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Abstract

A Fire Simulation Model for

Heterogeneous Environments Using the

Level Set Method

by

Shin-en Lo

Claremont Graduate University: August 2012

Wildfire hazard and its destructive consequences have become a growing

issue around the world especially in the context of global warming. An

effective and efficient fire simulation model will make it possible to predict

the fire spread and assist firefighters in the process of controlling the damage

and containing the fire area. Simulating wildfire spread remains challenging

due to the complexity of fire behaviors. The raster-based method and the

vector-based method are two major approaches that allow one to perform

computerized fire spread simulation. In this thesis, we present a scheme

we have developed that utilizes a level set method to build a fire spread

simulation model. The scheme applies the strengths and overcomes some

of the shortcomings of the two major types of simulation method. We store

fire data and local rules at cells. Instead of calculating which are the next

ignition points cell by cell, we apply Huygens’ principle and elliptical spread

assumption to calculate the direction and distance of the expanding fire by

the level set method. The advantage to storing data at cells is that it makes

our simulation model more suitable for heterogeneous fuel and complex

topographic environment. Using a level set method for our simulation model

makes it possible to overcome the crossover problem. Another strength of

the level set method is its continuous data processing. Applying the level

set method in the simulation models, we need fewer vector points than

raster cells to produce a more realistic fire shape. We demonstrate this fire

simulation model through two implementations using narrow band level set

method and fast marching method. The simulated results are compared

to the real fire image data generated from Troy and Colina fires. The

simulation data are then studied and compared. The ultimate goal is to

apply this simulation model to the broader picture to better predict different

types of fires such as crown fire, spotting fires, etc.
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Introduction

1.1 Introduction

Wildfires continue to present a hazard that adversely impacts public safety and pub-

lic health, resulting in a significant negative economic impact on individuals, insurance

companies and society as a whole. According to the statistics published by the U.S. Fire

Administration [4], a total of 406,614 wildfires occurred that burned 39,105,433 acres

during the five-year period from 2005-2009 in the United States. The fires caused 3, 010

deaths and 17, 050 injuries with a direct dollar loss in 2009 alone of over $12 billion.

Wildfires cause monetary damage and environmental damage every year. However,

wildfire spread continues to be rather unpredictable. There is a growing demand to

come up with faster and more reliable ways to predict the spread of wildfires. De-

veloping more predictive simulation models will help fire safety managers in their fire

suppression and containment efforts to reduce life and monetary losses.

Several computer simulation models have been developed to simulate fire spread.

For the most part, they are based on one of two major methods: the raster-based

cellular discrete method (Fig. 1.1a) and the vector-based polygon expanding method

(Fig. 1.1b) [23][34][33].

The raster-based method simulates fire growth as a discrete process of ignitions

across a regularly spaced landscape grid referred to as a cellular grid, similar to cellular

automata (CA) which is based on the contiguous principle, a cell may be ignited by

1



1. INTRODUCTION

(a) Raster-based method,

which is based on the

Contiguous principle,

simulates fire spread.

(b) Vector-based method,

which is based on the Huy-

gens’ principle & the elliptical

shape assumption, simulates

fire expanding.

Figure 1.1: Two major computer fire simulation methods - The two most widely

used fire simulation methods in softwares are the raster-based cellular discrete method and

the vector-based polygon expanding method.

its burned neighboring cells depending on certain conditional levels such as fuel, wind,

etc. The fundamental properties of these methods are the definition of the state of a

cell that is called state function and the local rules that update the state on sequential

time intervals. Storing data at cells is more suitable for heterogeneous fuel and complex

topographic environment. However, there is no way to determine the next movement

of the fire front on the grid; raster-based method requires further calculations on the

neighboring cells of the specific cell in order to determine the fastest rate of fire spread

(ROS) or the shortest travel time to the next neighboring cell most likely to be ignited.

Furthermore, in the raster-based method, the fire spread processing is not a continuous

process. The resolution is critical for the output of the simulation. Higher resolution

produces better fire shape at the price of consuming bigger processing memories. The

raster-based method falls short in delivering high resolution fire shape.

Vector-based methods apply fire spread formula to calculate the traveling direc-

tion and the distance of each vertex on the fire polygon to move the vertex forward

and expand the fire. They are built upon two principles. The first is Huygens’

principle which assumes that the fire front propagates from the vertex on the front

2



1.1 Introduction

edge equally and independently. An illustration of this idea is shown at Fig. 1.2.

Figure 1.2: Huygens’ principle -

Huygens’ principle assumes that the

wave front propagates from the vertex

on the front edge equally and indepen-

dently.

The second is to assume that the fire spread

shape will appear to be elliptical under the wind.

Fire polygon function is defined by a series of

two dimensional vertices which point to xy co-

ordinates. The expanding distance of a fire poly-

gon function is determined by computing the

parameters such as wind, fuel type and terrain

from each vertex to get the spread rate and mul-

tiplied by the time step. It is a continuous data

process that requires fewer vector points than

raster cells to produce more realistic fire shapes

while requiring less computer memory. The most difficult task for the vector based

methods is to calculate the crossover which refers to the overlap of two fire fronts. It is

definitely a tedious, time-and resource-consuming process to calculate the crossover [9].

Another limitation of the vector method is the omission of the ignition point between

different fuel types. The result is that the fire spread simulation using vector based

methods will assume a nonstop process until it meets water or rock. In the real world,

the heat from a fuel may or may not be sufficiently intense to spread to another type

of fuel.

In this thesis we developed a scheme that utilizes the distance function of a level

set method to build a fire spread simulation model. The scheme leverages the strength

of the two major computer simulation methods and at the same time overcomes the

limitations of these methods. The main idea is to apply the level set method to het-

erogeneous environments. First, we stored local data at each cell. Then by applying a

distance function on the plane, we transformed the distance numbers into a 3D object

and changed its contour forward or backward by moving this 3D object. Lastly, we

applied PDE/ODE mathematical methods (level set function) combining the data from

raster cells to calculate the contour’s expanding distance on the xy-plane to predict the

fire spread.

3



1. INTRODUCTION

Two mathematical methods conform to our proposed scheme – the narrow band

method and the fast marching method which deviated from the level set concept. Both

view 2D surface evolution from three dimensions. The level set method is a numerical

tool introduced by Osher and Sethian [22] and is popular for tracking and simulating

the dynamics of moving surfaces. It transfers the problem from xy-plane to a higher

dimension, then projects the problem back to the xy-plane in order to handle prop-

agating contours. It is well known for its ability to easily handle topological changes

such as merging or breaking interfaces. Therefore the level set method can be applied

to resolve the crossover issue in fire spread simulation using vector-based methods.

The fast marching method introduced by Sethian [30] also views 2D expansion

from a 3D perspective. If the contour from the 3D object is always either expanding

or shrinking, it provides a stationary formulation on a discrete grid where the contour

crosses each grid no more than once. Instead of calculating the travel distance in a

level set method, the fast marching method calculates the travel time from points to

the surface to track the moving surface.

By using the narrow band method, a fire spread simulation model was created to

verify our scheme. First, we built a 3D level set function φ(x(t), y(t), t) from a distance

function and used the data which had been pre-stored at each cell to calculate the fire

forward distance by fire formula. We used the Hamilton-Jacobi method to solve the

level set equation φt = −F‖5φ‖ and to estimate the contour evolution on the xy plane.

For the fast marching method, we used the pre-stored data at each cell to calculate

the travel time from fire front by solving the Eikonal equation 1 = F‖ 5 T‖ to build

a time matrix. Then we transformed this matrix to a 3D object T (x, y, t) and used its

projections on the xy-plane to simulate the fire spread.

The fire formula used in our model to calculate the fire spread speed F is Rother-

mels fire model [28] which is the most popular mathematical fire model used in the

United States and delivers a good estimate of the fire spread. We modified Rothermel’s

fire model and used it to simulate the fire spread in the narrow band level set method,

4



1.2 Goals and Objectives of the Research

and fast marching method.

1.2 Goals and Objectives of the Research

As discussed previously, a wildfire is a complex multi-scale process affected by non-linear

scale-dependent interactions with other earth surface processes. A lot of research and

several methods are devoted to simulate the spread of a fire front. This research lever-

aged the raster concept to divide the landscape into identical square cells and to store

pre-exiting data at cells, then applying the level set method to evolve fire surface for

more complex fire environments.

The goal of this research is to overcome some of the shortcomings of the two com-

puter simulation methods. We store fire data and local rules at cells, instead of calcu-

lating which are the next ignition points cell by cell, then we apply Huygens’ principle

and elliptical spread assumption to calculate the direction and distance to expand fire.

The vector-based method using a polygon equation to simulate the fire front spread

speed does not save any information, resulting in two major shortcomings. First is the

crossover issue and the second is the inability to replicate the natural wildfire spread

between two different types of fuel. For our simulation model, storing data at cells

makes it suitable for heterogeneous fuel in a complex topographic environment. Using

the level set method for our simulation model overcomes the crossover problem.

The ultimate goal is to apply this simulation model to the broad scope to better

predict different types of fires such as crown fire, spotting fire, etc. Further, the goal is

to generate an improved simulation model and apply it to other scenarios such as smog

pollution, oil spill and volcanic ash spread.

The more limited scope of this research is to consider only surface fires where the

fire front spreads in a layer just above the ground. Crown fires, ground fires, and spot-

ting fires will be considered in future studies.

5



1. INTRODUCTION

1.3 Organization of this Thesis

This thesis is organized as follows:

Chapter 1 provides the problem statement for fire spread prediction in the intro-

duction and states the goals and objectives of this research.

Chapter 2 describes the history and theories of wild fire research; categories of fire

models; theories of the major simulation methods for fire spread and their strengths

and limitations and presents the scheme used in our simulation model.

Chapter 3 describes the concept of building our fire simulation model; the mathe-

matical theories, implementations of the level set methods which includes narrow band

method and fast marching method; numerical methods for our model to simulate the

fire spread; and, finally, presents the structure of our fire simulation model.

Chapter 4 applies the fire simulation model built from previous chapters to simulate

the fire spread on hypothetical landscapes under various scenarios of fuel, wind and

topography. The last part presents a numerical accuracy analysis.

Chapter 5 contains case studies. We use the data from the Pacific Southwest (PSW)

Research Station to simulate real fire events that occurred in the Troy area in 2002 and

Colina area in 2007. We compare the results between the implementation using narrow

band level set method and the implementation using the fast marching method.

Chapter 6 summarizes the performance of this improved fire simulation model and

makes recommendations for future studies.

6



2

Wildfire Models

In this chapter, we discuss the history of research on wildfire models. Wildfire models

can be divided into three categories: theoretical, empirical, and semi-empirical. They

all focus on the development of a mathematical fire spread formula to predict the rate

of spread of the head fire. One of the most commonly used methods is a semi-empirical

method from Rothermel[28]. We modify Rothermel’s model and use it as the fire

spread formula in our fire simulation model. The mathematical theories that support

the mathematical fire spread models are discussed. Those theories will be applied to

our simulation model.

2.1 History

Wildfire modeling research originated in the 1920s. The earliest research is recorded

in the works of Hawley(1926) [14], and Gisborne(1927, 1929)[12][13] who tried to un-

derstand the wildfire phenomenon. They considered the relevant elements of fire by

observing and measuring forest fires. Later they developed a framework for under-

standing wildfire behavior that enabled them to construct operational models of fire

behavior to predict fire spread. From the early 1940s, researchers focused either on how

to build mathematical fire spread models based on the fundamentals of the physical

and chemical theories or on empirical methods. In 1946, Wallace R. Fons[10] brought

forward a rigorous physical approach to model fire behavior using mathematical meth-

ods. Fons might be the first person trying to use a mathematical model to describe

7



2. WILDFIRE MODELS

fire spread [28]. In the 1950s, formal research began by various government agencies

such as the Commonwealth Forestry and Timber Bureau in Australia; Canadian Forest

Service in Canada; and Forest Service in the USA. As the result of an increased budget

and national interest, the research transitioned from understanding and controlling fire

spread to the analysis and simulation of large forest or conflagration fires. After the

1990s, a rapid development in the capabilities of remote sensing, geographical informa-

tion systems(GIS) and computing power made it possible to create simulation models

to predict wildfire spread across a landscape.

2.2 Wildfire Models

Wildfire spread model research is attempting to create mathematical fire spread mod-

els. The research focuses on the rate of wildfire spread. Paster et al. [23] proposes

classifying mathematical models into theoretical, empirical, and semi-empirical models

depending on whether the model is based on purely physical understanding, statistical

observation, or a combination of both.

2.2.1 Theoretical (Physics Based) Models

Theoretical models are generated from physical laws such as the laws of fluid mechan-

ics, combustion and heat transfer. The fire spread is the result of the combination of

chemical and physical processes. The combustion formula is:

Fuels + Oxygen + Energy(heat to ignition) −→ Carbon dioxide + Water + Energy(heat)

By the law of conservation, total mass never changes in the combustion process.

Many physics-based models are based on the above basic physics principles. It is

desirable, perhaps suitable to use physics based models for wildfire spread. However,

due to the nature of the wildfire spread, it will require further information beyond the

basic physics principles. Most physics based models alone will not be able to forecast

the wildfire spread in the real world. As Sullivan [34] pointed out “the primary use of

such models is the study of fires under conditions, fuels and topographies that are not
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amenable to field experimentation.”

2.2.2 Empirical Methods

Empirical methods combine statistical correlations from observation and experiments

or real historical wildfire studies. The empirical models determine the key characteris-

tics used to describe the behavior of the fire. The models focus mainly on the fire head,

the rate of forward spread (ROS) of the fire head, the height of the flames, and the

angle of the flames. The primary use of such models is to estimate where the spread is

heading in the midst of the wind which is crucial information for firefighters in order

that they can develop a fire extinguishing plan. Therefore empirical models have tra-

ditionally been one dimensional models that predicted the ROS of the fire head in the

direction of the wind. Empirical models are most commonly used for operational fire

simulations in use today.

Two of the main observations supporting empirical models are the analysis of fire

spread based on different fuels and the measurement of head fire speed and direction

based on wind speed and slope. Two general types of equations can be used to assess

the dependency of fire spread rate (V ) on wind speed (U):

Exponential equation (Noble er al.(1980)[21]):

V = V0 ∗ exp(aU) (2.1)

and

Power law equation (Thomas(1971)[35]):

V = V0 + b ∗ U c (2.2)

where V0 is the rate of spread in the absence of wind and a, b, and c are parameters

to control the magnitude of fire on different fuels. For example, McArthur developed

a fire danger meter V = V0 · exp(0.145U10) and V = V0 · exp(0.0842U10) for Australia

grasslands and Australia forests respectively, where U10 is the 10m/s wind speed [21].

There are two basic equations that model the impact of the slope on the fire spread,

V = V0 + a · (tanϑ)c (2.3)

9
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and

V = V0 ∗ exp(bϑ). (2.4)

Many wildfire spread models are based on those basic ideas and add some special

parameters acquired from observations.

2.2.3 Semi-Empirical Methods

Semi-empirical models are a combination of a theoretical and empirical models. They

are composed of simple, general physical theories, and completed through experimenta-

tion. The most famous Semi-empirical model is Rothermel’s,[28], which was published

in 1972 and is the first model to simulate wildfires. It was developed from Frandsen’s

theory [11] which used the conservation of energy ahead of an advancing fire and as-

sumed that the fire occurred under a homogeneous fuel bed. This model focuses on the

energy transfer between neighboring fuel cells as they ignite assuming uniform fuel at

the surface which burns at a height of less than two meters from the ground.

The rate of spread (ROS) in Rothermel’s model is the ratio of the propagating

heat flux to the energy required to dry and preheat unburned fuels until they ignite.

The framework defines the heat source as a reaction intensity IR, which is the expres-

sion of fuel load, fuel particle size, fuel chemistry, fuel arrangement, and fuel moisture.

Propagating flux combines the effect of forward radiation, convection(including flame

contact), and piloted ignition. It is the product of IR and the propagating flux ratio,

ξ, the latter term representing the proportion of reaction intensity that is transferred

to the unburned fuels.

Rothermel’s model assumes that the spread rate is based on an energy balance ratio

of power source and heat sink terms:

R =
Power density of propagating flux

Preheating energy of fuel
=

Ip
ρbQT

where Ip is the fire propagating intensity provided by the heat source, QT is the heat

sink energy required to heat, dry, and pyrolyze the fuel, and ρb is the fuel bed bulk

density.

10
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As a mathematical expression, in Rothermel’s model, the wildfire spread rate is

given by:

R =
IRξ(1 + Φw + Φs)

ρbεQig
(2.5)

• R : head fire spread rate (m/min)

• IR : reaction intensity (kJ/min ·m2)

• ξ : the propagating flux ratio

• ρb : over-dry bulk density (kg/m3)

• ε : effective heating number

• Qig : heat of ignition (kJ/kg)

• Φw : wind coefficient

• Φs : slope factor

Reaction intensity IR :

The reaction intensity IR is the rate at which burning grasses release energy. The unit

kJ is ’kilojoule’.

The propagating flux ratio ξ :

This is the basic flux component with no wind(Φw) or slope(Φs). The Rothermel model

assumes that the reaction intensity IR is independent and can be correlated with the

propagating flux such that IRξ = f(IR).

Over-dry bulk density ρb :

This fuel density combines with other parameters to give ρb = wo/δ where wo is the

over-dry fuel loading and δ is the fuel depth.

Effective Heating Number ε :

ε is the ratio of the effective bulk density ρbε to the actual bulk density ρb. ε is always

less than one and approaches zero as the fuel size increases.
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Heat of ignition Qig :

Qig describes the heat required to ignite fuel. It depends on:

• ignition temperature

• the ratio of fuel moisture

• fuel size, that is the amount of fuel available

Wind Φw:

Φw = C(3.28U)B
(
β

βop

)−E
(2.6)

where C, B and E are functions of the fuel particle sizes in the fuel bed and β is the

packing ratio of the fuel bed.

Terrain Φs:

Φs = 5.275β−0.3(tanϑt)
2 (2.7)

where tanϑt is the slope and β is the packing ratio of the fuel bed.

Rothermel’s model is the most popular fire model used in the U.S. Further details

on Eq. (2.5) may be found in [28]. It computes the steady-state fire spread rate in

one-dimension parallel to the ground surface. Since Rothermel’s model only predicts a

one-dimensional fire spread in the heading direction, the assumption of an elliptic fire

shape is crucial. Based on this assumption, we are able to calculate the flank and back

fire with wind in this study.

2.2.3.1 The Vector Method

The vector-based method, also called polygon expanding method, is one of the major

fire simulation methods where the fire front is defined by two-dimensional vertices on

the xy coordinates. The fire growth depends on the spread rate and direction of each

vertex. The number of vertices increases as fire expands over time as shown in Fig. 1.1b

on page 2. The vector method is based on two assumptions. The first assumption is

Huygens’ principle which states that each vertex on the fire-front is independent of the

others and expands in the same way from the previous point. Based on this assumption,
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the fire growth is calculated on the fire front and is propagated at the fire front edge to

an unburned area. This assumption requires information such as time, direction, and

the rate of fire spread for the points on the fire front edge. The second assumption is

that the fire shape is an ellipse under the wind. With these two assumptions, we can

now successfully apply the one-dimensional fire spread model to the fire front points

to get the rate of fire spread on the fire head and calculate the direction for the fire

expansion to form the fire shape. Simulation models based on the vector method can

produce a much more realistic fire perimeter [15][33].

The wildfire may possibly have overlaps, called crossovers, which present a big chal-

lenge for the vector-based method. Most of the polygon fire-spread functions can be

created from the two formulas Eq. (2.1) and Eq. (2.2) described earlier. But polygon

functions do not distinguish the burned areas from the unburned areas, and make it

difficult to detect the burned areas when the fire front is expanding. In some cases, such

as in a concave region, the fire will merge at the end. How to detect and remove the

overlap of the fire becomes a difficult and important problem to solve. Although sev-

eral methods (Finney [9], Knight and Coleman [16], Osher and Sethian [22], Richards

[25], Richards and Bryce [26], Wallace [37]) have been proposed to resolve crossovers

problems, crossover remains a challenging issue. Finney [9] states: “regardless of the

methods chosen, the process of crossover removal is expensive in time and computing

power, and is an interesting area for further research and improvement.” Different

kinds of crossovers are shown in Fig. 2.1. However Fig. 4.9b shows the level set method

can offer a satisfactory solution for the challenging crossover issue.

Figure 2.1: Crossover - Different kinds of crossovers.

Another challenge for the vector-based method is the ignition delay time when fire

spreads from one type of fuel to a different type of fuel. For example, the heat released

13



2. WILDFIRE MODELS

from burning grassland may not be intense enough to ignite a woods. On the other

hand, fire would spread very quickly from burning woods to grassland. The vector

method does not consider the fact that different fuels have different ignition points.

Therefore, the fire simulation using the vector method will continue to spread until the

fire meets obstacles such as water or rock which has zero ROS.

2.2.3.2 Vector-Based Simulation Approach

For an ideal fire simulation on homogeneous fuel on level terrain without wind, we

expect the fire to appear as a circular front, growing in time. Anderson et al. [1]

describe this mathematically using the parametric equations

x = a · t · cosϑ

y = a · t · sinϑ
(2.8)

where x and y are the coordinates in the plane of a point on the fire front, a is the

rate of spread (uniform across the whole front in this idealized, isotropic situation), t

is the time elapsed since ignition, and ϑ is a parameter which can be interpreted as an

angular coordinate determining the location of the front at angles between 0o and 360o

from the x-axis. With this model, the radius of the circle increases linearly with time

at a rate determined by a which is determined by fuel type, temperature, and moisture

content, etc. Anderson et al. [1] suggest that it is reasonable to include the effect of a

constant wind to further yield an elliptical fire front so that

x = a · t · (f(U) · cosϑ+ g(U))
y = a · t · (h(U) · sinϑ)

where f , g, and h are functions depending upon wind speed U .

This model fits in with the generally accepted concept that two-dimensional fire

shapes are assumed to be generally elliptical under the conditions when factors such as

fuel, weather, topography affecting fire behavior are spatially and temporally constant.

Based on this model F.E.Fendell and Wolff [8] focused on the fire front velocities

at the head, back, and flanks where propagation is with, against, and across the wind

(Fig. 2.2). F.E.Fendell and Wolff [8] proposed the spread speed as
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• Head: h(U) = ε0 + a
√
U

• Flank: f(U) = ε0 + c1U exp(−c2U)

• Rear: ε(U) = ε0 exp(−ε1U)

where ε0, ε1, c1, c2 and a are parameters depending on fuel bed and wind velocity U .

Figure 2.2: An Elliptical Shape Fire-spread Assumption - A one step forward

elliptical fire shape simulated under west wind assuming homogeneous fuel and without

terrain.[19]

Applying the velocity by trigonometric interpolation for any points, we get spread

speed F as
F (U, ϑ) = f(U sinm ϑ) + h(U cosn ϑ), if |ϑ| ≤ π

2
F (U, ϑ) = f(U sinm ϑ) + ε(U cos2 ϑ), if |ϑ| > π

2

(2.9)

where ϑ is the angle between the wind direction and the normal to the front. Further,

Mallet et al. [19] simplified Eq. (2.9) without losing its main features to

F (U, ϑ) = ε0 + a
√
U cosn ϑ, if |ϑ| ≤ π

2
F (U, ϑ) = ε0(α+ (1− α)| sinϑ|), if |ϑ| > π

2

(2.10)

where ε0, a are parameters depending on fuel and α ∈ [0, 1] is the ratio between the

velocity at the rear and flanks. Based on empirical field tests and plausibility, Mallet

et al. [19] suggested setting n = 3 to produce a significant, elliptical fire shape from the

flanks to the head. Simulation run from our modified Rothermel’s model (Eq. (3.7))

using level set method produced an ideal fire propagation shape as shown in Fig. 4.2a

by applying the same parameters as in Mallet et al. [19]. Our simulation result from
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level set method matches Mallet et al. [19]’s result.

The simulation proceeds at the following steps at each time interval: The expan-

sion of the fire polygon is computed from its vertices by applying a fire model such as

Eq. (2.10) to calculate the direction and distance traveled by the fire at each vertex.

After completing the calculation for the fire expansion, the new vertex is inserted into

the fire front if the resolution of the perimeter is lower.

For example, FARSITE[9], a widely used fire simulation model by U.S. federal and

state land management agencies for predicting fire spread across the landscape, uses

two simulation parameters to control the spatial calculations, (1) the distance resolution

and (2) the perimeter resolution. The distance resolution is the resolution in the fire

spread direction. When the fire perimeter expands and the vertices are separated over

time, a new vertex is inserted at the mid-span of a perimeter segment if the distance

between the vertices is greater than the resolution of the perimeter. The perimeter

resolution is the maximum distance allowed between vertices of the fire polygon.
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Methodologies

We store fire data at each cell in a lattice, and we apply the Rothermel’s fire model

to calculate the travel distance of fire based on the local data from the burning cell

to the unburned neighboring cells. In order to calculate the next expanding direction

and distance from the fire front, we apply Huygens’ principle and elliptical spread as-

sumption. Further we apply the level set method which adds one more dimension to

solve the original problem. By applying the level set method, we need to focus only on

the fire expansion on the norm of the fire front and keep the ellipse shape of fire. We

then build a fire simulation model applying distance function to determine the state

of cells to simulate the fire spread. We also discuss fast marching method and its im-

plementation. Fast marching method uses the same idea as level set method to add

time dimension to the original problem. Instead of calculating the travel distance, fast

marching calculates the travel time of the fire surface to the next place.

3.1 Strategy and Solution

Pre-existing fire data store at cells provide the advantage to simulate the fire spread

especially in a complex environment under the conditions of heterogeneous fuel and

weather conditions [33]. However, Ian [15] found that vector-based simulations produce

a much more realistic fire perimeter. Sullivan [33] pointed out that the vector-based

models are preferred to produce meaningful simulations. Our research is intended to

find a method which can simulate fire spread under heterogeneous fuel and produce a
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realistic fire perimeter at the same time.

3.1.1 Strategy

The fire shape can be replicated exactly by a distance function which at a given point

returns the distance to the fire front. We store the distances information at cells and de-

fine the distance to be positive for unburned cells and negative for burning and burned

cells. When the sign of the distance changes, the state of cells will be updated. We can

leverage the level set method and Rothermel’s fire model to calculate the fire spread

distance and direction, depending on the elliptical spread assumption at sequential time

intervals. The advantage of this method is relying only on the fire spread direction by

using the elliptical spread assumption and rather than by considering the intervening

adjacent cells.

We defined a signed distance function which returns the distance from a given point

in space to the surface which is to separate the inside and the outside of some object

at time t. Let the surface be the burning cell, we have the signed distance function as

follows:

φ((i, j), t = 0) = ±d

where d is the distance from the cell (i,j) to the fire front at the time t = 0. The positive

sign is used if the cell (i,j) is outside the closed fire front which is an unburned cell; the

negative sign is used if the cell (i,j) is inside the closed fire front which is a burning cell.

When the fire front move forward through time, cell(i,j) eventually becomes negative

and its state is updated to a burning cell. To calculate the speed of fire spread, we may

use Eq. (3.7) as the rate of fire spread to move forward fire front and we leverage the

level set equation Eq. (3.13) to get the distance of the fire moving forward at 4t. The

distances of the cells become negative and their states are updated to burning after a

certain time.

The steps to simulate fire spread are first to save local data at each cell; second to

add a time axis perpendicular to the xy-plane, and third to apply a distance function

of the level set method to create a 3D object. The fire spread can be viewed from a
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3D perspective. The fire front becomes the expanding contour of the 3D object. We

only need to apply some numerical methods which have been introduced by Osher and

Sethian [22] to calculate the 3D object’s moving distance. The projected contour on

the xy-plane becomes the fire spread. The 3D object is generated from the distance

between burning cells to unburned cells. Another method in the implementation is

the fast marching method using the travel time of fire spread to each unburned cell

from the nearest burning cell instead of travel distance. In this study, we will be using

modified Rothermel’s fire spread rate in the level set methods (the narrow band level

set method and the fast marching method) and study the comparison.

3.1.2 Modification of Rothermel’s Model

Mallet et al. [19] applied the level set method to a simplified fire model Eq. (2.10), and

obtained an elliptical fire shape similar to the fire at Fig. 4.2a. Nevertheless, this model

can be further studied and modified to fit a more complex environment such as under

different kinds of weather, terrain, fuel bed, etc. The model Mallet et al. [19] used has

only two conditions including fuel and wind factors. They are part of the same series of

factors of Rothermel’s model. We kept all the factors of the Rothermel’s model except

replacing the wind factor with Mallet’s model to produce two dimensional simulation

under the flank and back wind direction.

We briefly revisited Rothermel’s Model Eq. (2.5) on page 11. This model has two

characteristics. First, the fire spread rate focuses on the fire heading direction only.

Second, this model can be decomposed into three independent parts. For the ‘head

fire direction only’ characteristic, it is necessary to assume that the fire spread shape is

elliptical. Otherwise we cannot estimate the fire spread direction except for the head

fire. Under this assumption, Mallet’s parameters provide a good solution if we consider

the wind factor only. We only need the fire speed for head wind and use Mallet’s pa-

rameters to calculate and predict the speed of the expanding fire in the other directions.

From Rothermel’s model Eq. (2.5), if we write the fuel factor IRξ
ρbεQig

to a function

f and denote E0 = f(IR, ξ, ρb, ε,Qig), then Rothermel’s fire model can be simplified to
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R = E0(1 + Φw + Φs) (3.1)

where Φw is factor of wind in Eq. (2.6) and Φs is factor of terrain in Eq. (2.7) on

page 12. Similarly, we simplify the wind factors Φw, and write A = g(C, β, βop, E)

which g = C
(

β
βop

)−E
and let U ′ = 3.28U . Then, Eq. (3.1) can be rewritten to

R = E0(1 +A · U ′B + Φs) (3.2)

If a fire is on the zero elevation with ϑ = 0, then Φs = 5.275β−0.3(tanϑ)2 = 0.

Eq. (3.2) becomes

R = E0(1 +A · U ′B). (3.3)

This fire spread depends on fuel E0 and wind AU ′B only.

We next transform Mallet’s model[19] Eq. (2.10) on page 15 to a new form

F (U, ϑ) = ε0 + aU1/2(cosϑ)3/2, if |ϑ| ≤ π
2

F (U, ϑ) = ε0(α+ (1− α)| sinϑ|), if |ϑ| > π
2

(3.4)

Although it has no direct impact, following Mallet’s suggestion, we replaced n with

3 here and focused on the headwind (ϑ = 0) only. Mallet’s model Eq. (3.4) can be

rewritten as
FH(U, ϑ) = ε0 + aU1/2, if |ϑ| ≤ π

2
F (U, ϑ) = ε0, if |ϑ| > π

2

(3.5)

FH is the head wind direction. For any case, Eq. (3.3) and Eq. (3.5) must generate

the same results because the equations consist of the same element of fuel and wind to

calculate the fire spread. Furthermore, if we consider fuel factor only for the fire-spread

simulation, we can assume E0 = ε0 to generate the same results. The reason to have

the same results from the above two equations is that the equations consist of the same

element of fuel. Therefore, we can define a new model as{
R = ε0 + a

√
U cos3 ϑ+ ε0Φs, if |ϑ| ≤ π

2
R = ε0(α+ (1− α)| sinϑ|) + ε0Φs, if |ϑ| > π

2

(3.6)

and

Φs = 5.275β−0.3(tanϑt)
2

An illustration of R vs. ϑ on the head fire part of this new model is shown at Fig. 3.1.

We set a = 1 and U = 1 in this illustration. Head fire part is −π/2 ≤ ϑ ≤ π/2.
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Figure 3.1: Wind coefficient for ROS (di-

mensionless) - This is an illustration of R vs.

ϑ on the head fire (|ϑ| ≤ π
2 ) part. ϑ is the angle

between norm of fire front and wind direction

in Eq. (3.6).

Traditionally, people use the let-

ter F to represent the velocity vec-

tor on the norm direction in the level

set method and use the letter W to

represent the wind factor in the fire

model. We will follow this tradition to

use the letter F replacing the letter R;

use W (U, ϑ) replacing the wind factor

F (U, ϑ) in the previous equation. In the

rest chapters, the fire spread formula in

our simulation model will be{
F = ε0 +W (U, ϑ) + ε0Φs, if |ϑ| ≤ π

2
F = ε0(α+ (1− α)| sinϑ|) + ε0Φs, if |ϑ| > π

2

(3.7)

where

W (U, ϑ) = a
√
U cos3 ϑ,

and

Φs = 5.275β−0.3(tanϑt)
2.

ϑ is the angle betweeen fire head and wind direction, and tanϑt is the slope. α ∈ [0, 1]

is the ratio between the velocity at the rear(αε0) and the velocity at the flanks(ε0). ve-

locities at the rear and the flanks no longer depend on the wind since their dependence

on the wind speed is hard to model accurately and has little impact on the overall front

location [19].

Since all fire spread models are developed under the same fuel condition and are

not addressed for the fire spread between different fuels, Berjak and Hearne [5] added

a combustibility index CI in his raster-based simulation model for heterogeneous envi-

ronment which is defined as

CI =
Ht
α

Hβ
(3.8)

where

• Ht
α : the amount of heat produced from α at time t
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• Hβ : the total heat required to ignite fuel β

Because the vector-based simulation models do not consider fire spreading through

different types of fuel, we may apply CI to our simulation model for heterogeneous

environment and extend the Eq. (3.7) to{
F = (ε0 +W (U, ϑ) + ε0Φs) ξ, if |ϑ| ≤ π

2
F = (ε0(α+ (1− α)| sinϑ|))ξ, if |ϑ| > π

2

(3.9)

where

W (U, ϑ) = a
√
U cos3 ϑ,

Φs = 5.275β−0.3(tanϑt)
2,

and

ξ =

{
1, if CI ≥ 1
0, if CI < 1

where CI =
Hα

Hβ
, Hα is the amount of heat from α and Hβ is the total heat required

to ignite β.

We extend Eq. (3.7) to Eq. (3.9) provided further information on the combustibility

of the fire. The incorporation of the combustibility index is motivated by the raster

concept. However due to the practicality, we do not use the combustibility index in this

thesis. Instead we focus only on Eq. (3.7) in our simulations. However, we provide an

artificial example in Sec. 4.3.1 using the combustibility index. The artificial example

simulated the fire spread from grasslands to woods. The fire spread slows down from

grasslands to woods or in some cases it stops because the ignition of the woods requires

more heat than the heat generated from the grasslands.

3.2 The Level Set Method

The level set method is introduced by Osher and Sethian [22] to resolve issues from

more than one dimensional view. It has become popular in recent years for tracking

and simulating the dynamics of a moving surface in 3D or interface in 2D and it is well

known for its ability to easily handle topological changes such as merging or break-

ing surface or interfaces. The physical evolution is modeled using partial differential
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equations(PDE). The PDE methods for level set evolution are built on the theory of

Hamilton-Jacobi equations. To the best of our knowledge, Mallet et al. [19] are the first

researchers using the level set method to simulate wildfire spread under wind conditions.

In the level set method, a moving surface can be described by a signed distance

function which returns the distance from a given point in space to the surface. Points

inside the surface have a negative distance, and those outside have a positive (Fig. 3.2a,

Fig. 3.2b.) distance from the surface. So, the set of points with distance zero , the zero

level set, represents the moving surface. That is, a surface is the set S where

S = {x ∈ Rn|φ(x) = 0}.

If we add one dimension to represent time and let the values of the distance function

depend on time, then φ(x, t) denotes the distance from the surface at the point x ∈ Rn

at time t ∈ R+. We call φ(x, t) a level set function.

Now we define the level set function of the surface as

S(t) = {x ∈ Rn|φ(x, t) = 0}, t ∈ R+ (3.10)

φ(x, t) = 0 is called the zero level set. The zero level set is the contour of the level set

function on the xy-plane. When the level set function moves over time, the new zero

level set forms a new contour. If we constrain the level set value on the zero level set

which is the contour with motion x(t), we can obtain the surface change. We want to

know the new values for each of the points on the surface as time moves forward. That

is, what φnew(x) is after 4t, if we have φold(x).

Using the Euler method, a first-order numerical scheme for solving ordinary differential

equations, if we have a differential equation of the form

y′(t) = f(t, y(t))

at y(t0) = y0,

its one step approximate solution from tn to tn+1 = tn + h is

yn+1 = yn + hf(tn, yn).
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(a) A distance function (b) Interface expanding

(c) A 3D view from Fig. 3.2a and its con-

tour on zero level plane

(d) The 3D object sinks down to expand

the contour

Figure 3.2: Evolution of a distance function - The 11 x 11 matrix on the xy-plane

represents a distance function. The points with value 0 indicate the interface φ(x, t) = 0.

Inside the interface, the distance from points to interface is negative. Outside is positive.

The distance function Fig. 3.2a expands its surface outwardly to become Fig. 3.2b. The

distance number at each point can also be seen as a slope with 1 on the norm to create

a 3D object. Fig. 3.2c and Fig. 3.2d provide the same distance function of Fig. 3.2a and

Fig. 3.2b respectively from the 3D view. Fig. 3.2d shows the contour expanding outside

when the 3D distance function is projected onto the 2D plane.
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3.2 The Level Set Method

It is

y′(tn) = f(tn, y(tn)) =
y(tn+1)− y(tn)

tn+1 − tn
.

So following Euler’s method, our surface level set function is

φ′(t) =
∂φ

∂t
=
φnew(x)− φold(x)

4t
.

φnew(x) ≈ φold(x) +4t · φ′(t). (3.11)

Our goal is to find φ′(t) to get φnew(x).

By the chain rule, we apply the ordinary differential equations(ODEs) method to

the zero level set Eq. (3.10).
d

dt
φ(x, t) = 0

∂φ

∂t
+
∂φ

∂x
· ∂x
∂t

= 0

∂φ

∂t
+5φ · ∂x

∂t
= 0

∂φ

∂t
= −5 φ · ∂x

∂t
(3.12)

Here, 5φ is the gradient of φ with respect to x, and ∂x
∂t can be seen as the velocity of a

particle trajectory x(t) on the surface φ(x, t). If we let a velocity field V = x′(t), then

we may rewrite Eq. (3.12) as

φ′(t) = −V · 5φ (3.13)

We call Eq. (3.13) level set equation. Once we find φ′(t), we may get φnew from

Eq. (3.11).

For fire front propagation, based on Huygens’ principle, the vector field moves forward

in the normal direction of the surface. Assuming at a given point x ∈ Rn and the speed

F at x, the velocity field V used in level set equation Eq. (3.13) will then be defined as

F = V · n

where n =
5φ
| 5 φ|

.

Replace it in Eq. (3.13), and we have
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3. METHODOLOGIES

φ′(t) = −V · 5φ

= −V · 5φ
| 5φ |

| 5φ |

= −V · n | 5φ |

= −F | 5 φ|.

(3.14)

This is the level set equation in Hamilton-Jacobi form. Put Eq. (3.14) back to

Eq. (3.11), we get the new zero level set position.

3.2.1 The Narrow Band Method

The level set method allows us to trace the moving surface. However, since we are

tracing the fire front, the points far way from the zero level set are not in immediate

needs, and also the points inside the zero level set are no longer needed. The narrow

band method which is described in Peng et al. [24] allows us to only solve the level set

equation in a narrow band around the surface. All values outside this band are assumed

to have a very large or a very small value, dependent on whether they are outside or

inside the surface. Compared to the standard level set method, the only extra task of

the narrow band is to keep its collection of points updated along with the movement

of the surface. Since the narrow band has information only on the neighboring points

of the zero level set, computations that involve neighboring points are sent through

that narrow band. The narrow band is represented as a matrix NB. The values in

the matrix are −1, 0, 1 in which −1 means inside the narrow band, 0 means in the

narrow band, and 1 means outside the narrow band. It is used as a pointer to level set

function, and the evolution of level set function only happens at the 0 pointers. The

narrow band method can reduce the computational complexity of level set evolution

from ©(n2) to ©(n) at a time step [24].

3.2.1.1 Numerical Solution for Narrow Band Method

We use the level set method to simulate a two dimensional fire front propagation. So

we may consider 5φ at the Hamilton-Jacobi equation Eq. (3.14) as 5φ =
(
∂φ
∂x ,

∂φ
∂y

)
.
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3.2 The Level Set Method

Then we use the upwind scheme to approximate the value at each point of φ. Given a

point (x, y) ∈ R2 and a vector v = (vx, vy) = V (x, y), the upwind scheme dictates that

∂φ

∂x
≈
{
φ+x = φ(x+4x, y)− φ(x, y), vx < 0
φ−x = φ(x, y)− φ(x−4x, y), vx > 0,

(3.15)

and the same for

∂φ

∂y
≈
{
φ+y = φ(x, y +4y)− φ(x, y), vy < 0

φ−y = φ(x, y)− φ(x, y −4y), vy > 0.
(3.16)

For Eq. (3.14),

φ′(t) = −F | 5 φ| (3.17)

where

| 5 φ| =

√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

. (3.18)

Now, we only need to find the value of the gradient. One way of doing this is to use

Godunov’s method. This method dictates that(
∂φ

∂x

)2

≈
{

max
(
max(φ−x , 0)2,min(φ+x , 0)2

)
, vx < 0

max
(
min(φ−x , 0)2,max(φ+x , 0)2

)
, vx > 0,

where φ−x and φ+x are defined as in Eq. (3.15). The same as(
∂φ

∂y

)2

≈
{

max
(
max(φ−y , 0)2,min(φ+y , 0)2

)
, vy < 0

max
(
min(φ−y , 0)2,max(φ+y , 0)2

)
, vy > 0.

After

(
∂φ

∂x

)2

and

(
∂φ

∂y

)2

are calculated, they can be used to find |5φ|. With this

we can get φ′t ≈ −F · | 5 φ| and then use it to find φnew, by using the Euler method

Eq. (3.11).

Euler’s method is a discretized numerical method, and we need to apply the CFL

(Courant-Friedrichs-Lewy) condition to keep confirming the stability for our numerical

methods. CFL states that, given a space discretization, a time step must be smaller

than a computable quantity. If a time step causes the change in distance of a point

to be larger than the grid size, it will make the numerical computation unstable. So,

the maximum time step 4t should be limited for the fastest point in the vector field

to travel through the side length of cell in the grid, i.e.

4t ·max{|v|}
4x

≤ α,
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3. METHODOLOGIES

where 0 < α < 1. In the two-dimensional case, the CFL condition becomes

4t ·max{|vx|}
4x

+
4t ·max{|vy|}

4y
≤ α,

where vx, vy is the velocity on x-axis, y-axis respectively. As mentioned, the zero level

set has the Hamilton-Jacobi’s form φt + H(φx, φy) = 0 and Hamilton-Jacobi for CFL

constraint is

4 t ·max{| Hx |
4x

+
| Hy |
4y

} < α, 0 < α < 1 (3.19)

where

Hx = F
φx
| 5φ |

(3.20)

Hy = F
φy
| 5φ |

for H = F 5 φ. We can use this CFL condition to set 4t at Eq. (3.11).

3.2.1.2 The Algorithm of Narrow Band Method

The narrow band level set method is the following,

1. Initialize φi = φold

2. Update narrow band NB and φ = φi at pointer NB = 0

3. Evaluate derivative φ′

(a) Evaluate plus derivatives φ+ and minus derivatives φ− from Eq. (3.15)

(b) Select φ′

i. Effective F in its dimension( V φ− = F ∗ φ− and V φ+ = F ∗ φ+).

ii. Determine the upwind direction.

if V φ− & V φ+ ≤ 0 take φ+

if V φ− & V φ+ ≥ 0 take φ−

if V φ− > 0 & V φ+ < 0

if V φ− > V φ+ take φ−, otherwise take φ+

if V φ− < 0 & V φ+ > 0 take V/F

4. Get gradient | 5φ | from Eq. (3.18)
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3.2 The Level Set Method

5. Get Hx, Hy from Eq. (3.20)

6. Get 4t =
(

max{ |Hx|
4x +

|Hy |
4y }

)−1
∗ α from Eq. (3.19)

7. Get new φnew ≈ φold +4t · φ′ from Euler’s forward method

3.2.2 Strategy for Wildfire Simulation Using the Narrow Band Level

Set Method

Since we only consider two space dimensions for the fire spread model, we apply the

level set method on the xy-plane. We apply a function φ(x, y, t) to the space which

the interface inhabits, where (x, y) is a point in xy-plane, and t is a point in time axis.

The function is initialized at t = 0, and then used to approximate the value of φ(x, y, t)

over time increments. In general, we choose the distance function as our function φ.

At any time t, the evolving curve, the fire front in our simulation, corresponds to the

locus of all points (x, y) such that φ(x, y, t) = 0, and that locus is a level curve of the

function φ. The locus of all points (x, y) such that φ(x, y, t) = d, is a contour around

the original curve at t = 0, where d is an arbitrary positive or negative constant. Next

we need to find the force F on the normal direction to the zero level set. We use F as

the rate of fire spread.

To formulate the rate of fire spread (F ), we apply the polygon method and make

two assumptions. Under the first assumption, we use Huygens’ principle that each

vertex on the fire front is independent of the others and would expand in the same way

as those from the original fire front. Therefore, we can repeatedly use the same fire

spread formula to estimate the next ignition point. The second assumption is that the

shape of the fire front is elliptical. From this assumption, we may use the fire forward

formula to calculate the fire expanding speed for other directions in addition to the

head fire by certain geometrical properties. Rothermel’s fire model, Eq. (2.5), focuses

on the heading portion of a fire from a real observed fire. The velocity from Rothermel’s

model is based on the head fire on a straight line. We use Rothermel’s fire model and

replace the wind factor part with the wind part suggested by Mallet et al. [19] for our

fire simulation model F for an elliptical expanding fire shape.
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3.2.3 Methodology Steps

Our approach proceeds in five steps:

In the first step we scale the actual area of simulation into the computational domain

and discretize the domain with a uniform mesh grid size. This is the area where we

want to simulate the fire propagation.

In the next step, we save the parameters describing the fuel content (for ε0) and

elevation (for Φs) at that particular location for each cell to form a same size of matrix

as of the domain at the last step.

In the third step we initialize the value of a distance function φ(x, y, t) at the mesh.

This is the starting point of the fire. The function φ is defined as φ(x, y, t) = ±d where

d is the distance from the point (x, y) to the interface at time t = 0. The positive sign

is used for points (x, y) outside of the closed curve which represent unburned area; the

negative sign is used inside of the closed curve representing burned area.

In the fourth step we use Eq. (3.7) as a vector field F for points (x, y) advecting in

the direction decided by elliptical spread assumption. Calculate the F from the matrix

at step two and wind parameter.

Finally we use the level set method discussed in Section 3.2.1.2 to get the new

position for φ at time tnew.

The pseudo-code is shown in table 3.1.

3.3 Fast Marching Method

The fast marching method is another method that uses higher dimensions to resolve a

problem in lower dimensions. This method is built upon the level set concept initiated

by Sethian [31]. The level set method creates a 3D object from the distance to the

surface for each point, and the fast marching method creates a 3D object from the

travel time at each point. From the level set method, we have the level set function

z = φ(x, y, t),

contour function at time t

0 = φ(x, y, t),

and level set PDE

φt = −F | 5φ | .

30



3.3 Fast Marching Method

Table 3.1: Level set pseudo-code - Level set pseudo-code for fire spread simulation.

Main

{
Initial Data and Parameters

{
Get grid: min(x, y), max(x, y) and resolution dx, dy

Get time: startT ime, endT ime, and timeStep

Get Level set function data:

if self-defined: Input φ-file

else: Get center, radius, and shapeType

Initialize level set equation: φ = (grid, level set function data)

% ignition area

Input the environment data files

% The real time wind, topography, fuels, etc.

Set environment parameters: envPs

% envPs is a structure variable which values

% from environment data files

}
For each timestep(startT ime, endT ime, timeStep)

{
Calculate new fire front φ by Level Set Evolution % below

Adjust slope to leveled ground % projection

Graphic φ

Update new environment parameters envPs

}
}

Level Set Evolution(grid, envP, φ)

{
Get current fire front φ

Update narrow band table NB: Inside edge= −1, fire front= 0, outside edge = 1

Calculate force F = (envPs) % Eq. (3.9)

For each (x, y) which value is 0 in NB

{
Calculate φ′ % Eq. (3.15)

Calculate | 5φ | % Eq. (3.18)

Calculate CFL % below

}
Return φnew % Eq. (3.11)

}

CFL φ′, | 5φ |)
{

Calculate Hx, Hy % Eq. (3.20)

Return 4t % Eq. (3.19)

}
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We assume the speed F never changes sign, that is, the contour is either always

expanding(F > 0) or always shrinking (F < 0). This monotonicity assumption guar-

antees the contour crosses each grid point (x, y) only once; thus the level set problem

z = φ(x, y, t) can be converted into a problem to compute T (x, y) = t which T is the

set of time which the contour is supposed to cross the grid point (x, y) at time t. That

is, the contour at time t,

t = {(x, y) | T (x, y) = t}

We compute T using the distance formula Distance = V elocity ∗ Time, which is{
1 = F ∗ dT/dx, for 1D
1 = F∗ | 5T |, for 2D

Let u(x,y) be the travel time of the contour front to point (x, y) on xy-plane. Contour

0 = φ(x, y, t) becomes single-valued in t. This leads to the fast marching equation

| 5u(x,y) | F = 1 (3.21)

All u(x, y) constitute the travel time matrix T . Eq. (3.21) may be described by the

Eikonal equation, (
∂u

∂x

)2

+

(
∂u

∂y

)2

= 1/F 2. (3.22)

Figure 3.3: Narrow band

surface - An advancing surface

with the ‘narrow band’ points

(red) on the front and ‘alive’

points (black) inside; outside are

‘far’ points (gray).

This equation combined with some optimal sort-

ing technique results in a very fast solution. Sethian

[31] suggested an optimal sorting technique which

is modified from Dijkstra’s Method [7] to solve

Eq. (3.22) by simulating the advancing surface. Ev-

ery point on the computational grid is classified

into three groups: Alive - points inside the surface,

whose travel times are known and won’t be changed;

NarrowBand - points on the surface, whose travel

times have been calculated and are waiting to be

fixed; and Far - points outside the surface.

Fig. 3.3 shows an advancing surface with ‘narrow band’ points on the front, ‘alive’

points inside and ‘far’ points outside of the surface. The algorithm proceeds as follow-

ing:
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3.3 Fast Marching Method

(a) Update unvisited

neighboring cells

(b) Compute new possi-

ble travel time

(c) Expand point on

the fringe with minimum

value

(d) Update neighboring

cells

(e) Expand point on

the fringe with minimum

value

(f) Update neighboring

cells

Figure 3.4: Fast Marching Algorithm - A fast marching algorithm to evolute the

surface on 2D plane [31]. Black points are ‘alive’ points, red points are ‘narrow band’

points, gray points are ‘far’ points. A pink point in Fig.(c) and Fig.(e) is a narrow band

point and is changed to an alive point.

1. Choose the points on the NarrowBand with the smallest travel time.

2. Move those points to the Alive group and advance the surface.

3. Pick points on the fringe of the new Alive to NarrowBand.

4. Update travel times for the new NarrowBand points by solving Eq. (3.22) nu-

merically.

5. Repeat previous steps until all points are in the Alive group.

Fig. 3.4 modified from Sethian [31] shows an example of the fast marching solution

procedure.
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3.3.1 Numerical Solution for Fast Marching

To solve Eq. (3.22) on procedure step 4 in the previous section, Tsitsiklis [36] first

described an optimal-control approach, while Sethian [31] developed these techniques

based on upwind numerical schemes. The schemes to get the viscosity solution of

Eq. (3.22) is obtained by

max(max(ui,j − ui−1,j , 0),−min(ui+1,j − ui,j , 0))2

+ max(max(ui,j − ui,j−1, 0),−min(ui,j+1 − ui,j , 0))2 = 1/F 2

That is,

max(u−i , 0)2 + min(u+i , 0)2 + max(u−j , 0)2 + min(u+j , 0)2 = 1/F 2 (3.23)

where u−i is a backward x difference for time t at grid point (i, j), u+i is a forward x

difference, and uj are defined similarly. The roots of the quadratic equation, at2 + bt+

c = 0 can be calculated as

t =
−b±

√
b2 − 4ac

2a
(3.24)

Solving Eq. (3.23) amounts to accumulating coefficients a, b and c from its non-zero

terms, and evaluating t with Eq. (3.24). For example, if we choose the first term of

Eq. (3.23) to calculate.

u−i =
ti,j − ti−1,j
4i

then (u−i )2 =
t2i,j − 2ti−1,jti,j + t2i−1,j

4i2

(u−i )2 = αt2i,j − βti,j + γ (3.25)

where α =
1

4i2
, β = −2ti−1,jα, and γ = t2i−1,jα. Coefficients a, b, and c of Eq. (3.24)

can now be accumulated from

a =
∑

k αk,
b =

∑
k βk,

c =
∑

k γk.
(3.26)

where index k refers to each term in Eq. (3.23) and subject to the various min /max

conditions.

Because u±i is a one step forward/backward, x derivative for time t at grid point

(i, j) by the first order upwind, this two point formula is only first-order accurate. If
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3.3 Fast Marching Method

we choose three points or more, we may expect the method to have second-order or

higher accuracy depending on the algorithm from Rickett and Fomel [27].

3.3.2 Fast Marching Methodology Steps

Algorithm of the fast marching method is as follows:

1. Initialize the travel time discretized matrix T

• points on the surface are 0;

• points in the surface are −1;

• points out of the surface are ∞.

2. Initialize the narrow band matrix NB

• NB(x, y) = −1 if T (x, y) < 0;

• NB(x, y) = 0 if T (x, y) = 0;

• NB(x, y) = 1 if T (x, y) > 0.

3. Initialize forward speed matrix F which is Eq. (3.9)

4. Update T (x, y) = dx/F (x, y) at NB(x, y) = 0 where dx is resolution of landscape

5. Update NB at NB(x, y) = 0

• NB(x, y) = −1 at minT (x, y);

• NB(x± 1, y) = 0 if NB(x± 1, y) = 1;

• NB(x, y ± 1) = 0 if NB(x, y ± 1) = 1.

6. Update F at NB(x, y) > 0

7. Update T at NB(x, y) = 0

8. Solve Eq. (3.22) by Eq. (3.23) from Eq. (3.24), Eq. (3.25) and Eq. (3.26)

9. Update T at NB(x, y) = 0 from the solution of Eq. (3.22)

10. Recompute T and NB until F goes to 0

The pseudo-code for this procedure is shown in table 3.2.
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Table 3.2: Fast marching pseudo-code - Fast marching pseudo-code for fire spread

simulation.

Main

{
Initial Data and Parameters

{
Get grid: min(x, y), max(x, y) and resolution dx, dy

Get time: startT ime, endT ime, and timeStep

Get ignition fire area:

if self-defined: Input real-fire-area-data

else: Get center, radius, and shapeType

Initialize travel time table T : burned cell= −1, burning cell= 0, unburned cell= inf

Initialize narrow band table NB: burned cell= −1, burning cell= 0, unburned cell= 1

% -1:alive - cells which have been passed from fire front,

% 0:narrow band - cells which are waiting for check,

% 1:far - cells which lie outside of narrow band

Input the environment data files

% The real time wind, topography, fuels, ...information

Set environment parameters: envPs

% envPs is a structure variable which values from environment data files

}
For each timestep(startT ime, endT ime, timeStep)

{
Calculate the travel time (4x/F ) for neighboring cells of the fire front % F is Eq. (3.9)

Put those neighboring cells to NB % Change their value in NB to 0

Repeat until endtime or velocity field F = 0

{
Fast Marching Evolution(T,NB) % below

Graphic

}
Update new environment parameters envPs

}
}

Fast Marching Evolution(T,NB)

{
select the cell with shortest travel time which value is 0 in NB

Change this cell value to −1 in NB

Change its neighboring cells value to 0 in NB if their value is 1

Update the travel time at T for those new neighboring cells

Return (T,NB)

}
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3.4 Simulation Model

3.4 Simulation Model

Our fire simulation is created using MATLAB. Information and newest version about

MATLAB are available at the Mathworks[20] website. Our model is designed from an

object-oriented framework, in which our model has been split into a number of objects.

Objects and their functions are defined as following:

• Grid : an orthogonal square mesh used as the fire field to save the local infor-

mation, grid size decided by maximum x value, minimum x value, and mesh size

dx;

• Initial level set function : self-defined fire shape function or selected from system

defaults;

• Evolution speed and type : defines the fire model;

• Numerical scheme : level set or fast marching;

• Output management: screen display or print out;

• GUI input management : manage the data or parameters such as time period,

accuracy,etc.;

• System setting.

Figure 3.5: Model structure - The simulation model structure.

37



3. METHODOLOGIES

The structure of the simulation model is shown Fig. 3.5. All adequate fire simula-

tions require data that includes fuel, weather, and topography. In this model, weather

and winds are input as data matrices, whereas fuel and topography are provided as GIS

raster themes such as in Fig. 5.4 on page 67 for the Troy fire simulation and Fig. 5.13

on page 74 for the Colina fire simulation. Self-defined vector data could also be used

but requires access to the local information for each cell. Raster resolutions of 25 to

50m are most commonly used for landscapes. Wind direction is represented in a vector

such as [-1 0] for east wind, [1 1] for north east wind, etc. Fig. 3.6 shows the level set

model and the fast marching model running with the same parameters.

All model verifications and fire simulations in this study are run on a personal

computer with an AMD Athlon 64×2 dual-core processor with 3072MB system memory.
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(a) Example for level set method

(b) Example for fast marching method

Figure 3.6: Sample results from the model - The model used same parameters run

by the level set method and the fast marching method.
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4

Simulation and Numerical

Analysis

In the previous chapter, we discussed two simulation methods -the narrow band level set

method and the fast marching method. In this chapter we use various scenarios to test

and validate our simulation model based on these two methods. We assume multiple

fuel types and fuel characteristics. The simulation model is tested on a number of

homogeneous and heterogeneous hypothetical landscapes.

4.1 Simulation Data and Equation

Our simulations are performed on a 100 × 100 lattice consisting of identical square

cells with parameters described in Tab. 4.1 for the evolution process. In some cases,

we change the parameters. These cases are addressed individually for each scenario.

Each cell contains the fire data describing its fuel data and elevation. The fuel data

including fuel characteristics, fuel load, surface area to volume ratio, fuel bed depth,

mean fuel energy content, moisture of extinction dead fuels are simplified to the 13 fuel

models (Tab. 4.2). Elevation data are transfered from elevation raster map directly.

Data values are assigned according to the implemented scenario, which ranged from

the simplest case, a fire spreading on a homogeneous landscape on level terrain in

the absence of wind, to fire spreading in the presence of a uniform wind, topography

and with a heterogeneous fuel bed. The formula for ROS in the simulation model is

Eq.(3.7) on page 21. The wind direction is controlled by a 2-dimensional xy vector.
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For example, south wind can be represented by [0 1]; west wind is [1 0]; south west

wind is [1 1]; south south west wind is [1 2], etc. The speed of the wind U which is

used in W (U, ϑ) of Eq. (3.7) could be converted to miles/hour if simulated on a real

landscape. To simplify matters, the parameter β of topography factor Φs is set to 1 in

all of our scenarios.

Table 4.1: Fire simulation parameters I - default values used for different simulation

scenarios.

Parameter Value

Domain Ω = [−1, 1]× [−1, 1]

Resolution 4x = 4y = 0.01

Spatial discretization 201

Initial front Circle

Circle center (0, 0)

Initial radius 0.25

Time step 4t = 0.1

The fuel data input to the Rothermel fire model is a set of numerical values that

describe the fire behavior according to a fuel behavior model. There are 53 standard

fire behavior fuel models (53FBFM) originating from the 13 fuel models (13FBFM)

developed by Anderson [2] and further expanded to 40 additional fuel models by Scott

and Burgan [29]. Natural fuels may be classified as one of the 53FBFM or 13FBFM

depending on which fire behavior fuel model is chosen. To simplify matters in our

model verification, values for the fuel load (kg m−2), fuel bed depth (m), surface area

to volume ratio of the fuel particles (cm−2/cm−3), extinction moisture content and fuel

heat content (kJ kg−1) are assembled into 13FBFM fuel models as shown in Tab. 4.2.

The rate of the fire spread through a uniform fuel array in the absence of wind and

topography may be obtained by applying ε0 to one of the 13FBFM fuel models.

For our simulations, we do not consider the combustibility index (i.e set ξ = 1)

except for Sec. 4.3.1. In that section, we test our model under two different types of

fuel, α and β, and the amount of heat Hα produced from α increased along with the

elapsed time until the total heat is reached to ignite fuel β. In one scenario the heat

generated by α is not high enough to ignite fuel β and the fire is extinguished.
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Table 4.2: Standard 13 fuel models - Parameters for the standard 13 fuel models

developed by Anderson [2].

Fuel

model
Typical fuel complex Surface-to-volume ratio/fuel loading

Fuel bed

depth

Moisture of

extinction

dead fuels

(ft−1/kg ha−1) (ft) (%)

1h 10h 100h Live

Grass and grass dominated models

1 Short grass (< 30 cm) 0.74 0.00 0.00 0.00 1.0 12

2 Timber (grass and

understory)

2.00 1.00 0.50 0.50 1.0 15

3 Tall grass (75 cm+) 3.01 0.00 0.00 0.00 2.5 25

Chaparral and shrub fields models

4 High pocosin,

chaparral (180 cm+)

5.01 4.01 2.00 5.01 6.0 20

5 Brush (60 cm) 1.00 0.50 0.00 2.00 2.0 20

6 Dormant brush,

hardwood slash

1.50 2.50 2.00 0.00 2.5 25

7 Southern rough, low

pocosin (60-180 cm)

1.13 1.87 1.50 0.37 2.5 40

Timber litter models

8 Closed timber litter 1.50 1.00 2.50 0.00 0.2 30

9 Hardwood litter 2.92 0.41 0.15 0.00 0.2 25

10 Heavy timber litter

and understory

3.01 2.00 5.01 2.00 1.0 25

Slash models

11 Light logging slash 1.50 4.51 5.51 0.00 1.0 15

12 Medium logging slash 4.01 14.03 16.53 0.00 2.3 20

13 Heavy logging slash 7.01 23.04 28.05 0.00 3.0 25

Heat content (heat of pre-ignition) = 8000 Btu/lb for all models.
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4.2 Homogeneous Landscapes

Fuel characteristics of short grass (Tab. 4.3) for samples were assigned to each cell

for the scenarios involving homogeneous landscapes. The vegetation of the area is

dominated by grass.

Table 4.3: Fuel model parameters - Standard fuel model parameters of short grass for

samples.

Fuel Model Parameters

Fuel loads

Fine dead fuel(1 h fuel load) 0.74 tons/ac

Medium dead fuel (10 h fuel load) 0 tons/ac

Live herbaceous fuel 0 tons/ac

Live woody fuel 0 tons/ac

Surface area to volume ratios

Fine dead fuel(1 h timelag) 3500 ft2/ft3

Live herbaceous fuel 1500 ft2/ft3

Live woody fuel 1500 ft2/ft3

Fuel bad depth 1 ft

Dead fuel moisture of extinction 12%

Dead Fuel heat content 8000 Btu/lb

Live Fuel heat content 8000 Btu/lb

ROS = 0.3 ch/h; Fire length = 0.1 ft. at 11.8% of fuel moisture content.

4.2.1 Case 1: No wind and zero slope

In the absence of wind and on the flat terrain, plots of successive fire fronts should

produce concentric circles (Byram [6], Finney [9], Luke and McArthur [18]). The sim-

ulation results are as expected and produce concentric circles. Results are presented in

Fig. 4.1.

4.2.2 Case 2: Wind only

With west wind, Fig. 4.2 shows the simulation results using the narrow band level set

method and the fast marching method respectively.
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4.2 Homogeneous Landscapes

(a) A basic fire spread simulation

using narrow band level set method

(b) A basic fire spread simulation

using fast marching method

Figure 4.1: A basic fire simulated using two different methods - A basic fire spread

simulation using narrow band level set method and fast marching method. The domain

data is at Tab. 4.1 and fuel data is at Tab. 4.3.

Table 4.4: Fire simulation parameters II - default values for different simulation

scenarios.

Parameter Value Parameter Value

n 3 Domain [0, 3]x[0, 3]

U 100 tf 0.1

a 0.5 ∆t 0.01

ε0 1.0 Spatial Nx = Ny = 101

α 0.5 Center (1.5, 1.0)

ROS Eq. (3.7) Initial radius 0.5

4.2.3 Case 3: Under wind and with slope

Next we implement different simulations on a homogeneous landscape in the presence

of south wind valued from U = 0 to 50 at modified Rothermel’s model (Eq. (3.7)) and

at land with the slope to the east from 0 degree to 60 degrees using the narrow band

level set method (Fig. 4.3) and the fast marching method (Fig. 4.4). The simulation
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(a) A fire with west wind simulated

using level set method

(b) A fire with west wind simulated

using fast marching method

Figure 4.2: A fire with west wind simulated using two different methods - A fire

spread under west wind simulation using level set method and a fast marching method.

The domain data is at Tab. 4.4 and fuel data is at Tab. 4.3. Because the fast marching

method considers only the adjacent neighboring cells as expanding directions, it might

cause the distortions of the fire shape shown in Fig. 4.2b.

ends after 4 steps starting at time period [0, 0.1] at the domain [0, 3] × [0, 3] with res-

olution dx = dy = 0.03. Fire is ignited in the circle of radius 0.1 with center at [1, 1].

The fuel factor ε0 in Eq. (3.7) is set to 1 (on a Homogeneous fuel land).

Under the no wind and zero slope conditions, the shape of the fire is a circle (at

bottom left corner of Fig. 4.3). Due to the impact of the wind, the shape of the fire

front is transformed from a circle under no wind condition to an ellipse under wind con-

dition. The degree of elongation depends on the speed of the wind. This is a commonly

observed phenomenon in all simulation tests. When the speed of the wind increases

from 0 to 50, the fire forms an elliptical shape which moves up (at the bottom line of

Fig. 4.3). At the bottom right of Fig. 4.3, the head fire goes up from y = 1.375 to 2.75

on y-axis and the back fire goes from y = 0.75 down to 0.625 on y-axis. The shape of

successive fire fronts is expected as an approximate ellipse with the long-axis parallel

to the direction of the wind (Byram [6], Finney [9], Luke and McArthur [18]). The

short-axis of the ellipse is reduced when the speed of the wind increases.
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4.2 Homogeneous Landscapes

Figure 4.3: Surface fire shapes generated by the narrow band level set method

- Surface fire shapes resulting from vectored cross-slope winds with west-facing slope and

south winds. The slope results are horizontal projections. The parameters are at Tab. 4.4,

and fuel data is not considered.
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On the left vertical side of Fig. 4.3 and Fig. 4.4, the fire shape is changed along

with the slope change. The slope effect is not obvious until the slope reaches 30o.

Once the slope exceeds 60o, the fire does not move downward along with the slope

change; just as the fire on a torch, it only moves up. This phenomenon is a specific

reaction of the terrain factor part in any fire model which always uses tann(θ) (such as

in Equ.2.3) or exp(nθ) (such as in Equ.2.4) as the factor in the fire spread formula, and

n is a parameter to control how much the fire is affected by the slope change. Because

Rothermel’s fire model was originally developed for flat terrain, the outputs from both

simulation implementations are transformed from the surface plane (depending on the

slope degree) back to the horizontal plane. Therefore, the fire shape is impacted less

by the change of the slope than by change of the wind speed.

Fig. 4.5 shows a fire passing a hypothetical mountain on the north-east part of the

landscape using the narrow band level set method. The mountain height is 0.5 units on

a domain [1, 3] × [1, 3]. The slope increases slowly on the lower part of the landscape,

then increases fast in the middle part, and slow again near the mountain top. The fire

spread is consistent with the change of the slope. The fire head moves forward faster

after it passes the lower part of the mountain and moves slowly again near the top

where it almost stops. On the downhill side, the fire spreads very slowly until the fire

overlaps both sides of the hill.

Fig. 4.6 is the gradient map of Fig. 4.5a. Blue arrows show the magnitude and

direction of gradient of each point on the landscape. Red line represents the fire front

and red arrows are the norm of fire front. The gradient at each vertex on the fire front

can be seen as tanϑt. Apply scalar projection of gradient onto norm for each vertex on

the fire front to get the next position for the vertex which is represented by red dot. If

~a is gradient, ~b is norm, and the angle between gradient and norm is θ, the cosine of θ

can be computed in terms of gradient and norm, by the following property of the dot

product ~a ·~b:

cos θ =
~a ·~b
~|a| ~|b|

.

Once we get θ, we can have the scalar projection of ~a on to norm by ~a cos θ.
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4.2 Homogeneous Landscapes

Figure 4.4: Surface fire shapes generated from the fast marching method -

Surface fire shapes resulting from vectored cross-slope winds with east-facing slope and

south wind. The slope results are horizontal projections. The parameters are at Tab. 4.4

and fuel data will not be considered.
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(a) A mountain in the north-east (b) Fire is passing a mountain

Figure 4.5: Fire passes a hill - Fire spread with homogeneous fuel, passes a mountain

under no wind condition. The fire head moves faster from the lower part of the landscape

to the upper part of the mountain and moves slowly near the top until it almost stops.

This situation is consistent with the slope which evens out at the top. On the downhill

side, the fire spreads very slowly and the fire from both hill sides overlaps at last. The

parameters are at Tab. 4.4.

Figure 4.6: Slope tanϑt and fire front - The gradient map of Fig. 4.5a shows the

magnitude and direction of gradient of each point on the landscape. Red line represents

the fire front and red arrows are the norm of fire front. The gradient at each vertex on

the fire front can be seen as tanϑt. Apply scalar projection of gradient onto norm for each

vertex on the fire front to get the next position for the vertex which is represented by red

dot.
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4.3 Heterogeneous Landscapes

Fig. 4.7 shows a fire passing a depression in the north-east part of the landscape

using the narrow band level set method. The depression is on a domain [1, 3]×[1, 3] with

the lowest height 0.4 units below zero. The fire spreads slowly around the depression

but still moves forward driven by the west wind. On the uphill side of the depression,

the fire spread picks up speed again. Both simulations of a fire passing a mountain and

a depression generated the expected results.

(a) A depression in the north-east (b) Fire passes a depression under

west wind

Figure 4.7: Fire passes a depression under west wind - Fire spread with homoge-

neous fuel, passing a depression under the west wind. The fire spreads slowly around the

depressed side but still moves forward driven by the west wind. On the uphill side of the

lowland, the fire spreads fast again. The parameters are at Tab. 4.4.

4.3 Heterogeneous Landscapes

To incorporate the heterogeneous natural environment into the simulation, a compli-

cated landscape model is introduced in this section. The simulation is implemented

using the same parameter settings as in the previous section.

4.3.1 Case 1: Two types of fuel

In this section we simulate fire spread on a landscape with two different types of fuel

with combustibility index which is defined in Eq. (3.8). A fire will spread from one

fuel type to another fuel type if the heat captured by the unburned fuel ahead of the
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4. SIMULATION AND NUMERICAL ANALYSIS

fire front is sufficient to combust. Otherwise, the fire spread will stop. We use four

matrices, Ht the amount of heat released at time t from a burning cell to its unburned

neighboring cells; H the heat required to ignite the fuel in the unburned cell; Hr the

heat released from the fuel of a burning cell for a period of time, and Hl the total

amount of heat a fuel can release to meet the combustibility index combined with the

fuel model. When a fuel at cell (i, j) is burning, it releases heat Hr(i, j) and accumu-

lates Ht(k, l) at its neighboring cells as time progresses. When the total heat of Ht(k, l)

is greater than H(k, l) the heat required to ignite cell (k, l), the fire moves on to the

neighboring cell. There is a limitation of Hl(i, j) for the burning cell (i, j) which is the

maximum heat that can be released by the fuel at cell (i, j). Once the heat released at

a burning cell reaches its maximum while no neighboring cell is ignited, the fire stops

at this cell.

Let us now assume that a fire is ignited at center (1, 1.5) with radius 0.3 on a land-

scape ([0, 3] × [0, 3]) where a grassland is on the left (x < 1.5) side and woods are on

the right (x > 1.5). To simplify matters, the terrain and weather conditions will not be

considered here. The parameters for this simulation are shown at Tab. 4.4 except fuel

parameter ε0 = 1 for grassland and ε0 = 2 for woods. Fig. 4.8 shows the simulation

results for a fire spread through a heterogeneous landscape. We set the heat which is

required to ignite the woods from HW = 1 to HW = 20; the heat that could be released

by the grassland is HG
r = 1; the maximum amount of heat that can be produced from

grassland is HG
l = 15. Fig. 4.8a shows that Before t < 0.3, the fire spreads through

the grassland in a circular pattern at a steady speed. After t = 0.3, the fire reaches

the woods on the east side. Since the fire is sufficiently intense to ignite the woods,

it continues to spread in this direction. The rate of spread(ROS), however, increases

as the fire passes through the woods to approximately double its original speed. In all

other directions, the rate of fire spread remains constant. For the remaining simula-

tions we change the heat parameters HW of woods. In Fig. 4.8b, the released heat and

required heat for woods are set to HW = 5 and the fire spread to the woods is held off

until the required heat is reached. When we raise the heat required to ignite woods to

HW = 10, Fig. 4.8c shows a pause line at t = 0.3 but the fire still quickly passes the

woods afterwards. Once we raise the required heat for woods ignition to HW = 15,

there is an obvious stop line in Fig. 4.8d at t = 0.3 which the fire passes after t = 0.4. If
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4.3 Heterogeneous Landscapes

(a) HW = 1; fire

passes through different

fuels without stopping.

(b) HW = 5; fire

pauses shortly to accumu-

late enough heat.

(c) HW = 10; fire pauses

longer before moving on

to another fuel.

(d) HW = 15; A visi-

ble line is generated be-

fore the fire moves on.

(e) When the total heat

released by a fuel can’t ig-

nite the other fuel (HG
l <

HW ), the fire stops.

(f) A simulation without

considering the heat con-

vection between different

fuels.

Figure 4.8: A fire expand at Heterogeneous fuel - Illustration of fire spread encoun-

tering different fuel types. HW is the heat required to ignite the fuel at x > 1.5; HG
r is

the heat released from the fuel at x < 1.5 during a time period and the maximum amount

of heat produced by this fuel is HG
l . The graphics are set HG

r = 1 heat unit and HG
l = 15

heat units. The graph shows the fire spread under different HW . The cumulation of HW
t

must be bigger than HW to make the fire spread to the right side (x > 1.5); otherwise the

fire will stop.
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we keep raising the required heat for woods ignition to HW = 20, the fire stops before

it reaches the woods, shown in Fig. 4.8e, because the maximum heat of grassland fire

is set to HG
l = 15 which is not high enough to ignite the woods.

These characteristics of fire spread between heterogeneous fuels is not considered

in the vector based simulation model. Fig. 4.8f shows the simulation result from using

a regular level set method without considering the heat convection between different

fuels, where the fire never stops after it passes the woods.

4.3.2 Case 2: Fuel only

The landscape characteristics shown in Fig. 4.9a represent a leveled ground consisting

of grassland (color coded in green) with a pond (color coded in blue) on the bottom

left side of the landscape and a rock (color coded in brown) at the center right of the

landscape. The pond is surrounded by wetland with gradually higher moisture content,

and the fire spread speed is expected to be slow as the fire approaches the pond until

it completely stops once it reaches the water. The fire is ignited at (1, 1.5) and is

expanded from circle. From the fire simulation model (Fig. 4.9), we see that the south

side of the landscape becomes wet, then the fire speed is decelerated and later the fire

stops at the water’s edge. The fire is unable to ignite the rock in the grassland while

it continues to spread at a constant rate in all other directions and passes around the

rock.

4.3.3 Case 3: Complicated terrain and fuel type with wind

A different scenario is simulated to determine the influence of the wind on the rate

and pattern of the fire spread with heterogeneous fuel. The landscape consists of a

pond on the west side and a small hill on the east side. This simulation is at domain

[−2, 2] × [−2, 2] with resolution dx = 0.1. Fire is ignited at (0, 0) and radius is 0.2,

with west wind originating. The parameters are at Tab. 4.4. At the beginning, the fire

spreads toward the east with the wind and subsequently moves counterclockwise with

changing wind directions.
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4.3 Heterogeneous Landscapes

(a) Fuel map (b) pass around the rock

(c) slow speed when approaches the

water

(d) stops when reaches the water

Figure 4.9: A fire with Heterogeneous fuel - Illustration of fire spread encountering

different fuel types. 4.9b showed the crossover easily to be resolved by the level set method.

The parameters are at Tab. 4.4.
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(a) A terrain with a pond on the west side (in

blue) and a hill on the right side (in red).

(b) West wind. (c) East wind and double

wind speed.

(d) North-east wind. (e) North wind.

(f) North-west wind. (g) West wind.

Figure 4.10: A fire simulated in a natural environment - A fire spreads on a terrain

with a hill and a pond. Fire passes around pond with wind from different directions.
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4.4 Numerical Accuracy Analysis

4.4 Numerical Accuracy Analysis

In this section we perform an accuracy analysis of the implementation using narrow

band level set method, and compare the error of the outcome under different resolutions.

To test the accuracy of the numerical methods that we have implemented, we use the

following relative error formula

errorφn =

∑
y

∑
x | ϕdn − ϕdh |2∑
y

∑
x | ϕdh |

(4.1)

where ϕdn is the numerical solution of a level set function ϕ after 4t evolution with

the mesh grid size dn and ϕdh is the numerical solution with the smallest spatial mesh

grid size, which we denote dh, in our numerical simulations. Values of ϕ on common

points (x, y) in different resolutions are used for calculating the error. We test only the

first order of accuracy for the narrow band level set method. From the upwind scheme

(3.15), we use

φ′+(x0) ≈
φ(x0 + h)− φ(x0)

h
(4.2)

φ′−(x0) ≈
φ(x0)− φ(x0 − h)

h
(4.3)

to approximate φ′(x) at x0. For the right side of the upwind method, expand

φ(x0 + h) by Taylor series

φ(x0 + h) = φ(x0) + hφ′(x0) + (1/2)h2φ′′(x0) + (1/6)h3φ′′′(x0) +O(h4)

and combine this equation with Equ.(4.2) to

φ′+(x0)− φ′(x0) = (1/2)hφ′′(x0) + (1/6)h2φ′′′(x0) +O(h3). (4.4)

Same to the left side of the upwind method, expand φ(x0 − h) by the Taylor series

φ(x0 − h) = φ(x0)− hφ′(x0) + (1/2)h2φ′′(x0)− (1/6)h3φ′′′(x0) +O(h4)

and combine this equation with Equ.(4.3) to

φ′−(x0)− φ′(x0) = −(1/2)hφ′′(x0) + (1/6)h2φ′′′(x0) +O(h3). (4.5)
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From the above (4.4) and (4.5), we obtain that the error is of order O(h).

First, we test the simple fire spread from time 0 to time 0.1 with domain [0, 1]×[0, 1]

using mesh grid size dx = dy = {0.1, 0.05, 0.025, 0.0125, 0.00625} and calculate the

error. The results are shown in Tab. 4.6 and Fig. 4.11. The execution time of the basic

fire spread simulation and the grid size are in Tab. 4.5. For our computation, we use

an AMD Athlon 642 dual-core processor with 3072MB system memory.

Table 4.5: Execution time for a basic fire - The execution time for different grid sizes

to run the basic fire spread simulation.

4x 0.1 0.05 0.025 0.0125 0.00625

Execution time (sec.) 0.0521 0.0570 0.0671 0.1033 0.4255

10
−1

10
−8

10
−7

10
−6

10
−5

dx

E
rr

or

Figure 4.11: Error analysis of a basic fire - The figure shows that the higher the

resolution, the smaller the relative error. (Data from Tab. 4.6.)

Table 4.6: Error analysis of a basic fire - The higher the resolution 4x is, the smaller

the errorφn is.

4x 0.1 0.05 0.025 0.0125

errorφn (×10−5) 0.4581 0.0687 0.0110 0.0025

We continue our error analysis further with three different scenarios (fuel only; ter-

rain only; wind, fuel and terrain) with mesh grid size dx = dy = {0.1, 0.05, 0.025, 0.0125}
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(see Tab. 4.7) for Troy fire which is used as a case study for the next chapter.

The fuel raster map consists of discrete numbers that cannot be interpolated while

terrain changes can easily be interpolated. For example, if point c is the middle point

between point a and point b, point a’s elevation is 10 feet to the grassland and point

b is 20 feet to the woods, we may make point c’s elevation to be 15 feet. At the same

time, we can only select either grassland or woods for c’s fuel. So when changing

resolutions results in no new information gathered on a terrain map, the variation of

terrain is rather stable and the high resolution will lead to higher accuracy. However

if significant information is added or removed on a fuel map, it may lead to significant

variations in results. This characteristic makes the variation of terrain more stable than

that of fuel while resolution is changed. Fig. 4.13 shows the different resolutions for

elevation, contour, and vegetation maps of Troy. The raster elevation map is on the

left side; the contour map transformed from the raster elevation map is in the middle;

and the vegetation (13FBFM fuel) map is on the right side. The resolution from top

graphs to bottom graphs is 0.1, 0.025, 0.0125, 0.003125 respectively. The resolution of

the raster map is 30 meter × 30 meter. The elevation map is a continuous raster map

and 13FBFM is a discrete raster map. Elevation maps and vegetation maps (13FBFM)

are both downloaded from the LANDFIRE website [17].

Table 4.7: Resolution 4x analysis - Comparison of the relative errors under fuel only;

terrain only; wind, fuel and terrain scenario with different mesh sizes of 4x between 0.1

and 0.00625 by Equ.(4.1). The evolution time is between [0, 0.01]

4x 0.1 0.05 0.025 0.0125

Fuel only 0.0271 0.0307 0.0286 0.0001

Terrain only 0.4679 0.3203 0.2664 0.1901

Wind, Fuel, & Terrain 0.0204 0.0404 0.0106 0.0016

values are in ten thousandths (10−4).

Tab. 4.8 shows the execution time under different resolutions. Since it is normal

to have some variation from one execution to the other in a multi-task OS, we use

the average execution time of the first two runs as the execution time. The execution

time varies at different resolutions. As expected, the higher the resolution, the more

time it consumes. The execution time grows exponentially (Fig. 4.12). This result is

also consistent with the level set computational complexity of ©(nd) both of time and
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Table 4.8: Execution time at different resolutions - Comparison of the execution

time(sec.) under fuel only; terrain only; wind, fuel and terrain with different resolutions of

4x between 0.1 and 0.00625 during surface front evolution time period [0, 0.01].

4x 0.1 0.05 0.025 0.0125 0.00625

Fuel only 0.0087 0.0139 0.0168 0.0232 0.0858

Terrain only 0.0141 0.1156 0.2150 0.7323 0.8612

Wind, Fuel, & Terrain 0.0171 0.0401 0.0739 0.1262 1.3854

storage, where n is the cross sectional for resolution of the spatial extents of the domain

and d is the number of spatial dimensions of the domain (Osher and Sethian [22]).
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(c) Wind, fuel, and ter-

rain

Figure 4.12: Execution time at different resolutions - The execution time under

different resolutions. X-axis is cpu elapsed time, and y-axis is dx.

Tab. 4.8 shows the execution time under different resolutions. Since it is normal

to have some variation from one execution to the other in a multi-task OS, we use

the average execution time of the first two runs as the execution time. The execution

time varies at different resolutions. As expected, the higher the resolution, the more

time it consumes. The execution time grows exponentially (Fig. 4.12). This result is

also consistent with the level set computational complexity of ©(nd) both of time and

storage, where n is the cross sectional for resolution of the spatial extents of the domain

and d is the number of spatial dimensions of the domain (Osher and Sethian [22]).

4.4.1 Verification Conclusion

The simulation model has been implemented with hypothetical landscapes under vari-

ous assumed scenarios of fuel, wind and topography. Both the rate and pattern of fire
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spread predicted by the model are in close agreement with expectation and empirical

evidence. However, there are limitations in the model using both narrow band level set

method and fast marching method.

For the implementation using narrow band method, the distance function φ has the

property that its magnitude |φ| is close to one at all times [30]. This is not always

the case when we try to solve level set equations. This property makes it necessary to

re-normalize to ensure that the system is reasonably stable around the interface. The

normalization provides a process for the points, just next to the interface, to be rea-

sonable values to keep the shape relatively smooth. It is time consuming to constantly

re-normalize the distance functions and further risk distorting the shape of the interface.

For the implementation using fast marching method, more in-depth studies are

needed. First, we only consider the adjacent neighboring cells and omit the diagonal

neighboring cells. The omissions might cause the distortions of the fire shape especially

under the condition of the wind. Fig. 4.2 shows the distortion of simulation from the fast

marching method. Second, when simulation time is extended, the scale of the graphic

will be automatically adjusted to be in alignment with the time axis during Matlab

calculation. The automatically rescaled contour map may cause visual distortion and

further lead to mis-prediction of the fire spread on the xy-plane. Third, the travel time

is calculated as length of cell edge divided by fire spread speed (a/R). Arithmetical

operating errors will occur for a smaller R especially when R approaches zero.
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(a) elev. at size 11× 11 (b) Cont. from (a) (c) veg. at size 11× 11

(d) elev. at size 41× 41 (e) Cont. from (d) (f) veg. at size 41× 41

(g) elev. at size 81× 81 (h) Cont. from (g) (i) veg. at size 81× 81

(j) elev. at size 321×321 (k) Cont. from (j) (l) veg. at size 321×321

Figure 4.13: Different resolution maps of Troy - Left side is raster maps of elevation;

middle part is contour maps transform from left side; and vegetation map (13FBFM) is on

the right side. The resolution from top to down is 0.1, 0.025, 0.0125, 0.003125 respectively.
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Case Studies

Two case studies are performed for our simulation model. One is called Troy fire,

the other Colina fire. We choose the Troy fire because there are 20 aerial photos

available that were taken from an aircraft between 13:29 and 15:55 on the day of the

fire. Using these photos, we are able to examine the details of the actual fire spread.

We choose the Colina fire because of the availability of the weather data for this fire.

Figure 5.1: 13 FBFM color codes

- Color codes of 13FBFM in vegetation

map

We download the terrain raster data and veg-

etation maps (13FBFM) from the US Forest

Service, LANDFIRE website [17]. We also use

ArcGIS for the terrain data. ArcGIS [3] is a

complete system for designing and managing so-

lutions through the application of geographic

knowledge.

The terrain raster data are direct inputs as

data points of Φs in Eq. (3.7). The vegetation of

the cropped area is mapped to the 13 fuel mod-

els of Anderson [2]. Anderson divides his fuel

model into 4 model groups: grass group(model 1 to 3), shrub group(model 4 to 7),

timber group(model 8 to 10), and logging slash group(model 11 to 13). We extract

2001 vegetation map which is the closest available date to both our target fires. The

fuel models are selected from the vegetation raster map and used as data points of ε0

in Eq. (3.7). The color code description of fuel models we used in Troy fire and Colina
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5. CASE STUDIES

fire are shown at Fig. 5.1.

We collect real fire images (5.6(b)(d)(f)(h)(j), 5.8a, 5.14(b)(d)(f)(h)) for both fire

areas from the Pacific Southwest Research Station (PSW) Airborne Sciences Aircraft.

These images were disseminated in part by satellite communications in near-real time.

The fire map measures the radiance of emitted thermal-infrared light, which readily

penetrates the smoke. False-color images depict the apparent surface temperature (in

Celsius), estimated from the radiance and a simple black-body model. Warmer tones

represent recent or active combustion; areas of gray represent the cooling ash or warm

bare ground. Low temperatures of unburned forest and cool ground are shown in green.

The images are geographically referenced [32].

Table 5.1: Parameters of fuel model for case study - Parameters of fuel model from

standard 13FBFM for case study.

Parameters 13FBFM Model Code

1 2 4 5 7 8 9 10

Fuel loads (tons/ac)

Fine dead fuel (1-h fuel load) 0.74 2 5 1 1.1 1.5 2.9 3

Medium dead fuel (10-h fuel load ) 0 1 4 0.5 1.9 1 0.41 2

Large dead fuel (100-h fuel load ) 0 0.5 2 0 1.5 2.5 0.15 5

Live herbaceous fuel 0 0.5 0 0 0 0 0 0

Live woody fuel 0 0 5 2 0.37 0 0 2

Surface area to volume ratios (ft2/ft3)

Fine dead fuel 3500 3000 2000 2000 1750 2000 2500 2000

Live herbaceous fuel 1500 1500 1500 1500 1500 1500 1500 1500

Live woody fuel 1500 1500 1500 1500 1500 1500 1500 1500

Fuel bed depth (feet) 1 1 6 2 2.5 0.2 0.2 1

Dead fuel moisture of extinction 12% 15% 20% 20% 40% 30% 25% 25%

Dead fuel heat content (Btu/lb) 8000 8000 8000 8000 8000 8000 8000 8000

Live fuel heat content (Btu/lb) 8000 8000 8000 8000 8000 8000 8000 8000

Simulations are performed on a 43× 43 matrix of identical square cells with a side

length of 195 meters for Troy fire and 260 meters for Colina fire. Each cell contains

local parameters describing its fuel data, elevation and wind data. Fuel data include

fuel characteristics-fuel load, surface area to volume ratio, fuel bed depth, and moisture
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5.1 Case I : Troy Fire

of extinction moisture content at Tab. 5.1, and moisture data at Fig 5.5. Elevation data

are transfered from elevation raster map directly. Wind data can be inputted during

the period of simulation.

5.1 Case I : Troy Fire

Troy is located in Mt. Laguna, two miles north of Thing Valley Road and Fred Canyon

Road (Fig. 5.2).

Figure 5.2: Map of Troy - The Map of Troy fire area

The Troy fire burned 1188 acres at Troy, San Diego County on June 19, 2002. PSW

took a series of aerial photos using Airborne Sciences Aircraft. The images were dis-

seminated by satellite communications in near-real time [32]. Fig. 5.3 shows the photos,

cropped area and the time when the photos were taken.

We crop out the Troy fire area from ArcGIS map shown at Fig. 5.3 and divide it

into a 43×43 matrix to create a fire area model. The contour map is transformed from

raster data. Fig. 5.4a shows 11290 × 11290 meter2 of the Troy fire area. The vector

contours for the majority of the Troy fire area are entered into a GIS at 50 m intervals

and used to generate a 647× 647 digital elevation model (DEM) of the entire Troy fire

area. The highest point is at an elevation of 450 m from the lowest point (0 m) in our
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5. CASE STUDIES

Figure 5.3: Troy fire and Time table - Tory fire photos and time of the photos

taken. The area within the blue lined box is cropped from actual Troy fire ArcGIS map

and divided to a 43× 43 matrix for the simulation.

model.

The vegetation layers are mapped to Anderson’s 13 fire behavior fuel models [2]

from the LANDFIRE website [17]. The moisture data we assigned to each fuel model

is shown at Fig. 5.5. The aerial images ( Fig. 5.4b ) combined with ancillary GIS data

layers improve the quality of the image classification. The ancillary GIS data layers

include detailed vegetation coverage. The parameters for fuel are dominated by short

grass, timber grass and under-story, chaparral and brush. The burned area is recorded

using a global positioning system (GPS) and captured into GIS data layers.

5.1.1 Narrow Band Level Set Method

We use Eq.(3.7) in narrow band level set method to simulate the following scenarios:

fire with vegetation only; with terrain only; with vegetation, terrain and west wind at

three different wind speeds - 25 m/h, 30 m/h and 35 m/h. We check the results for the

scenario with terrain only and notice that there is a valley on the east side of the area.

The simulated fire did not pass the east side; however, the actual Troy fire kept going

to the east side. Further examining the photos taken from the Troy fire, we notice

that the fire spread quickly towards the east between 1:30 pm to 2:46 pm although at

that time the fire was on a down slope towards the east. The vegetation map showed

no significant changes. The fire spread might have been driven by the wind on the
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5.1 Case I : Troy Fire

(a) The terrain contour map of the

Troy fire area. The darker the color,

the lower the elevation.

(b) The 13FBFM vegetation map of

the Troy fire area. The green part

represents timber and the brown

part represents shrub. The details

of color code is shown in Fig. 5.1.

Figure 5.4: Terrain and vegetation maps of Troy - Contour map and vegetation

map of the Troy fire area. The contours are transformed from an elevation raster map.

The raster data plotted on those two maps are used as data points of Φs and ε0 in Eq. (3.9)

to calculate the fire spread. Both elevation and vegetation raster maps are provided by

LANDFIRE website [17]. Red lines represent the fire front expansion.

Figure 5.5: Moisture data table for fuel models - The moisture data assigned to

each fuel models for Tory fire and Colina fire simulation are used in case studies.

67



5. CASE STUDIES

downward slope with no changes of vegetation. Therefore, we conclude there is a west

wind present at that time. We compare the results under three different wind speeds

and find that the simulation results under wind speed of 30 m/h is the closest to the

Troy fire results. Therefore, we will assume wind speed of 30 m/h throughout the rest

of the simulation scenarios. Fig. 5.6 shows the simulated Troy fire with a west wind

of 30 mph. Another scenario occurs at 2:52 pm. The fire spread accelerates towards

the north, while still being on the downward slope. With no or little wind, the fire is

expected to slow down when it is on a downward slope. Hence there must be a different

factor that drives the fire forward. Further examination reveals the fuel type changes

from grass to wood at this time. Therefore, the fuel type is likely the cause for the fire

spread picking up speed. Later, we also run the fuel only and homogeneous vegetation

simulation, and the results are consistent with our observations.

In order to compare the simulation results to the actual burned area, we color code

the simulated burned areas as red and the actual burned areas as green. We then

analyze the overlap. The comparison of the boundary after two and a half hours of fire

(Fig. 5.7) reveals that 92% of the actual burned area is captured by our simulation.

The simulated burned area included an area of 8% that is not burned at Troy (Overes-

timate) and 10% is burned at Troy but is not burned in our simulation (Underestimate).

Airborne Sciences Aircraft, starting from 13:29:53 to 15:55:43 took 45 photos of the

fire. There was a prolonged break after photo 45. The last photo was taken 2 hours 35

minutes later at 18:30 pm. If we continue the simulation run, it will result in Fig. 5.8b,

closely matching the aerial photograph taken at 18:30:45 (Fig. 5.8a).

5.1.2 Fast Marching Method

The fast marching method is to calculate the travel time of fire spread to adjacent

unburned cells from burning cells and to update the status of cells that reflected the

shortest fire traveling time. We assume a to be the side length of the cell and R to be

the fire spread model Eq. (3.7). By calculating the fire traveling time (a/R), we will

have a data set of travel time and could update the status of the unburned cells based

on the shortest travel time of this data set. One limitation is that the possible next
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5.1 Case I : Troy Fire

(a) Simu. at 14:00 (b) Photo at 14:05

(c) Simu. at 14:30 (d) Photo at 14:39

(e) Simu. at 15:00 (f) Photo at 15:01

(g) Simu. at 15:30 (h) Photo at 15:28

(i) Simu. at 16:00 (j) Photo at 15:55

Figure 5.6: Simulated Troy fire - Simulated Troy fire using narrow band method

compared with the photos of the real fire.
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5. CASE STUDIES

Figure 5.7: Troy fire comparison measure - Fire boundary comparison after two

and half hours of burning. The green boundary represents actual burned areas and the red

boundary represents the simulated burned areas. 92% of the real burned areas is overlapped

with the simulated areas, 10% of burned is overestimated, and 8% is underestimated.

(a) The final photo was taken at

18:30.

(b) The simulation continues

Figure 5.8: Comparison of the final photo with the simulation - The final photo

taken at 18:30 pm compared to our simulation output.
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5.2 Case II : Colina Fire

ignited cell is being considered among only the adjacent neighboring cells of a burning

cell but not the diagonal cells. The limitation of fire spread angles might cause the less

smooth fire shape and less precise result than those simulated using the narrow band

level set method. The result of simulation of the Troy fire using fast marching method

is in Fig. 5.9

Figure 5.9: Troy fire simulation using the fast marching method - Troy fire

simulation using the fast marching method. The fact that spread angles are limited in fast

marching method makes the fire shape to be unnaturally angular.

In order to compare the simulation results to the actual burned area, we color code

the simulated burned area as green and the actual burned area as black. Then we

compare the results. A boundary comparison (Fig. 5.10)of the actual burned area to

the simulated burned area after two and a half hours fire reveals 89% of overlapping

burned area. The simulated burned area includes 22% of land that was not burned

at Troy (Overestimate) and 11% of land that was burned but is not captured by our

simulation (Underestimate).

5.2 Case II : Colina Fire

The Colina fire occurred on September 10, 2007 in Riverside County, CA. (Fig. 5.11)

PSW Airborne Sciences Aircraft collected images of the fire and disseminated them
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5. CASE STUDIES

Figure 5.10: Troy fire simulation comparison using the fast marching method

- Boundary comparison after two and half hours fire. The green boundary is the actual

burned area, and the black boundary is the simulated burned area. 89% of the real burned

area overlapped with the simulated burned area, 22% is overestimated burned areas, and

11% is underestimated burned areas.

Figure 5.11: Map of Colina - The area of the Colina fire
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5.2 Case II : Colina Fire

in part by using satellite communications in near-real time. The aerial photos were

taken at 15:36, 17:50, 18:52, and at 20:06. Fig. 5.12 shows the fire map and weather

conditions. The timing of the weather condition information does not match exactly

the timing of the photographs.

Figure 5.12: Colina fire and weather data - Colina fire and weather conditions. The

yellow line represents the fire boundary at 15:36, orange line represents fire boundary at

17:50, pink line represents fire boundary at 18:52 and red line represents fire boundary at

20:06.

We crop the Colina fire area and divide it into a 43× 43 matrix. The burned area

is recorded using a global positioning system (GPS) and is captured into GIS data

layers. We obtain elevation raster map from the LANDFIRE website [17] to create a

contour map. Fig. 5.13a shows 50 m interval contours of the Colina area. We enter

the vector contours for the majority of the Colina area into GIS at 100 m intervals and

use it to generate a 485× 485 digital elevation model (DEM) of the entire 8430× 8430

meter2 Colina area. The highest point in the Colina area is at an elevation of 776 m

higher than the lowest point. To represent vegetation layers we use Anderson’s 13 fire

behavior fuel models [2] obtained from the LANDFIRE website[17].
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5. CASE STUDIES

(a) The terrain contour map of the

Colina fire area. Elevated land is

shown in the lighter shade and lower

elevation is shown in the darker

shade.

(b) The 13FBFM vegetation map of

the Colina fire area. Most of the veg-

etation is shrub. The details of color

code shown in Fig. 5.1.

Figure 5.13: Terrain and vegetation maps of Colina - Contours are transformed

from elevation raster maps. The raster data plotted on those two maps are used as data

points of Φs and ε0 in Eq. (3.9) to calculate the fire spread. We obtain both elevation and

vegetation raster maps from LANDFIRE website [17]. Red line represents the fire front

expansion.

The parameters for fuel are dominated by shrub. The fuel characteristics-fuel load,

surface area to volume ratio, fuel bed depth, and moisture of extinction moisture content

are shown at Tab. 5.3. The moisture data we assigned to the fuel model is shown at

Fig. 5.5.

5.2.1 Narrow Band Level Set Method

From the photo taken for the Colina fire time stamped at 1:35 pm, we observe that

the vegetation is rather homogeneous in the area. The wind is SSW at the time of the

fire. With this we expect the fire to spread towards the north north east. From the

terrain contour map, we see that there is a canyon located to the north which is ex-

pected to have a “chimney effect”, pushing the fire fast through the canyon. However,

the expected chimney effect does not occur. Instead, the fire spreads along both rims
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5.2 Case II : Colina Fire

of the canyon forming a y shape. Likely the canyon is not narrow enough to create a

“chimney effect”. Fig. 5.14 shows the simulated Colina fire using narrow band level set

method.

In order to compare the simulation results to the actual burned area, we color code

the simulated burned area red and the actual burned area green (Fig. 5.15). Then we

compare the results. In summary, our simulation captures 96% of the actual burned

area; it underestimates 4% and overestimates 22%.

The overestimated burned area is 22%. This warranted further investigation. At

15:56 PDT there is a SSW wind in the area. We failed to consider, however, that the

wind might have changed its speed at the different terrain. Since there is no wind

after 17:56 PDT, we modify and reinitialize our simulation after 17:56 PDT with the

real fire and restart it at 17:56 PDT with no SSW wind until 20:06 PDT. The revised

simulation matches 94% of the actual burned area, 6% of the burned area is under-

estimated and 13% of the burned is now overestimated. Reinitializing our simulation

allows us to reduce the overestimated area by 40%. Tab. 5.2 shows the comparison of

the simulation to the real fire before and after the re-initialization.

Table 5.2: Comparison of Colina fire using narrow band level set method -

Comparison of simulation, simulation after re-initialization, and real fire.

Situation Modification (%) Without Modification

Estimated Burned Area 94% 96%

Underestimated Burned Area 6% 4%

Overestimated Burned Area 13% 22%

5.2.2 Fast Marching Method

We apply the fast marching method to the Colina fire in the same way that we simulate

the Troy fire. We calculate the travel time of fire spread to each neighboring cells from

a burning cell. The fire then ignites the adjacent cell which processes the shortest travel

time around the burning cell; but it ignores the diagonal cells. This limitation causes
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5. CASE STUDIES

(a) Simu. at 15:30 (b) Photo at 15:36

(c) Simu. at 17:00 (d) Photo at 17:50

(e) Simu. at 18:30 (f) Photo at 18:52

(g) Simu. at 20:00 (h) Photo at 20:06

Figure 5.14: Colina fire simulated using narrow band level set method - The

simulated image shown on the left side and the actual fire shown on the right.
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5.2 Case II : Colina Fire

Figure 5.15: Fire simulated using narrow band method compared to actual

Colina fire - Boundary comparison after four and half hours fire. The green boundary

represents the actual fire front and the red boundary represents the simulated front. 96%

of the actual burned area is burned in the simulation, 4% is overestimated, and 22% is

underestimated.

the less smooth fire shape and less precise results than those simulated by the narrow

band level set method. The result of the Colina fire simulation using fast marching

method is shown in Fig. 5.16a

In order to compare the simulation results to the actual burned area, we color code

the simulated burned area as red and the actual burned area as green. Then we com-

pare the results from simulation to the actuals. A boundary comparison (Fig. 5.16b)

of the actual burned area to the simulated burned area after four and half hours fire

reveals 77% of burned area overlaps. The simulated burn area includes 47% of land

that did not burn at Troy fire (the overestimate) and 23% of land that burned but was

not captured by our simulation (the underestimate).
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5. CASE STUDIES

(a) Colina fire simulation using

fast marching method

(b) Colina fire simulated using

fast marching method compared

to the actual Colina fire.

Figure 5.16: Colina fire simulation produced from the fast marching method -

5.16a is the result generated from the fast marching method using the modified Rothermel’s

fire spread rate (Eq. (3.7)). 5.16b shows boundary comparison after four and half hours

fire. The green boundary is the actual burned area and the red boundary is the simulated

burned area. 77% of the real burned area overlaps, 47% is overestimated, and 23% is

underestimated.

5.3 Numerical Result Analysis

The comparison of the numerical results for these two implementations is shown at

Tab. 5.3. The fast marching method takes longer time than narrow band method be-

cause it needs to calculate the travel time for every adjacent cells. The narrow band

method needs to calculate only the norm direction based on Huygens’ principle and

elliptical spread assumption.

The more overlapping area and less underestimated or overestimated area, the bet-

ter the simulation results are for a simulation model. The narrow band method achieves

a better simulation result than the fast marching method in our simulation at domain

[43×43]. This is because for the fast marching method, we consider only adjacent cells

but not diagonal cells as we look for the shortest travel time. This will make the fire

spread to have a bias from the diagonal direction. The spread angles limitation in fast

marching method also makes the fire shape to be unnaturally angular. Fig. 5.16a shows
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5.3 Numerical Result Analysis

Table 5.3: Case study analysis - The comparisons of simulation results at domain

[43× 43] using narrow band and fast marching method for Troy fire and Colina fire.

Simulation Method Simulation Result Execution Time(Sec.)

Overlap Underestimated Overestimated

Troy Fire

Narrow band method 92% 8% 10% 11.53

Fast marching method 89% 11% 22% 37.16

Colina Fire

Narrow band method 94% 6% 13% 11.33

Fast marching method 77% 23% 47% 65.29

Execution time is the average time of the first three runs.

that the simulation of Colina fire has a bias to the north and produces a large estimation

error. For further study, we can consider to find a numerical method to calculate the

travel time from a burning cell to its neighboring diagonal cells to improve the accuracy.
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6

Conclusion

We implement two level set methods (narrow band and fast marching methods) along

with pre-existing fire information data in our fire simulation model which is intended

to overcome some of the limitations of the existing fire simulation methods. The great

advantage of the level set method is to use higher dimensions to track and simulate the

dynamics of moving fire front and provide a solution to a problem which is difficult to

be resolved in lower dimensions. The narrow band method is to apply distance function

to the moving fire surface while tracking the distance using the fire spread rate as the

trigger point to identify the next ignition cell. The fast marching method is to build a

travel time table which reflects the time needed for the fire front to cross the grid cell.

The important element of our simulation model is the fire spread rate for the level

set evolution. The fire spread rate of Rothermel focuses on the fire heading direction

only on a straight line. Therefore, we need to rely on an assumed elliptical fire shape to

calculate the other directions of spread rate. Mallet et al. [19] used the level set method

to simulate fire spread and produced a good elliptical fire shape. According to Mallet

et al. [19], this model still needs to focus on the parameters estimated within the simple

model illustrated by his paper to fit different kinds of terrain, fuel bed, etc. Based on

the elliptical spread assumption, Mallet’s level set model provides a good solution if we

consider the wind factor part. We use Mallet’s model to replace the wind factor part

of Rothermel’s fire model to build a modified Rothermel’s fire model in our simulation.
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6. CONCLUSION

Differentiated from the existing fire spread models which focus on the two dimen-

sions such as the coordinate values on the polygon functions for a vector-based model

or the states of each cell in a lattice for raster-based model, our fire simulation model

leverages the primary concept of the level set method which introduces the third dimen-

sion and solves the difficult crossover problem presented in the existing models. Our

research advances the level set method application to a heterogeneous environment by

storing pre-existing fire information at the cells. We divide the landscape into identical

square cells and define the state of each cell by distance function. We are able to apply

the elliptical spread assumption to decide the next ignition point without examining

the fire spread to all neighboring cells.

Our contributions include overcoming some of the shortcomings of the simulation

model using the vector based method. We made improvements in the following areas:

1. Solved the most difficult crossover issue.

2. Addressed concerns over sharp corners.

3. Stored data at cells which is more suitable for complex environment.

4. Added different vegetation types into consideration for fire spread prediction.

5. Validate fast marching method in the fire spread simulation.

The fire simulation model is verified by two case studies through two fire simulations

and meets the expected results. However, there are limitations for the implementations

using both the narrow band level set method and the fast marching method. For the

level set method, the model needs to re-normalize the distance function to ensure that

surface evolution remains stable. It is time consuming and poses the risk of the fire

shape becoming distorted. For the fast marching method, more in-depth studies are

needed. First, we only consider the adjacent neighboring cells and omit the diagonal

neighboring cells. The omissions might cause distortion of the fire shape especially

under the condition of the wind. Second, when simulation time is extended, the scale

of the graphic will be automatically adjusted to be in alignment with the time axis

during Matlab calculation. The automatically rescaled contour map might cause visual

distortion and further lead to mis-prediction of the fire spread. Third, the travel time is
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calculated by 1/F . An arithmetical operating error will occur for smaller F especially

when F approaches to zero.

With further development, this fire simulation model has the potential to be used for

the other spread simulation researches such as predicting smog pollution, oil spill and

volcano ashes spread. The concept of applying the projection to transform a discrete

process to continuous process can be developed to improve the quality of image from

the methods based on discrete procession. This can lead to a marker-less method in

simulation technique.
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