estimator, least absolute errors estimator, 

and arbitrary 2 points estimator. 

 

3.3.1 Ordinary Least Squares (OLS) estimator 

From ∑  
   ∑(            )

 , we solve for the first order condition with respect to 

   and   . 

 ∑  
 

   
    ∑(     ̂     ̂  )    

 ̂  
∑  
 
  
 ̂ ∑  
 

 

  ̅    ̂  ̅ 

 ∑  
 

   
    ∑(     ̂    ̂   )     

∑        ̂  ̅    ̂ ∑  
    

Since  ̂   ̅    ̂  ̅,  

∑       ( ̅    ̂  ̅) ̅    ̂ ∑  
    

 ̂ (∑  
     ̅ )  ∑        ̅ ̅ 
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 ̂   
∑        ̅ ̅

∑  
     ̅ 

  
∑(     ̅)(     ̅)

∑(     ̅) 
 

To prove its unbiasedness, we show that  ( ̂)    . 

 ( ̂ )    (
∑(     ̅)(     ̅)

∑(     ̅) 
) 

   (
∑(     ̅)   
∑(     ̅) 

)   (
 ̅ ∑(     ̅)

∑(     ̅) 
) 

   (
∑(     ̅) (            )

∑(     ̅) 
) 

   (
  (∑  

    ̅ )   ∑    )

∑(     ̅) 
) 

      (
∑    

∑(     ̅) 
 ) 

Here, note that    is a fixed in repeated sample, so 
∑  

∑(     ̅)
  is a constant. Therefore, 

 ( ̂ )      

Consequently,  

 ( ̂ )    ( ̅    ̂  ̅) 

   (       ̅     ̅     ̂  ̅) 

       (      ̂  ) ̅ 

     

The unbiased shape of the estimator distribution is illustrated from the following 

simulation results.  
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3.3.2 Least Absolute Deviation (LAD) Estimator  

Instead of minimizing ∑  
 , consider minimizing ∑|  |. This estimator is called a least 

absolute deviation (LAD) estimator. An LAD estimator exhibits asymptotic normality
10

 - 

with a bigger sample size, the distribution of the sample estimators approaches closer to 

normality. The analytical proof is not shown here. 

 It is interesting that in a fixed in repeated samples set-up, the LAD estimator is 

normal even for small sample size cases. As shown below using the Jarque-Bera test 

statistic, the distribution of the estimator does not become more normal with an increase 

in sample size. 

                                                
10

 Pollard (1991)  
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Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 42 42.26 12.09 -0.03 3.03 -2.15 0.021 

   100 2.3 2.30 0.07 0.04 3.03 1.45 0.024 
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3.3.3 Arbitrary 2 Points (A2P) Estimator  
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fixed 

Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   10 42 42.35 44.34 0.06 3.02 -0.78 0.0052 

 100 42 41.98 15.15 -0.007 2.91 0.13 0.033 

   10 2.3 2.30 0.25 -0.06 3.03 0.67 0.0056 

 100 2.3 2.30 0.09 0.009 2.91 0 0.035 
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Consider a line connecting two points (P and Q) chosen arbitrarily from a graph with 

explanatory variable on the x-axis and independent variable on the y-axis. We will call 

the estimator that takes this line as its regression equation an Arbitrary 2 Points Estimator, 

or an A2P estimator.  ̃  will be the intercept, and  ̃  will be the slope of the line. Then 

the A2P estimator is unbiased. 

    ̃    ̃        

 ̃   
          

      
 

  
( ̃      ̃           )   ( ̃      ̃           )

      
 

  ̃    
          
      

  

 ̃   
      
      

 

  
( ̃    ̃       )    ( ̃    ̃       )

      
 

   ̃    
 

      
(       ) 

For unbiasedness, we look at expected values of the two.  

 ( ̃ )    ( ̃    
          
      

) 

   ̃    (
    
      

)    (
    
      

) 

Since we assumed that there is no correlation between the regressor and the error term, 

they are independent. 
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 ( ̃ )    ̃    (  ) (
  

      
)    (  ) (

  
      

) 

   ̃  

 ( ̃ )    ( ̃    
       
      

) 

   ̃     (  ) (
 

      
)    (  ) (

 

      
) 

   ̃   

When we look at the simulation result, it shows an interesting shape. It has a huge 

variation, which makes sense considering that we are randomly choosing P and Q. So 

even though the mean actually seems to be significantly off compared to other estimators, 

the t-statistic is not significant, which shows that we cannot reject the null that the sample 

estimator is equal to the population parameter. Its distribution is also significantly 

different from the normal distribution, demonstrating a huge peak and flat tails. 
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A2P, 

fixed 

Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 42 46.59 868.61 1.84 78.78 -0.53 23984 

   100 2.3 2.28 4.89 -1.44 67.61 0.47 17428 

 

3.4 Estimation of a Random Independent Variable 

If our regressor is randomly generated,    will be different for each replication. This 

section confirms that the properties of the estimators do not change even if we draw    

randomly from a normal distribution.
11

 

 

3.4.1 OLS Estimator 

The same proof we used in the previous section applies here if we take expected values 

with the condition on the Xs. For an elaborated version of the proof, see Stock and 

Watson (2015).  

 

 

                                                
11

 There is a slight change with LAD estimator – it shows asymptotic normality with a random sample 

while it did not with a fixed sample. 
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OLS, 

random 

Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 42 42.04 12.42 0.015 2.96 -0.32 0.011 

   100 2.3 2.30 0.071 -0.011 2.96 0 0.010 

 

3.4.2 Least Absolute Errors Estimator 

Recall from the previous section with fixed in repeated samples – the LAD estimator 

showed normality for both small and big sample. In a random sample, however, we can 

see the asymptotic normality more clearly. The Jarque-Bera test statistic is smaller with 

100 observations than 10 observations, even though they are both too small to reject the 

null hypothesis of normality. 
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3.4.3 A2P Estimator 

Just as shown previously, A2P estimator has a big variation and kurtosis. With random 

samples, the variation and kurtosis rises even more outrageously. 
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 Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   10 42 41.46 55.12 -0.0005 3.73 0.99 0.22 

 100 42 42.19 15.38 0.03 3.01 -1.26 0.01 

   10 2.3 2.30 0.31 0.01 3.66 -1.12 0.18 

 100 2.3 2.30 0.088 -0.03 3.02 0 0.02 
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A2P, 

random 

Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 42 63.98 4216 14.22 843.33 -0.52 2,945,710 

   100 2.3 2.18 23 -11.49 722.25 0.51 2,157,701 

 

3.5 Estimation of Autoregressive (AR) Model 

An AR model is a model where the dependent variable can be predicted by its own past 

behaviors. So the explanatory variables are the lags of the dependent variable on the left 

hand side.  

                  

An AR model is different from the models we have been looking at so far because the 

explanatory variable and the independent variable are no longer independent. The 

regressor is no longer exogenous; the lagged variable is endogenous, or dependent, on the 

variable we are trying to study. 
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 I examine the AR model using the least squares estimator. In the next section, I 

look at two tests that help us understand the model more in depth – the Durbin-Watson 

test and the Dickey-Fuller test. 

 

3.5.1 Least Squares Estimator 

For the model                  , we consider the least squares estimator. With 100 

observations, the distribution of  ̂  is slightly skewed to the left. However, with 1000 

observations,  ̂  is much closer to normal with 20% of the skewness reported compared 

to the one with 100 observations. In addition, the kurtosis also decreases with a bigger 

sample size. This, along with the Jarque-Bera statistic, illustrates the asymptotic 

normality of  ̂  distribution in the AR(1) under the least squares method. 
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AR(1) Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 0 0.011 1.13 0.007 3.55 -0.97 1.27 

 1000 0 0.0003 0.32 -0.04 3.05 -0.10 0.36 

   100 0.7 0.67 0.078 -0.51 3.39 42.31 4.97 

 1000 0.7 0.70 0.022 -0.12 3.01 13.64 2.59 
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4. DISTRIBUTION OF TEST STATISTICS 

Suppose that we have a correctly-specified model to explain a given data set, then the 

natural next task is to draw statistical inferences about the population parameter. In order 

to do so, we often need to assume several characteristics about the population 

characteristics, such as homoscedasticity, no autocorrelation, and stationarity for time 

series models. Then, statistical tests are proposed to check the validity of various 

assumptions. Failing to meet these assumptions may completely alter the inference about 

the parameters of interest, which makes performing these tests and interpreting the 

statistics crucial. 

 The Durbin-Watson Test and Dickey-Fuller Test both compare a sample statistic 

calculated to a distribution of the statistic. Monte Carlo simulation makes a significant 

contribution since most test statistic distributions are not standard distributed, and have to 

be generated through numerical simulations for each data generating process (DGP) and 

observation size. Without a simulation technique, the distribution of the statistic often 

cannot be created and thus cannot be interpreted. In this section, I show how estimators 

become biased when certain assumptions fail to hold. The demonstration of the 

significance of having the right test statistic distribution to detect nonstationarity follows. 
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4.1 Durbin-Watson Test for Autocorrelation 

Suppose the error terms of a model are autocorrelated, meaning they are dependent on 

their lags. 

                

             

   has the usual properties. 

This will influence our inference judgment about the regression coefficients,    

and   , even though they remain unbiased. The Durbin-Watson test is used to detect if 

there is autocorrelation in the error terms; depending on the range the statistic falls into, 

we can detect if there is an autocorrelation present or not.
12

 

   
∑( ̂   ̂   )

  

∑  ̂ 
  

Durbin and Watson (1950, 1951, 1971) show that this statistic can be estimated by a 

simpler equation below.  

   (   ) 

Given that     under the null hypothesis, we can conclude errors are not 

correlated if    . Because the statistic is dependent on the DGP of   , getting critical 

values require extensive simulations. Durbin and Watson (1951) suggests the upper 

bound and lower bound for critical values that are less sensitive of   , and those values 

can be found in Durbin-Watson table. 

 Consider a model                . The Durbin-Watson distribution with no 

autocorrelation in errors and 100 observations looks like the following. 

                                                
12

 Durbin and Watson (1950) 
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 Now assume an autocorrelation              where      . Null hypothesis 

here is that there is no autocorrelation, or    , and p-values for the test are shown in 

the table. It represents the likelihood that the observed samples can be found in the 

population under the null hypothesis. The null hypothesis is more likely to be rejected if 

it has a lower p-value. There is 8.86% chance of finding such data if there is no 

autocorrelation with sample size of 100, and 0.00042% with 1000. Consequently, we 

reject the null of no autocorrelation.  
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If we have a higher autocorrelation,       , we have significantly lower p-

values to reject the null hypothesis of no autocorrelation, as desired. 
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4.1.1 Autocorrelation in AR model 

Let’s assume an AR(1) model for    with autocorrelation in the error term.  

                  

             

The following distribution illustrates the biasedness in the distribution of the estimator   .  

 

  = 

0.2 

Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 0.3 0.24 0.31 0.27 3.72 19.36 3.38 

   100 0.7 0.76 0.06 -0.60 3.56 -100 7.31 

 

The distribution of the statistic with no autocorrelation under an autoregressive 

model is as follows: the distribution of the Durbin-Watson statistic is no longer unbiased 
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  Obs Mean StDev Skewness Kurtosis p-value JB-statistic 

Null    100 2.00 0.20 -0.02 2.99  0.004 

Alt. 

  = 

0.2 

  100 1.63 0.20 0.09 2.95 0.09 0.14 

  1000 1.60 0.06 0.03 3.04 0.000004 0.28 

  100 0.40 0.12 0.77 3.86 0 13.00 

  1000 0.31 0.03 0.32 3.18 0 18.74 
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– its expected value is no longer 2. This means even if there is no autocorrelation, 

Durbin-Watson test will falsely report an autocorrelation.  

 

 

 

The Durbin-Watson statistic is no longer accurate because in autoregressive 

models, a variable depends on its own previous values which include the errors – so the 

Durbin-Watson statistic underestimates the actual autocorrelation in the errors. 

Consequently, Durbin (1970) constructed the Durbin h-statistic which corrects for this 

inaccuracy. 
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 Obs True Mean Mean StDev Skewness Kurtosis t-statistic JB-statistic 

   100 2 1.95 0.13 0.02 3.10 38.46 0.05 
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4.2 Dickey-Fuller Test for Nonstationarity 

4.2.1 Nonstationarity 

The majority of macroeconomic variables, such as GDP, are trended. A variable is 

stationary if all moments remain constant over time. Any data set with a trend is no 

longer stationary, meaning the average and variance would change depending on time.  

                  

With one lagged dependent variable, the regressor is stationary if |  |   ; it is 

not stationary if it has a unit root, or     . With more than one regressor, |  |    does 

indicate that it does not have a unit root, but it does not necessarily imply that it is 

stationary. Here, I just consider an autoregressive model with one regressor, so a unit root 

is equivalent to nonstationarity. I do not discuss the case when |  |   , where the 

variable exhibits an explosive behavior.  

To test for the presence of a unit root, the Dickey-Fuller test is used. A Dickey-

Fuller statistic does not have the usual t-distribution even in large samples. The 

distribution from simulations allows us to determine the critical values to accept or reject 

the null hypothesis, which is that there exists a unit root.  

The test regression for Dickey-Fuller is as follows: 

    (     )         

or 

              

and the equation for a Dickey-Fuller statistic is: 

    
 

  ( ̂)
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Augmented Dickey-Fuller (ADF) is a modified version of Dickey-Fuller that 

takes the possibility of an autocorrelation in the variable   . The test regression for 

Augmented Dickey-Fuller, therefore, is as follows: 

                 (                                 )      

where the second to the last element in parenthesis is the augmentation component, which 

removes the possible serial correlation. An information criterion, such as AIC and BIC, is 

used to select the appropriate value for  . 

 The statistic is usually negative, and more negative it is, the stronger the rejection 

becomes, and the more likely    will be stationary. Because under the null hypothesis the 

nonstationarity of the data violates the assumption we established earlier, the Dickey-

Fuller distribution does not resemble a standard t-distribution even though it is basically 

testing if   is zero. In fact, the distribution is highly sensitive to the sample size and the 

DGP. For instance, the distribution will change in a presence of a drift term or and the 

absence of an intercept.  

 Consider the model                   where    is 0.7 and 1 with initial 

condition     . The null hypothesis will be that a unit root exists:     . Then, we 

graph the distribution of Dickey-Fuller statistic when        to see if it is significantly 

off the distribution under the null hypothesis – if it rejects the null. 

 Distributions for the null hypotheses are different for each DGP in the alternative 

hypotheses since the Dickey-Fuller distributions are distinct. 
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Autocorrelation does not seem to affect the distribution significantly, which 

confirms that ADF controls the autocorrelation. With a larger sample size, ADF is much 

more likely to reject the null if there is no unit root. 
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Nonstationarity is observed very often in a macroeconomic setting, and it causes 

substantial problems for three reasons:
13

 the OLS estimator is no longer unbiased, and its 

coefficients become biased toward 0; the t-distribution used to draw statistical inference 

will no longer be normal; and a spurious regression might be observed where two 

independent variables may indicate false relationship due to the same trend. I simulate 

three cases to see how nonstationarity may lead us to draw inaccurate statistical inference. 

 

  

                                                
13

 Stock and Watson (2014) 
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 Obs         Mean StDev Skewness Kurtosis p-value JB statistic 

Null     100 0.3 1 0 -1.32 0.94 0.18 3.14  0.62 

    100 0.3 1 0.2 -1.39 0.92 0.19 3.26  0.88 

    1000 0.3 1 0.2 -0.75 0.99 -0.0056 3.06  0.16 

Alt.     100 0.3 0.7 0 -4.02 0.64 -0.35 3.28 0.0065 2.37 

    100 0.3 0.7 0.2 -3.88 0.65 -0.34 3.27 0.011 2.23 

    1000 0.3 0.7 0.2 -11.85 0.61 -0.09 3.07 0 1.55 
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4.2.2 OLS estimator no longer unbiased 

For a model                   where      and     , the distribution of the 

estimator  ̂  looks as follows. The distribution no longer exhibits the normal shape like it 

did before, and the sample estimator for the population parameter is no longer unbiased, 

which can be shown from the high t-statistics. 
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AR(1) Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

   100 0 0.05 3.59 0.011 3.94 -1.35 3.68 

 1000 0 0.01 1.18 -0.03 4.18 -0.64 58.42 

   100 1 0.95 0.04 -1.48 6.55 121 88.89 

 1000 1 0.99 0.0045 -1.55 7.40 120.8 1205 

 

4.2.3 t-statistics for Estimators No Longer Standard t-distributed 

In addition to the OLS estimator being biased, the standard statistical inference using t-

statistic is also problematic because its distribution is no longer centered at 0 and no 

longer t-distributed; increasing the sample size does not solve this problem. The t-

statistics of the t-distribution with nonstationarity from the standard t-distribution indicate 

how different the distribution is from the correct mean 0. 
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AR(1) Obs True 

Mean 

Mean StDev Skewness Kurtosis t-

statistic 

JB-

statistic 

t-dist. 100 0 -1.53 0.86 0.16 3.39 179.18 1.03 

t-dist. 1000 0 -1.54 0.84 0.26 3.46 182.46 20.56 

 

4.2.4 Spurious Regression 

Originally considered by Granger and Newbold (1974), the last, most common and 

obnoxious consequence of nonstationarity is a spurious regression. Consider two 

independent variables. First, only one of the two is stationary; second, neither are 

stationary.  

 For the first case, we have: 

                      

and 
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where    . Here,    and    are independent of each other. However, regression results 

show that they are correlated with the regression equation               ,       . 

Fortunately, if the sample size increases,    approaches zero. 

 For the second case, the problem gets worse: increasing the sample size does not 

solve the problem. Now we have: 

                     

and 

                      

Here both of them have a unit root. When both of the variables exhibit stochastic trends, 

the asymptotic normality that we found earlier disappears. So when there is indeed no 

relationship between the two variables, the regression results will show that there is a 

statistically significant relationship. 
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   Obs True 

Mean 

Mean StdDev Skewness Kurtosis t-

statistic 

JB 

statistic 

I(0), I(1) 10 0 0.55 0.18 1.48 10.27 -300.83 25.71 
 1000 0 0.0002 0.0003 0.01 2.96 -79.05 0.08 
I(1), I(1) 10 0 1.19 0.36 1.50 9.36 -331.02 20.64 
 1000 0 1.18 0.03 0.10 3.14 -3564 2.43 
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5. CONCLUSION 

This paper studies a variety of applications of Monte Carlo simulation techniques in 

drawing statistical inference in regression analysis. One of the goals using econometric 

models is to draw statistical inferences about population parameters. Because the 

judgments on statistical inference are sensitive to the distribution of the estimators and 

statistics, analyses of the distributions are crucial. As shown with the OLS estimator, 

when the distribution of a population is known, it is possible to derive analytically how 

well a model explains the population and describe samples based on the model. When the 

distribution of the population is unknown, however, or hard to derive, simulation 

techniques are applied to create samples and draw statistical inferences based on their 

distributions. This paper analyzes both cases where analytical derivations are valid and 

invalid, and by producing the simulations, it reestablishes the significance of 

understanding the distribution to build statistical inferences.  

 With the advent of cheaper and faster computing resources, Monte Carlo 

techniques have taken on an increasingly important role in statistical analysis as well as 

in other fields, especially in providing a different route to look at traditional questions in 

mathematics. However, caution should always prevail. For instance, it is tempting to 

apply the method in finance to perform projection analysis on stock markets. In fact, it 

has been proposed that the peculiarities of the market might reduce the reliability of using 
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Monte Carlo simulations.
14

  Although its applications for understanding econometric 

theories do not require such restraints, limitations of the simulations in studying 

econometric models and alternative solutions should be the topic of a future research 

related to the study of the technique in econometrics. 

  

                                                
14

 Crawshaw (2003) 
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6. APPENDIX 

A1. t-table
15

 

one-tail 0.5 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 

two-tails 1 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.002 0.001 

df            

1 0.00 1.00 1.38 1.96 3.08 6.31 12.71 31.82 63.66 318.31 636.62 

2 0.00 0.82 1.06 1.39 1.89 2.92 4.30 6.97 9.93 22.33 31.60 

3 0.00 0.77 0.98 1.25 1.64 2.35 3.18 4.54 5.84 10.22 12.92 

4 0.00 0.74 0.94 1.19 1.53 2.13 2.78 3.75 4.60 7.17 8.61 

5 0.00 0.73 0.92 1.16 1.48 2.02 2.57 3.37 4.03 5.89 6.87 

6 0.00 0.72 0.91 1.13 1.44 1.94 2.45 3.14 3.71 5.21 5.96 

7 0.00 0.71 0.90 1.12 1.42 1.90 2.37 3.00 3.50 4.79 5.41 

8 0.00 0.71 0.89 1.11 1.40 1.86 2.31 2.90 3.36 4.50 5.04 

9 0.00 0.70 0.88 1.10 1.38 1.83 2.26 2.82 3.25 4.30 4.78 

10 0.00 0.70 0.88 1.09 1.37 1.81 2.23 2.76 3.17 4.14 4.59 

11 0.00 0.70 0.88 1.09 1.36 1.80 2.20 2.72 3.11 4.03 4.44 

12 0.00 0.70 0.87 1.08 1.36 1.78 2.18 2.68 3.06 3.93 4.32 

13 0.00 0.69 0.87 1.08 1.35 1.77 2.16 2.65 3.01 3.85 4.22 

14 0.00 0.69 0.87 1.08 1.35 1.76 2.15 2.62 2.98 3.79 4.14 

15 0.00 0.69 0.87 1.07 1.34 1.75 2.13 2.60 2.95 3.73 4.07 

16 0.00 0.69 0.87 1.07 1.34 1.75 2.12 2.58 2.92 3.69 4.02 

17 0.00 0.69 0.86 1.07 1.33 1.74 2.11 2.57 2.90 3.65 3.97 

18 0.00 0.69 0.86 1.07 1.33 1.73 2.10 2.55 2.88 3.61 3.92 

19 0.00 0.69 0.86 1.07 1.33 1.73 2.09 2.54 2.86 3.58 3.88 

20 0.00 0.69 0.86 1.06 1.33 1.73 2.09 2.53 2.85 3.55 3.85 

21 0.00 0.69 0.86 1.06 1.32 1.72 2.08 2.52 2.83 3.53 3.82 

22 0.00 0.69 0.86 1.06 1.32 1.72 2.07 2.51 2.82 3.51 3.79 

23 0.00 0.69 0.86 1.06 1.32 1.71 2.07 2.50 2.81 3.49 3.77 

24 0.00 0.69 0.86 1.06 1.32 1.71 2.06 2.49 2.80 3.47 3.75 

25 0.00 0.68 0.86 1.06 1.32 1.71 2.06 2.49 2.79 3.45 3.73 

26 0.00 0.68 0.86 1.06 1.32 1.71 2.06 2.48 2.78 3.44 3.71 

27 0.00 0.68 0.86 1.06 1.31 1.70 2.05 2.47 2.77 3.42 3.69 

28 0.00 0.68 0.86 1.06 1.31 1.70 2.05 2.47 2.76 3.41 3.67 

29 0.00 0.68 0.85 1.06 1.31 1.70 2.05 2.46 2.76 3.40 3.66 

30 0.00 0.68 0.85 1.06 1.31 1.70 2.04 2.46 2.75 3.39 3.65 

40 0.00 0.68 0.85 1.05 1.30 1.68 2.02 2.42 2.70 3.31 3.55 

60 0.00 0.68 0.85 1.05 1.30 1.67 2.00 2.39 2.66 3.23 3.46 

80 0.00 0.68 0.85 1.04 1.29 1.66 1.99 2.37 2.64 3.20 3.42 

100 0.00 0.68 0.85 1.04 1.29 1.66 1.98 2.36 2.63 3.17 3.39 

1000 0.00 0.68 0.84 1.04 1.28 1.65 1.96 2.33 2.58 3.10 3.30 

z 0.00 0.67 0.84 1.04 1.28 1.65 1.96 2.33 2.58 3.09 3.29 

Confid. Level 0% 50% 60% 70% 80% 90% 95% 98% 99% 99.80% 99.90% 

                                                
15

 Reproduced standard t-table which can be found from variety of sources 



45 

 

A2. Jarque-Bera Test Distribution
16

 

One-tail 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001 

p-value 0.01 0.05 3.22 4.61 6.00 7.38 7.82 9.21 10.60 12.43 13.82 

 

 

A3. STATA Code for Algorithms 

A3.1. Estimation of a Mean 

# delimit ; 
set more off; 
clear all; 
 
program meantest, rclass; 
 drop _all; 
 set obs 100;  
 scalar et_sd = 10; 
 gen Y = 70+et_sd*invnormal(runiform()); 
 summarize Y; 
 return scalar mean = r(mean); 
end; 
  
meantest; 
 
simulate mean = r(mean),reps(10000) nodots seed(1000): meantest; 
histogram mean, fraction 
 title("Distribution of Mean under OLS") 
 name("graph1"); 

 

A3.2. Estimation of a Median 

# delimit ; 
set more off; 
clear all; 
 
program mediantest, rclass; 
 drop _all; 
 set obs 100;  
 scalar et_sd = 10; 
 gen Y = 70+et_sd*invnormal(runiform()); 
 summarize Y; 
 sort Y; 
 scalar k=r(N); 
 return scalar median = Y[k/2]; 
end; 
  
mediantest; 
simulate median = r(median),reps(10000) nodots seed(1000): mediantest; 

 

                                                
16

 Reproduced chi-squared distribution with two degrees of freedom, which can be found from variety of 

sources 
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A3.3. OLS Estimator 

# delimit ; 
set more off; 
clear all; 
 
program fixedx, rclass; 
 drop _all; 
 set obs 100;  
 range X 150 200;  //for random sample, use: gen X = 150+50*runiform() 
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar et_sd = 10;  
 gen Y = beta0hat + beta1hat*X + et_sd*invnormal(runiform()); 
 summarize Y; 
 reg Y X; 
 return scalar beta0hat = _b[_cons]; 
 return scalar beta1hat = _b[X]; 
end; 
 
fixedx; 
simulate beta0 = r(beta0hat) beta1 = r(beta1hat),reps(10000) nodots seed(1000): fixedx; 
 

A3.4. LAD Estimator 

# delimit ; 
set more off; 
clear all; 
 
program fixedLAD, rclass; 
 drop _all; 
 set obs 100;  
 range X 150 200;  //for random sample, use: gen X = 150+50*runiform() 
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar et_sd = 10;  
 gen Y = beta0hat + beta1hat*X + et_sd*invnormal(runiform()); 
 summarize Y; 
 qreg Y X; 
 return scalar beta0hat = _b[_cons]; 
 return scalar beta1hat = _b[X]; 
end; 
 
fixedLAD; 
simulate beta0 = r(beta0hat) beta1 = r(beta1hat),reps(10000) nodots seed(100): fixedLAD; 

 

A3.5. A2P Estimator 

# delimit ; 
set more off; 
clear all; 
 
program fixedA2P, rclass; 
 drop _all; 
 set obs 100;  
 range X 150 200;  //for random sample, use: gen X = 150+50*runiform() 
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar et_sd = 10;  
 gen Y = beta0hat + beta1hat*X + et_sd*invnormal(runiform()); 
 summarize Y; 
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 scalar i = floor(100*runiform()+1); 
 scalar j = floor(100*runiform()+1); 
 while i==j { 
  scalar i = floor(100*runiform()+1); 
  scalar j = floor(100*runiform()+1); 
  }; 
 
 return scalar beta0hat = (X[j]*Y[i] - X[i]*Y[j]) / (X[j] - X[i]); 
 return scalar beta1hat = (Y[j] - Y[i]) / (X[j] - X[i]); 
end; 
 
fixedA2P; 
simulate beta0 = r(beta0hat) beta1 = r(beta1hat),reps(10000) nodots seed(100): fixedA2P; 

 

A3.6. Estimation of an AR(1) model 

# delimit ; 
set more off; 
clear all; 
 
program arls, rclass; 
 drop _all; 
 set obs 100;  
 scalar beta0hat = 0;   
 scalar beta1hat = 0.7; 
 scalar et_sd = 10;  
 gen t=_n; 
 tsset t; 
 gen y`i' = 0 if _n==1;   //adjust the initial condition 
 replace y`i' = beta0hat + beta1hat*y`i'[_n-1] + et_sd*invnormal(runiform()) if _n > 1; 
 
 reg y L.y; 
 return scalar beta0hat = _b[_cons]; 
 return scalar beta1hat = _b[L.y]; 
end; 
 
arls; 
simulate beta0 = r(beta0hat) beta1 = r(beta1hat),reps(10000) nodots seed(1000): arls; 

 

A3.7. Durbin-Watson Statistics 

# delimit ; 
set more off; 
clear all; 
 
program dw_ac, rclass; 
 drop _all; 
 set obs 100;  
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar rho = 0.85;  //adjust the correlation coefficient 
 scalar vt_sd = 3; 
 gen t=_n; 
 tsset t; 
 gen X = invnormal(runiform()); //X generated from a normal distribution 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
 gen Y = beta0hat + beta1hat*X + u`i'; 
 summarize Y; 
 reg Y X; 
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 estat dwatson; 
 return scalar d = r(dw); 
end; 
 
 
dw_ac; 
simulate d = r(d), reps(10000) nodots seed(1000): dw_ac; 

 

A3.8. Durbin-Watson Statistics for AR(1) model 

# delimit ; 
set more off; 
clear all; 
 
program arac_dw, rclass; 
 drop _all; 
 set obs 100;  
 scalar beta0hat = 0.3;    //adjust the intercept 
 scalar beta1hat = 0.7; 
 scalar rho = 0;  //adjust the correlation coefficient 
 scalar vt_sd = 3;  
 gen t=_n; 
 tsset t; 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
  
 gen y`i' = 0 if _n==1; 
 replace y`i' = beta0hat + beta1hat*y`i'[_n-1] + u`i' if _n > 1; 
 
 reg y L.y; 
 estat dwatson; 
 return scalar d = r(dw); 
end; 
 
arac_dw; 
simulate d = r(d), reps(10000) nodots seed(1000): arac_dw; 

 

A3.9. p-value for Durbin-Watson Statistics 

# delimit ; 
set more off; 
clear all; 
 
program dw_p, rclass; 
 drop _all; 
 set obs 100;  
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar rho = 0;   //null hypothesis : no autocorrelation 
 scalar vt_sd = 3; 
 gen t=_n; 
 tsset t; 
 gen X = invnormal(runiform()); 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
 gen Y = beta0hat + beta1hat*X + u`i'; 
 summarize Y; 
 reg Y X; 
 estat dwatson; 
 return scalar null_dw = r(dw); 
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 drop _all; 
 set obs 100;  
 scalar beta0hat = 42; 
 scalar beta1hat = 2.3; 
 scalar rho = 0.2;  //adjust the correlation coefficient 
 scalar vt_sd = 3; 
 gen t=_n; 
 tsset t; 
 gen X = invnormal(runiform()); 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
 gen Y = beta0hat + beta1hat*X + u`i'; 
 summarize Y; 
 reg Y X; 
 estat dwatson; 
 
 return scalar alt_dw = r(dw); 
end; 
 
dw_p; 
simulate null_dw = r(null_dw) alt_dw = r(alt_dw) , reps(10000) nodots seed(1000): dw_p; 
 
scalar p=0; 
forvalues i=1/10000 {; 
 quietly count if alt_dw[`i'] > null_dw; 
 scalar p = p + r(N); 
}; 
 
scalar pvalue=p/10000^2; 
di pvalue; 

 

A3.10. p-value for Dickey-Fuller Statistics 

# delimit ; 
set more off; 
clear all; 
 
program df_p, rclass; 
 drop _all; 
 set obs 100;  
 scalar beta0hat = 0.3;    //adjust the intercept 
 scalar beta1hat = 1;  //null hypothesis : nonstationary 
 scalar rho = 0;   //adjust the correlation coefficient 
 scalar vt_sd = 3;  
 gen t=_n; 
 tsset t; 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
  
 gen y`i' = 0 if _n==1; 
 replace y`i' = beta0hat + beta1hat*y`i'[_n-1] + u`i' if _n > 1; 
 dfuller y, lags(1); 
 return scalar null_df = r(Zt); 
  
 drop _all; 
 set obs 100;  
 scalar beta0hat = 0.3;    //adjust the intercept; consistent with the null 
 scalar beta1hat = 0.7;  
 scalar rho = 0;   //adjust the correlation coeff; consistent with the null 
 scalar vt_sd = 3;  
 gen t=_n; 
 tsset t; 
 gen u`i' = 0 if _n==1; 
 replace u`i' = rho * u`i'[_n-1] + vt_sd * invnormal(runiform()) if _n > 1; 
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 gen y`i' = 0 if _n==1;  //adjust the initial condition 
 replace y`i' = beta0hat + beta1hat*y`i'[_n-1] + u`i' if _n > 1; 
 
 dfuller y, lags(1); 
 
 return scalar alt_df = r(Zt); 
end; 
 
df_p; 
simulate null_df = r(null_df) alt_df = r(alt_df) , reps(10000) nodots seed(1000): df_p; 
 
scalar p=0; 
forvalues i=1/10000 {; 
 quietly count if alt_df[`i'] > null_df; 
 scalar p = p + r(N); 
}; 
 
scalar pvalue=p/10000^2; 
di pvalue; 

 

A3.11. Spurious Regression  

# delimit ; 
set more off; 
clear all; 
 
program spurious2, rclass; 
 drop _all; 
 set obs 10;  
 scalar beta0hat1 = 2;   
 scalar beta0hat2 = 1.7;   
 scalar beta1hat1 = 0.8;  //I(0); make it 1 to make it nonstationary 
 scalar beta1hat2 = 1;  //I(1) 
 scalar et_sd1 = 0.8; 
 scalar et_sd2 = 1.2;  
 gen t=_n; 
 tsset t; 
 gen y1`i' = 0 if _n==1; 
 replace y1`i' = beta0hat1 + beta1hat1*y1`i'[_n-1] + et_sd1*invnormal(runiform()) if _n > 1; 
 gen y2`i' = 0 if _n==1; 
 replace y2`i' = beta0hat2 + beta1hat2*y2`i'[_n-1] + et_sd2*invnormal(runiform()) if _n > 1; 
  
 reg y1 y2; 
 return scalar beta1 = _b[y2]; 
end; 
 
spurious2; 
simulate beta1 = r(beta1),reps(10000) nodots seed(1000): spurious2; 
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