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Abstract of the Dissertation 

 

Problems in GPS Accuracy 

by 

Michael Thomas Vodhanel 

Claremont Graduate University: 2011 

 

 Improving and predicting the accuracy of positioning estimates derived from the global 

positioning system (GPS) continues to be a problem of great interest.  Dependable and accurate 

positioning is especially important for navigation applications such as the landing of commercial 

aircraft.  This subject gives rise to many interesting and challenging mathematical problems.  

This dissertation investigates two such problems.  

 The first problem involves the study of the relationship between positioning accuracy 

and satellite geometry configurations relative to a user's position.  In this work, accuracy is 

measured by so-called dilution of precision (DOP) terms.  The DOP terms arise from the linear 

regression model used to estimate user position from GPS observables, and are directly related 

to user position errors.  An analysis of the statistical properties explaining the behavior of the 

DOP terms is presented.  The most accurate satellite geometries  and worst configurations are 

given for some cases. 



 The second problem involves finding methods for detecting and repairing cycle-slips in 

range delay data between a satellite and a receiver.  The distance between a satellite and a 

receiver can be estimated by measuring the difference in the carrier frequency phase shift 

experienced between the satellite and receiver oscillators.  Cycle-slips are discontinuities in the 

integer number of complete cycles in these data, and are caused by interruptions or 

degradations in the signal such as low signal to noise ratio, software failures, or physical 

obstruction of the signals.  These slips propagate to errors in user positioning.  Cycle-slip 

detection and repair are crucial to maintaining accurate positioning.  Linear regression models 

and sequential hypothesis testing are used to model, detect, and repair cycle-slips.  The 

effectiveness of these methods is studied using data obtained from ground-station receivers. 
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Glossary of Terms 

 

ANOVA - Analysis of Variance.  A method of creating statistical hypothesis tests in which the 

total sum of squares is broken into components which have meaning with regards to the 

models' fit of the data, such as the sum of squares regression and sum of squares residuals. 

 

BLUE - Best Linear Unbiased Estimator.  A parameter estimator which has least variance of all 

unbiased estimators that are linear functions of the observables.  

 

CSR - Cycle-slip Repair Tool.  The software tool developed for the purpose of detecting and 

repairing cycle-slips in RINEX files. 

 

DOP - Dilution of Precision.  A term proportional to the standard deviation of linear regression 

estimators and a widely used metric for user positioning accuracy. 

 

Galileo - European global navigation satellite system. 

 

GLONASS - Global Orbiting Navigation Satellite System (Russian global navigation satellite 

system). 

 

GNSS - Global navigation satellite system.  Such systems include GPS, Galileo, and GLONASS. 

 

GPS - The Global Positioning System (United States global navigation satellite system). 

 

IFPR - iono-free pseudorange.  A pseudorange measurement free of ionospheric delay. 

 



ix 
 

PRN - Pseudo-Random Noise.  A generated binary signal with noise-like properties used as an 

identification code for a GPS satellite. 

 

Pseudorange - An approximation of the range between a satellite and receiver which contains 

some error due to a bias in the receiver clock. 

 

RINEX - The receiver independent exchange format.  A widely used format for files which 

contain carrier and code data.  See (Gurtner & Estey, 2007) for a detailed description.   

 

WAAS - Wide Area Augmentation System.  Augmentation of GPS aimed at improving accuracy, 

availability, and integrity. 

 

WRS - WAAS Reference Station.  Ground stations that monitor GPS satellite data.   
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1.1  Introduction to Dilution of Precision 

 A great deal of effort has been undertaken to quantify the accuracy of navigation 

systems that make use of the Global Positioning System (GPS).  A good example of such a 

system is the Wide Area Augmentation System (WAAS), which is now used extensively by 

commercial airlines.  Dilution of Precision (DOP), which is dependent on satellite positioning 

relative to the user, is a widely used metric for accuracy because it provides a proportionality 

constant between the precision of satellite range measurement and user position error (Misra 

& Enge, 2006).  However, due to a formulation which is very difficult to conceptualize, the 

behavior of DOP with respect to user positioning has not been well understood.  As a result, 

optimal satellite configurations which minimize the various DOPs have remained unknown.  In 

section 1, a method for visualizing the behavior of DOP using parallelotopes is developed along 

with results needed to solve the optimization problems.  Optimal satellite configurations are 

presented for various DOPs using this understanding and worst case satellite configurations are 

also discussed.  Finally, using this information, an algorithm is developed for fast satellite subset 

selection which is superior to previously used methods.  This is an important problem, as there 

are typically more satellites visible than channels available to a GPS receiver to track them, so it 

is advantageous for the receiver to fill its available channels with the combination of satellites 

that yields the most accurate navigation information. 
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1.2  Development of DOP 

 The purpose of this section is to introduce the usual formulation for DOP in both the 

general case and specifically for GPS.  This section describes the basics of linear regression and 

GPS satellite geometry needed to understand DOP.  Sections 1.3-1.5 establish a thorough 

understanding of the behavior of DOP as it is formulated in this section. 

 

1.2.1  Basics of Linear Regression 

 Linear regression is a method of modeling the relationship between an observable y  

and a set of input variables nxx ,,1   as a linear function:     

  nn xxxy 2211                                        Eq.  1.2.1-1 

where   is a random variable representing noise and each j  is an unknown model 

parameter.  By collecting m  observations for various input values, m  equations are formed.  

For mi 1 : 

ininiii xxxy   ,2,21,1                                    Eq.  1.2.1-2 

These m  equations can be written in matrix form. 




 Xy                                                            Eq.  1.2.1-3 
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Here, y


 is a column vector of m  observable values, X  is an m  by n  matrix of input values 

called the design matrix, 


 is a column vector of the unknown model parameters, and 


 is a 

column vector of m  random noise terms.  Typically, the goal of this formulation is to find an 

estimate for the unknown model parameters 


.  It will be assumed throughout that the matrix 

X  is of full rank which implies that XX T  is non-singular.  In this case, the linear regression 

estimator for 


 is given by 

yXXXb TT 1)( 


                                                      Eq.  1.2.1-4 

This linear regression estimator is the best linear unbiased estimator (BLUE) for 


 when the 

noise terms are independent and identically distributed with a finite common variance and zero 

mean.  It is unbiased because the expected value is   


bE .  It is best in the sense that out of 

all unbiased estimators that are linear functions of the observables y


, each ib  has the 

minimum variance.  Under the assumption that each i  is independent and identically 

distributed with variance 2 , the covariance of the estimation vector is given by: 

12 )()cov(  XXb T


                                                   Eq.  1.2.1-5 

(Myers & Milton, 1998). 
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1.2.2  Basics of GPS Positioning 

 The GPS system currently consists of 31 satellites.  Each continually transmits a signal 

that includes the time that the message was sent and the satellite position.  From this 

information, pseudorange equations are formed for a user who has unknown position. 

tczzyyxxtzyx iiii  222 )()()(),,,(                    Eq.  1.2.2-1 

Here there are m  equations, one for each satellite in view of the user mi 1 .  Each 

),,( iii zyx  is a known position for the i-th satellite.  ),,( zyx  is the unknown position of the 

user.  t  is a time offset of the user’s GPS receiver from the GPS system time and c  is the 

speed of light, which is the speed at which the signals propagate from the satellite to the user 

(Kaplan & Hegarty, 2006).   The GPS receiver provides a noisy measurement of ),,,( tzyxi  , 

namely 
ii tzyx   ),,,( , where i  represents the random error term in the measurement. 

 One way to apply the aforementioned linear statistical model to solve these equations 

for the user position is to linearize them about a known, approximate user position )~,~,~( zyx  

such that 

   ),,()~,~,~(),,( zyxzyxzyx                                    Eq. 1.2.2-2 

A pseudorange equation can be linearized about )~,~,~( zyx  using Taylor expansion: 

tcz
z

tzyx
y

y

tzyx

x
x

tzyx
zzyyxxtzyx

ii

i

iiii

















~
),~,~,~(

~
),~,~,~(

~
),~,~,~(

)~()~()~(),,,( 222






         Eq.  1.2.2-3
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so that approximately, we have  

tcz
r

zz
y

r

yy
x

r

xx
rtzyx

i

i

i

i

i

i

ii 









~~~

),,,(
                  

Eq.  1.2.2-4  

where 222 )~()~()~( zzyyxxr iiii  .  Note that the first three terms on the right hand 

side of this equation make up the dot product of the unit direction vector pointing from the 

linearization point to the satellite with the unknown offset of the actual user position from the 

linearization point.  Taking our observables to be ( ( , , , ) )i i i iy x y z t r     , and  denoting: 





















my

y

y

y


 2

1

 ,        





























tc

z

y

x




,        





















m








 2

1

 



































1
~~~

1
~~~

1
~~~

2

2

2

2

2

2

1

1

1

1

1

1

m

m

m

m

m

m

r

zz

r

yy

r

xx

r

zz

r

yy

r

xx

r

zz

r

yy

r

xx

G



                                Eq.  1.2.2-5 

this yields the matrix system 


 Gy .  The incremental component 


 can be estimated 

using linear regression.  The user position may be approached by iterating the approximate 

position using )~,~,~(),,()~,~,~( zyxzyxzyx  .  In practice, the iteration converges rapidly. 
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1.2.3  The Geometry Matrix and DOP 

 In the matrix G  given by equation 1.2.2-5, the position portion of the i-th row is a unit 

vector pointing from the approximate user location (i.e. the linearization point) to the i-th 

satellite.  The local level coordinate system is chosen such that: 

 iii

i

i

i

i

i

i une
r

zz

r

yy

r

xx








  ~~~
                  Eq.  1.2.3-1 

where e, n, and u are east, north and up components respectively.  So, these are the 

normalized satellite coordinates in the local coordinate east-north-up (ENU) system with the 

user at the origin.  Thus, the G  matrix can be written 

 1uneG


                                                  Eq.  1.2.3-2 

with the bold 1  representing a column vector of all ones.  A very common alternate 

representation using local azimuth and elevation is 

 1)sin()cos()cos()sin()cos( elazelazelG                      Eq.  1.2.3-3 

(Parkinson & Spilker, 1996; Misra & Enge, 2006).  This is simply a parametric (spherical 

coordinates) form of equation 1.2.3-2.  Because it holds the satellite position data relative to 

the user, G  will also be called the geometry matrix. 

 In the linear regression model from the previous section, G  is the design matrix.  From 

equation 1.2.1-5, the covariance of the position solution is 12 )( GGT .  So 1)( GGT  holds 

information about amplification of the variance onto the positional solutions (Kaplan & 
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Hegarty, 2006).  This information is called dilution of precision (DOP).  The DOP terms are 

defined by: 

 
































2

2

2

2

1

TDOP

VDOP

NDOP

EDOP

GGT                            Eq.  1.2.3-4 

(Kaplan & Hegarty, 2006; Misra & Enge, 2006).  These define DOPs for the east, north, vertical 

(up), and time directions.  Other DOP terms are derived as square roots of sums of these.  The 

commonly considered ones are: 

22: NDOPEDOPHDOPHorizontal                            Eq.  1.2.3-5 

222: VDOPNDOPEDOPPDOPPositional                  Eq.  1.2.3-6 

))((: 122  GGtraceTDOPPDOPGDOPGeometric T          Eq.  1.2.3-7 

Each of these gives information about the accuracy of user positioning in the described 

direction. 

 

1.2.4  Conceptualization of DOP 

 The commonly used illustration of dilution of precision with two satellites in 2D is 

presented in the figures below.  Assuming that there are some error bounds on the range of 

each satellite to the user, the user is within a region of error.   
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Figure 1.2.4-1 

Figure 1.2.4-1 is a picture for a desirable DOP since the actual user position is within a relatively 

small region of error.  With bad positioning, two satellites with the same range error can 

produce a much larger region of error. 

 

Figure 1.2.4-2 
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Figure 1.2.4-2 is an undesirable DOP.  In the following sections, a much more thorough 

conceptualization of DOP behavior will be developed. 
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1.3  Parallelotope Theory for DOP 

 In this section, a method for understanding and visualizing the behavior of DOP is 

developed.  DOP as it is presented in the definition, as a term in the inverse GGT  matrix, is 

difficult to understand.  It is a function of all the terms of the G  matrix and thus has high 

dimensionality when m and n are not small.  This section will present DOP as a function of only 

a few variables which represent an easy to understand geometric figure.   

 

 

1.3.1  Properties of Gramian Matrices and their Submatrices 

 The first step in understanding the behavior of DOP is to observe that the covariance 

matrix of the linear regression system is the inverse of a Gramian matrix H .  

 

Def (1.3.1-1):  An n by n matrix H is Gramian if there exists some set of column vectors nvv ,,1   

such that j

T

iij vvH  , nji  ,1 . 

 

 It follows directly from the definition that any Gramian matrix is Hermitian.  

Furthermore, any Gramian matrix can be represented as GGH T  where  nvvvG 21  is 

the matrix in which the i-th column is the vector iv .  Likewise, any matrix with the form 

GGH T  is Gramian.  The properties of the submatrices of H  are also important. 
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Def (1.3.1-2):  The i,j-th submatrix of an m by n matrix A  is the (m-1) by (n-1) matrix made by 

deleting the i-th row and j-th column of A .  It is denoted jiM , .   

 

 There is a special relationship between a Gramian matrix and its submatrices.  Just as a 

Gramian matrix is made by taking the dot products of the set nvv ,,1   with itself, the submatrix

jiM ,  is made by taking the dot products of the set nii vvvv ,,,, 111    with the set 

njj vvvv ,,,, 111   .  This will become useful in later sections.   

 

Theorem (1.3.1-3):  Given a Gramian matrix GGH T  where  nvvvG 21 , the submatrix

jiM ,  can be written j

T

iji GGM ,  where  nkkk vvvvG  111  .  

 

 Pf:  Suppose that H  is a Gramian matrix and let jiM ,  be an arbitrary submatrix of H .  

By definition 1.3.1-1, there is a set of vectors nvv ,,1   such that j

T

iij vvH  , nji  ,1 .  Then 

writing H  out we have: 























nnnn

nj

nj

vvvvvv

vvvvvv

vvvvvv

H

,,,

,,,

,,,

21

2222

1111








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By definition 1.3.1-2, the submatrix is then written with the i-th row and j-th column omitted. 





































nnjnjnn

nijijii

nijijii

njj

ji

vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv

M

,,,,

,,,,

,,,,

,,,,

111

1111111

1111111

1111111

,













 

Now it can clearly be seen that the elements of jiM ,  are the dot products of the vectors 

nii vvvv ,,,, 111    in the rows and the vectors njj vvvv ,,,, 111    in the columns.  

Specifically, it can be written: 

    j

T

injj

T

niiji GGvvvvvvvvM    111111,  

Q.E.D. 

 

 The most important case for investigating DOP is the case that ji  .  In this special 

case, the submatrix is written as: 


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



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



















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nnininn
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vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv

M

,,,,

,,,,

,,,,

,,,,
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1111111

1111111

1111111

,













 

or 
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    i

T

inii

T

niiii GGvvvvvvvvM    111111,  

This submatrix is clearly made by taking the dot products of the set nii vvvv ,,,, 111    with 

itself.  So, by definition 1.3.1-1, this submatrix is also a Gramian matrix.  Thus, every submatrix 

iiM  of a Gramian is also a Gramian.  

 

Corollary (1.3.1-4):  The submatrix iiM ,  of a Gramian matrix GGH T  is itself Gramian and 

can be written in the form i

T

iii GGM , . 

 

1.3.2  Parallelotopes and Volumes 

 Another special property of a Gramian matrix is that its determinant is related to  a 

volume.  Specifically, given a Gramian matrix GGH T , the determinant of H  is the square of 

the volume of the parallelotope whose edges are the column vectors of the G  matrix, and we 

write: 

),,(),,()det()det( 1

2

1 nn

T vvVolvvGramGGH                   Eq. 1.3.2-1 

The Gram notation indicates taking the determinant of the Gramian matrix formed using the 

given column vectors.  The Vol notation indicates taking the volume of the parallelotope made 

up of the vectors.  This and related results can be found in Gover and Krikorian (2010) or Jones 
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(2011).  For the case in which 3n  and ][ 321 vvvG  , the resulting parallelotope can be easily 

visualized. 

 

Figure 1.3.2-1 

A three dimensional parallelotope is also known as a parallelpiped.  A two dimensional 

parallelotope is simply a parallelogram.  When H is a 2 by 2 Gramian matrix, the determinant is 

the square of the area of the resulting parallelogram.  In general, the word “volume”  will be 

used regardless of the fact that a parallelotope may have dimensions other than 3n . 

 

1.3.3  Properties of Parallelotopes 

 There is a special property of parallelotopes which can be established through the use of 

elementary column operations on the G  matrix.  There are three types of elementary column 

operations for matrices. Each can be performed by multiplying on the right by an elementary 
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matrix.  The elementary column operations and their corresponding matrices are listed here.  

The determinant for each type of elementary matrix is also given. 

1)  Swapping the position of two columns in the matrix. 





























1

01

10

1







    

determinant = -1 

2)  Adding a multiple of one column to another column. 





























1

1

1

1







c

    

determinant = 1  

3)  Multiplying any column by a non-zero scalar.  





























1

1

1

1





c

    

determinant = c 
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 For any two square matrices A and B , )det()det()det( BAAB  .  So given an n by n 

Gramian matrix GGH T  and any n by n elementary column operation matrix E  of the first or 

second type above: 

)det(

)det()det(

)det()det()det(

)det())()det((

2

GG

GGE

EGGE

GEGEGEGE

T

T

TT

TTT









 

This demonstrates that the columns of G  can undergo elementary operations of the first two 

types without changing the determinant of GGH T .  Since a parallelotope volume is simply 

the square root of a Gramian determinant, it inherits invariance under the same elementary 

column operations.  So in general: 

),,,,,,(),,( 1111 nijiin vvavvvvVolvvVol                          Eq. 1.3.3-1 

for all nji  ,0 and any scalar a.  Similarly, 

),,,,,,(),,( 1111111 jnnjjjjjjjjn vavvavvvavvavVolvvVol   
    

Eq.  1.3.3-2 

An interesting special case of equation 1.3.3-2 is when 





jj

ji

i
vv

vv
a

,

,
 for each i.  In this case 

)(Pr
,

,
ivj

jj

ji

ji vv
vv

vv
va

j





                                          Eq. 1.3.3-3 

which is the projection of iv  onto jv .  Then 
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)(Pr ivijii vvvav
j


                                           

Eq.  1.3.3-4 

which is orthogonal to iv .  Using this in equation 1.3.3-2 with nj   yields: 

)),(Pr,),(Pr),(Pr(),,( 1122111 nnvnvvn vvvvvvvVolvvVol
nnn   

    
Eq.  1.3.3-5 

Since )(Pr ivi vv
n

  is orthogonal to nv  for all 11  ni , this n dimensional volume can be 

reduced to an (n-1) dimensional volume.   

))(Pr,),(Pr),(Pr(),,( 1122111   nvnvvnn vvvvvvVolvvvVol
nnn


     

Eq.  1.3.3-6 

This process could be repeated recursively to find the volume.  It is equivalent to performing 

Gram-Schmidt orthogonalization on a determinant.  That will not be the purpose here since 

such a process leads to formulas that become unwieldy even for n as small as 3. 

 Instead, a special case in which the G  matrix contains a column of all ones is 

considered.  This is an important case because such matrices arise very often in linear 

regression.  The column of ones represents a constant or y-intercept term in the regression 

model.  For this case the G  matrix is written as ][ 121 1 nvvvG  .1  Using equation 1.3.3-6, 

the resulting volume is 

))(Pr,),(Pr),(Pr()1,,,( 11121211111   nnn vvvvvvVolvvVol  


 1
    

Eq.  1.3.3-7 

                                                           
1
 Here the boldface 1 represents a column vector of ones, with dimension determined by context. 
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The norm of the ones vector is m1  where m is the number of rows in G  and the number 

of elements in each column vector.  Also, subtracting a vector’s projection onto 1 is equivalent 

to centering the vector since  

111
11

1
1 













 



vkv
m

v
v

m

k

i
i

i

1

)(
1

,

,
)(Pr  

Denoting the centered vector with a hat this yields 

iiii vvvvv ˆ)(Pr
1

 1  

Thus the volume for a G  matrix including 1 is given by 

)ˆ,,ˆ,ˆ(),,,( 12111   nn vvvVolmvvVol  1                       Eq.  1.3.3-8 

As a determinant equality this can be written 

)ˆ,,ˆ,ˆ(),,,( 12111   nn vvvGrammvvGram  1                    Eq.  1.3.3-9 

These equalities will prove to be useful in later sections. 

 

 

1.3.4  DOP Using Parallelotopes 

 Recall that DOP terms are combinations of elements of the covariance matrix and that 

the covariance matrix   is the inverse of a Gramian matrix. 

11 )'(   GGH  
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Since the covariance matrix is the inverse of a Gramian matrix, the inversion properties of 

Gramian matrices are of interest here.  It is well known that the inverse of any non-singular 

square matrix is given by 

 
A

M
A

ji

ji

ji

,

,

1
)1( 






                                                   Eq. 1.3.4-1

 

where jiM , is the i,j-th submatrix of A .  The determinant jiM ,  is called the i,j-th minor of A .  

This result can be found in basic linear algebra text books.  For an easy proof see Nakos and 

Joyner (1998).  The DOP terms are sums of elements on the main diagonal of the covariance 

matrix, so of special interest here are the terms 

H

M

H

M
H

iiii

i

iiii

,,

2

1

,,

)1(



 

                                    Eq. 1.3.4-2

 

From corollary 1.3.1-4, it is known that iiM ,  is a Gramian matrix by virtue of the fact that H  is 

a Gramian matrix.  Furthermore, equation 1.3.2-1 tells us that each of the determinants can be 

represented as a squared volume of a parallelotope, since they are both determinants of 

Gramian matrices.  The result is: 

),,(

),,,,,(

1

2

111

2
,

,

n

niiii

ii
vvVol

vvvvVol

H

M



 

                          Eq. 1.3.4-3

 

 Thus the diagonal elements of the covariance matrix are each a ratio of two volumes.  It 

is important to note that since the numerator is the volume of the (n-1) dimensional 

parallelotope made up of nii vvvv ,,,,, 111    and the denominator is the volume of the n 



20 
 

dimensional  parallelotope made up of nvv ,,1  , the first parallelotope is a "face" of the 

second.   In a two dimensional case the larger volume is a parallelogram and the smaller volume 

is one edge (a one dimensional face) indicated below by blue. 

 

Figure 1.3.4-1 

In the three dimensional case, the larger volume is a parallelpiped and the smaller volume is a 

parallelogram. 
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Figure 1.3.4-2 

These concepts generalize in a natural way to higher dimensions.  In general there is a hyper 

parallelotope of n dimensions with faces of (n-1) dimensions, however they become difficult to 

visualize for 3n . 

 

 

1.3.5  Additional Properties of Gramian Matrices and Parallelotopes 

 The parallelotope interpretation of the Gramian matrix presented in the previous 

section also extends to the inverse of the matrix.  This section will lay out the relationship 

between a Gramian matrix, its inverse, and the related parallelotopes.  First, it will be shown 

that the inverse of a Gramian matrix is also Gramian, which implies that there is a parallelotope 

associated with the inverse matrix  as well.  This will be a constructive proof and the 

construction will be important to understanding the inverse relationship. 

 

Theorem 1.3.5-1:  Given any non-singular Gramian matrix GGH T ,  the inverse 1H  is also 

Gramian. 

 

 pf:  By definition 1.3.1-1, GGH T  for some m by n matrix  nvvvG 21  where 

m

nvv ,,1   and nm  .  Since H  is non-singular it must be that nvv ,,1   are linearly 
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independent.  Create a new set of linearly independent vectors m

mn vv  ,,1  , which are 

each orthogonal to the subspace of m  defined by ),,( 1 nvvspan  .  Now create a new matrix 

  ]|[ 2121 mnnm vvvGvvv   .  Because 0,  ji vv  whenever },,{ 1 ni vvv  and  

},,{ 1 mnj vvv  , the associated Gramian matrix can be written: 

























































2

11

111111

11

111111

0

0

,,,,

,,,,

,,,,

,,,,

GG

vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv

T

mmnmnmm

mnnnnnn

mnnnnnn

mnn

T













 

 

 Now, a new set of vectors   m

muuu 21  will be constructed using  mvvv 21  in 

the following way.  Consider any vector iu .  Since mvv ,,1   are linearly independent, it must be 

possible to set the direction of iu  such that it is orthogonal to the subspace defined by 

),,,,( 111 mii vvvvspan   , but not orthogonal to iv .  Because iu  is not orthogonal to iv , 

0,  ii vu .  So, set the length of iu  such that 1,  ii vu .  Now form the matrix 

 muuu 21 .  As before, the associated Gramian matrix can be written: 



























































21

1

11

111111

11

111111

,,,,

,,,,

,,,,

,,,,

B

KK

uuuuuuuu

uuuuuuuu

uuuuuuuu

uuuuuuuu

TT

mmnmnmm

mnnnnnn

mnnnnnn

mnn

T












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where  nuuuK 21 . 

 Since iu  is orthogonal to ),,,,( 111 mii vvvvspan    it must be that 0,  ji vu  for all 

ji  .  From 1,  ii vu and 0,  ji vu , 

    mmm

T

m

T Iuuuvvv ,2121    

so 1T  and 

mm

TTT I ,)(   

Thus 

mm

TTTT I ,

1    

Using the partitioned forms of T , T , and mmI ,  yields: 

































 221

1

,

,

0

0

0

0 GGKK

I

I TTT

nmnm

nn  

Multiplying partitioned matrices,  the equation becomes: 




































 221

21

22121

211

,

,

00

00

0

0

GG

GKGK

GG

KKGKGK

I

I

T

TTT

T

TTTTT

nmnm

nn  

From the top left partition, it can be seen that 

LHGKGKI TT

nn ,  
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where KKL T .  Thus a matrix KKL T has been constructed which is Gramian by definition 

and which is the inverse of H .  The inverse is necessarily unique for any non-singular matrix.  

Thus the inverse of a Gramian matrix is itself Gramian. 

Q.E.D. 

 

 In practice, the direction of each iu  could be found by taking the cross product 

mii vvvv    111 , which is a vector that is orthogonal to the subspace defined by 

),,,,( 111 mii vvvvspan   .  It should also be noted that when nm   in the above proof the set 

mn vv ,,1   is empty, G , and K . 

 The theorem can also be proven using the fact that a nonsingular matrix is Gramian if 

and only if it is both positive definite and symmetric.  It can be shown that the inverse is 

positive definite and symmetric also.  Such a proof, based on the spectral representation of the 

matrix, may be analytically more simple, however it will not provide a construction for the 

matrix K  with special geometric properties as the above proof does. 

 From the construction of K  in the above proof, there is an interpretation of the matrix 

inverse as a set of parallelotopes.  The G  matrix is made up of a set of vectors which form a 

parallelotope. 



25 
 

 

Figure 1.3.5-1 

 Since each iu  is orthogonal to ),,,,( 111 nii vvvvspan   ,  it is orthogonal to the (n-1) 

dimensional parallelotope face made up of nii vvvv ,,,, 111   .  When nm   this direction is 

unique for fixed nvv ,,1  .  When nm   the vector iu  is still orthogonal to the face, but the 

direction of iu  is not unique because the face does not span an (m-1) dimensional subspace of 

m .  If the process in the above proof is followed, the direction of iu  will be determined by the 

choice of mn vv ,,1  . 

 By virtue of the fact that  ii uu ,  is the i-th diagonal term of the matrix 1H , from 

equation 1.3.4-2, 

H

M
uuu

ii

iii

,
,                                                      Eq. 1.3.5-1 
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This is the volume of the face divided by the volume of the entire parallelotope formed by G .  

The relationship between the constructed vectors nuu ,,1   and the vectors nvv ,,1   is 

pictured below.  

 

Figure 1.5.3-2 

 Although the inverse matrix L  is unique, the matrix K  is not.  In fact, the matrix G  

which forms the unique matrix GGH T  is not itself a unique matrix.  Notably, the matrix H  

is invariant under rotations of G . 
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Def 1.3.5-2:  A matrix R  is a rotation2 matrix if 1 RRT
 and 1)det( R . 

 

Such matrices cause a rotation of the vectors in a matrix A  when A  is multiplied by R .   

 

Theorem 1.3.5-2:  A Gramian matrix GGH T  is invariant under rotation of the matrix G . 

 pf:  Substitute G  with any rotation RG  and 

HGGRGRGRGRGRGRG TTTTT  1)()(  

Q.E.D. 

 

 Seeing G  as a set of vectors, one might view the action of taking GGH T  as throwing 

out the rotational information of the vectors and keeping the moment information.  So in 

actuality, the vectors  nuu ,,1   and nvv ,,1  need not be orthogonal in the way they are shown 

in Figure 1.3.5-3  since either set may be rotated without changing H  or L .  However, the 

interior angles between the vectors nuu ,,1   still represent the principal angles between the 

faces of the parallelotope made up by nvv ,,1  .   It should be noted that this goes both ways.  

Since H  is also the inverse of L , the vectors nuu ,,1   can be viewed as a paralleltope and the 

vectors nvv ,,1   as the orthogonal vectors to the faces.  So there are two related 

                                                           
2
Also called an “orthogonal matrix”. 
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parallelotopes.  The interior angles of one are the principal angles of the other and vice versa.  

The edge lengths of one are related to the face volumes of the other by equation 1.3.5-1. 

 Each piece of information on the original parallelotope corresponds to a term in the H  

matrix.  The edge lengths correspond to the diagonal terms.  For example 
2

11,1 vH  .  The 

interior angles are related to the off diagonal terms of H following the definition of dot product.  

So the figures above show a relationship between the original matrix H  and the covariance 

matrix 1 H .  H  is represented by the edge lengths and interior angles of the parallelotope. 

The covariance matrix  is represented by face-volumes and their principal angles. The 

determinant 
1

H is represented by the square of the total volume of the parallelotope. 

 

 

1.3.6  Using Centered Vectors 

 

 When the vectors associated with a parallelotpe are centered, that is their components 

sum to zero, the parallelotope has special relationships with the statistical properties of the 

vectors.  This can be helpful in understanding some dilution of precision problems and it arises 

in any case in which the associated linear regression model includes an intercept.  Two lemmas 

with simple proofs are given here.  The first describes the relationship between a centered 

vector's norm and the vector's sample standard deviation.  The second describes the 

relationship between the interior angle of two centered vector's and the sample correlation of 

the vectors.  Both of these lemmas are basic but useful.  
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Lemma (1.3.5-1):  xmx ˆ  

 pf:    xxx ˆ,ˆˆ  

  
 11 xxxx ,  

  
 111 xxxxxx ,,2,

        by bilinearity 

  
 111 ,,2, 2xxxxx  

  




m

i

m

i

i

m

i

i xxxx
1

2

11

2 12  

  

22

1

2 2 xmxmx
m

i

i  


 

  

2

1

21
xx

m
m

m

i

i 







 



 

  

2

11

2 11

















 



m

i

i

m

i

i x
m

x
m

m  

  xm   

 Q.E.D. 
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So, the norm of the centered vector is m  times the sample standard deviation of the non-

centered vector (which is also the standard deviation of the centered vector).  This describes 

the edge lengths of a parallelotope made up of centered vectors. 

 

Lemma (1.3.6-2):  yxyx ,))ˆ,ˆ(cos(    
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from the previous result 
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 Q.E.D. 

So the cosine of the interior angle of the centered vectors is the correlation of the 

corresponding non-central vectors.  This describes the interior angles of a parallelotope made 

up of centered vectors. 

 

 

1.3.7  Volumes of Paralellotopes 

 As  seen in equation 1.3.2-1, the general  volume of an N dimensional parallelotope can 

be represented as the determinant of a the Gramian matrix GGH T  where the set of column 

vectors  nvvvG 21  are the vectors which make up the edges of the parallelotope.  Another 

way to represent the general volume for parallelotopes is with exterior products. 
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nn vvvvVol   11 ),,(  

However, the exterior products will not be used here.  As shown by Gram-Schmidt 

orthogonalization in section 1.3.3 and particularly in equation 1.3.3-6, these are equivalent to 

using a Gram-Schmidt process or repeated sine rule.  That is to say that starting with the 

volume as the length of the first vector, each successive vector scales the volume by the length 

of the vector times the sine of the angle between that vector and the current volume. 

 For lower dimensional cases, the specific equations for volume are already known.  For 

the two dimensional case, which is simply a parallelogram, the 2D-volume is the area and the 

formula is simply: 
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                              Eq. 1.3.7-1 

where ),( yx


  is the interior angle between the vectors x


 and y


.  In the three dimensional 

case, the parallelpiped has 3D-volume given by: 
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   Eq. 1.3.7-2 

(Gover & Krikorian, 2010).  Both of these formulas are also found in Jones (2011). 

 In the case that the parallelotope is made up of centered vectors, the formulae have 

centered forms.  From lemmas 1.3.6-1, 1.3.6-2 and equation 1.3.7-1 the area for a 

parallelogram made of centered vectors is: 
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21 1)ˆ,ˆ( xxxxmxxArea                                     Eq. 1.3.7-3 

From lemmas 1.3.6-1, 1.3.6-2 and equation 1.3.7-2, the volume for a parallelpiped made up of 

centered vectors is: 
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                 Eq. 1.3.7-4 

These centered volume equations will become useful in section 1.4. 

 

1.3.8  A-Optimality and D-Optimality 

 DOP optimization using parallelotopes is highly related to the concepts of A-optimality 

and D-optimality for matrices.  These are well known optimality ideas for regression models 

that are based on the information matrix G  and covariance matrix GGT .  Descriptions for each 

and discussions about their existence can be found in Rao (1965), Chan and Wong (1980), Chan 

(1982), and Hooks et al. (2009). 

 

Def (1.3.8-1):  An A-optimal solution for a linear regression design problem with design matrix 

G  is the choice of G  that minimizes the trace of GGT  which is denoted by )( GGtr T . 
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 Since the trace is the sum of the diagonal elements of a matrix, ))(( 1GGtr T  is 

proportional to the sum of the variances of each least squares estimate in the linear regression 

problem.  For GPS, it will be seen that an A-optimal solution is exactly the optimal solution for 

GDOP.  Other DOPs are similar, but are each a sum over only a subset of the diagonal elements 

of GGT .  The exact solutions for these DOPs will be called "A-optimal type" solutions. 

 

Def (1.3.8-2):  A D-optimal solution for a linear regression design problem with design matrix G  

is the choice of G  that minimizes ))det(( 1GGT .3 

 

 In general, the inverse of the determinant of a matrix is the determinant of the inverse.  

So, this is equivalently the maximization of )det( GGT .  From equation 1.3.2-1, this is the same 

as the maximization of ),,( 1 nvvVol  .  So the D-optimal solution(s) occur when the 

parallelotope associated with the control matrix G  achieves a maximum volume.  From 

equation 1.3.4-3, it can be seen that a D-optimal solution for G  maximizes the denominator of 

any DOP term ignoring the numerator, whereas an A-optimal type solution minimizes the actual 

DOP.  While A-optimal type solutions will be the focus of the following sections, a D-optimal 

solution will be discussed in section 1.4.1. 

  

                                                           
3
 In multivariate analysis, this is called the generalized variance, and minimizing it is equivalent to minimizing the 

geometric mean of the eigenvalues of the inverse of G’G, which are themselves proportional to the variances of 
the principal components of the G matrix.   
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1.4   DOP Optimization for GPS 

 This section will use the developments of section 1.3 to demonstrate how to find 

optimal geometries for various DOPs in the GPS system.  These findings include conceptually 

based interpretations along with exact matching formulas and discussions about the 

equivalence of the two.    

 

 

1.4.1  Known DOP Results for GPS 

 There are some previously known results for optimal DOP in GPS.  A solution is 

presented for the optimal configuration for GDOP given exactly 4 satellites in Parkinson and 

Spilker (1996).  The argument is that GDOP is made up of a numerator and denominator term, 

as we will see in the following sections.   Since the denominator has higher order terms, this 

portion is maximized and the numerator is ignored in an effort to minimize the ratio.  Because 

of this, the solution will be an estimate.  Since the denominator is the determinant of GGT , it 

can now be seen that this solution is exactly a D-optimal solution as per definition 1.3.8-2.  It is 

determined that the determinant, and thus the denominator, is maximized when the 4 

satellites form a tetrahedron with one satellite at 90 degree elevation and the others equally 

spaced at 0 degree elevation.  So this is the D-optimal satellite geometry for GDOP with exactly 

4 satellites.  The optimal tetrahedron geometry is also discussed in Marquis (1993) and Langley 

(1999). 
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 Although the following sections of 1.4 will focus on A-optimal type solutions, from the 

results to follow one might speculate that this is a very good estimate and that for 4 satellites a 

tetrahedron geometry is desirable.  However, one must be careful with D-optimal solutions for 

GPS.  All DOPs share the same denominator as GDOP.  Also, they are all bounded above by 

GDOP.  So, the exact same argument could be used to find the same D-optimal solution for any 

DOP given 4 satellites, which would not be the correct approach.  In particular, this would say 

that VDOP and HDOP are optimized for the same satellite configuration, which makes no sense.  

However, the A-optimal type solutions in general for various DOPs, most notably VDOP and 

HDOP, will be very different from each other.  So it is important to find the exact A-optimal type 

solutions.  Furthermore, these solutions will work for any number of satellites m when 4m . 

 Parkinson & Spilker (1996) also contains computer based results for GDOP with more 

than 4 satellites and a discussion of DOP for the two dimensional case.   For GPS purposes here, 

only three dimensional cases will be considered. 

 

 

1.4.2  Parallelotopes and Vertical DOP (VDOP) 

 Using the DOP matrix  1uneG   for GPS and equation 1.3.4-3, VDOP can be viewed 

as the ratio of the two parallelotope volumes: 

),,,(

),,(,

,
1

1

uneVol

neVol

H

M
VDOP

uu

uu                              Eq.  1.4.2-1 



37 
 

It may not be necessary, but in this case it will be helpful to use equation 1.3.3-8 to centralize 

the coordinate vectors and to lower the number of dimensions in the parallelotopes each by 

one.  Then, 

)ˆ,ˆ,ˆ(

)ˆ,ˆ(

uneVol

neVol
VDOP                                            Eq.  1.4.2-2 

As discussed in section 1.3.4, the parallelotope represented in the top numerator is a face of 

the parallelotope represented by the denominator.  So there is a visualization similar to Figure 

1.3.4-2 specifically for VDOP. 

 

Figure 1.4.2-1 

Had Equation 1.3.3-8 not been used, there would instead be a 4-dimensional hypertope with 

non-central vector edges.  From lemmas 1.3.6-1 and 1.3.6-2, another representation of the 

above figure is: 
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Figure 1.4.2-2 

According to lemma 1.3.6-1, each edge should also have a m , however these will turn out to 

be irrelevant in minimizing DOP for a fixed number of satellites.  Here, they are left out for 

simplicity, but their exact effect on DOP will be seen in the following sections.  

 An exact minimization for VDOP can be determined by examination of the above figure.  

Consider the edge e .  If this edge is expanded or contracted, both the 2D face and the 3D 

volume are increased or decreased by the same proportion.  As a result, the ratio of the two 

volumes or the VDOP is unchanged by this factor.  So, e  has no effect on VDOP.  Similarly, n

also has no effect.  However, u  has an important effect on VDOP.  Increasing u  increases 

the 3D volume but has no effect on the 2D face.  So to minimize the ratio it is desirable to have 

a large u .  As u  decreases to zero, VDOP will approach infinity.  Because the 3D volume 

increases linearly as u  increases, the relationship between u  and VDOP is inverse linear.  
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This is a complete description of the standard deviations or edge lengths that are required for 

optimization. 

 It remains to find the optimal configuration for the correlations.  Clearly, the ratio of the 

two volumes is smallest when the u  edge is orthogonal to the 2D face.  The denominator is 

proportional to the cosine of the angle between the u  edge and the 2D face. However the 

numerator is unaffected by this angle.  To achieve orthogonality, we should have 

0ˆ,ˆˆ,ˆ  ueun  .  When this occurs, the term ne ˆ,ˆ  has no effect on the ratio because each 

volume is proportional to the cosine of the interior angle for the 2D face.  In general, ne ˆ,ˆ  does 

have an effect on the ratio, but not when the other correlations are zero. 

 So it can be seen that the ratio of the volumes, and hence VDOP, is minimized when u  

is maximized and when 0ˆ,ˆˆ,ˆ  ueun  .  However, there is not necessarily a way to know that 

both of these can occur at the same time for a given problem, unless an example solution is 

found which satisfies both.  In the case of VDOP it is easy to find such a configuration for the 

satellites.  One possible configuration for 8m  is: 
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Figure 1.4.2-3 

 This figure shows 4 satellites collocated directly overhead, and 4 equally spaced at 0 

degrees elevation.  In this case, the variance in the u direction is maximized because half of the 

u coordinates are at the upper bound and half are at the lower bound.  The correlations ue ˆ,ˆ  

and un ˆ,ˆ  are both zero by symmetry.  So Figure 1.4.2-3 represents an optimal configuration of 

satellites for VDOP.  From the discussion of this section and from Figure 1.4.2-2, the effects on 

VDOP  of  changing u , ue ˆ,ˆ , or un ˆ,ˆ are known. 

 

 

1.4.3  The VDOP Formula 

 This analysis leads directly to the exact formula for VDOP in terms of standard 

deviations and correlations.  It can be useful to look at the algebraic formula and it can be seen 

that the results correspond to those found by examining the parallelotope above.  From simply 

applying equations 1.3.7-3 and 1.3.7-4 to equation 1.4.2-2, the ratio for VDOP becomes: 
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            Eq. 1.4.3-1 

 Immediately, we see as in the visualization, that the standard deviations of the east and 

north directions cancel.  It is also clear that VDOP indeed has an inverse linear relationship to 

the standard deviation in the up direction.  The result is: 
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 This is the VDOP formula.  It is of interest to consider that this term should be real by 

virtue of the fact that it is a standard deviation.  It is easy to see that the numerator is indeed 

real.  A proof that the term under the radical in the denominator is non-negative can be found 

in Jones (2011).  No further proof that the denominator is real is offered here.  Another 

important note is that the formula involves only the standard deviation and correlation terms in 

addition to the vector size m and that these are exactly the pieces of information that existed in 

the parallelotope analysis.  This implies that all the relevant information is indeed on the 

parallelotope.  This will always hold for parallelotope analysis because the parallelotope 

contains every piece of information that is in the Gramian matrix, which is the only input to the 

DOP problem. 

 In a case such as this, the minimum can be identified by treatment of the DOP formula.  

In higher dimensional cases, the formulae may quickly become too large to be practical making 

the parallelotope visualization even more useful.  Minimization via formula will be performed 

here for VDOP.  Although it is possible to approach this using the typical method of setting the 

partial derivatives of the function to zero, those being derivates with respect to ( nep 
, , unp 

, , 

uep 
, , and u

 ), a different method will be used here which does not involve calculus.  If using 

the derivative method, it is perhaps easiest to minimize 2VDOP  instead.  As an alternative, we 

simply divide the numerator and denominator of the formula both by 2

,1 nep  .  This yields: 
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The fractional term under the radical can be shown to be non-positive.  In fact, it is bounded 

inside [-1,0].  I.e., 
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A proof of the right side is included in the appendix.  The left side follows from the proof in 

Jones (2011) mentioned above.  This fact tells us that VDOP is bounded below by the function: 

um
VDOP




1
 

 It is easy to see that this bound can be achieved whenever the correlation terms are all 

zero.  In fact, it is achieved whenever 0,,  ueun pp  .  When this happens the nep 
,  term is 

inconsequential.  This corresponds to exactly what is seen in the parallelotope analysis, that 

when the two interior angels matching unp 
,  and uep 

,  are right angles, the remaining angle nep 
,  

has no bearing on the ratio of the volumes. 

 As before, it is apparent that the standard deviation can be maximized while the 

correlations are simultaneously zeroed.  So the same minimal solution is achieved as in the 

parallelotope analysis.  As we would expect, the formulaic and visual analysis yield the same 

results and have the same characteristics.  With the visualization, however, it is easier to see 
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the real behavior of the function and it is easier to consider higher dimensional cases.  An 

example of this will be seen in the TDOP section below. 

 

 

1.4.4  NDOP and EDOP Formulas and Minimization 

 The exact same process used for VDOP yields an identical parallelotope analysis for 

NDOP and EDOP along with DOP equations of the same form. 
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Eq. 1.4.4-1
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However, there is a difference due to the realities of GPS.  For a user on the globe, a satellite 

may be in the North or South direction which represent positive North and negative North 

coordinates.  Similarly it can be in the positive East or negative East direction.  So the 

normalized North and East coordinates each fall in [-1,1].  This is different from the up 

coordinates which fall in [0,1] due to the fact that any satellite in the negative up direction is 

below the horizon and is thus out of view from a user on the ground.   It should be noted that it 

is possible for satellites to be in view and below some users, such as airplanes using GPS 

guidance.  In this case the up coordinates are not bounded below by zero.   
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 Since the parallelotopes and formulas are the same as in section 1.4.2 and 1.4.3, the 

minimization is still achieved by maximizing the variance and zeroing the correlations in the 

direction of interest.  As in the VDOP case, these can be done simultaneously.  For 8m , the 

configurations would be: 

 

Figure 1.4.4-1 

In each figure, there are two groups of four satellites located near each end of the axis in the 

direction of interest.  These configurations are not realistically achievable in GPS due to the real 

world satellite orbits. 

 Even in theory these satellites cannot all be exactly on one axis.  If they were, all the 

points would lie on one line causing the system to be singular.  The other two coordinate 

vectors would be all zero, the G  matrix would not have full rank, and the GGT  matrix would 

have no inverse.  Also, the associated parallelotope would be flat and have zero volume.  The 

closer the points come to the axis, the better the DOP in that direction.  It approaches the limit 
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of m/1  but can never reach it without becoming singular.  The limit is m/1  because of the 

lower bounds 

nm
NDOP
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

1

      em
EDOP




1
 

and because 1, en
   in their respective configurations. 

 It should be apparent that none of EDOP, NDOP, or VDOP can be minimized 

simultaneously because maximizing the variance in one coordinate precludes maximization in 

any other direction.   This is due to the coordinates being normalized in the Euclidian sense.  For 

some other linear regression application besides GPS, this might not be the case.  If for example 

the coordinates where normalized in the  -norm, it could be possible to maximize variance in 

all directions simultaneously while achieving all zero correlations.  Such a configuration for 

8m  with a user at the origin would be 
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Figure 1.4.4-2 

This assumes that negative up coordinates are allowed in the application.  In any direction, half 

of the points are at the minimum and half are at the maximum, so each direction has maximum 

variance.  The correlation is also zero because of symmetry. 

 

 

1.4.5  TDOP Minimization and a Hyper-tope 

 The case of TDOP is slightly different. Using the geometry matrix  1uneG   for GPS 

and equation 1.3.4-3 as before, the DOP is still a ratio of two volumes.  However, the 

coordinate which does not appear in the numerator is the time coordinate represented by the 
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ones column.  So, equation 1.3.3-8 is not helpful in this case.  Thus the vectors in the equation 

below are not centered. 
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Eq.  1.4.5-1 

 This leaves  a 3D parallelpiped in the numerator and a 4D hyper-parallelotope in the 

denominator.   The parallelelpiped is represented in the figure below abstractly as a 2D 

parallelotope.  The fourth dimension is represented with a single edge for the ones vector. 

 

Figure 1.4.5-1 

Since the vectors in equation 1.4.5-1 are not centered, neither Lemma 1.3.6-1 or 1.3.6-2 are 

used.  So the vector variances and correlations are not used for the edge lengths and interior 

angles here.  
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 The goal is still to minimize the ratio of the face to the total parallelotope.  The edge 

sizes e


, n


, and u


 will not have any effect on the ratio since these terms effect the 

numerator and denominator equally.    The final edge length m1  is fixed since the vector 

is always ones.  So, the ratio is minimized simply when the ones edge is orthogonal to the 3D 

face made of the e, n and u edges.  In this case the angles between the e, n, and u edges have 

no effect on the ratio in the same way that ne ˆ,ˆ  had no effect on VDOP.  The ones edge is 

orthogonal to the 3D face when 1),(e


 , 1),(n


 , and 1),(u


  are right angles. It can be seen from 

section 1.3.3 that this happens exactly when e, n, and u are centered vectors.  Thus, TDOP is 

minimized when the e, n, and u coordinates are centered (have zero mean). 

 The solution for TDOP extends to linear regression in general.  Whenever there is a 

linear model, 

   01111 xxxy nnnn   

a design matrix can be chosen to minimize the variance of the linear regression estimator for 

the y-intercept 0  simply by choosing data points that are centered for each ix . 

 In practice for GPS, e and n can be centered in many configurations.  However, since the 

u coordinates are bounded in [0, 1], the u vector cannot be centered (for a user on the ground).   

The minimization for TDOP can still be found by maximizing the angle 1),(u


 .  From the 

definition of dot product 
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
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or 
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
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
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Eq. 1.4.5-3 

Equation 1.4.5-3 confirms that the angle is a right angle when the vector x


 is centered.  It also 

shows that ),( 1x


  is closest to a right angle when 
xm

xi





 is closest to zero.  For a vector with 

all non-negative elements, such as u, this is the 1 -norm divided by the 2 -norm.  The 1 -norm 

of a vector is bounded below by the 2 -norm.  This implies that: 

mum

ui 1





  

It is easy to see that this bound is achieved when only one element of u is non-zero.  This can be 

thought of as being close to centered.  So TDOP for GPS is minimized when exactly one satellite 

is above elevation zero and the satellites are centered across the e and n coordinates meaning 

that 0 ne . 

 

 

1.4.6  HDOP Optimization 

 A formula for HDOP follows immediately from equations 1.4.4-1 and 1.4.4-2 with 

equation 1.2.3-5. 



50 
 

   
2

,

2

,

2

,,,,

2

,

22

,

2

21

11

ueunneueunneen

unnuee

ppppppm

pp
HDOP














                  

Eq. 1.4.6-1

 

This can also be written in terms of volumes. 
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  Eq.  1.4.6-2 

The corresponding parallelotope is shown here. 

 

Figure 1.4.6-1 

 

 We see here that the numerator is the root sum of squares of the two face volumes.  

From either equation or the parallelotope, it is clear that u
  has no bearing on HDOP since it 

affects both of the faces and the total volume all equally.   It is also clear that HDOP is reduced 

when either e
  or n

  are increased.  This means that it is beneficial for HDOP to have all 
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satellites at the lowest possible elevation because positioning the satellites in such a way 

maximizes e
  and n

  while ignoring the loss in u
 .  As usual, the satellites may not all actually 

be contained in one plane so that the system remains nonsingular.  It is also desirable to have 

low correlations between each coordinate vector.  When the correlations are all zero, the lower 

bound for HDOP is achieved.  

en

ne

m
HDOP








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


22

                                               

Eq. 1.4.6-3

 

This means that the lowest HDOP occurs when all coordinate vectors are uncorrelated, the 

satellites are at lowest allowed elevation, and the satellites are spread widely across the east 

and north directions such that 
en

ne

m 









 22

 is minimized. 

 

 

1.4.7  PDOP & GDOP 

 PDOP and GDOP can also be written in terms of volumes.  The centered forms are not 

used for GDOP because it contains TDOP.   
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  Eq.  1.4.7-1 
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  Eq.  1.4.7-2 
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The denominator of PDOP is the volume of a 3D parallelotope made of centered vectors.  The 

numerator is the root sum of squares of all the face volumes, similar to a surface area.  GDOP is 

very similar in that the numerator is the root some of squares of all the face volumes, but the 

denominator is a 4D parallelotope volume. 

 In both cases, optimization requires minimizing the ratio between a root sum of squares 

surface area (or volume) and the volume of the higher dimensional parallelotope.  The surface 

volume to total volume ratio will grow large if any edge length or interior angle is reduced.  For 

PDOP, which is in centered form, this means that no standard deviation in any coordinate 

should be low and no two coordinate vectors should have high correlation.  For GDOP, it means 

that no coordinate vector should have low norm and none of the vectors should have a small 

angle between them.  As pointed out in the discussion of TDOP, since one of vectors involved is 

1 , the other vectors should be centered.  So, for optimal PDOP and GDOP, there should be a 

wide spread of satellites in every direction, which is not lopsided in any direction, and with low 

correlation between each coordinate vector. 
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1.5  Worst Case Scenarios for DOP 

 It is useful to also consider what the worst case scenarios are for DOP in addition to the 

optimal scenarios.  Although a given DOP with a set number of satellites has a theoretical 

minimal bound beyond which cannot be improved, any DOP can approach infinity under certain 

circumstances.  There are no upper bounds.  This section will investigate which satellite 

geometries will cause DOPs to become unbounded. 

 

 

1.5.1  Known Worst Case Scenarios 

 In Farrel and Barth (1998) and Farrel (2008), worst case scenarios for DOP are described 

as occurring when the geometry matrix has columns which are linearly dependent.  Linear 

dependence of the columns of G  causes G  to be less than full rank and GGT  to be singular.  A 

singular GGT  matrix makes DOP terms incalculable by inversion of the matrix.  For practical 

purposes, the condition of the matrix may be used to determine when the matrix is nearly 

singular and as a warning for bad DOP.  This is a conservative test since no DOP can approach 

infinity without this happening.  However, this does not tell the entire story about worst case 

scenarios.  It is entirely possible, at least in theory, to approach linear dependence in the G  

matrix without every DOP growing towards infinity or even getting large.  There are two specific 

ways in which a DOP term can approach infinity.  These will be discussed in the next two 

sections.  The first is technically a special case of the second, but is worth considering 

separately. 
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1.5.2  Zero Variance Singularities 

 One way for a DOP term to grow towards infinity is for one of the coordinate column 

vectors to approach zero variance.  In GPS this would be zero variance in the e, n, or u 

coordinates.  However, approaching zero variance in one coordinate does not necessarily imply 

that each DOP will grow.  Consider for simplicity the case of VDOP.  Recall that in the VDOP 

formula given as equation 1.4.3-2, there are no e  or n  terms.  So the variances in the e and n 

coordinates have no bearing on VDOP.  So it should be possible to have e  and n  approach 

zero without VDOP approaching infinity.  Consider the VDOP parallelotope in Figure 1.4.2-2 and 

remember that VDOP is the area of the 2D face over the volume of the 3D parallelotope.  As 

discussed in 1.4.2, changing the edge lengths e  and n   has no effect on the DOP since both 

the area and volume are affected equally.  However, the shortening of the edge u  towards 

zero will cause the ratio to increase towards infinity.  So VDOP has only one critical coordinate 

in which approaching variance zero causes a worst case DOP scenario. 

 In such a scenario, many equivalent things are taking place.  The u


 column of G  is 

approaching a constant value which causes it to be linearly dependent with the 1  column 

vector.  G  is becoming less than full rank.  GGT  is becoming singular.  The associated 

parallelotope is becoming flat in the u  direction.  Finally, the ratio of the 2D area to the 3D 

volume is approaching infinity. 
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 The behavior of worst case scenarios for EDOP and NDOP are exactly the same except 

that the critical coordinates are e and n respectively.   TDOP has no such scenario since the time 

coordinate is represented by the constant 1  vector which already has zero variance. 

 

 

1.5.3  Total Correlation Singularities 

 Total correlation singularities occur when two of the coordinate vectors approach a 

correlation of 1 or -1.  In actuality, this is what is happening in the zero variance singularities 

above since reaching zero variance is equivalent to being totally correlated to the 1  vector.  

However, thinking of zero variance singularities is useful when using the centered form of a 

parallelotope as was done with VDOP, EDOP, and NDOP. 

 As two coordinate vectors become highly correlated, the angle in the parallelotope 

between those two vectors decreases towards zero.  This causes the volume of the 

parallelotope to approach zero as the parallelotope becomes highly skewed.  However, this also 

will not cause a worst case scenario in every situation.  Consider VDOP again and suppose that 

0,,  ueun pp  .  This means that the u  edge of the parallelotope is orthogonal to the 2D face 

made up by the e  and n  edges.  If this is the case, then reducing the angle represented by 

ne ˆ,ˆ  will reduce the 2D area and the 3D volume by the same factor.  So the ratio of the two, 

and thus VDOP, are unchanged as was discussed in section 1.4.2.  If it is not the case that 

0,,  ueun pp  , then ne ˆ,ˆ  will have an effect.  Still, this demonstrates that linear dependence 

will only cause a worst case scenario under most (but not all) circumstances. 
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 All that remains then, is to understand the singularities for DOPs made of multiple terms 

such as HDOP, PDOP and GDOP.  Since each of these DOPs is a root sum of squares of two or 

more single term DOPs, they will approach infinity if and only if one or more of the single term 

DOPs does.  For example, HDOP will approach infinity if either EDOP or NDOP does.  PDOP will 

approach infinity if HDOP or VDOP does.  GDOP will approach infinity if any other DOP does. 
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1.6  Satellite Subset Selection 

 Often it is impossible for a device to actually use all the satellites in view to make a DOP 

calculation.  There must be an individual channel for each satellite and a particular device may 

have many less channels than there are satellites in view at any time.  The problem of satellite 

subset selection is to develop methods of choosing which satellites should be included in the 

DOP calculations at a given time and which should be ignored.  Understanding the behavior of 

DOP is critical to this process.  The purpose of this section is to use the results of the previous 

sections on best and worst case DOP to form some basic ideas about satellite selection 

techniques.  A simple very fast algorithm is presented and evaluated using standard GPS 

constellation data. 

 

1.6.1  The Goals of Satellite Subset Selection 

 For purposes here, the goal of subset selection will be to find methods to quickly choose 

a subset with a given number of satellites which will produce low values for some particular 

DOP(s) whether they are single term such as VDOP or a multiple term such as GDOP.  Naturally, 

it is possible given any geometry matrix to calculate the DOP values for every subset of a given 

size and to choose the subset with the minimum value.  However, for a large number of 

satellites in view, such an algorithm would become intensive and efficient algorithms are 

necessary in subset selection for optimizing DOP (Farrel & Barth, 1998). 
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 Before going on to develop such algorithms, it will be useful to consider what type of 

results should be expected of a good selection algorithm.  It is important to note that 

theoretically (i.e. when the measurements errors are uncorrelated and have the same 

variance),  a subset of satellites will never outperform the complete set.  This is because the 

DOP terms are proportional to standard deviations of linear regression estimators which are 

best linear unbiased estimators (BLUE).  They are best in the sense that they have lowest 

variance.  Since a subset of satellites produces another linear unbiased estimator, it cannot be 

better in terms of having lower variance (or DOP).  So then it must be decided what a selection 

algorithm can be expected to accomplish in terms of DOP values. 

 In an abstract sense, any given satellite geometry can be considered to have good 

behavior or poor behavior.  As seen in the various DOP formulas developed in section 1.4 and 

by the parallelotope analysis, good behavior is generally to have high variance in the critical 

coordinates and low correlations between the coordinate vectors.  As discussed in section 1.5, 

bad behavior can result from low variances or high correlations.  If a total-in-view satellite set 

has good behavior in that it is balanced in each direction and well spread out across the sky, it 

may be that all or most of the satellites are in desirable locations.  When forced to choose a 

smaller subset, it is likely that some desirable satellites will have to be removed and the 

resulting subset will be less well behaved than the total set.  On the other hand, it is possible for 

the total set to have bad behavior if it is lopsided in a coordinate or the satellites are not well 

spread out.  In this case there may be satellites which are not contributing much to lower DOP 

values because they are causing a higher correlation or lower variance in some direction.  It is 
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still impossible for a subset to attain a better DOP value than the total set.  However if some 

undesirable satellites are removed the subset may be better behaved than the original set. 

 A simple idea for measuring the behavior of a subset versus that of the total set is to 

normalize the DOP formula by the number of satellites.  Consider any DOP formula such as 

1.4.3-2.  There is always a m  term in the denominator where m is the number of satellites.  

Essentially, this factor is what makes it impossible for a subset of size mms   to outperform the 

original set.  Rescaling the DOP of the original set by multiplying by 
sm

m
 allows the behavior of 

the subset to be measured against the behavior of the original set as if they had the same 

number of satellites.  An algorithm for subset selection could be evaluated on the basis of how 

well the resulting subsets compete with rescaled DOP factors. 

 

1.6.2  Current Algorithms and Scalability Problems 

 Currently, a method used for subset selection is to choose the highest elevation 

satellites available.  This is done in part because very low elevation satellites tend to suffer from 

larger pseudo-range errors due to multipath problems and physical obstructions.  Also, the 

algorithm is very efficient since it only requires sorting the satellites in view by their elevations.  

The order of operations of such a sort is )(log2 mm .  However, in terms of DOP this algorithm is 

very poor.  Choosing the highest elevation satellites tends to choose a clump of satellites that 

are near each other, thus minimizing the variance in each coordinate.  From section 1.5.2 this is 
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known to lead to a worst case scenario for DOP.  Furthermore, as many more satellites become 

available due to the use of Galileo and GLONASS in combination with GPS, the algorithm will be 

more successful at choosing a tight clump of higher elevation satellites given that the number 

of channels (subset size) remains the same for a receiver.  This means that with the addition of 

these satellites, a receiver using this algorithm will not benefit from improved DOPs, but 

instead may suffer from much worse DOP values.  Obviously, it is highly undesirable for the 

addition of more equipment into a system to result in worse performance.   So it is clear that 

different algorithms are needed. 

 

 

1.6.3  A Fast and Scalable Satellite Selection Algorithm 

 An algorithm is given here which does not have the scalability problems discussed in 

1.6.2 and which has a low order of operations.  The steps are listed here for a very general form 

of the algorithm followed by comments on each step and possible design decisions. 

Sky Slice Algorithm: 

1) Slice the sky into mutually exclusive regions that together span the entire sky. 

2) Count the number of satellites in each region of the sky. 

3) Successively remove satellites from the most populated region until the desired number 

of satellites remains.  

 



61 
 

 Step 1)  The method of dividing up the sky is critical to the performance of this 

algorithm and it can be done in various ways.  Two simple ideas would be to slice the sky by 

degree of elevation or by degree of azimuth.   However, these are not likely to yield good 

results because simply spreading the satellites over all elevations or all azimuths will not 

optimize any DOP.  As seen in section 1.4, a good method should try to maximize the variance 

of the coordinates while minimizing the correlations between them.  One option aimed at 

accomplishing this is to separate the sky into eight equally sized rectangular regions defined by 

slicing with the planes 0e , 0n , and 21u .  This is especially convenient if the subset size 

is 8sm .  In that case an ideal subset selection would contain exactly one satellite in each 

region.  Such a subset is likely to have high variance in each direction with low correlations 

since there is a symmetry in every direction across the center point at )21,0,0(),,( une . 

 In general the number of regions does not need to equal the subset size.  For example, 

the goal could be to get two satellites in each region.  The regions can also be designed in a way 

aimed at optimizing a particular DOP instead of giving equal consideration to all directions as 

the above method does. 

 

 Step 2)  Given that the regions of the sky have been decided, it should be easy to 

determine how many satellites are in each region at a given time.  Since there are m satellites 

at the start, this step has order of operations m . 
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 Step 3)  In order to successively remove satellites from the most populated regions, the 

regions must first be sorted by satellite count.  Assuming there are R regions, this has order of 

operations )(log2 RR .  After each satellite is removed, it is not necessary to perform an entirely 

new sort.  Once the regions are ordered from highest to lowest population, the process is to 

remove one from the most populated region and then determine if that region must be moved 

down the ordered list by comparing the new count to the next highest population.  The region 

is moved down the list until the region immediately below it does not have a higher satellite 

count.  At most, there can be R-1 moves from the top of the list to the bottom of the list.  Since 

satellites are removed smm   times, the order of operations here is )1()(  Rmm s .  So the 

total order of operations for this step is )1()()(log2  RmmRR s . 

 An important note about this step is that the satellites can be removed from each region 

in a clever way instead of by random.  As an example, consider the eight rectangular regions 

discussed above.  If VDOP is considered important for the application, a good choice might be 

to always remove the lowest elevation satellite in any of the rectangles above 21u , and to 

always remove the highest elevation satellite in any rectangle below 21u .  This will increase 

the chances of having some very high and very low elevation satellites without many at mid 

elevations.  This helps cause u
  to be large and VDOP to be small.   Many such considerations 

could be made depending on the goal of the particular application. 

 It is also possible to give weights to each region so that the optimum is not when every 

region has an equal number of satellites.  In 1.4 some DOPs are shown to be optimal when 

there are satellites located near each other.  So it could be desirable to have one region with 
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four satellites and then four other regions with one satellite each.  In this case, satellites are 

removed based on how high each region count is above the desired amount for that region 

instead of removing them based simply on maximum count. 

 

 This algorithm avoids scalability problems because a larger number of satellites cannot 

make it more difficult to balance the number of satellites chosen in each region.  In fact, a 

higher number of satellites in the sky will make it more likely that an optimal balance can be 

achieved.  There also are a variety of ways in which it can be optimized for specific applications 

as discussed above.  Finally, the total order of operations found by adding the operations for 

step 2 and step 3 is: 

 
)1()()(log2  RmmRRmOperations s                    Eq.  1.6.3-1 

or 

smRRRRmOperations )1()(log2                           Eq.  1.6.3-2 

This should typically be less than Rm  which may be slightly more or less than the )(log2 mm

order of operations for choosing the highest elevation satellites.  So the efficiency is 

approximately the same between the two algorithms. 
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1.6.4  Sky Slicing Algorithm Performance 

 The algorithm in the previous section was run on GPS constellation data for the day of 

March 12 2006.  Since each satellite repeats its orbit twice every sidereal day, data for one day 

could be expected to closely representative of any other day.  A user position was taken to be 

at 0 latitude and -90 degrees longitude.  On this run, the number of satellites in view of the user 

ranges from 9 to 14 and has a mean of 11.35. The subset size is fixed at 8sm .  The data has a 

5 minute decimation time, so there are 288 geometries for the day.  Smaller decimation could 

be used, but there will not usually be much difference between two DOP values if the geometry 

has not had time to change significantly.   

 For these runs, the sky is sliced into eight rectangular regions as suggested in the 

previous section.  The satellites are removed from the bottom of the upper regions and from 

the top of the lower regions. 

 Below there is a figure for each of the seven DOPs investigated in section 1.4.  There are 

four separate data lines on each plot.  The DOP of the total in view satellite set (red), the DOP 

value of the total set normalized to a size of eight satellites as in section 6.1 (black), the DOP of 

the subset selected by taking the 8 highest elevation satellites (magenta),  and the DOP of the 

subset selected using the sky slicing algorithm (green).  The time axis for all of these is sorted by 

the DOP value of the total set.  This causes the total set data to be non-decreasing and makes 

the plots more readable. 
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 As discussed in section 6.1, it is impossible for any subset to outperform the total set.  

So the total set data (red) must always be below all the other sets.  Also, either of the subsets 

may be considered to be performing well when they are close to the normalized data (black) as 

discussed in section 1.6.1.  When they approach the total set data, they are performing 

extremely well.    
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 It is clear that the sky slicing algorithm (green) greatly outperforms the highest elevation 

algorithm (magenta) in VDOP, TDOP, HDOP, PDOP, and GDOP.  In each of these cases except 

HDOP, it is usually below the normalized data line and is often close to the total set line 

showing that it is performing very well.  This particular realization of the sky slicing algorithm is 

optimized well for VDOP and not HDOP, so these results are expected.  A similar realization 

could easily be optimized for HDOP but would not perform as well for VDOP.  It is plain to see 

that the sky slicing algorithm is superior to the highest elevation algorithm in any case. 
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1.7  Conclusion 

 In the preceding sections, a method of conceptualizing DOP was formulated.  This 

parallelotope based geometric interpretation allows a useful understanding of the behavior of 

DOP regardless of the number of data points in the regression model.  These concepts were 

used to arrive at exact formulas for various DOPs and to find many optimal and worst case 

scenarios for DOP in GPS.  Finally, these results facilitated the creation of an algorithm for 

satellite subset selection with a low order of operations that performs very well. 

 This understanding also allows other possible advantages.  There is a large variety of 

known properties for parallelotopes which may prove useful in continued work (Jones 2011; 

Gover & Krikorian, 2010; Deza & Grishukhin, 2003; Fallat & Johnson, 2000; Leng & Zhang 1998; 

Schnell, 1994; Ben-Israel, 1992; Miao & Israel, 1991). Other continued work might include an 

extension for weighted least squares regression, and applications to systems other than GPS. 
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2.1  Introduction to Cycle-Slips 

 Accurate positioning of a GPS user requires accurate range measurements to the 

satellites in view.  Since the atmosphere causes delays in the signals used to determine range 

measurements, the user must have information about these delays to calculate an accurate 

position.  The more challenging and critical of these delays to estimate is that caused by the 

ionosphere.  A cycle-slip is a type of ambiguity that is often found in carrier phase delay data.  

These cycle-slips must be removed from carrier phase data in order to properly estimate 

ionosphere delays. 

 Much research has been done recently on methods of  cycle-slip repair for applications 

in which accurate delay data is needed in real time (Banville & Langley, 2010; Marujao & 

Mendes, 2007; Teunissen, 2003a; Teunissen, 2003b).  Here, the goal instead will be to repair 

data as a post processing analysis of receiver independent exchange format (RINEX) files.  This 

allows the use of future data in addition to past data to detect and repair cycle-slips.  Models 

will be created to describe the behaviors of the data when cycle-slips are present and when 

they are not.  A test for cycle-slips will be developed which determines which of the models is 

the most likely given the observed data.  Finally, a software tool is created that uses this 

method to repair RINEX files. 
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2.2  Pseudoranging and Cycle-Slips 

 In this section, the basic concepts of satellite pseudoranging are discussed.  This includes 

a simple explanation of how range and delay of a satellite to a receiver are determined.   It also 

includes a description of what cycle-slips are, why they come about, and what difficulties they 

pose.  

 

2.2.1  Satellite Pseudo-range and Delay 

 A pseudorange is an approximation of the range between a satellite and receiver which 

contains some error due to a bias in the receiver clock (Misra & Enge, 2006).  Without any delay 

factor, finding the pseudorange from a satellite to a receiver would be simple.  A signal with a 

time stamp sent from a satellite would travel to the receiver at the speed of light.  Multiplying 

the elapsed time by c (the speed of light) would yield the pseudorange.  However, there is a 

delay in the signal travel time caused by passing through the ionosphere and the troposphere 

which cause refraction of the signal.  A delay in the signal arrival time essentially makes the 

satellite appear to be farther away.  So in order to find the true distance, there must be a 

means to take the delay into account. 

 Delays are constantly changing over time due to atmospheric changes, so they must be 

calculated at each given time.  For troposphere delays, there are accurate adjustments based 

on regional weather conditions.  For the more troublesome ionosphere delays, this is done 

using a collection of precisely surveyed ground stations employing receivers that  receive two 
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separate signals sent from every satellite in view.  The signals, differentiated by their 

frequencies, are called L1 and L2 and have frequencies 1f  and 2f  respectively.  Each signal 

produces separate pseudoranges called 1r  and 2r .  Each of these is the sum of the ionosphere-

free (hereafter abbreviated “iono-free”) pseudorange and the ionosphere delay of the 

corresponding signal. 

11 Ldrr                                                     Eq.  2.2.1-1 

22 Ldrr                                                     Eq.  2.2.1-2 

The iono-free pseudorange, denoted by r, is the pseudorange that would occur without any 

signal delay from the ionosphere.  1Ld and 2Ld  are the delays that appear in the L1 and L2 

signals.    Because the ionosphere effect on electromagnetic signals is dispersive, the signal 

delay is frequency-dependent.  The relationship between the two delays is: 
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Eq.  2.2.1-3 

Writing equations 2.2.1-1 and 2.2.1-2 as a matrix system with the above substitution yields:  
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Eq.  2.2.1-4 

The iono-free pseudorange and delay at L1 can be solved by inverting the matrix. 
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so that 
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Eq.  2.2.1-6 

and 
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Eq.  2.2.1-7 

So using a dual-frequency system, the iono-free pseudorange and delay can be calculated 

(estimated).  For any satellite and ground station pair, 1Ld  represents the ionosphere delay 

caused by the signal passing through the ionosphere on the line of sight between the satellite 

and station.  As an approximation (the so called “thin shell model” of the ionosphere) it can be 

assumed that this delay occurs all at once at the mean height of the ionosphere layer.  This 

point is called an ionosphere pierce point (IPP).  Because there are many satellite / station pairs, 

there are many IPPs across the sky at any given time.  This allows a model for the delays across 

the ionsphere to be created as a surface.  Users of the system, who only receive an L1 signal 

from each satellite, can use this delay model to correct their L1 pseudorange values and 

thereby more precisely calculate their positions. 
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2.2.2  Cycle-Slip Causes and Consequences 

 The L1 and L2 signals are both sent in two modes leading to two pseudorange 

measurements, namely the code and carrier phase measurements.  The carrier phase 

measurement is made by detecting and measuring the phase shift of the signal as it travels 

from satellite to receiver.  Because the signal phase angle is ambiguous (i.e. modulo an even 

multiple of pi), a cycle-slip can arise, causing a corresponding ambiguity in the range 

measurement.  Thus, a cycle-slip is a discontinuity or a jump in the carrier phase signal.  These 

can occur when a ground station temporarily loses signal lock with a satellite.  This can be 

caused by an obstruction between the satellite and ground station antenna, a software failure, 

or a low signal to noise ratio.  Regardless of the cause, when lock is lost and then regained, an 

unknown number of carrier signal cycles is gained or lost during that time (Kaplan & Hegarty, 

2006).  The result is a discontinuity in the signal which is proportional to the integer number of 

cycles lost or gained.  Figure 2.2.2-1 is an illustration of a carrier phase delay signal containing 

two cycle-slips.  
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Figure 2.2.2-1 

 

 A carrier phase measurement is more precise than a code measurement but is 

ambiguous and starts at an arbitrary value.  Code measurements are unambiguous and do not 

suffer from cycle-slips.  Figure 2.2.2-2 shows the code delay that matches the carrier delay 

above. 
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Figure 2.2.2-2 

 

 In order to get delay measurements that are both precise and unambiguous, the carrier 

delay should be leveled (or transposed) onto the code delay.  However, this cannot be done 

effectively with cycle-slips present.  Before the data is leveled, the discontinuities in carrier 

phase caused by cycle-slips must be repaired. 

  



78 
 

2.3  Cycle-Slip Detection and Repair Using Sequential Hypothesis Testing 

 In this section, a method will be developed for detecting and repairing cycle-slips in 

RINEX data in post processing.  This means that at any time in a series of delay data, both 

previous and future data points are used in a test for cycle-slips.  Because this method uses 

future data, it cannot be implemented for real time cycle-slip detection.  It is developed for the 

purpose of removing cycle-slips from data in post processing, but could also be used for near 

real-time cycle-slip detection with a delay.   

 

2.3.1  Modeling of Delay Data 

 The method for detecting and repairing cycle-slips developed here assumes that exactly 

one point ),( 00 yx  is being tested for a slip where 0x  is the time position and 0y  is the signal 

value.  The signal value will be iono-delay, but this method may be applied to detect similar 

jumps in other time series where the assumptions are the same.  It is assumed that only local 

data are needed to perform the test.  This local data will be a neighborhood of nm 2  points 

about 0x , namely    ),(,),,(,),,(, 1100  nnnn yxyxyxYX  .  It is not necessary for the 

neighborhood size to be even, but this will give some models a symmetry across the possible 

slip location. 

 Three models will be presented here for fitting delay data.  Each is meant to describe 

different behavior that is known to occur.  The first model, which will be denoted by 0H , 

describes a neighborhood of data which contains no cycle-slips.  This is done with a low order 
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polynomial.  Parabolas will be used throughout since they locally fit delay data very well.  The 

inherent assumption in using a polynomial is that the data is smooth in a small neighborhood 

when no cycle-slips are present.  Figure 2.3.1-1 is an illustration for the 0H  model when 5n . 

 

Figure 2.3.1-1 

 The other two models given here represent two different behaviors when a cycle-slip is 

present at 0x , the point being tested.  These models will be called 1H and  2H .  The 

corresponding behaviors will be called type 1 and type 2 slips. 

 The type 1 slip is the cycle-slip which is usually considered.  In this case, the delay data is 

unchanged except that there is a step which occurs at the cycle-slip location.  This is modeled 

with the same low order polynomial with an additional offset term D for 0xxt  .  This offset 

term represents a jump size between 1x and 0x .  This model is illustrated in Figure 2.3.1-2. 
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Figure 2.3.1-2 

 The only other type of slip which will be discussed here explicitly is the type 2 slip.  

During a type 2 slip, the signal values are smooth throughout the neighborhood except that 

there is a discontinuity at the slip location and at the location immediately following the slip.  

This model is added for no other reason than this behavior has been repeatedly observed in 

delay data calculated from RINEX files.  Neither the size nor direction of the two discontinuities 

are obviously related in any way.  It is essentially the same as two consecutive type 1 slips, but 

since the type 1 slip model will not fit this type of data, another model is required.  The type 2 

model is again the same low order polynomial, this time with offset terms 1D  and 2D  for 

0xxt   and 1xxt   respectively.  The type 2 slip model is pictured below. 
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Figure 2.3.1-3 

 These three models describe different behaviors found in delay data.  The goal of the 

next two sections is to describe a method of deciding which of the models is most likely the 

correct model for a given neighborhood.  If 0H  is not the most likely model, then a slip is 

detected and should be repaired.  Repairs are easy to perform by simply removing the 

estimated offset values in the data.  

 

2.3.2  Fitting Models to a Neighborhood 

 Each of these models can be fit to a neighborhood of delay data using linear regression.  

The equations for each, used to form the design matrices, are: 

2

0 : ttt CxBxAyH                                                              Eq.  2.3.2-1     



82 
 

),(: 0

2

1 xxDuCxBxAyH tttt                                        Eq.  2.3.2-2     

),(),(: 1201

2

2 xxuDxxuDCxBxAyH ttttt              Eq.  2.3.2-3    

whereu  is defined by:  










21

21

21
,0

,1
),(

xx

xx
xxu                                            Eq.  2.3.2-4 

So each linear regression has the usual form: 

kkkXy 


                                                    Eq.  2.3.2-5 

Here, y


 is the column vector of n2  signal values in the neighborhood, k


 is the random error 

vector, k


 is the parameter vector for the given model, and kX  is the design matrix for the 

given model.  It is assumed that kX  is always of full rank.  For the models defined above, the 

parameter vectors are: 
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                                         Eq.  2.3.2-6 

The linear regression estimators for the parameter vectors are given by: 

  yXXXb T

kk

T

kk

 1
                                                    Eq.  2.3.2-7 
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Each kb


 is the best linear unbiased estimator for the corresponding k


 when model k is the 

true underlying model, and defines the fit curve for the k-th model.  The sum of squared 

residuals is of special interest in the following sections.  This is the sum of all the squared 

differences between the fit model and the actual data values.  For the k-th model, the sum of 

squared residuals is written: 

      yXXXXIybXybXyeeSS T

kk

T

kk

T

kk

T

kkk

T

kkres

 1

,


        Eq.  2.3.2-8 

where ke


 is the vector of distances between the fit curve and the data values y


 in the k-th 

model.  This represents the amount of sum of squares accounted for by the random errors, and, 

when the model is incorrect, lack of fit.  Another important term is the regression sum of 

squares for the k-th model which is written 

  yXXXXySSSSeeyySS T

kk

T

kk

T

kresTotalk

T

k

T

kreg

 1

,,


              Eq.  2.3.2-9 

This represents the amount of total sum of squares accounted for by the model.  It is assumed 

that the random errors are iid normally distributed for a correct model so that 

),0(~ 22

2

nnk IN 


                                              Eq.  2.3.2-10 

which, along with equation 2.3.2-5 implies that  

),(~ 22

2

nnxk IXNy                                              Eq.  2.3.2-11 

Based on this assumption, it can be shown that both 2

, /kresSS  and 2

, /kregSS  follow chi-

squared distributions. 
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Def  (2.3.2-1):  Let ),(~ INy 


 and A  be an mxm  symmetric idempotent matrix, then yAyT 
 

follows the chi-squared distribution 2

,~  p

T yAy


 where )(Arankp   is the degrees of freedom 

and  AT

2

1
  is called the non-centrality parameter.  A chi-squared distribution is called 

central and is written 2

p  if 0 .    

 

Def (2.3.2-2):  A matrix B  is called idempotent if BB 2 . 

 

It is shown in the appendix that   T

kk

T

kk XXXXI
1

  and   T

kk

T

kk XXXX
1

 are symmetric and 

idempotent.  It follows that when the model is correct, 2

, /kresSS  has a central chi-squared 

distribution with kpn 2  degrees of freedom where kp  is the rank of kX : 

2

22

,
~
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kresSS



                                              Eq.  2.3.2-12 

and that 2

, /kregSS  has a non-central chi-squared distribution with kp  degrees of freedom and 

non-centrality parameter 


 k

T

k

T

kreg XX
2,

2

1
 : 

2

,2

,

,
~

kregkp

kregSS



                                          Eq.  2.3.2-13 

The non-centrality parameters are calculated by taking 
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Eq.  2.3.2-14
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Eq.  2.3.2-15

 

 

2.3.3  F-Tests for Cycle-Slip Detection 

 Since the models above are embedded, that is the model iH  is embedded within jH

whenever ji  , the decision of whether a cycle-slip has occurred or not will be made by 

performing a sequential hypothesis test.  The goal is to create  -level tests that will not only 

determine if there is a cycle-slip but also what type it is.  The tests are based on analysis of 

variance (ANOVA), meaning that the total sum of squares is broken into components which 

have meaning with regards to the models' fit of the data.  The regression sum of squares and 
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sum of squares residuals are two such components already mentioned in the previous section.  

The analysis is performed by using the Cochran-Fisher theorem. 

 

Cochran-Fisher Theorem:  Let y


 be an 1m  vector with distribution ),( IN 


 such that 
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Assume that the 2H  model is the overarching model.  To reach the goal of creating an  -level 

threshold, the Cochran-Fisher theorem is applied to the identity 
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It is easy to see that this equation holds from cancellation by simply adding the terms on the 

right hand side.  Also, it follows from equation 2.3.2-11 that 
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                                                   Eq.  2.3.3-2 

under the assumptions laid out for the cycle-slip problem.  So equation 2.3.3-1 has the form of 

that in the Cochran-Fisher theorem.  So in order to see that each of the quadratic forms 
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are independent and chi-squared distributed, it only needs to be shown that the ranks of the 

matrices 
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sum to m.  The reason that these matrices have been chosen will become apparent.  It happens 

that each of these matrices is symmetric and idempotent.  Proofs of this are included in the 

appendix.  One of the most important properties of idempotent matrices is that their rank is 

equal to their trace.  So, it will suffice to show that the sum of the traces of the three matrices is 

m .  This follows directly from the general property of trace that   
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Applying these properties to the four matrices above shows that 
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So the condition of the Cochran-Fisher theorem is satisfied.  The four quadratic forms are 

independent and chi-squared distributed.  In order to find an  -level threshold for testing, the 

exact distributions must be known.  Under the assumption that all the models are full rank, 
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 TT XXXXrankXrankp                           Eq.  2.3.3-4 

     41

1

11111 
 TT XXXXrankXrankp                            Eq.  2.3.3-5 
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Also, because TT XXXX 0

1
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111 )(  , TT XXXX 2
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222 )(  , 3A , and 4A  are all 

idempotent 
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This implies that the quadratic forms all have chi-squared distributions.  It is shown in the 

appendix that 2Q , 3Q , and 4Q  are each central under the appropriate hypotheses to be tested.  

So, under those hypotheses, 

2

52 ~ mQ                                                          Eq.  2.3.3-10 

2

13 ~ Q                                                            Eq.  2.3.3-11 

2

14 ~ Q                                                            Eq.  2.3.3-12 

Since these are independent, they can be used to create F-statistics. 

 

Def (2.3.3-1):  Given a non-central chi-squared random variable 2

,1 1
~  rZ  and a central chi-

squared random variable 2

2 2
~ rZ   that are independent of each other, the random variable 

22
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,,

/

/
21 rZ

rZ
F rr   is non-central F-distributed with degrees of freedom 1r  and 2r and non-

centrality parameter  .  It is called central and written 
21 ,rrF  if 0  (the numerator is central 

chi-squared distributed). 
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The F-statistics that will be used are: 
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A large value for equation 2.3.3-13 indicates that the regression model 2H  accounts for much more of 

the total sum of squares than the 1H  model does alone.  In other words, under a null hypothesis that 

the second offset 2D  is zero, a large value of equation 2.3.3-13 will cause the null hypothesis to be 

rejected and 2H  accepted as the correct model.  If instead the value is small, then 2H  is rejected and 

equation 2.3.3-14 is used as the next test.  This time, the null hypothesis is that the first offset 1D  is zero 

and (since the H2 model was previously rejected) 02 D .  A large value of equation 2.3.3-14 indicates 

that 1H accounts for much more of the total sum of squares than the 0H  model alone.  So if the value is 

large, then 0H  is rejected in favor of 1H .  Otherwise, the polynomial model with no offsets is accepted.  

Since each of the tests are based on statistics with central F-distributions, the thresholdsused to accept 

or reject each hypothesis are given by 
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                                     Eq.  2.3.3-15 

for the 2H  versus 1H  test and 
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


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m

res

regreg
F

mSS

SSSS
                                      Eq.  2.3.3-16 

for the 1H  versus 0H  test. 

 

2.3.4  When No Model Fits 

 The tests developed in the previous section are useful for determining which of the 

models best describes the data.  However, it is possible that none of these models fit well in 

some given neighborhood.  Naturally, since the models are embedded, this is the case if and 

only if the 2H  model does not fit the neighborhood.  This happens for at least two reasons that 

are common.  The first reason is that the data may be very noisy, possibly due to an ionospheric 

storm.  When the data is very noisy, it may be impossible for cycle-slip methods to find cycle-

slips.  Indeed it may be impossible for a human examination to make the determination.  The 

second reason is that there may be a slip in the neighborhood, but it is not located at ),( 00 yx .  

The models above are not meant to correctly fit data which has a slip off center.   

 When the data is very noisy, cycle-slip detections should not be declared and no repair 

action can be taken.  It may be impossible in this case to do anything but ignore the possibility 

of cycle-slips.  When there is a cycle-slip in the neighborhood that is off center, it is possible to 

use a shrinking window with some minimum size until the 2H  model fits.  An even simpler idea 

is to just use small windows to begin with.  The tests defined in the previous sections are 

effective for neighborhoods as small as  122 n  and possibly smaller. 
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 In any case, there must be a method for determining when none of the models fit 

because it is entirely possible that the 1H  or 2H  model will comparatively fit some 

neighborhood much better than the 0H  model even though 2H  is not a good fit.  According to 

the tests in equations  2.3.3-15 and 2.3.3-16, this would cause a cycle-slip detection, but this is 

a false positive.  Since the data is not fit by 2H , it does not actually match either cycle-slip type.  

The statistic used for testing that 2H  fits the data will be: 

2,

2

1

2,

1

5

5

res

m

i

ireg

SS

y
m

SS
m















                                            Eq.  2.3.4-1 

This is essentially a ratio of the total sum of squares accounted for by the 2H  model given that 

there is an intercept to the amount accounted for by the random errors.  When the model is a 

correct fit, this ratio should be large.  The null hypothesis being tested here is that  
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                                                        Eq.  2.3.4-2 

which corresponds to the idea that 2H  does not account for the date when an intercept is 

assumed.  So under the null hypothesis, when the 2H  model is incorrect, the ratio is expected 

to be small.  The exact distribution of the statistic is found by using the Cochran-Fisher theorem 

in the same way as the previous section.  This time, the quadratic form used is: 
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where 1  is the 1mx  submatrix of 2X  that contains a single column of ones representing the 

intercept.  Since the matrices   TT 1111
1

,     TTTT XXXX 1111
1

2

1

222


  and   TT XXXXI 2

1

222


  

are known to be symmetric and idempotent from results in the appendix with ranks 1, 4  and 

5m  the ranks again sum to m .  So again the Cochran-Fisher theorem is satisfied and the two 

needed  quadratic forms 
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and 
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are independent and chi-squared distributed.  2

2, /resSS  was shown to be central in equation 

2.3.2-14.  The other quadratic can be rewritten 
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and is the numerator of the statistic in equation 2.3.4-1.  As shown in the appendix, this is 

central under the hypothesis given in equation 2.3.4-2.  Thus, under the hypothesis that 2H  is 

not a correct model for the data, the test statistic is central F-distributed with degrees of 

freedom 5  and 5m  
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So a cycle-slip is only looked for in a given neighborhood when  

)1(

1

5

5
5,4

2,

2

1

2,





















m

res

m

i

ireg

F
SS

y
m

SS
m

                       Eq.  2.3.4-8 

for some significance level  .  Now three F-tests have been created so that the correct model 

can be chosen for a neighborhood.  The tests and their corresponding properties are 

summarized in the following ANOVA table. 
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Figure 2.3.4-1 

 It remains to be shown empirically that these tests outperform various real-time slip 

detection methods, although it is certainly possible that data can appear to behave like a cycle-

slip in real-time while the future data indicates that it is the beginning of something else, such 

as a sudden steep slope or increase in noise.   
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2.4  Cycle-Slip Repair Tool (CSR) 

 This section describes how the Cycle-Slip Repair Tool (CSR) implements the methods 

developed in section 2.3 to detect and repair cycle-slips.  Some design decisions are discussed 

and sample results are presented. 

 

2.4.1  Cycle-Slip Repair Tool Design 

 The input to CSR is a RINEX file, which contains L1 and L2 signal data for all satellites at a 

receiver and spans one day.  For detailed information on RINEX files see Gurtner & Estey (2007).  

The CSR consists of three main parts.  The first is a RINEX file reader and splitter which 

separates RINEX files by satellite PRN making one smaller "split RINEX" file for each satellite.  

This allows the process to be run incrementally or to be run on only a subset of the satellites in 

the RINEX file.  The second part reads a split RINEX file, calculates the iono-free pseudorange 

(IFPR) and delay from the L1 and L2 signal data in the file, performs cycle-slip repairs on the 

delay data, recalculates L1 and L2 based on the repaired data, then creates a repaired split 

RINEX file.  The third part of the tool recombines the repaired split RINEX files into a repaired 

RINEX file for all satellites. 

 The second part is of interest here.  Converting back and forth from L1 and L2 to IFPR 

and delay is done by applying the transformation in equations 2.2.1-4 and 2.2.1-5.  Once the 

delay data is available, every point must be checked for a cycle-slip.  The program implements a 

moving window of size n2 .  The center of the window is 0x , the point being checked for a slip.  
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The window itself is the neighborhood  10 ,,,,(  nn xxxX  .  The window is moved across 

the delay data set until every point has been tested for a slip using the F-Tests defined in 

section 2.3.  When a cycle-slip is detected, the appropriate model is used to determine the 

offset(s) and repair the data that follows.  Because of the window size, the first and last n  

points are not checked for slips.  For these points, it is assumed that there is not enough local 

data to determine if there is a cycle-slip.   

 

2.4.2  Sample Results for CSR 

 The CSR tool was run with a window size of 12n .  The threshold is set at an  -level of 

0.001 for detecting type 2 slips versus type 1 and 0.0001 for detecting type 1 slips versus no 

slip.  Because of the amount of data being tested, a very small  -level is needed to avoid 

having many false slip detections.  The results below are for the receiver Billings A and the 

satellite PRN 1.4  Figure 2.4.2-1 shows the raw delay data for the day of January 1 2000.  The 

satellite is in view of the station at two different times during the day.  Only the second track 

will be examined and is shown in Figure 2.4.2-2. 

                                                           
4
 Billings A is the first of three antennas along with Billings B and Billings C at the WAAS Reference Station (WRS) in 

Billings, Montana.  Each antenna receives the L1 and L2 signals from the satellites in view and so has a delay 
measurement.  Billings is used here because the RINEX file is listed first alphabetically.  The GPS satellites are 
identified by PRN numbers ranging from 1 to 32.  PRN 1 is used here because it is the first numerically.    
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Figure 2.4.2-1 

 

Figure 2.4.2-2 

 As is normal, there are numerous cycle-slips near the beginning and end of the track 

when the satellite is at the lowest elevations.  The region with the greatest number of slips is 

highlighted and is shown zoomed below.  The repaired delay is also given. 
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Figure 2.4.2-3 

 In this portion of the track, there are eight cycle-slips that can be seen in the delay data.  

Five of these are type 1 cycle-slips and three of them are type 2.  In the repaired delay data, the 

CSR tool has repaired each of the cycle-slips.  The repaired values have an added ambiguity 

because it is not known which portion of the original track, if any, holds correct delay values.  

So the entire track is arbitrarily brought to match the level that it was at before the first cycle-

slip.  So the repaired data in Figure 2.4.2-3 does not truly indicate that the delays range 

between 322 and 324 meters.  Remember that the data here is from the carrier phase and that 

the purpose is ultimately to level the repaired carrier phase onto the code phase, which does 

not suffer from cycle-slips, as described in section 2.2.2-1.  Since the purpose is to level the 

repaired signal onto the code phase, it is not necessary to resolve the ambiguity that exists in 

the carrier phase.  For carrier phase, only the shape and the continuity achieved by removing 

cycle-slips are relevant.  

 In the original data, this portion of the track contains two missing data points.  Missing 

data points are easily handled with this method because there is no requirement that the 

points in the neighborhood are equally spaced.  This holds true even for regions with multiple 

consecutive missing data points.  Additionally, the CSR tool has added these points, plotted in 

red, by simply interpolating using the linear regression model under 0H . 
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2.5  Conclusion 

 A sequential hypothesis test has been devised for detecting and repairing cycle-slips  

corresponding to various models which are fit using linear regression.  This approach allows the 

addition of any number of cycle-slip models which might occur in ionospheric delay data.  The 

formulated tests yield easy to use results in which the detection of a cycle-slip is dependent on 

the analysis of variance.  The model offset parameter(s) are the only information needed to 

perform a repair.  This method easily handles missing data points and can be used to 

interpolate values at such locations.  Finally, a software tool, the CSR, was created which 

implements the method to repair RINEX files for use with other analytical tools. 

 

  



101 
 

Appendix 
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 as stated in section 1.4.3.  This 

shows that VDOP is bounded as claimed.  The other DOPs have similar terms with the e


, n


, 

and u


 vectors permutated.  It is assumed that 1, ne
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pf:  This requires only a simple algebraic manipulation while recalling that 11 ,  yx
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Q.E.D.  
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Now it is proven that the matrices used in section 2.3.3 called 1A , 2A , 3A , and 4A  are 

symmetric and  idempotent as claimed. 

 

Lemma A-2:  Any matrix of the form TT BBBBA 1)(   is symmetric and idempotent. 

pf:  Symmetry can be proven by simply showing that AAT  . 

           ABBBBBBBBBBBBBBBBA TTTTTTTTTTTTTT 


 11
11 )()(  

Idempotency can be proven by simply showing that AA 2  so that A  is idempotent by 

definition. 

  ABBBBBBBBBBBBBBBBA TTTTTTTT   111212 )()()()(  

Q.E.D. 

 

Lemma A-3:  Any matrix of the form TT BBBBIA 1)(   is symmetric and idempotent. 

pf:  Symmetry follows directly from TT BBBB 1)(   and I  being symmetric.  Idempotency is 

again demonstrated by showing that AA 2 . 
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Q.E.D. 

 

Lemma A-4:   Any matrix of the form TTTT CCCCBBBBA 11 )()(    is symmetric. 

pf:  This follows directly from the symmetry of 
TTT BBBB 1)(   and TT CCCC 1)(   proven above 

in claim 1. 

 

Lemma A-5:  Any matrix of the form TTTT CCCCBBBBA 11 )()(    is idempotent if 

 SCB |  for some matrix S . 

pf:  Let  SCB |  and consider the partitioned form: 
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From the top partitions on the left and right side this implies that 

TTTT CBBBBC 1)(                                                       Eq. A5-1    

or from transposing that 
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CCBBBB TT 1)(                                                        Eq.  A5-2 

Now, squaring TTTT CCCCBBBBA 112 )()(    yields 
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Substituting equations A5-1 and A5-2 into the two middle terms gives 
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Q.E.D. 

 

 

Finally, it is shown that the quadratic forms 2Q , 3Q  and 4Q   have non-centrality parameters 

0432    as claimed in section 2.3.3.   

 

Lemma A-6:  The quadratic form 2Q  has non-centrality parameter 02  . 
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pf:  According to the Cochran-Fisher theorem, the non-centrality parameter of 2Q  is 
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Under the hypothesis that k02
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