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Particle size determination: An undergraduate lab in Mie scattering
I. Weiner, M. Rust, and T. D. Donnelly
Harvey Mudd College, Department of Physics, Claremont, California 91711

~Received 22 March 2000; accepted 1 June 2000!

A technique for determining the size of microscopic spherical particles using light scattering is
presented as an undergraduate physics lab. Scatterer size is determined from angular scattering
distribution measurements of laser light scattered from a dilute suspension of latex spheres with
diameters of 4.9960.05 and 6.03860.045mm. Previous experiments of this type used approximate
theoretical corrections and required the construction of specialized sample cells to minimize
complicating effects. As a significant improvement to these, we generate angular scattering
distributions from Mie theory and, using an accurate numerical procedure, correct these
distributions for Snell’s law and foreshortening effects. Scatterer size is then determined using a
fast, robust fitting algorithm to compare these corrected angular scattering distributions to measured
angular scattering distributions. We fit the scatter from a solution of 6.04-mm-diam spheres to
spheres of 5.9560.11mm diameter, and that from a solution of 4.99-mm spheres to 4.85
60.15mm. Additionally, scattering data for a 2:1 mixture of spheres of diameters 4.99 and 6.04mm
are taken, and after numerical adjustment for Snell’s law and foreshortening effects, good agreement
with theory is obtained. ©2001 American Association of Physics Teachers.

@DOI: 10.1119/1.1311785#

I. INTRODUCTION

It is straightforward to calculate the cross section for plane
wave light scattering from a uniform dielectric sphere using
classical electromagnetic theory. One possible application of
these results is the determination of particle sizes by measur-
ing the intensity of angular scattering distributions. The abil-
ity to measure the size of particles with diameters on the
order of microns with such elementary measurement tech-
niques is indeed impressive.

In this paper we propose a simple yet accurate and versa-
tile method for the determination of spherical particle sizes
on the order of 1mm diameter that may be implemented
easily in an undergraduate physics lab. In the past decade, a
number of particle sizing techniques have been developed
that use a variety of approaches. Sizing may be quite accu-
rately carried out using electron microscopy, for example,
but this is prohibitively expensive for use in an undergradu-
ate lab. A number of less expensive techniques involving
laser-light scattering have been developed using Mie scatter-
ing theory and other methods. Dovichi and Zarrin, for ex-
ample, have accurately sized submicron particles being car-
ried at constant velocities using laser Doppler velocimetry.1

However, it is cumbersome to maintain particles at a con-
stant velocity. Wang and Hallett, and others, have success-
fully determined particle size distributions through an inver-
sion of the extinction spectrum of a static solution of
particles.2 Unfortunately, an undergraduate physics lab is un-
likely to have a convenient method of obtaining extinction
data for a large range of frequencies, which is, of course, an
integral part of the inversion technique. For these reasons,
the techniques discussed above are inappropriate for our pur-
poses.

With the rapid increase in computer processor power in
the past few years, computational methods for fitting a single
sphere size or distribution of sizes from measured angular
scattering distributions have been developed. These methods
use fairly advanced Monte Carlo or genetic algorithm
methods.3 We present here a convenient technique for mea-
suring angular scattering distributions for a static suspension

of micron-size spheres using only standard lab equipment.
We also present a computational technique for fitting angular
scattering distributions that is substantially simpler than
those mentioned above, and is more applicable to the task at
hand. Because the spheres are held in an aqueous suspension
inside a cuvette, we have also developed numerical tech-
niques for correcting the theoretical scattering curves for
Snell’s law refraction and for the ‘‘foreshortening’’ effect
produced when scattered light from a horizontal column of
scatterers is viewed from different angles. In the past, a simi-
lar experiment was presented as a potential undergraduate
physics laboratory by Drake and Gordon4 using approxima-
tions to the Mie theory and approximate analytical correc-
tions for Snell’s law. To avoid the foreshortening effect and
maximize the accuracy of their approximate Snell’s law cor-
rection, it was necessary to place the spheres in a specially
constructed sample cell of unusually small thickness. These
approximations met with only limited success; there were
substantial deviations from theory, mostly due to the ap-
proximations of the Mie theory. In addition, no means of
fitting the data was proposed. It is now possible, due to the
speed of modern computer processors, to employ the rou-
tines discussed in this paper to actively fit data to arbitrarily
accurate theoretical curves within a matter of seconds, allow-
ing real time fitting during the data collection process. In
addition, no special sample cell is required to contain the
solution of scatterers; an ordinary cuvette of square cross
section suffices.

II. THEORY

In a solution of scattering spheres, if the concentration of
spheres is not too high, we may approximate their collective
scattering as resulting from a large number of independent
scatterers, and as such, the scattering curve should simply be
some multiple of the curve for a single sphere. A concentra-
tion of such spheres is said to be in the ‘‘single scattering
regime.’’ The theoretical expression for the intensity of light
scattered from a spherical particle to a given angle, the an-
gular scattering distribution, is given by the Mie theory,5,6
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and is well known. The solution is obtained by solving the
problem of a plane electromagnetic wave incident on a uni-
form uncharged sphere of arbitrary radius and refractive in-
dex, as shown schematically in Fig. 1. The basic idea is to
expand the incident plane wave in a Fourier series using
appropriate basis functions that satisfy Maxwell’s equations
in spherical coordinates; spherical coordinates are used due
to the geometry of the scatterers. We then apply suitable
boundary conditions at the surface of the sphere in order to
deduce the Fourier expansions of the scattered fields inside
and outside the sphere. Because the derivation of the scatter-
ing coefficients is quite long, we defer it to Appendix A.
~This derivation is mathematically advanced and will be a
challenge for all but the most advanced undergraduates—
however, it is our experience that undergraduates can master
this material. We include the derivation, in its entirety, so
that the precocious student may find the relevant theoretical
framework and laboratory discussion self-contained in a
single document.! As shown there, the final solution for the
field outside the sphere is given by

Es5 (
n51

`

En~ ianNe1n
~3! 2bnMo1n

~3! !,

~1!

Hs5
k

vm (
n51

`

En~ ibnNo1n
~3! 1anMe1n

~3! !,

where the coefficients are given by

an5
mm2 j n~mx!@x jn~x!#82m1 j n~x!@mx jn~mx!#8

mm2 j n~mx!@xhn
~1!~x!#82m1hn

~1!~x!@mx jn~mx!#8
,

~2!
bn5

m1 j n~mx!@x jn~x!#82m j n~x!@mx jn~mx!#8

m1 j n~mx!@xhn
~1!~x!#82mhn

~1!~x!@mx jn~mx!#8
.

Here j n’s are the spherical Bessel functions of the first kind,
hn’s are the spherical Hankel functions,m1 and m are the
magnetic permeability of the sphere and surrounding me-
dium, respectively,N and M are the vector spherical har-
monics whose expressions in terms of commonly known ba-
sis functions are given in Appendix A, and the prime
indicates a derivative. If we takem15m, both drop out of the

expressions. The coefficients of Eq.~2! are dependent upon
the quantity

x5ka5
2pNa

l
, ~3!

wherea is the radius of the sphere,l is the wavelength of
incident light in vacuum, andN is the refractive index of the
surrounding medium. The quantityx, called the ‘‘size param-
eter,’’ is what determines the scattering curve, rather than the
radius or wavelength independently. It is this parameter to
which we fit in our routines. We display sample plots of the
theoretical angular scattering distribution for a range of size
parameters in Fig. 2. The size parametersx55, 10, and 20
correspond, with our setup (l5633 nm), to sphere diameters
of 0.76, 1.51, and 3.03mm, respectively. Although the inten-
sities are expressed in arbitrary units, the scaling of intensi-
ties is the same for the three plots. Thus, we can note that as
the scatterer’s size parameter increases, scatter in the forward
direction increases dramatically. Also, we begin to see oscil-
latory behavior in the angular scattering distribution only at
size parameters around ten or higher; thus spheres of size
parameter smaller than this are more difficult to fit
accurately.

III. EXPERIMENTAL METHODS

Figure 3 shows a diagram of the experimental setup. An
unpolarized 1-mW helium–neon~He–Ne! laser ~Edmund
Scientific, #F61337!, with a wavelength of 632.8 nm, is di-
rected through the center of a glass cuvette with square cross
section~a square of side length 1 cm!, containing the sphere
suspension~one drop of spheres in 100 ml of water;;1010

spheres/ml!. The suspension is created using filtered water to
eliminate any scatterers other than the latex spheres. We di-
rected the beam using two mirrors, which aided in laser

Fig. 1. Illustration of Mie scattering.N and N1 refer to the indices of re-
fraction of the medium surrounding the scatterer and the particle material,
respectively;l is the wavelength of the incident light.

Fig. 2. The angular scattering distribution for incident light which is unpo-
larized, parallel, and perpendicularly polarized. Scattered light is shown for
particles of size parameterx5~a! 5, ~b! 10, and~c! 20.
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alignment and reduced the length of breadboard required for
the experiment. The cuvette was mounted directly above a
rotation stage using optical posts and other common equip-
ment. A photodetector~ThorLabs, #PDA55! was attached to
the rotation stage via a rail. The photodetector was placed
24.5 cm from the center of the cuvette. Our setup allowed the
photodetector to measure scattered light at angles as small as
4°; at angles smaller than this, the attenuated laser beam was
incident upon the photodetector. We were able to achieve an
angular resolution of61°. This resolution proved adequate
for our purposes; however, it would be a trivial matter to
increase it further by closing the iris at the front of the pho-
todetector. Data were collected for angles ranging from 4° to
between 24° and 40°.

The latex spheres are an essentially monodispersed sample
of a NIST certified size~Duke Scientific Co., #4206A:
6.03860.045mm spheres, #4205A: 4.9960.05mm spheres!,
and have an index of refraction of 1.59 at 589 nm. We found
it important to clean the cuvette sides with methanol before
taking measurements, in order to reduce flare from dirt, fin-
gerprints, etc. In order to correct for these potential prob-
lems, we took a background data set~measured scattering
from pure water! before our data-taking runs. The intensity
of the background was found to be negligible compared to
the scattered signal.

It is important that the concentration of the spheres is not
so high that multiple scattering is significant, so that we may
treat the suspension as a large number of independent, non-
interacting Mie scatterers. We took multiple data sets a few
times at various concentrations to ensure the curves differed
only by a multiplicative constant as expected. We also
checked for multiple scattering by eye, as a ‘‘halo’’ of scatter
around the beam is visible when significant multiple scatter-
ing takes place.

In order to increase the signal-to-noise ratio of the data
and to avoid a background signal from room lights, we used
a chopper and lock-in amplifier~SRS, #SR830 DSP!. How-
ever, if such equipment is not available, a He–Ne optical

filter ~Edmund Industrial Optics, #J43-081! affixed to the
photodetector will provide adequate screening of room
lights, and can save considerable expense.

We found that the He–Ne laser intensity sometimes fluc-
tuated substantially in the relative contributions from parallel
and perpendicular polarizations, and in absolute intensity if
adequate warm up time was not allowed. Because scattering
intensities are polarization dependent, we found it useful to
run the laser through a polarizer~Edmund Industrial Optics,
#J52-574! and then through a slightly angled glass cover-slip
that directed a small fraction of the beam to a reference pho-
todetector. Thus we were able to correct for fluctuations in
the intensity of the particular polarization by normalizing to
the reference intensity.

IV. NUMERICAL METHODS

The analysis of experimental data was heavily dependent
upon numerical methods, since the expressions for the theo-
retical Mie scattering curves are complicated@see Eqs.~1!
and ~2!#. In addition, we needed to correct for Snell’s law
refraction and foreshortening, as discussed below, using nu-
merical methods, as we know of no exact~or even reliably
accurate! analytic correction factor for these effects. As men-
tioned above, Drake and Gordon employed an approximate
analytical correction for Snell’s law that required a special-
ized sample cell to contain the spheres in order to maximize
the accuracy of the approximation and to avoid the foreshort-
ening problem. Fortunately, these problems were resolved
with little difficulty and great accuracy using the numerical
techniques we have developed, thus allowing us to employ a
simple square cuvette instead of a specially constructed
sample cell. We rely, then, on the computer to deconvolve
data; while this adds to the computational complexity of the
experiment, it obviates the need for collecting/imaging optics
and therefore greatly simplifies the experimental setup.

It is extremely difficult, if not impossible, to calculate the
absolute theoretical scattering intensity with any real accu-
racy, because it depends on many factors, such as the density
of spheres in the suspension, the quantum efficiency of the
photodetector, geometry of the cuvette, and the absolute in-
tensity of the incoming beam. Therefore, we decided, rather,
to have our fitting routine fit our data to within an arbitrary
scaling factor~in addition to fitting the size parameter!.

Before fitting the data, however, we need the ability to
generate the appropriate theoretical curves. All initial scat-
tering intensities were calculated usingMIEV0,7 a program
which generates angular scattering distributions for some
scaling factor, given a size parameterx ~we refer to these as
‘‘uncorrected’’ curves in that Snell’s law refraction and fore-
shortening effects are not accounted for in theMIEV0 code!.
For ease of use and in order to integrate it into our other
programs, which were written in C and C11, we used the
public domain packageF2C to convert the FORTRAN into
ANSI C. The program was used to generate tables of scat-
tering intensities over relevant ranges of angles and size pa-
rameters in increments of 1° and 0.25°, respectively.

After generating the theoretical scattering curves, we
needed to correct for refraction and foreshortening effects
before we could compare them to the data. As it leaves the
water of the cuvette, the scattered light refracts according to
Snell’s law, and, in addition, there is a ‘‘foreshortening’’
effect which causes the perceived scattering angle of various
scatterers seen by the photodetector to vary with detection

Fig. 3. Configuration of the experiment. The lock-in amplifier is helpful in
increasing the signal-to-noise ratio of the scattered light intensity, but is not
essential. Both the scattered light~signal output from the lock-in amplifier!
and the reference intensity~signal from the photodetector looking at the
glass cover-slip! are recorded as a function of emission angleu.
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angle, as shown in Fig. 4. We wrote a program that simulta-
neously corrected for both of these problems. Figure 5 shows
a data set compared to theory at various stages of the correc-
tion. The effect of the Snell’s law correction is quite impres-
sive, while the plots show that the foreshortening correction
is far less significant for these data, a result which is not
obvious. It should be noted that for different experimental
geometries~particularly those with a larger cuvette-side to
rotation-arm ratio!, the foreshortening effect may indeed be
substantial. One factor we did not take into account is the
variation with angle of the transmission coefficient of glass,
since it can easily be shown using the Fresnel coefficient that
this effect is negligible for the range of angles we used.

The fitting program we developed is quite simple. It takes
as input the corrected theoretical scattering tables and the
angular scattering data to be fit. For each size parameter in
the theory table, it finds the scaling factor that minimizesx2

using standard numerical techniques for curve fitting over a
single free parameter. It then takes the minimumx2 over all
size parameters to get the final fit. The accuracy of the fit is
in principle only limited by the spacing of the size param-
eters in the theory table constructed.

The programs and source code discussed above
are available upon request from the authors
@tom–donnelly@hmc.edu#. For a more in-depth discussion
of the theory, approach, and numerical methods behind
Snell’s law and foreshortening correction, see Appendix B.

V. DATA AND RESULTS

We took scattering measurements as a function of angle
for two sphere diameters, 6.04 and 4.99mm, at various po-
larizations of the incident light. We also took scattering data
for a 2:1 mixture of spheres of diameters 4.99 and 6.04mm.
With the combination of our refraction and foreshortening
corrections and our fitting algorithm, we fit the scattering
data for the 6.04- and 4.99-mm spheres to 5.9560.11 and
4.8560.15mm, respectively. Results are plotted in Figs.
5–7.

For both the 4.99- and 6.04-mm cases, the theoretical
curve dips sharply at a low angle before oscillating, while the
measured data drop far less sharply. This is probably a con-
sequence of finite angular resolution, as the width of the drop
is roughly 1°, and thus is not properly resolved with our
apparatus. However, except in these small angular regions,
the theoretical plots show good agreement with the scattering
measurements.

If our techniques are used to fit data to an unknown sphere
size, it is important to have some judge of how good the fit
is—how close is our best fit relative to our second best, for
example? For this purpose, the simple approach taken in our
fitting routine becomes a great asset, as it allows us to easily
calculate and plotx2 ~minimized with respect to the multi-
plicative parameter! as a function of size parameterx. Such a
plot is shown in Fig. 8 for the 4.99- and 6.04-mm sphere
data. It shows thex2 ‘‘basin’’ in which the best fit resides.
The lowest basin is at size parameterx539.25, which cor-
responds to our best fit sphere diameter of 5.95mm. The
width of the basin, roughly60.75, determines an uncertainty
of the particle diameter of60.11 mm, consistent with the
manufacturer’s value of 6.04mm. The fact that our lowest
basin is substantially lower than other basins gives us confi-
dence that the general range of size parameters we calculate
with our correction and fitting algorithms is indeed correct.

Fig. 4. A diagram of Snell’s law refraction and foreshortening effects.~a! At
small detection angles, the rays from various scatterers that make it to the
photodetector are roughly all emitted at the same angle.~b! At larger detec-
tion angles, however, the scattering angle varies from scatterer to scatterer.
In addition, the scattered light from some regions can hit the photodetector
from two different scattering angles.

Fig. 5. Correcting Mie theory fits for refraction at cuvette face and fore-
shortening effects. Data are taken with 6.04-mm-diam latex spheres (x
539.9) using unpolarized He–Ne light (l5633 nm). The best fit is 5.95
60.11mm (x539.2560.75). ~a! Uncorrected;~b! corrected for refraction
~Snell’s law! at cuvette interface;~c! corrected for refraction at cuvette
interface and foreshortening effect. Clearly, for these data, Snell’s law re-
fraction dominates the foreshortening effect.
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The plot for the 4.99-mm spheres has basin width of61.00
at size parameterx532.00 corresponding to a particle diam-
eter of 4.8560.15mm, consistent with the manufacturer’s
value.

The data obtained from the 2:1 mixture of spheres are
shown in Fig. 7. Although we correct for refraction and fore-

shortening effects, we cannot fit the data to the size param-
eters and relative concentrations using the fitting routine de-
veloped. However, we can use the routine to generate
corrected theoretical scattering curves that best fit the data,
thus allowing an easy comparison of data with theory.

VI. CONCLUSIONS

We have presented a technique for sizing spherical par-
ticles with diameters of the order of 1mm using simple light
scattering measurements which are easily implemented in the
undergraduate physics lab. Unlike other methods available
for particle sizing, our method is cheap, requires only stan-
dard laboratory equipment, and is easily implemented. In
addition, the numerical methods we have developed and em-
ployed are straightforward, highly effective, and can achieve
any desired accuracy.
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APPENDIX A: MIE SCATTERING COEFFICIENTS

We derive here the expressions for the scattered electro-
magnetic field for a plane wave incident upon a homoge-
neous sphere. For a more detailed derivation, see Bohren and
Huffman’s book,6 upon which we base our derivation.
Again, this derivation is mathematically complex; it is in-
cluded here so that the interested student can find the neces-
sary theory and laboratory discussion in a single document.

Fig. 6. Scattering data for latex spheres with 4.99mm diameter (x
532.9); incident laser light (l5633 nm) is perpendicularly polarized. The
best fit is to scatterers with 4.8560.15mm diameter (x532.0061.00).

Fig. 7. Light scattered from a suspension of latex spheres made from two
sphere sizes. Latex spheres of diameters 4.99mm (x532.9) and 6.04mm
(x539.9 size parameter! were mixed in a 2:1 ratio. Data and optimally
scaled theory curve are shown.

Fig. 8. Chi-square per degree of freedom calculated for the fit as function of
size parameter.~a! 4.99-mm-diam spheres fit to a size parameter ofx
532.0061.00, or 4.8560.15mm. ~b! 6.04-mm-diam spheres fit to a size
parameter ofx539.2560.75, or 5.9560.11mm.
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First, we need a convenient way to deal with vector field
functions. We begin with the macroscopic Maxwell equa-
tions for time-harmonic fields in a given material; that is, for
fields of the form

Ei5E0 exp~ i ~k"x2vt !!,
~4!

H i5H0 exp~ i ~k"x2vt !!,

whereE andH are the electric and magnetic fields, respec-
tively, k is the wave vector appropriate for the medium, and
v is the frequency of the wave.

These fields satisfy the following Maxwell equations:

¹•E50, ¹•H50,
~5!

¹3E5 ivmH, ¹3H52 iveE

for e and m, the electric and magnetic permeability of the
material. It is a simple matter to show, using vector identi-
ties, that such fields must consequently satisfy the vector
wave equations,

¹2E1k2E50, ¹2H1k2H50, ~6!

wherek25v2em.
To find solutions to the vector wave equation, we con-

struct the following vectors:

M[¹Ã~rc!, N[
¹ÃM

k
, ~7!

wherer is the radius vector in spherical coordinates andc is
an arbitrary scalar function of position. Again using vector
identities, it can be shown thatM and N satisfy the vector
wave equation, and hence Maxwell’s equations, ifc satisfies
the scalar wave equation,

¹2c1k2c50, ~8!

which, in spherical coordinates, is

1

r 2

]

]r S r 2
]c

]r D1
1

r 2 sinu

]

]u S sinu
]c

]u D1
1

r 2 sin2 u

]2c

]f2

1k2c50. ~9!

Therefore we need only find an expression for the scalar
function c in order to find vector solutionsM andN.

To solve forc we use separation of variables,c(r ,u,f)
5R(r )Q(u)F(f). This yields separated equations

d2F

df2 1m2F50,

1

sinu

d

du S sinu
dQ

du D1Fn~n11!2
m2

sin2 uGQ50, ~10!

d

dr S r 2
dR

dr D1@k2r 22n~n11!#R50

with separation constantsm andn. Making a change of vari-
able to cosu andr5kr, we find the following solutions:

F5$cos~mf!,sin~mf!%,

Q5$Pn
m~cosu!%, ~11!

R5$ j n~r!,yn~r!%,

wherePn
m is the Legendre function of the first kind of degree

n, orderm, and j n andyn are the spherical Bessel functions
of order n of the first and second kind, respectively. The
requirement of single valuedness forc forces m to be an
integer, and we get no new functions ifm is nonpositive, so
we will require m to be a positive integer. The Legendre
functions determine the allowed values ofn to be $m,m
11,...%. Thus we have determined a complete set of basis
functions that can be used to constructc, and hence the
corresponding vector spherical harmonics,

Memn5
2m

sinu
sin~mf!Pn

m~cosu!zn~r!eu

2cos~mf!
dPn

m~cosu!

du
zn~r!ef ,

~12!

Momn5
m

sinu
cos~mf!Pn

m~cosu!zn~r!eu

2sin~mf!
dPn

m~cosu!

du
zn~r!ef

for M andN,

Nemn5
zn~r!

r
cos~mf!n~n11!Pn

m~cosu!er

1cos~mf!
dPn

m~cosu!

du

1

r

d

dr
@rzn~r!#eu

2m sin~mf!
Pn

m~cosu!

sinu

1

r

d

dr
@rzn~r!#ef ,

~13!

Nomn5
zn~r!

r
sin~mf!n~n11!Pn

m~cosu!er

1sin~mf!
dPn

m~cosu!

du

1

r

d

dr
@rzn~r!#eu

1m cos~mf!
Pn

m~cosu!

sinu

1

r

d

dr
@rzn~r!#ef

can be used to construct our solution vectorsM and N,
where the subscriptso and e denote using sine and cosine
functions ~odd and even! for the u dependence, and where
the zn’s are either of the spherical Bessel functions.

We must now express the incoming plane wave in this
basis. In spherical coordinates, anx polarized wave travers-
ing thez direction is given by

Ei5E0 exp~ ikr cosu!ex ,
~14!

ex5sinu cosfer1cosu cosfeu2sinfef .

We determine the coefficients of the infinite vector spherical
harmonic expansion of the plane wave by using the orthogo-
nality of the basis functions, rejecting harmonics that involve
yn since they diverge at the origin. After a bit of tricky inte-
gration, we get the following result. We find thatBemn and
Aomn vanish for allm andn, and all coefficients withmÞ1
vanish, producing a considerable simplification:

Ei5E0(
n51

`

i n
2n11

n~n11!
~Mo1n

~1! 2 iNe1n
~1! !, ~15!
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where the superscript~1! denotes a radial dependence given
by the spherical Bessel function of the first kind. The expres-
sion for H follows from taking the curl ofE.

We now solve for the internal and scattered fields, given
the incident field above. In order to do this, we must impose
boundary conditions on the fields at the surface of the
sphere:

~Ei1Es2E1!Ãer5~H i1Hs2H1!Ãer50, ~16!

where Ei is the incident electric field,Es is the scattered
electric field, andE1 is the electric field inside the sphere,
with the magnetic field quantities similarly defined. These
conditions require the field components tangential to the
boundary to be continuous, which is a sufficient condition
for conservation of energy.

We expand the internal and scattered fields in our basis,
with coefficients to be determined. Inside the sphere, we
must again reject theyn’s because we require finiteness at
the origin. In addition, the boundary conditions and the form
of the incident wave then require that the coefficients of the
scattered and internal fields must vanish formÞ1. So, inside
the sphere we have

E15 (
n51

`

En~cnMo1n
~1! 2 idnNe1n

~1! !,

~17!

H15
2k1

vm1
(
n51

`

En~dnMe1n
~1! 1 icnNo1n

~1! !,

whereEn5E0i n 2n11/n(n11) andcn and dn are coeffi-
cients to be determined. Outside the sphere we must use both
types of spherical Bessel functions. However, if we switch
our basis to spherical Hankel functions defined by

hn
~1!~r!5 j n~r!1 iyn~r!,

~18!
hn

~2!~r!5 j n~r!2 iyn~r!,

we can simplify things. The asymptotic behavior of the Han-
kel functions for kr@n2 corresponds to an incoming and
outgoing spherical wave:

hn
~1!~kr !→ ~2 i !n exp~ ikr !

ikr
,

~19!

hn
~2!~kr !→ 2 i n exp~2 ikr !

ikr
.

We only need the outgoing wave,hn
(1) , so we can assume the

coefficients vanish for the other functions. So, our scattered
field is

Es5 (
n51

`

En~ ianNe1n
~3! 2bnMo1n

~3! !,

~20!

Hs5
k

vm (
n51

`

En~ ibnNo1n
~3! 1anMe1n

~3! !,

where the superscript~3! indicates radial dependence given
by the first~outgoing wave! Hankel function.

Now, the boundary conditions provide us with four inde-
pendent equations when written in component form. The or-
thogonality of the basis functions allows us to solve, for each
n, for the four unknown coefficientsan , bn , cn , anddn . We
get four linear equations,

j n~mx!cn1hn
~1!~x!bn5 j n~x!,

m@mx jn~mx!#8cn1m1@xhn
~1!~x!#8bn5m1@x jn~x!#8,

~21!mm jn~mx!dn1m1hn
~1!~x!an5m1 j n~x!,

@mx jn~mx!#8dn1m@xhn
~1!~x!#8an5m@x jn~x!#8,

where the prime indicates a derivative, andx, the ‘‘size pa-
rameter,’’ andm, the relative refractive index, are defined by

x5ka5
2pNa

l
, m5

k1

k
5

N1

N
. ~22!

These can be solved for the following coefficients:

an5
mm2 j n~mx!@x jn~x!#82m1 j n~x!@mx jn~mx!#8

mm2 j n~mx!@xhn
~1!~x!#82m1hn

~1!~x!@mx jn~mx!#8
,

~23!
bn5

m1 j n~mx!@x jn~x!#82m j n~x!@mx jn~mx!#8

m1 j n~mx!@xhn
~1!~x!#82mhn

~1!~x!@mx jn~mx!#8
.

Now that we have expressions for the scattered field at any
point in space, we can determine the coefficients to any de-
sired accuracy by summing the well-known expressions for
Bessel functions to as many terms as necessary. These coef-
ficients can, in turn, be multiplied by the basis functions and
summed to any desired degree of accuracy in order to get the
scattered field at any point in space. We are interested in the
dependence of the field whenr is fixed. If we setf5p/2 and
let u vary we get the angular dependence of scattered field
for incoming light polarized perpendicular to the scattering
measurement plane. On the other hand, if we fixu5p/2 and
let f vary, we get the angular dependence of the scattered
field when the incoming light is polarized parallel to the
scattering measurement plane. Note that the form of our
separated solution shows that our choice of where to fixr
only determines a scale factor for the curves, and therefore is
immaterial, since we will be fitting to an arbitrary scaling
factor anyway. In fact, there is no need for us to evaluate the
radial function whatsoever, or for that matter, the angular
function that we hold fixed~eitherf or u, depending on the
polarization!; we can simply take them as unity.

APPENDIX B: CORRECTION FOR REFRACTION
AND FORESHORTENING

Here we briefly discuss the techniques employed in cor-
recting for Snell’s law and the foreshortening effect. As the
laser travels through the cuvette, it illuminates a horizontal
column of scatterers. The approach taken here is to discretize
this column into a reasonable number~we generally found 20
to be more than sufficient! and correct the problem on a
scatterer by scatterer basis. The geometry of the correction
for an arbitrary scatterer a distancex from the front face of
the cuvette is shown in Fig. 9. Using simple techniques from
analytic geometry, one can show that the following equations
hold:

R cosf5
L

2
1r cosu0 ,

R sinf5x tanu1r sinu0 , ~24!

sinu05N sinu,

where the final equation follows directly from Snell’s law
taking the index of refraction of air to be unity. It is not
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difficult to solve these equations for a closed-form, albeit
inelegant, expression forf as a function ofu. However, this
is of little use for our correction program, as we need the
inverse function; given a detector anglef we need to deter-
mine what angleu a given sphere must scatter at in order to
reach our detector. Because a closed-form expression for the
inverse function is not forthcoming, we used numerical
methods to invert the functions as needed.

In order to get the theoretical corrected scattering curve,
we discretized the column of scatterers and treated each one

separately. For each scatterer, we integrated numerically the
scattered light that reaches the detector over the angular reso-
lution of the detector at the specified angle. We took the
angular resolution of our detector to be 1°. It is important to
integrate over a finite detector range rather than treat the
detector as a point, in order to take into account the signifi-
cant variations in intensity at variousf intervals caused by
variations withf of du/df.

APPENDIX C: DESCRIPTION OF THE SOFTWARE
DEVELOPED

We briefly describe the programs used in our analysis. The
first program, entitled ‘‘MIETABLE,’’ is the MIEV0 program
~originally written in FORTRAN but converted by us to C
using the public domain packageF2C!. Some minor modifi-
cations were made to the code specifically to facilitate the
quick generation of tables of angular scattering distributions.

The second program, ‘‘SNELL,’’ inputs a table of Mie scat-
tering intensities generated byMIETABLE, along with param-
eters describing the geometry of the experimental setup. It
outputs a new table of scattering intensities with Snell’s law
and foreshortening corrections taken into account.

The final program, ‘‘FITMIE,’’ is the simple fitting routine
discussed in the main text. It inputs the experimental data~in
a simple tab-delimited text format! and the corrected theoret-
ical table generated bySNELL. It returns the best fit size
parameterx and the scaling parameter associated with it.
There is also an option to output a plot of chi-square as a
function of size parameter.
1Norman J. Dovichi and Fahimeh Zarrin, ‘‘Laser Doppler Velocimetry for
Submicrometer Particle Size Determination,’’ AIP Conf. Proc.160 ~1!,
529–531~1987!.

2Jianhong Wang and F. Ross Hallett, ‘‘Spherical Particle Size Determina-
tion by Analytical Inversion of the UV-Visible-NIR Extinction Spec-
trum,’’ Appl. Opt. 35 ~1!, 193–197~1996!.

3Mao Ye, Shimin Wang, Yong Lu, Tao Hu, Zhen Zhu, and Yiqian Xu,
‘‘Inversion of Particle-size Distribution from Angular Light Scattering
Data with Genetic Algorithms,’’ Appl. Opt.38 ~12!, 2677–2685~1999!.

4R. M. Drake and J. E. Gordon, ‘‘Mie Scattering,’’ Am. J. Phys.53 ~10!,
955–962~1985!.

5H. C. van de Hulst,Light Scattering by Small Particles~Dover, New York,
1981!.

6Craig F. Bohren and Donald R. Huffman,Absorption and Scattering of
Light by Small Particles~Wiley, New York, 1983!.

7Warren Wiscombe, ‘‘Improved Mie Scattering Algorithms,’’ Appl. Opt.
19 ~9!, 1505–1509~1980!. Dr. Warren Wiscombe’sMIEV0 program, writ-
ten in FORTRAN 77, is available by anonymous ftp from climate.gsfc.na-
sa.gov in subdirectory pub/wiscombe.

LECTURES AND XEROX MACHINES

These are great for arousing the emotions. As a means of instruction, they ought to have
become obsolete when the printing press was invented. We had a second chance when the Xerox
machine was invented, but we seem to have muffed it. If youhaveto lecture, you can at least hand
out copies of what you said~or wish you had said!.

Ralph P. Boas, Jr., ‘‘Can We Make Mathematics Intelligible?,’’ inLion Hunting & Other Mathematical Pursuits, edited by
Gerald L. Alexanderson and Dale H. Mugler~Mathematical Association of America, Washington, 1995!, p. 236.

Fig. 9. The geometry of the Snell’s law~refraction! and foreshortening
corrections.R is the length from the center of the cuvette to the photodetec-
tor; L is the length of a cuvette side;r is the distance the refracted light
travels from the cuvette face to the photodetector;N is the index of refrac-
tion of the fluid~water, in our case! which holds the latex spheres, andN0 is
the index of refraction of the medium outside of the cuvette~air, in our
case!.
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