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Book Review: Love and Math: The Heart of Hidden

Reality by Edward Frenkel

Emily R. Grosholz

Department of Philosophy, The Pennsylvania State University, University Park PA, USA
erg2@psu.edu

Synopsis

This review traces Edward Frenkel’s attempt to convey the excitement of math-
ematical research to a popular audience. In his expositions and explanations of
his own research program, he shows how processes of mathematical discovery de-
pend on the juxtaposition of various iconic and symbolic modes of representation
as disparate fields of research (in this case algebraic number theory and complex
analysis) are brought together in the service of problem solving. And he shows
how crucial the encouragement of various older mathematicians was to his own
development, as they guided his choice of problems, and served as inspiration.
Along the way he gives an accessible description of the Langlands program.

Love and Math: The Heart of Hidden Reality. By Edward
Frenkel, Basic Books, 2014. (ISBN-10: 0465050743. ISBN-13:
9780475050741. 304 pages.)

Nobody seemed to think much about the deeper correspondences between
mathematics and the processes of nature before about 1600, when Kepler,
Galileo and Descartes launched the balloon and Huygens, Leibniz, Newton,
the Bernoullis and Euler attached a gondola to it so that we humans could be
mathematical dreamers of all we survey, floating between earth and heaven.
About fifteen years ago, I had to re-learn group theory and discover repre-
sentation theory in order to write about molecules, and a bit later I read and
taught Bas van Fraassen’s Laws and Symmetry (Oxford University Press,
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1990). So the best answer I now know to the question just posed is not only
that discrete things (like apples) can be counted, and continua (like farmer’s
fields) can be measured. Such correspondences get arithmetic and geometry
going, but that’s only the beginning. Another key insight is also that things
and systems–both natural and formal–have symmetries and (since period-
icity is symmetry in time) so do natural processes! Carbon molecules as
they throb, snowflakes as they form, and solar systems as they rotate ex-
hibit symmetries and periodicities that are key to understanding what they
are and how they work. Moreover, symmetry and periodicity are a kind of
generalization of identity; they are the hallmark of stable existence.

What!?! You might rightly ask. Here is a short explanation. If you take
a square, and rotate it 90 degrees without moving its center-point, there it
is again: just the same. If you rotate it 180 degrees, or 270 degrees or back
around 360 degrees, there it is again, just the same. These four rotational
transformations of the square return it to a state indiscernible from the orig-
inal state; and this mathematical “identity” is a kind of abstract schema
(when scientists build the conceptual models that mediate between mathe-
matics and the real world) for the stability and self-sameness and even the
existence of things: carbon atoms, snowflakes and solar systems. Existence,
in one important sense, is invariance under transformation. And, of course,
the four rotations of the square also form a finite group.

The definition of an abstract group is deceptively simple, but it was the
catalyst for a great number of 19th and early 20th century mathematical
developments. Arithmetic is reorganized by the notion of congruence group,
which then precipitates (with some help from topology) the theory of p-
adic numbers; algebra is reorganized by Galois groups, geometry by Klein’s
symmetry groups, and analysis and topology by Lie groups. Some groups
are finite, but some are infinite: the group of rotational symmetries of the
circle, for example, is infinite. Fix a circle at its center: no matter what
angle you rotate it through, there it is again, indiscernibly the same, and
of course there are an infinite number of possible angles between 0 and 360
degrees. Some groups are discrete and some are continuous; in fact, you
can treat a Lie group like a (smooth) differentiable manifold, the canonical
object of algebraic topology. And with a bit of vector space magic, any group
of symmetries can be nicely mapped to a group of matrices, which make
calculation if not a breeze at least tractable. This is the central strategy of
representation theory, and yet another example of the magic of mathematics.
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Even if you already love mathematics, you should read the book I am
reviewing here, Love and Math. Edward Frenkel, when he was a school-
boy in the old Russian city of Kolomna, two hours by train from Moscow,
didn’t love mathematics. He was however fascinated by the strange world of
quantum mechanics. At one crucial juncture a friend of his parents (Evgeny
Evgenievich, a mathematics professor in Kolomna’s one small college), ex-
plained to him that what underlay the discovery of the quark was group
theory, handed him three books about symmetry groups, p-adic numbers
and topology, and invited him to come over once a week and ask questions.
Frenkel writes, “I was instantly converted.”

That observation is the last sentence of Chapter 1. The first page of Chap-
ter 2, “The Essence of Symmetry,” has attractive photographs of a snowflake
and a butterfly; two pages later the square I was just talking about shows up,
existent, “invariant under transformation,” that is, under the group of four
rotational symmetries, right there on page 17! One especially nice feature of
this book is the illustrations that dramatize and personify the step-by-step,
straightforward exposition of the mathematical ideas that Frenkel went on
to fall in love with. We often think of mathematics as a collection of proofs,
written out in sober prose, each result deduced from a set of already estab-
lished principles. When you learn how to prove a theorem in geometry class
in high school, or how to derive one proposition from a given set of propo-
sitions while studying predicate logic in college, it’s mildly exciting. But
the overall framework is discouraging: your “discovery” is just a matter of
calculation and a bit of clever insight.

Real mathematics, the program of mathematical research that Frenkel
was swept away by–on waves that carried him to Moscow, Harvard, Prince-
ton and Berkeley–isn’t like that, as working mathematicians know. There
are two important features of mathematics that he conveys very well in this
book, which make it erotic in both of Plato’s senses (go re-read the Phae-
drus), and which twentieth century philosophy of mathematics as well as a
great deal of classroom instruction fail to register. The first is the importance
of iconic modes of representation (images, graphs, tables) to mathematical
understanding, and more generally the rich superpositions and juxtaposi-
tions that occur when different modes of representation work in tandem.
The second is the importance of narrative, the history of mathematics, sto-
ries about enlightenment: how problems are solved and new ideas born in
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individuals and clumps of mathematicians, sometimes located in the same
city and sometimes widely dispersed. New solutions to problems typically
go far beyond the mathematical context that gave rise to them, revising the
meaning of earlier results and adding new concepts, methods and procedures.
Mathematical problem-solving is ampliative, and for that very reason can’t
be fitted into the neat packaging of deduction from already available rules.

So if you look at Chapter 5, you will see strange but illuminating dia-
grams of braid groups, subjects of the first important mathematical puzzle
that Frenkel solved while still at university in Moscow. He was studying at
the Gubkin Institute of Oil and Gas, which received talented mathematics
students who had been denied entry during the years that Moscow State
University was implementing a strict anti-Semitic policy. (The story of how
he “failed” the entrance exam is very dramatic.) One of his professors at the
Gubkin Institute, noting his exceptional talent, put him in touch with the
distinguished mathematician Dmitry Fuchs, who gave him the problem; after
he solved it, it was published by Israel Gelfand in his mathematics journal.
Gelfand was one of the greatest mathematicians of the twentieth century–
he was awarded the Kyoto Prize–and was also sidelined by Moscow State
University; like Fuchs, he emigrated a few years later to the United States.

The next problem that Frenkel worked on with Fuchs launched him into
the Langlands Program. Andrew Wiles’ 1995 proof of Fermat’s Last The-
orem is one of the harbingers of this important research program, but a
clear, general, not-too-technical account of that program is not easy to find.
Frenkel does an exceptional job of explaining some of the basic ideas in ac-
cessible terms in Chapters 7, 8 and 9. In those chapters and the copious,
helpful notes that accompany his explanations, you will find a right triangle,
various number series, generating functions, a lovely symmetry group on the
disc, three famous Riemann surfaces (the sphere, the torus, and the Danish
pastry–okay, that’s not its technical name), a number line, a complex num-
ber represented as a point on the plane, and two more tori (donuts) with
paths, as well as a chart of permutations, a table, lots more equations, and
various “paths” to show what a fundamental group on a Riemann surface
is. The mix of representations, so essential to Frenkel’s explanations, is like
Wallace Stevens’ “Thirteen Ways of Looking at a Blackbird,” which is in its
own way explanatory though the truths are different. (“I do not know which
to prefer.../ The blackbird whistling / Or just after.”)
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But what is the Langlands Program? One way to understand how and
why the solution of problems in mathematics adds content is to recall the
ancient method of analysis. (The philosopher Carlo Cellucci pursues this rec-
ollection especially well in his recent book, Rethinking Logic (Springer 2013).)
In order to solve a problem, find another problem–so far unsolved–and show
that if it were solved, it would guarantee the solution of the original problem.
Reduce one problem to another, even more difficult, problem! This is just
what happened with Fermat’s Last Theorem, which states that the equation
xn +yn = zn, where xyz 6= 0, has no integer solutions when n is greater than
or equal to 3. In 1990, Ken Ribet proved that its truth would follow from
the truth of the Taniyama-Shimura-Weil Modularity Conjecture; or rather, if
certain counter-examples to Fermat’s Last Theorem existed, they would also
contradict the Modularity Conjecture, so the truth of the latter would ensure
the non-existence of those counter-examples. What Wiles actually proved in
his famous hundred-page proof (Annals of Mathematics (1995), 443-551) was
the truth of a version of the Modularity Conjecture: a “semi-stable” elliptic
curve always corresponds in a precise way to a certain kind of modular form.
And that conjecture, in turn, follows from the Langlands correspondence.
But what is that? On even the simplest but still accurate account, it in-
volves a fourfold correspondence: the Langlands program involves both the
local and the global, as well as number theory and the study of automorphic
representations. So there are two things to explain, the interplay of the local
and the global, and the interplay of algebraic number theory (where elliptic
curves live) and complex analysis (where modular forms live).

Apropos the local and the global: late nineteenth and early twentieth cen-
tury mathematics are transformed by topology. Let’s go back to the sphere
(and leave aside the pastry), a canonical Riemann surface that nicely illus-
trates the novel perspective that topology offers. The important insight is
that locally a sphere (as every topologist knows) is very like the plane: if you
choose any point on a sphere and look at a sufficiently small neighborhood
around that point, you find that it is almost flat. But of course globally a
sphere is very different from the plane. In topology we think of the sphere as
a certain well-constructed collection of small neighborhoods, so that if you
specify the neighborhoods and their mutual relations carefully enough, you
can retrieve important global features of the sphere (or any other Riemann
manifold) on the basis of the local information you’ve collected. This ap-
proach produces important insights. First, it gives rise to a novel and much
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more abstract concept of distance. The ordinary conception of distance leads
to the “completion” of the rationals Q by the real numbers R. But another
conception, which is based on group theory and the concept of congruence,
leads to a whole family of completions of Q, the p-adic numbers, one such
field for each prime number p. Second, topology introduces a subtle under-
standing of the interplay between the local and the global in mathematics.
In general it is quite difficult to assemble local results and derive a global
result, but very rewarding when you succeed. Mid-twentieth century math-
ematicians, trying to exploit this insight in number theory, introduced the
notions of adèle rings and idèle groups to formulate “class field theory,” in a
way that clearly exhibits and exploits local-global relations. Third, it leads
mathematicians to think of almost anything as a “space,” even a collection
of discrete things or a highly infinitary collection. The rational numbers
(and its finite extensions, algebraic number fields) are called global fields, as
are function fields in one variable over finite fields; the reals R, the complex
numbers C, and the p-adic number systems are called local fields, because of
their topological properties.

If you carefully adjoin i =
√
−1 to the integers Z you get the Gaussian

integers, and if you carefully adjoin i to the rational numbers Q, you get my
favorite algebraic number field, Q[i]. To construct an algebraic number field,
you start with Q and then adjoin a finite set of elements not in Q, like i or√

2 or
√
−3, making sure that the new elements (like n + im, for example)

obey the usual algebraic rules so that you can still call it a field; within this
new system, you then try to find the analogue of units, integers, and prime
numbers. There are a lot of these new fields, they are quite mysterious,
and number theorists love to investigate them because they explain many of
the odd properties of ordinary sheepish integers and the polynomials that
organize them like benevolent sheepdogs. And Galois plays the role of shep-
herd, historically, because if you look at the automorphisms of an algebraic
number field which map Q to itself but permute the adjoined elements, they
form a Galois group! In Chapter 7, Frenkel explains that the Galois group
is precisely the symmetry group of an algebraic number field–since formal
systems, like snowflakes, have symmetries. You can see the possibilities for
more problem reduction here, referring problems about the natural numbers
to problems about these new fields.

Just as you can do calculus on the real line R (if you’re studying the
derivatives or integrals of curves) or the Euclidean plane R2 (if you’re study-
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ing surfaces), you can do it on the complex numbers C, which Gauss realized
was also beautifully represented by the plane. The great thing about complex
analysis is that, while it is rather easy for a function of one variable (a curve)
to be differentiable at a point in real analysis, because you only have to come
in from two directions, it is really hard in complex analysis, because you have
to come in from every angle. This means that any analytic function rising
to that standard is so well-behaved that it has angelic properties: complex
analysis is the Paradiso of ordinary calculus.

Now you only need to keep in mind that elliptic curves live in algebraic
number theory and modular forms live in complex analysis. In Chapter
8, Frenkel shows in remarkably precise and vivid terms one version of the
correspondence between them, the version pertinent to Fermat’s Last The-
orem. First he explains how, if you begin with N, the natural numbers
0, 1, 2, 3, 4, 5, 6, . . . and impose an p-fold periodicity on it (where p is a prime
number), you get a finite number field, Fp. For example, if we say that any
two natural numbers are equivalent if their difference is a multiple of five
(that is, we mod out base 5), we get five infinite equivalence classes of num-
ber which we can label 0, 1, 2, 3 and 4. When addition and multiplication of
these classes are suitably defined, with 0 as the additive identity and 1 as the
multiplicative identity, because 5 is a prime number, the resulting structure
is not just a ring but indeed a field.

Following Frenkel, we examine the behavior of an important kind of alge-
braic equation in two variables, our long-awaited elliptic curve. For instance,
consider

y2 + y = x3 − x. (1)

We can look for solutions to this equation mod p, that is, we can ask how
many solutions it will have in a given finite number field Fp. Call the numbers
which (with a bit of legerdemain) record these totings up, ap for each p.
Just as, quite amazingly, there is an “effective formula” for generating the
Fibonacci numbers, so there is a generating function (discovered by Martin
Eichler in 1954) that produces an infinite sum

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 − 2q12 + 4q13 + . . .

which is equally amazing. If you inspect the sequence of its coefficients bn you
discover that for each p, bp = ap. This is the kind of discovery that makes
mathematicians very happy, but of course has to lead to further analysis
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in the sense of problem reduction: what in the world can account for this
correspondence? You start with an elliptic curve and get the sequence of ap’s
and then you examine a modular form (that’s what the Eichler function is)
and get the sequence of bp’s and they’re just the same! Damn. We demand
an explanation! This is why the problem reduction doesn’t just stop there,
but refers the Taniyama-Shimura-Weil conjecture upwards to the Langlands
conjectures.

If you’re interested, you can look at Frenkel’s technical summary of this
problem reduction on page 8 of his textbook Langlands Correspondence for
Loop Groups (Cambridge University Press, 2007) and then follow it upwards.
He writes, “Many interesting representations of Galois groups can be found
in ‘nature.’ For example, the group Gal(Q/Q) will act on the geometric
invariants (such as the étale cohomologies) of an algebraic variety defined
over Q. Thus, if we take an elliptic curve E over Q, then we will obtain
a two-dimensional Galois representation on its first étale cohomology. This
representation contains a lot of important information about the curve E,
such as the number of points of E over Z/Zp[= Fp] for various primes p.
The Langlands correspondence is supposed to relate these Galois represen-
tations to automorphic representations of GL2(AF) [a certain group of 2 by
2 matrices with entries from the ring of adèles over the field F, a concept
invented to simplify class field theory], in such a way that the data on the
Galois side, like the number of points of E(Z/Zp), are translated into some-
thing more tractable on the automorphic side, such as the coefficients in
the q-expansion of the modular forms that encapsulate automorphic repre-
sentations of GL2(AQ). This leads to some startling consequences, such as
the Taniyama-Shimura conjecture.” That’s what he manages to exhibit, in
plain English with lots of pictures, in Chapter 8, fittingly entitled “Magic
Numbers.”

This result, however, belongs to the “global” part of the Langlands pro-
gram; Frenkel’s most important work engages the “local” Langlands corre-
spondence. In Chapter 9, Frenkel announces a very important idea; it takes
him the whole last half of the book to explain its meaning. He writes, “A
deep insight of [André] Weil was that the most fundamental object here is
an algebraic equation. . . Depending on the choice of the domain where we
look for solutions, the same equation gives rise to a surface, a curve, or a
bunch of points. But these are nothing but the avatars of. . . the equation
itself.” And he continues: “The connection between Riemann surfaces and



294 Love and Math: The Heart of Hidden Reality

curves over finite fields should now be clear: both come from the same kind
of equations, but we look for solutions in different domains, either finite fields
or complex numbers. On the other hand, ‘any argument or result in number
theory can be translated, word for word,’ to curves over finite fields, as Weil
puts it in his letter. . . ” (pp. 103-104) Curves on finite fields are the “middle
terms” which mediate between number theory and Riemann surfaces. But
these objects belong to the “local” side of the Langlands correspondences:
there are two kinds of “non-Archimedean” local fields, finite extensions of a
p-adic number field, and the field of formal Laurent series Fq((T )) where Fq

is a finite field.

Chapters 10 through 17 explore this research, which launched him from
Moscow (where he worked with Fuchs and Boris Feigin) to Harvard and MIT
(where he met Victor Kac and Vladimir Drinfeld, as well as Barry Mazur
and John Tate) and Princeton (where he met Robert Langlands himself).
Much of the material here is really too difficult to be conveyed in a popular
exposition, but he does his best and includes helpful adumbrations in a se-
ries of long footnotes. Mathematically trained readers can refer to some of
the articles and texts cited in those footnotes, as well as Frenkel’s textbook
mentioned above. His quest led him through the rugged but inspiring ter-
rain of infinite dimensional Lie groups known as loop groups, Lie algebras,
and Kac-Moody algebras (extensions of the Lie algebra of a loop group by a
one-dimensional space), branes, fibrations, and sheaves, all in the context of
more and more Riemann surfaces: see the pictures in Chapter 17, “Uncov-
ering Hidden Connections.” And Chapter 16, “Quantum Duality,” explains
how this research project led him back to his high school sweetheart, quan-
tum mechanics, and the symmetries that link the natural world (at all levels)
to mathematics. Right in the middle of that chapter is his mother’s secret
recipe for borscht, represented both iconically and symbolically: but why is
it sitting there, that delicious bowl of soup, in the midst of an explanation
of electromagnetic duality? You must buy the book and read it through, in
order to find out. It makes perfect sense.
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