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RANDOMIZED BLOCK KACZMARZ METHOD WITH PROJECTION FOR SOLVING
LEAST SQUARES

DEANNA NEEDELL, RAN ZHAO AND ANASTASIOS ZOUZIAS

ABSTRACT. The Kaczmarz method is an iterative method for solving overcomplete linear systems
of equations Ax = b. The randomized version of the Kaczmarz method put forth by Strohmer and
Vershynin iteratively projects onto a randomly chosen solution space given by a single row of the
matrix A and converges exponentially in expectation to the solution of a consistent system. In this pa-
per we analyze two block versions of the method each with a randomized projection, that converge
in expectation to the least squares solution of inconsistent systems. Our approach utilizes a paving
of the matrix A to guarantee exponential convergence, and suggests that paving yields a significant
improvement in performance in certain regimes. The proposed method is an extension of the block
Kaczmarz method analyzed by Needell and Tropp and the Randomized Extended Kaczmarz method
of Zouzias and Freris. The contribution is thus two-fold; unlike the standard Kaczmarz method, our
methods converge to the least-squares solution of inconsistent systems, and by using appropriate
blocks of the matrix this convergence can be significantly accelerated. Numerical experiments sug-
gest that the proposed algorithm can indeed lead to advantages in practice.

1. INTRODUCTION

The Kaczmarz method [Kac37] is a popular iterative solver of overdetermined systems of linear
equations Ax = b. Because of its simplicity and performance, the method and its derivatives are
used in a range of applications from image reconstruction to digital signal processing [CEM*92,
Nat01},SS87]. The method performs a series of orthogonal projections and iteratively converges to
the solution of the system of equations. It is therefore computationally feasible even for very large
and overdetermined systems.

Given a vector b and an n x d full rank matrix A with rows ay, ay, ... a,, the algorithm begins
with an initial estimate xy and cyclically projects the estimation onto each of the solution spaces.
This process can be described as follows:

bli] —(a;i,xj-1)
la;ll3
where b[i] denotes the ith coordinate of b, x; is the estimation in the jth iteration, || - > denotes
the usual ¢, vector norm, and i = (j mod n) + 1 cycles through the rows of A.

Since the method cycles through the rows of A, the performance of the algorithm may de-
pend heavily on the ordering of these rows. A poor ordering may lead to very slow conver-
gence. To overcome this obstacle, one can select the row a; at random to improve the convergence
rate [HM93, Nat01]]. Strohmer and Vershynin proposed and analyzed a method which selects a
given row with probability proportional to its Euclidean norm [SV09,5V06]. They show that with
this selection strategy, the randomized Kaczmarz method has an expected exponential conver-
gence rate to the unique solution x.:

Xj=Xj-1+ i
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search Council under the European Union’s Seventh Framework Program (FP7/2007-2013) / ERC grant agreement n°
259569.

1



1}/
Ellxj — x5 < (1—5) %0 — X113, (1)

where R is the scaled condition number, R = |[A7'|?||All3, |- | denotes the Frobenius norm,

and [|A7Y]| £ inf{M : M| Ax| 2 = ||x|l, for all x} is well-defined since A has full column rank. This
convergence rate (1)) is essentially independent of the number of rows of A and shows that for
well-conditioned matrices, the randomized Kaczmarz method converges to the solution in just
O(p) iterations [SV09]. This yields an overall runtime of 0(d?) which is much superior to others
such as O(nd?) for Gaussian elimination. There are also cases where randomized Kaczmarz even
outperforms the conjugate gradient method, see the discussion in [SV09] for details.

When the system is perturbed by noise or no longer consistent, Ax, + e = b, the random-
ized Kaczmarz method still provides expected exponential convergence down to an error thresh-
old [NeelO]. When the rows of A have unit norm, this result yields the following convergence
bound:

1\/
[Ellxj—x*llzi(l—ﬁ) 20 — Xxll2 + VRl €]l o )

This result is sharp, and shows that the randomized Kaczmarz method converges with a radius
proportional the magnitude of the largest entry of the noise in the system. Since the iterates of the
Kaczmarz method always lie in a single solution space, the method clearly will not converge to
the least-squares solution of an inconsistent system.

1.1. Randomized Extended Kaczmarz. The bound (2) demonstrates that the randomized Kacz-
marz method performs well when the noise in inconsistent systems is small. Zouzias and Freris
introduced a variant of the method which utilizes a random projection to iteratively reduce the
norm of the error [ZF12]]. They show that the estimate of this Randomized Extended Kaczmarz (REK)
method converges exponentially in expectation to the least squares solution of the system, break-
ing the radius barrier of the standard method. The algorithm maintains not only an estimate x; to
the solution but also an approximation z; to the projection of b onto the range of A:

bli] - zj_1[i] - (a;, x;_1) @®,zj1) o
. zi=—zi L EIY k)
12 b &= %j-1 (k)2
la;l3 la® |3

: C)

Xj=Xj-1 +

where in iteration j, @; and a® is the row and column of A, respectively, each chosen randomly
with probability proportional to their Euclidean norms. In this setting, we no longer require that
the matrix A be full rank, and ask for the least squares solution,

XIS « argmin ||b— Ax|» = ATb,
X

where A" denotes the pseudo-inverse of A. Zouzias and Freris showed that the REK method
converges exponentially in expectation to the least squares solution [ZF12],

Ellx; —xzsl3 < (1 _),-/2 lxzsl3+ 2Bl (4)
i—xrslz =(1- LS )

! 2 K2(A) " Omin(A)

where o yin(A) is the smallest non-zero singular value of A and K(A) = % denotes its scaled

condition number.
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1.2. The block Kaczmarz method. Recently, Needell and Tropp analyzed a block version of the
simple randomized Kaczmarz method [NT13]. For simplicity and to avoid degenerate cases, we
assume here that the rows of the matrix A all have unit ¢, norm. We will refer to such matrices as
row-standardized (and the transpose A* as column-standardized). Like the traditional method, this
version iteratively projects the current estimation onto the solution spaces. However, rather than
using the solution space of a single equation, the block method projects onto the solution space of
many equations simultaneously by selecting a block of rows rather than a single row. For a subset
1< {1,2,...,n}, denote by A, the submatrix of A whose rows are indexed by 7. We again begin with
an arbitrary guess x for the solution of the system. Then for each iteration j = 1, select a block
7 =17 of rows. To obtain the next iterate, we project the current estimation onto the solution space
of the equations listed in 7 [NT13]:

xj=xj_1 + (A7) (b — Arxj_1). (5)

Here, the conditioning of the blocks A; plays a crucial row in the behavior of the method.

Indeed, if each block is well-conditioned, its pseudoinverse can be applied efficiently using an

iterative method such as CGLS [Bj696]. To guarantee such properties, Needell and Tropp utilize a
paving of the matrix A*.

Definition 1 (Column Paving). A (p, @, ) column paving of a d x n column-standardized matrix A is
a partition T = {11,...,Tp} of the columns such that

@ <Amin(A7A;) and Amax(A;A;) <P foreachteT,

where again we denote by A; the d x |t| submatrix of A. We refer to the number p of blocks as the size of
the paving, and the numbers a and f are called the lower and upper paving bounds.

We refer to a column paving of A* as a row paving of A. We thus seek pavings of A with small
number of blocks p and upper paving constant f. A surprising result shows that every column-
standardized matrix admits such a column paving. Tropp proves the following result in [Tro09,
Thm. 1.2], whose origins are due to Bourgain and Tzafriri [BI87, BT91] and Vershynin [Ver06].

Proposition 1 (Existence of Good Pavings). Fix a number 6 € (0,1) and column-standardized matrix A
with n columns. Then A admits a (p, a, B) column paving with

p<C-67%|Al*log(l+n) and 1-6<a<P<1+6,
where C denotes an absolute constant.

Proposition |1 shows the existence of paving, but the literature provides various efficient mech-
anisms for the construction of good pavings as well. In many cases one constructs such a paving
simply by choosing a partition of an appropriate size at random. See [NT13|] and the references
therein for a thorough discussion of these types of results. Equipped with such a column paving
of A*, the main result of [NT13] shows that the randomized block Kaczmarz algorithm (5) exhibits
exponential convergence in expectation:

1 J 3||e||§
Ellxj—xll5 < [1- =————| %0 —xll5+ 5—=, (6)
C'x=(A)logn 0% in(A)
where C’ is an absolute constant and x(A) = % denotes the condition number of A.

Since each iteration of the block method utilizes multiple rows, one can compare the rate of (6)
and (1) by considering convergence per epoch (one cycle through the rows of A). From this anal-
ysis, one finds the bounds to be comparable. However, the block method can utilize fast matrix
multiplies and efficient implementation, yielding dramatic improvements in computational time.
See [NT13] for details and empirical results.
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1.3. Contribution. The REK method breaks the so-called convergence horizon of standard Kacz-
marz method, allowing convergence to the least-squares solution of inconsistent systems. The
block Kaczmarz method on the other hand, allows for significant computational speedup and ac-
celerated convergence to within a fixed radius of the least-squares solution. The main contribution
of this paper analyzes a randomized block Kaczmarz method which also incorporates a blocked
projection step, which provides accelerated convergence to the least-squares solution. In this case
we need a column partition for the projection step and a row partition for the Kaczmarz step. We
assume here that the matrix A is row-standardized, and will also utilize the column-standardized
version of A, denoted A, obtained by normalizing the columns of A. We thus propose the following
randomized block extended Kaczmarz method using double partitioning.

Algorithm 1 Randomized Double Block Kaczmarz Least Squares Solver

1: procedure (A, b, T, 9 )> AcR"*", column-standardized A, beR™, T N, column partition 9~
of [n], row partition .# of [m]
Initializexo=0and zy= b
Create column-standardized A
fork=1,2,...,T do
Pick 7 € 9 and o € & uniformly at random
Set z = Zx_1 —Zrk(zrk)fzk,l > A;,: the m x 7| submatrix of A
Update xj = xp_; + (Agk)T(b(,k —(2K) g, — Ag XK-1) > Ag,: the |ok| x n submatrix of A
end for
9: Output xr
10: end procedure

Our main result shows that this method offers both exponential convergence to the least-squares
solution x; 5, and improved convergence speed due to the blocking of both the rows and columns.

Theorem 2. Suppose Algorithm [1is run with input A, b, T €N, (p, @, ) column paving I~ of A, and
(p, a, B) column paving & of A*, both guaranteed by Proposition |1} Then the estimate vector Xt satisfies

|T/2] +—LT/2J) C ”b%(A) “3
1-7)

- ¢ y_1-_——C = Tmax(4) it
aTogarm ¥ = 1 2 alog(s d)and K (A) = Foecas denotes the condition number of A.

2 T 2
Eller —xos3 <" o —xusl3 + ¥

’

wherey=1-

1.4. Organization. In addition to Algorithm I} we propose an additional variant of the block and
extended Kaczmarz methods that serves both as motivation for the analysis of the main result, as
well as a useful method in its own right. In Section[2 we first introduce a block coordinate descent
method with exponential convergence to the least squares solution, and whose analysis illustrates
the convergence of the projection z; of Algorithm Il We prove our main result, Theorem 2} in
Section 3] In Section 4 we discuss implementation details and present experimental results for
the various algorithms. We conclude with a discussion of related work and open directions in
Section 5| The appendix includes proofs of intermediate results used along the way.

2. A RANDOMIZED BLOCK COORDINATE DESCENT METHOD

Utilizing the benefits of both the block variant and the randomized extension, we propose the
following randomized block coordinate descent method for the inconsistent case. We assume here
that the matrix A is column-standardized; its columns each have unit norm.

4



Algorithm 2 Randomized Block Least Squares Solver

1: procedure (A, b, T, T) > AeR™" beR™, T €N, column partition I of [n]
2 Initialize xp=0and zo= b
3 fork=1,2,...,T do
4 Pick 7 € 9 uniformly at random
5: Compute ay = (Afk)Tzk_l > A;: the m x |T| submatrix of A
6 Update (x)7, = Xgk—1)7, + @k
7 Setzy =z;_1 — A; ax
8 end for
9: Output x7
10: end procedure

2.1. Analysis of Randomized Block Least Squares Solver. In Algorithm |2l we see that the par-
tition I~ plays an important role, both in terms of convergence and computation. To apply the
pseudo-inverse of the block A; efficiently, we would like to ensure each block is well-conditioned.
To this end, we consider column pavings as in Definition [T} which guarantee the singular values of
each block are controlled. The following lemma is motivated by Lemma 2.2 of [NT13], and shows
that the iterates z; converge exponentially to the projection of b onto the kernel of A*.

Lemma 3. Let b be a fixed vector and I be a (p,a,B) column paving of A. Assuming the notation of
Algorithm 2| for every k > 0 it holds that

02"
) b o)

Elas— b = 1- 222

where bg 4 := [— AA"D.

Proof. Let Py, = A;, (A;)" and notice z; = (I - P;)zi_,. Define ey =z — bgy(a). for k=0. Then,

€ = (I— Prk)zk—l — b%(A)L
= (I - Pr)2k-1 — (1= P;)bga
= (I_PTk)ek—ly

where the first equality follows by the definition of z, the second by orthogonality between P;,
and bg 4+, and the final equality by definition of e;_;. Next, we prove that

2
2. (A)
Ex_1llexls < (1 - L) lex_1l3

pp

where Ex_; is the expectation conditioned over the first (k — 1) iterations of the algorithm. By or-

thogonality ||(I- P;)ex_ ||§ = llex—113— || Pr,€x—1 g, hence it suffices to lower bound Ex_; || Pr,ex—1 ||§

Let Ay, := U; 2V, beits truncated SVD decomposition of A;, where 2, is an rank (A;, ) xrank (A,
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diagonal matrix containing the non-zero singular values of A;,. Then,

Eeon | Priei [ = Bt [ UF e

=E1 |27 TV AL e

T Tk
2
mln(z )”A €k- 1”2

g, Mol
Vo (Z) amax(ZTk)

> Al el

pﬁ €T

>0

2
:p—nATek_lnz

(4)
mm 2
> ———— lleg-1l5,

pp

where the first equality follows since Py, = U, U;, and dropping Uy, using the unitary invariance
property of the Euclidean norm, the second equahty by replacing U;, with 271V;] AT , the first
equality follows since 02, (Z7'V;1) =1/0%,(Z;,) = 1/02,,,(A;,), the second inequality follows by

the paving assumption, and the final inequality follows smceE| er € Z(A) for all k =0. It follows
that

(A)
Ex-1 legl} = lex-1ll3 1 | Proexi 5 < (1 - m;ﬁ ) ler-1113- (8)
Repeat the above inequality k times and notice that ey = b — bg ). = bg(a) to conclude. O

To utilize this result, we aim to relate the iterates z; to the estimation x;. The following claim
quantifies precisely this relation.

Lemma 4. For every k = 0, at the end of the k-th iteration, it holds that zj..; = b— AXy4,.

Proof. By induction. For k =0, (x1);, = ap and (X1)()\7, = 0 and moreover, z; =2y — Ay ap = b — Ax;.
Assume that z; = b — Ax; is true for some [ > 0, we will show that it holds for [+ 1. For the sake of
notation, denote P; = ATZAT,T. Then

21 =2/-Piz;=b-Ax; - Pz )
the first equality follows by the definition of z;,;, the second equality follows by induction hy-
pothesis. Now, it follows that

AXjp1 = Ag (X)) + Ay X))

= Ay (X)), + Ara; + A, (Xp41) (n)\1y

= Ay, (X))r, + Ar a1+ A, XD (g,

= AXl + ATl a.
the first equality follows by Step 6 of the algorithm (update on x), the second equality because
&+ e, = XD ang,- Hence, Ax; = Axj1 — Ar,a;. Now, the right hand side of Eqn. (9) can be
rewritten as

b-Ax;—Piz; = b-Ax;,+ Arlal - Pz
= b-Axyy,.

Indeed, eo = bgy(a) € Z(A) and it follows that ey € 22(A) for every k = 0 by the recursive definition of ej.
6



the last equality follows since a; = (A,l)le. Therefore, we conclude that z;.; = b— Axj,1. O

Combining these two lemmas yields the following result which shows convergence of the esti-
mation to the least squares solution under the map A.

Theorem 5. Algorithm 2| with input A, b, T € N, and (p,a, ) column paving I, outputs an estimate
vector Xt that satisfies

2
1— Omin (A)

pp

T
Ell A s —x7)[5 < ) 1Baw|5-

Proof. We observe that
AXis = X(k) = bg(a) — AX(x) = b~ AX (k) = bg(a) = Z(k) — DL

where the first equality follows by bg ) = AA'h = Ax;s, the second by orthogonality b = bgy 4 +
bga) and the last equality from Lemma 4] Combined with inequality (7) this yields the desired
result. O

When A4 has full column rank, we may bound the estimation error [|x.s—x7 |2 by m lAxLs —x7) |2
which combined with the fact that || b4 ||, < 0max(A4) Ixisll, implies the following corollary.

Corollary 6. Algorithm [2with full-rank A, b, T €N, and (p, a, B) column paving T, outputs an estimate
vector Xt that satisfies
T

K% (A) %15

2
oz . (A)
[Enst—xTn%s(l—%

2.2. Comparison of Convergence Rates. This bound improves upon that of the randomized block
Kaczmarz method because it demonstrates exponential convergence to the least squares solution
x;s, Whereas Eqn. @ shows convergence only within a radius proportional to ||e||§, which we call
the convergence horizon. Algorithm [2|is able to break this barrier because it iteratively removes the
component of b which is orthogonal to the range of A. This of course is also true of the random-
ized Extended Kaczmarz method (3)) as it also breaks this horizon barrier. To compare the rate of
Eqn. () to that of Corollary |6, we consider two important scenarios.

First, consider the case when A is nearly square, and each submatrix A; can be applied effi-
ciently via a fast multiply. In this case, each iteration of Algorithm 2| incurs approximately the
same computational cost as an iteration of the REK method. Thus, we may directly compare the
convergence rates of Corollary [6|and () to find that Algorithm [2is about n/(pp) times faster than
REK in this setting. Thus when 7 is much larger than pp, this can result in a significant speedup.

Alternatively, if the matrix A does not admit a fast multiply, it is fair to only compare the conver-
gence rate per epoch, since each iteration of Algorithm [2lmay require more computational cost than
those of REK. Since an epoch of Algorithm 2Jand REK consist of p and m iterations, respectively,
we see that the rate of the former is proportional to o2, (A)/f whereas that of REK is propor-
tional to 02, (A). We see in this case that these bounds suggest REK exhibits faster convergence.
However, as observed in the randomized Block Kaczmarz method, the block methods still display
faster convergence than their single counterparts because of implicit computational issues in the
linear algebraic subroutines. See the discussion in [NT13] and the experimental results below for
further details.

2.3. Convergence of Least Squares Solver via Good Pavings. From these results we see that the
convergence of the solver will be controlled by the paving parameters. Equipped with a column
paving as in Proposition[I, Theorem [5|and Corollary[f|imply the following result.

7



Corollary 7. Suppose Algorithm [2]is run with input A, b, T €N, and (p,a, B) paving I~ guaranteed by
Proposition[I|for some fixed constant §. Then the estimate vector xt satisfies

C/

T
2 2
E ”A(XLS _XT) ”2 = (1 - KZ(A) log(l’l)) || b%(A) ”2’

where k(A) = U“"’"EA) denotes the condition number of A and C' is an absolute constant.
If the matrix Ais full rank then,

!

T
Ellxs —x73 < (1 - ) K2 (A) x5 .

x%(A)log(n)
Remark 1. In considering the improvements offered by both the REK method and the block Kaczmarz
method, one may ask whether it is advantageous to run a traditional REK projection step as in (3) along
with a traditional block Kaczmarz update step as in (5)). However, empirically we have observed that such a
combination actually leads to a degradation in performance and requires far more epochs to converge than
the algorithms discussed above. We conjecture that it is important to run both the projection update and
the Kaczmarz update “at the same speed”; if the Kaczmarz update utilizes many rows at once, so should the
projection update, and vice versa.

3. ANALYSIS OF MAIN RESULT

It is natural to ask whether one can consider both a row partition and a column partition in the
Kaczmarz method, blocking both in the Kaczmarz update step and the projection step. Indeed,
utilizing blocking in both steps yields Algorithm [I|above. Combining the theoretical approaches
in [NT13, [ZF12] we will prove the following result about the convergence of Algorithm (I} This
result utilizes both a column paving and row paving, the latter taken as a column paving of A*.

Theorem 8. Algorzthmlwzth input A, b, T €N, (p, @, B) column paving I~ of A, and (p, a, B) column
paving & of A*, outputs an estimate vector Xt that satisfies

_ 2 T _ 2 [T/2] | <|T/2] ||b92(A) ”2

Elvr sl <y o —xisl + (3112 + 7111 ST,

2. (4)

) 2 (A
wherey =1- —U“‘l;“ﬁ Tunin A

and?zl—%

In light of Proposition Theorem [§|implies the main result, Theorem

Proof of Theorem |8} Observe that Steps 5 and 6 of Algorithm [T]are identical with Algorithm 2} there-
fore Lemma [3|implies that

mln( )
Elas- o = 1- ) Ibacal. 0)
PP
Lemma 2.2 of [NT13] shows that for any vector u,
2
_ T 2 _ Umin(A) 2
[E”(I (Ay) AU)uH25(1 T L (11)

Since the range of I - (A))TA, and (A,)" are orthogonal, we thus have

I~ sl = [ (1- ()" 4)) Gt ~x9) [+ | A et - (12)
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Combining (1) with u = x;_; — x5 along with (12), we have

2
o (A)
Ellxe—xisl?<[1- m;ﬂ rEnxk_l—stu%+[E)](Au)*((zk)v—bj
2
o2 (A) 5
<{1- 2V E g — X503 + ————E || (z1)y — by
Y sl e |z1)w = by |
2
o<. (A 1 2
<[1- 22— | Ellxg_1 —xisl3+ = E |z — b* (13)
Py 2t I I5

(14)

To apply this bound recursively, we will utilize an elementary lemma. It is essentially proved
in [ZF12, Theorem 8] but for completeness we recall its proof in the appendix.

Lemma 9. Suppose that for some y,y < 1, the following bounds hold for all ¢,k* = 0:
Ellxg —Xisl3 < YElxp-1 —Xisl3+ e and  rie s¥° B. (15)

Then for any T >0,

_ B
Ellxr —xsll5 <7 llxo — x5 + (YLT/ZJ + YLT/ZJ) =
fnln( )

,y=1--2= andy=1- pﬂ@ we see by (10) and (13)
that the bounds (15) hold. Applying Lemma [9] completes the proof.

. 2 b
Using r = é[E”Zk_ B= I @éA)”z

O

3.1. Comparison of Convergence Rates. The convergence rates displayed in Theorems |8 and
depend on the column-standardized A version of the matrix A. For this reason, it is difficult to
make direct comparisons for arbitrary linear systems. In some cases, A and A may have sub-
stantially different condition numbers, and paving both simultaneously may not lead to much
improvement in convergence. However, there are also cases where column pavings appear natu-
rally with row pavings. For example, if the matrix is positive semi-definite (or symmetric), then
A = A in which case one gets the column paving for free from the row paving. In nice cases like
this, the convergence bounds from Theorems [§|and [2| offer the same improvements as those dis-
cussed for Corollary [o} However, since Algorithm|I|utilizes blocking in two steps, we expect even
more improvement in convergence due to implicit computational issues. Finally, we note that it is
not necessary to actually compute the column standardized version of A. Indeed, paving results
analogous to those of Proposition [I| exist for matrices which are not standardized [VerO1]. For
simplicity of presentation we only consider standardized versions.

4. EXPERIMENTAL RESULTS

Here we present some experiments using simple examples to illustrate the benefits of block
methods. We refer the reader to [ZF12, NT13] for more empirical results for both REK and block
methods. In all experiments, one matrix is created and 40 trials of each method are run. In our first
experiment, the matrix is a 300 x 100 matrix with standard normal entries, whose rows are then
normalized to each have norm one, yielding a condition number of 3.7. The vector x is created
to have independent standard normal entries, and the right hand side b is set to Ax. We track

the ¢,-error || xrs — xi |2 across each epoc}ﬂ as well as the CPU time (measured in Matlab using the

2We refer to an epoch as the number of iterations that is equivalent to one cycle through m rows, even though rows
and blocks are selected with replacement. Thus for REK, an epoch is m iterations, and for a block version with b blocks,
one epoch is b iterations.
9



cputime command). In all experiments we considered a trial successful when the error reached
10~7. The results for this case are presented in Figuresand In all figures, a heavy line represents
median performance, and the shaded region spans the minimum to the maximum value across all
trials. As is demonstrated, even when the matrix does not have any natural block structure, the
proposed algorithms outperform standard REK both in terms of epochs and CPU time.

Figure 3| shows similar plots, but in this case the system is no longer consistent. For these
experiments, we used the same type and size of the matrix A, but the right hand side vector b was
generated as a Gaussian vector as well. We created b so that the residual norm ||b— Axgsll> = 0.5.
We then track the ¢;-error between the iterate x; and the least-squares solution xzs which we
computed by A'h. The behavior, as predicted by our main results, is quite similar to the consistent
case and thus breaks the convergence horizon of the standard Kaczmarz method.

Algorithm 1 vs REK

Algorithm 1 vs REK

2 1
= e S
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s 5 ~
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Figure 1 ¢;-norm error for REK (blue dashed) and Algorithm 1 (red) across epochs (left) and CPU time
(right). Matrix is 300 x 100 Gaussian, system is consistent.
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Figure 2 ¢;-norm error for REK (blue dashed) and Algorithm 2 (red) across epochs (left) and CPU time
(right). Matrix is 300 x 100 Gaussian, system is consistent.

5. RELATED WORK AND DISCUSSION

The Kaczmarz method was first introduced in the 1937 work of Kaczmarz himself [Kac37]. Since
then, the method has been revitalized by researchers in computer tomography, under the name
10



Algorithm 1 vs REK (inconsistent) Algorithm 2 vs REK (inconsistent)
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Figure 3 £;-norm error for REK (blue dashed) and Algorithm 2 (red) across epochs (left) and CPU time
(right). Matrix is 300 x 100 Gaussian, system is inconsistent.

Algebraic Reconstruction Technique (ART) [GBH70, Byr08| Nat01, Her09]. Deterministic convergence
results for the method often depend on properties of the matrix that are difficult to compute or
analyze [Deu85| DH97, XZ02, \Gal05]. Moreover, it has been well observed that random choice of
row selection often speeds up the convergence [HS78, HM93, (CEM*92, Nat01].

Recently, Strohmer and Vershynin [SV09] derived the first provable convergence rate of the
Kaczmarz method, showing that when each row is selected with probability proportional to its
norm the method exhibits the expected exponential convergence of (I). This work was extended
to the inconsistent case in [Neel(], which shows exponential convergence to within some fixed
radius of the least-squares solution. The almost-sure guarantees were recently derived by Chen
and Powell [CP12]. To break the convergence barrier, relaxation parameters can be introduced, so
that each iterate is over or under projected onto each solution space. Whitney and Meany prove
that if the relaxation parameters tend to zero that the iterates converge to the least-squares solu-
tion [WM67]. Further results using relaxation have also been obtained, see for example [CEG83,
Tan71), [HN90, ZF12]. An alternative to relaxation parameters was recently proposed by Zouzias
and Freris [ZF12] as the REK method described by (3). Rather than alter the projection step, moti-
vated by ideas of Popa [Pop98] they introduce a secondary step which aims to reduce the residual.

The Kaczmarz method has been extended beyond linear systems as well. For example, Leven-
thal and Lewis [LL10] analyze the method for systems with polyhedral constraints, and Richtarik
and Taka¢ [RT11] build on these results for general optimization problems.

Another important aspect of research in this area focuses on accelerating the convergence of the
methods. Geometric brute force methods can be used [EN11], additional row directions may be
added [PPKR12], or instead one can select blocks of rows rather than a single row in each itera-
tion. The block version of the Kaczmarz method is originally due to work of Elfving [EIf80] and
Eggermont et al. [EHLS81]. Its convergence rates were recently studied in [NW13] and analyzed
via pavings by Needell and Tropp [NT13]]. The block Kaczmarz method is of course a special in-
stance in a broader class of block projection algorithms, see for example [XZ02] for a more general
analysis and [Byr08] for a presentation of other block variants.

To use block methods effectively, one needs to obtain a suitable partition of the rows (and/or
columns). Popa constructs such partitions by creating orthogonal blocks [Pop99, [Pop01, Pop04],
whereas Needell and Tropp promote the use of row pavings to construct the partition [NT13].

1



Construction of pavings has been studied for quite some time now, and most early results rely
on random selection. The guarantee of lower and upper paving bounds has been derived by Bour-
gain and Tzafriri [BT87] and Kashin and Tzafriri [KT94], respectively. Simultaneous guarantees
were later derived by Bourgain and Tzafriri [BT91] with suboptimal dependence on the matrix
norm. Recently, Spielman and Srivastava [SS12] and Youssef [Youl2b] provided simple proofs
of the results from [BT87] and [KT94], respectively. Vershynin [Ver0O1] and Srivastava [Sril10] ex-
tend the paving results to general matrices with arbitrary row norms; see also [Youl2b) Youl2al.
Proposition (1] follows from the work of Vershynin [Ver06] and Tropp [Tro09], and is attributed to
the seminal work of Bourgain and Tzafriri [BT87, [BI91]]. For particular classes of matrices, the
paving can even be obtained from a random partition of the rows with high probability. This is
proved by Tropp [Iro08a] using ideas from [BT91, Tro08b], and is refined in [CD12].

APPENDIX A. PROOF OF INTERMEDIATE RESULTS
Here we include the proof of Lemma 9]
Proof of Lemma[9} Assume the bounds (I5) hold. Applying the first bound in (I5) recursively yields

k*-1

2 k* 2 k*—
Ellxp- —xislls <y* llxo —xisllz+ Yy
j=0

iy

o0
k* 2 j
<7" lxo—xsllz+ > y'B
=0

’

=7l —xisll5 + —
where the second inequality holds by the assumption that r; < y*B < B, and the last by the
properties of the geometric summation. Similarly, observe that for any k and k* we have

k=1
9 k 2 k-1-j
Elxie —usly S YRl —xusl3 + ) v e
j=0
K 2 7k 3 i
<y Ellxg —xisll3 +7 ZY]B
j=0
<y Ellxg —xisll5 +y 11—

Now we choose k and k* such that T=k+k* and k= k* if T is even, or k= k* +1 if T is odd.
Combining the two inequalities above, we have

2 2
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This completes the proof. O
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