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Abstract of the Dissertation

Simulated Associating Polymer Networks

by

Joris Billen

San Diego State University and Claremont Graduate University

Telechelic associating polymer networks consist of polymer chains terminated by end-

groups that have a different chemical composition than the polymer backbone. When

dissolved in a solution, the endgroups cluster together to form aggregates. Their life-

time depends on temperature. At the micelle transition the temperature is sufficiently

low for these aggregates to be substantial in size. At low temperature, a strongly con-

nected reversible network is formed and the system behaves like a gel.

Telechelic networks are of interest since they are representative of biopolymer

networks and are widely used in medical applications and consumer products. The

material properties of these polymer networks pose complex and current problems in

polymer physics. Many of the most basic questions concerning these networks, such

as how they deform under stress, remain unanswered. Experiments under constant

shear reveal a rich variety of non-Newtonian responses, including shear thinning and

shear thickening. Within the shear thinning regime, shear banding is observed: when

a constant shear is applied, the system forms two coexisting bands with different shear

rates. The goal of this work is to study such systems using computer simulations. A

hybrid molecular dynamics/Monte Carlo simulation is used for this purpose.

First we investigate how the network topology of an ensemble of telechelic poly-

mers changes with temperature using graph theory. The aggregates are considered

as nodes and the polymer chains as links between them. Our analysis shows that

the degree distribution of the system is bimodal and consists of two Poissonian dis-



tributions with different average degrees. The number of nodes in each of them as

well as the distribution of links depend on temperature. By comparing the eigen-

value spectra of the simulated gel networks with those of reconstructed networks, the

most likely topology at each temperature is determined. Below the micelle transi-

tion the topology can be described by a robust bimodal network in which superpeer

nodes are linked among themselves and all peer nodes are linked only to superpeers.

At even lower temperatures the peers completely disappear leaving a structure of

interconnected superpeers.

Many real life networks exhibit a spatial dependence, i.e. the probability to form

a link between two nodes in the network depends on the distance between them. The

study of the eigenvalue spectra of the simulated gel revealed that spatial dependent

networks show universal spectral properties. This led to an in-depth study of such

spectra. When increasing spatial dependence in Erdös-Rényi, scale-free and small-

world networks, it is found that the spectrum changes. Due to the spatial dependence,

the degree of clustering and the number of triangles increase. This results in a higher

asymmetry (skewness). Our results show that the spectrum can be used to detect

and quantify clustering and spatial dependence in a network.

Next, we study the rheological response of the polymer network under constant

shear. The transient stress response shows an overshoot, followed by fluctuations

around a lower, average value. When different shear rates are applied, there is a

region in which the average stress does not increase significantly. Within this plateau,

shear banding occurs. Experiments suggest possible differences between both bands

in several properties. The simulation allows for a study of these differences on the

microscopical scale. The average aggregate size is lower in the high shear rate band,

due to an increase in aggregates consisting of a single endgroup. There is an increase

in dynamics and this is highest in the high shear band. These changes are gradual



as a function of the distance between the moving walls, and we did not find a sharp

increase at the interface. Next, we focus on structural changes of the sheared system as

a whole, compared to the unsheared system. The aggregate size distribution becomes

bimodal and preferential aggregate size formation decreases under shear. There is a

decrease in links and a rearrangement of the structure under shear. This leads to

larger aggregates that are connected by “stronger” links of high weight, consisting

of multiple bridging chains. Such rearrangement is of importance in the observed

decrease in stress in the transient stress response. The loop/bridge ratio increases,

but only for high strain rates.

Finally we investigate the relation between percolation and gelation. Since the

junctions between the endgroups in our system are temporary, geometric percola-

tion does not occur at the gelation temperature. To explain the rheological changes

that occur around this transition, only the network made up of endgroups that have

junctions that survive over longer times is important. The percolation threshold, the

time where the system shows 50% probability to percolate, increases with decreas-

ing temperature. Vogel-Fulcher-Tamman (VFT) theory predicts that this time will

diverge at T = 0.29. This is in agreement with the gelation temperature obtained

from earlier measurements of relaxation times. A master curve can be constructed for

percolation probability and survival rate by empirically shifting them up to T = 0.6.

The scaling factors follow the Williams-Landel-Ferry (WLF) equations and the T0

from WLF corresponds to the one from VFT. This is in support of recent ideas that

gelation phenomena and glass transition show similarities.
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Chapter 1

Introduction

1.1 Associating polymer networks and gelation

Associating polymer networks consist of polymer chains terminated by endgroups

with a different chemical composition. When dissolved in a solution, the endgroups

can form junctions. Associating polymers in which the linking occurs through the

endgroups are referred to as telechelic polymers. The term telechelic orginates from

the Greek words telos, far, and chelos, claw, thus describing the molecule as having

two claws far away from each other, i.e. at the extremities of the chain, able to

grip something else. The great interest in telechelic polymers resides in the fact that

such polymers can be used, generally together with suitable linking agents, to carry

out three important operations: (1) chain extension of short chains to long ones by

means of bifunctional linking agents, (2) formation of networks by use of multifunc-

tional linking agents, and (3) formation of (poly)block copolymers by combination of

telechelics with different backbones [4].

The behavior of the system depends on the rate at which junctions are formed

[5, 6]. This rate is determined by the polymer (atomic) concentration and the tem-

perature, as shown in figure 1.1. At low atomic concentration (high temperature) the

1



Figure 1.1: Transition from fluid, to mixture of micelles, to gelly state with decreasing
temperature (increasing atomic concentration).

system is a sol; some polymers are dispersed in an abundant solution and the system

behaves like a fluid. At higher polymer concentration (lower temperature) the likeli-

hood of endgroups meeting each other increases and this leads to an increase in the

number of connections between endgroups. The aggregation of endgroups leads to the

formation of micelles, also referred to as aggregates. The corresponding transition is

called the micelle transition. At even higher atomic concentration (low temperature)

the formed micelles connect and a macroscopic network is formed. The solution now

is structurally disordered as a liquid, but shows resistance to a stress as a solid. It

is in a gel state, from “gelare”, Latin for “to freeze”. The crosslinks between the

micelles are reversible: throughout time they break while new junctions are formed

at different locations.

1.1.1 Chemical structure

Different chemical units may be used as linkers depending on the solvent, e.g., hy-

drophobic fragments on water-soluble polymers in aqueous solutions, and ionic groups

on ionomers in organic solvents. An important group of associating polymers are hy-

drogels; hydrophilic polymers terminated by hydrophobic endgroups. Hydrogels are

highly absorbent and can contain up to 99.9% water. Two such telechelic derivatives
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Figure 1.2: Preparation of telechelic hydrophobically modified poly(N -isopropyl-
acrylamide), C18-PNIPAM-C18 and telechelic hydrophobically modified poly (ethy-
lene oxide), C18-PEO-C18. Taken from [1].

are hydrophobically modified poly(N-isopropylacrylamides) (HM-PNIPAM) and hy-

drophobically modified poly(ethylene oxide) (HM-PEO), which cary an octadecyl

endgroup at each chain. The preparation method and chemical structure for these

telechelics are shown in figure 1.2. Structurally the HM-PNIPAM samples bear close

resemblance to the class of polymeric additives known as hydrophobic-ethylene oxide-

urethene (HEUR) copolymers. HEUR is produced by chain extending poly(ethylene

glycol) (PEG) with diisocyanate and both ends of the PEG chain are capped with

hydrophobic moieties.

1.2 Rheological response

1.2.1 Definitions

When external forces are applied to a stationary object, stress and strain are the

result. Stress is defined as the object’s internal resisting forces, and strain is defined

3



as the displacement and deformation that occur. For a uniform distribution of internal

resisting forces, stress can be calculated by dividing the force (F ) applied by the unit

area (A):

Stress = F/A. (1.1)

Strain is defined as the amount of deformation per unit length (∆L) of an object

when a load is applied. Strain is calculated by dividing the total deformation of the

original length by the original length (L):

Strain = ∆L/L. (1.2)

Experimental shear flow measurements are conducted in a Couette geometry, where

the polymer solution is sandwiched between two concentric cylinders of which one is

stationary, and the other rotating with velocity v (shown in figure 1.3). If the distance

between the two cylinders is h, the shear rate γ̇ is defined by:

γ̇ =
v

h
. (1.3)

The viscosity η is a measure of how easily a material will flow when a stress is applied

and is defined by:

Stress = η · γ̇ (1.4)

For a Newtonian liquid, the stress increases linear with the shear rate and the constant

slope equals the viscosity. The simplest model for an elastic material is given by

Hooke’s law:

Stress = E · Strain (1.5)

where the strain is linearly proportional to the applied stress and E the elastic modu-

lus. For a solid, which doesn’t flow under stress, the viscosity is infinite. Viscoelastic

materials show properties of both viscous as elastic materials, depending on the time
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Figure 1.3: Viscosity versus imposed shear rate for a telechelic polymer, taken from
[2].

scale. If a stress is applied over a short time scale, the material relaxes back to its

initial shape after the stress is stopped. If stress is applied over a longer time scale,

the material will flow. Finally the relaxation time τ0, is a characteristic time scale

that describes how a polymer chain returns to equilibrium after a stress is applied.

1.2.2 Shear thinning and thickening

Associating polymers are viscoelastic materials that are of often studied because

of their rheological behavior. An example is shown in figure 1.3 for a PEO-based

telechelic polymer [2].

At low shear rates, solutions of associative polymers show Newtonian behavior

(regime A). When the reciprocal shear rate is of the order of the relaxation time

or beyond, a rich variety of non-Newtonian responses is found. At moderate shear

rates (regime B), shear thickening is observed, the viscosity increases with shear rate.

This is attributed to stretching of the polymer chains (bridges) due to the applied

flow. At higher shear rates the materials are deformed at rates faster than they can
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structurally adapt and part of the structure in the quiescent state is broken down .

This leads to a decrease of the viscosity with shear rate (shear thinning, regime C).

Shear thinning can make the flow inhomogeneous, leading to the formation of two or

more bands of differing shear rate - a phenomena called shear banding. In regime D,

even though still shear thinning, the flow becomes homogeneous again.

1.2.3 Wormlike micelles and telechelic polymers

We note that a network-forming system closely related to telechelics are wormlike

micelles (WMs): entangled solutions of long and flexible surfactant cylinders [7]. A

surfactant reduces the surface tension of the system in which it is dissolved. The ba-

sic surfactant molecule is amphiphilic, meaning it possesses both hydrophilic (water-

loving) and hydrophobic, or lyophilic (oil-loving), groups that are chemically bonded

together. When placed in water, and at a high enough atomic concentration, sur-

factant molecules will arrange themselves together such that the tails become closely

packed together in order to minimize their contact with water. This self-assembling

process results in the formation of aggregates of surfactant molecules in solution.

Based on several factors the micelle can take a specific form such as a cylinder. This

can grow into a long wormlike micelle with increasing surfactant concentration. A

WM is only held together by relatively weak physical attractions/repulsions which

break and reform with time. Both telechelics and WMs show the ability to form highly

viscous solutions with relatively simple viscoelastic behavior. Throughout chapter 5,

which discusses the rheological response of the simulated gel network, we will often

refer to WMs.
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1.3 Motivation for the research and technology as-

sessment

Associating polymers are representative for several biopolymers. The study of biopoly-

mer networks and gels lies at the heart of the understanding of the mechanical prop-

erties of the cytoplasm. The mechanical rigidity of the intracellular material is largely

governed by the cytoskeleton, a complex network of filamentous proteins, cross-links,

and other associated proteins. A key player in this cytoskeleton is F-actin, which

exhibits significant rigidity on the cellular scale. The actin cortex is a polymeric gel

that provides mechanical stability and plays a key roll in cell motion [8]. Development

of models that describe the stress response of associating polymer networks, can be

applied to the behavior of biologically important macromolecules such as DNA and

actin [9].

Polymer gels are important for medical applications. Fibrin gels, responsible

for blood clothing, are studied for tissue engineering purposes and the production

of synthetic scaffolds [10]. Biocompatibility is an essential requirement for medical

gels, and therefore gelatin, which is derived from the natural matrix protein collagen

(the main protein in connective tissue and present in muscles), is ideally suited [11].

Kilotons of gelatin with a billion dollar market value is used on annual basis. Novel

gelatin materials are being developed for bone, retinal, and other implants in vascular

protheses, sponge embolization therapy, medical glues, blood supplementation fluids,

and vaccines. The animal origin of gelatin poses risk of contamination and immune

responses. Therefore gelatin-like polymers with a general design, offering independent

tuning of the cross-link density, melting temperature, and biocompatibility of the gel,

are designed. Hydrogels are found in laxatives, skin creams, medical electrodes, breast

implants and dressings for healing of burn wounds. They show potential for controlled
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release drug delivery. The gel can be implemented in living tissue (such as the brain)

and carry a drug that gets exposed to the diseased cells [12]. Hydrogels have also

been investigated as cartilage replacement materials due to the high water content

potentially leading to low friction, low wear, and rubbery or pliable nature similar

to native cartilage [13]. The moduli can be in the range of native tissues to match

the mechanical properties of the polymer matrix of those of the surrounding tissue.

PEO-based triblock copolymer hydrogels are created with a desired elastic modulus

[14]. For other applications, gels with huge elastic moduli over 10kPa can be created.

Injectable hydrogels recently drew media attention as they were shown to be able to

repair tissue damaged by a heart attack [15]. Hydrogels that are responsive to specific

molecules, such as glucose and antigens, can be used in biosensors [16].

Associating polymers are found in a wide variety of consumer products. Among

all the associative polymers, HEUR offers the best balance of application rheology

and dry film performance. They are usually added either to modify the rheology

of aqueous solutions or to increase the stability of dispersions. HEUR polymers are

being used in paint formulation, paper coating, and shampoo. Also hydrogels are

very common in products such as contact lenses, diapers, paintball fill, printheads,

spandex, foam cushions, and thickener in foods, paint and adhesives. Associating

polymers have potential for self-healing materials. Due to the constant formation of

new junctions, fractures can be created and healed reversibly [17]. NASA is inter-

ested in such materials for construction of self-healing aircrafts and gas tanks that

are like biological organisms, having the ability to sense damage in their conditions

and essentially heal themselves. Another possible application is as a coating layer for

cars that repairs itself when scratched. For many polymer materials the reliability

and endurance is still limited. It is believed that better understanding of flow during

processing can be used to increase robustness.
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1.4 Outline of the dissertation

The dissertation is organized as follows. Chapter 2 explains the simulation details of

the model used to describe the polymer network. In chapter 3 we apply graph theory

to study the changes in topology that accompany the micelle and gel transitions.

Therein a study of the eigenvalue spectrum of the network is performed. In chapter

4 we focus on explaining the universal properties of the eigenvalue spectra for spatial

dependent networks, that were encountered during the previous chapter. Chapter 5

treats shear-induced effects with a strong emphasis on shear banding. Finally, chapter

6 discusses the relation between the gel transition and percolation.
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Chapter 2

Model and methods

The model used for simulating telechelic polymers is a hybrid model consisting of a

Molecular Dynamics Simulation (MDS) with a Monte Carlo (MC) step. To model

the beads on one polymer chain, we make use of the standard bead-spring model by

Kremer and Grest [18]. To describe the interaction between endgroups this model has

been tailored by Baljon [19] to include the possibility for the endgroups to connect.

These connections and hence the network structure are constantly changing; breaking

and formation of the junctions between endgroups is determined by a stochastic

process through the MC step. The model continuously gathers information on both

the position of the monomers in the system and on the network structure, by keeping

track of what endgroups are connected to each other.

2.1 Molecular dynamics simulation

Each monomer moves according to the equations of motion:

m̈~ri = ~▽Ui (~ri) − Γ~ri + ~Wi (t) (2.1)

with Ui the total interaction potential on particle i, which will be extensively discussed

in the next section. Γ is a friction constant and Wi a Gaussian white source that

determines the temperature of the system. By integrating the equations of motion
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we can calculate the position at timestep t+ δt. Thereto a fifth order Gear predictor-

corrector algorithm is used with δt = 0.005τ , where the choice of δt is inspired by

[18]. It consists of three essential steps [20]:

• Predictor. From the positions and their time derivatives up to the 5th order,

all known at time t, the same quantities are predicted at time t + δt by means

of a Taylor expansion. Suppose v(t) = dr(t)
dt

is the velocity of the particle,

a(t) = d2r(t)
dt2

the acceleration, b(t) = d3r(t)
dt3

, c(t) = d4r(t)
dt4

, d(t) = d5r(t)
dt5

, and

e(t) = d6r(t)
dt6

, then:

rp(t + δt) = r(t)+ δtv(t)+
1

2
δt2a(t)+

1

6
δt3b(t)+

1

24
δt4c(t)+

1

120
δt5d(t)+

1

720
δt6e(t)

(2.2)

vp(t + δt) = v(t)+ δta(t)+
1

2
δt2b(t)+

1

6
δt3c(t)+

1

24
δt4d(t)+

1

120
δt5e(t)

(2.3)

ap(t + δt) = a(t)+ δtb(t)+
1

2
δt2c(t)+

1

6
δt3d(t)+

1

24
δt4e(t) (2.4)

bp(t + δt) = b(t)+ δtc(t)+
1

2
δt2d(t)+

1

6
δt3e(t) (2.5)

cp(t + δt) = c(t)+ δtd(t)+
1

2
δt2e(t) (2.6)

dp(t + δt) = d(t)+ δte(t) (2.7)

• Force evaluation. Using equation 2.1 and the predicted new position rp(t +

δt), the acceleration ac(t + δt) can now be calculated. The result will be in

general different from the predicted acceleration. The difference between the

two constitutes an error signal:

∆a(t + δt) = ap(t + δt) − ac(t + δt) (2.8)

• Corrector. This error signal is used to correct positions and their derivatives.
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All the corrections are proportional to the error signal:

rc(t + δt) = rp(t + δt) + α0∆a(t + δt) (2.9)

vc(t + δt) = vp(t + δt) + α1∆a(t + δt) (2.10)

ac(t + δt) = ap(t + δt) + α2∆a(t + δt) (2.11)

bc(t + δt) = bp(t + δt) + α3∆a(t + δt) (2.12)

cc(t + δt) = cp(t + δt) + α4∆a(t + δt) (2.13)

dc(t + δt) = dp(t + δt) + α5∆a(t + δt) (2.14)

with α0 = 3/16, α1 = 251/360, α2 = 1, α3 = 11/18, α4 = 1/6, α5 = 1/60.

The results of the MDS will be determined by the different potentials that are at play

between the atoms. These are described in the next section.

2.2 Interaction potentials

2.2.1 Bead-spring model

Any two particles i and j in the system experience a Lennard-Jones potential:

U lj(rij) = 4ǫ

[

(

σ

rij

)12

−

(

σ

rij

)6

−

(

σ

rc

)12

+

(

σ

rc

)6
]

, rij < rc = 21/6. (2.15)

In the simulation all particles have a diameter of 1 σ and a mass m (coarse-grained),

even though chemically there are obviously large distinctions between endgroups and

chain monomers. The unit of time is τ = σ(m/ǫ)1/2 where ǫ is the unit of energy.

Also temperature is expressed in ǫ, although by convention this will not be mentioned

explicitly. Throughout the simulation kB = 1 is used.

The Lennard-Jones potential is shown in figure 2.1 (dashed line) and is purely

repulsive: it is truncated by setting U lj(rij) = 0 for rij > rc. Therefore all beads will

repel each other (excluded volume interactions). Also it is shifted by 0.25 ǫ such that
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Figure 2.1: Fene potential (solid line) and Lennard-Jones potential (dashed).

U lj(rc) = 0.

Neighboring beads on a chain experience, in addition to the Lennard Jones potential,

a finite nonlinear elastic potential (fene) that is defined as:

Ufene(rij) = −
1

2
kR2

0 ln

[

1 −

(

rij

R2
0

)2
]

, rij < R0 = 1.5σ (2.16)

and infinite otherwise. The fene is shown in figure 2.1 (solid line). The effect of

this potential is to connect the beads on a chain with springs. κ = 30ǫσ−2 is a

measure for the strength of the springs and R0 sets the maximum bond length. They

have been adjusted so bonds can not cross or break. The average length of a bond

between neighboring beads on a chain is 0.97σ, corresponding to the minimum of

U lj(rij) + Ufene(rij).

The technique described in this subsection is the traditional bead-spring model for

polymer chains. For telechelic polymers now this needs to be extended by including

the possibility of junctions between the chain endgroups.
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Figure 2.2: The interaction energy between two endgroups that have formed a junc-
tion (solid line) or that have not formed a junction (dashed).

2.2.2 Endgroups

A junction between two endgroups is modeled using the fene potential from equa-

tion (2.16). Upon formation of a junction both endgroups also experience a large

negative association energy:

Uassoc = −22ǫ (2.17)

that lowers the overall energy of the endgroups by a large constant and is necessary for

keeping the bond from breaking right away, making the bonded state more reversible.

Therefore if two endgroups have formed a bond, the total energy of the junction is:

U bond(rij) = Ufene(rij) + U lj(rij) + Uassoc(rij) (2.18)

while if there is no bond between them, their energy is

Unobond(rij) = U lj(rij). (2.19)

Both possibilities are shown in figure 2.2.
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particles Total interaction potential
any monomer pair U lj(rij)

neighboring beads on a chain U lj(rij) + Ufene(rij)
two endgroups with junction U lj(rij) + Ufene(rij) + Uassoc

two endgroups no junction U lj(rij)
endgroup attached to the wall U lj(rij) + Ufene(rij)

Table 2.1: Overview of potentials used in the simulation.

2.2.3 The wall

In the z-direction the system is confined by two walls, each consisting of 800 beads

spread over two layers in FCC structure. The 1600 wall atoms have a radius of 0.8σ

and are all connected to a lattice site by a harmonic potential with spring constant

260ǫσ−2. The number of grafted chains should be low, so it does significantly influence

the aggregate size distribution, but high enough to transfer the applied shear to the

gel system. Therefore 5% of the endgroups are permanently attached to the wall:

50 to the top wall and 50 to the bottom wall. They form a junction with a wall

atom using Ufene that will never be broken. These grafted chains are spread over the

surface in a square lattice, the lattice on the top wall is shifted in such a way that

each lattice point corresponds to the middle of a unit cell on the lower wall.

The current section described the static properties of the system. As a summary

an overview is given for all the possible interaction potentials in table 2.1. The next

section describes how to take into account the continuous formation and breaking of

the junctions.
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2.3 Dynamics of junctions between endgroups: Monte

Carlo

Every 0.1τ an attempt is made to destroy all the existing junctions and create new

ones using a Monte Carlo step. The probability of success depends on the energy

difference between the possible new state and the old state ∆U(rij):

P (rij) ∼ exp

(

−
∆U(rij)

kBT

)

. (2.20)

with ∆U depending on the situation defined as:

∆Uform(rij) = U bond − Unobond = Uassoc(rij) + Ufene(rij) (2.21)

∆Ubreak(rij) = Unobond − U bond = −
(

Uassoc(rij) + Ufene(rij)
)

(2.22)

These quantities are shown in figure 2.3. In both situations ∆U(rij) = 0 for r∆U0
=

1.038σ. When the potential new state is at an energy level that is lower than the

current state, the attempt will always occur. Therefore for the formation of a bond

equation (2.20) yields a probability of 1 for rij ≤ r∆U0
, and a chance between 0 and

1 depending on ∆U/kBT otherwise. For breaking a junction the probability is 1

for rij ≥ r∆U0
and between 0 and 1 otherwise. This shows that a bond between 2

endgroups that is only stretched for 0.068 σ further than the average bond length will

already break with a probability of 1, showing the stiffness of the spring potential

from equation (2.16).

2.4 System size

The system consists of 1000 polymer chains of 8 beads long hence there are 8000

monomers of which 2000 are endgroups. The boxsize is 23.69 σ in the x-direction,

20.52 σ in the y-direction and 27.84 σ in the z-direction. There are periodic boundary
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Figure 2.3: The energy difference ∆ U for creation of a new junction between two
endgroups (left) and for breaking an existing junction (right).

conditions in the x- and y-direction. The volume fraction of the simulation box that

is occupied equals
(

8000 · 4
3
· π(σ

2
)3

)

/ (23.69 · 20.52 · 27.84σ3) = 0.309. The atomic

concentration is 8000/ (23.69 · 20.52 · 27.84σ3) = 0.591σ−3. A snapshot of the system

is shown in figure 2.4. To keep the overview, only the endgroups of the polymer chains

are shown. The coloring is representative for the size of the aggregate the endgroups

is part of. At this temperature the average end-to-end distance of < R >= 3.93σ .

2.5 Temperature control

The desired temperature is reached through the friction coefficient Γ and the Gaussian

white-noise source Wi in equation (2.1). Wi adds a random fluctuating force to the

equation of motion and is Gaussian with average around 0. This takes into account

the presence of the solvent in the system. The strength of the noise is related to Γ via

the fluctuation dissipation theorem which quantifies the relation between fluctuations

in a system at equilibrium and the response of the system to applied perturbations:

〈 ~Wi(t) ~Wj(t
′)〉 = 6kBTΓδijδ(t − t′). (2.23)
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Therefore the system will take a temperature T depending on the strength of the

fluctuating force that is applied. It is said the system is coupled to a heat bath.

Initially the system is set to T = 1.5 and no junctions are allowed by setting

Uassoc = 0. Then Uassoc is gradually lowered to −22ǫ. Data at lower temperature is

achieved by cooling the system at a rate of 2500τ per ∆T = 0.1. Any phase transitions

will not depend on cooling rate because of this slow cooling. At each T the system

is sampled for at least 5000τ before statistical averages are calculated. After such

a time the statistical averages and structural properties are equilibrated, but the

system shows rich dynamics at a local scale since individual aggregates dissolve and

new ones are formed. It was verified that the data obtained upon cooling and heating

are identical within statistical errors. The positions of the atoms and the network

structure are then typically recorded every 5τ .
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Figure 2.4: Snapshot of the system at T=0.35. The wall atoms are not displayed,
but indicated by “Top” and “Bottom”. The single endgroups on the bottom and top
walls are the grafted ones. To keep the overview, only the 2000 endgroups are shown.
The coloring of the endgroups denotes the size of the aggregate they are part of. Note
that the system repeats itself in the x- and y-direction (not shown here).
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Chapter 3

Topological study of the unsheared
system using network theory

This chapter is a modified version of the paper “Topological changes at the gel transi-

tion of a reversible polymeric network” by J. Billen, M. Wilson, A. Rabinovitch, and

A. R. C. Baljon, published in Europhysics Letters [21].

We use graph theory to quantify the topology of the simulated gel network (SGN).

We will show that the topology changes as a function of temperature and point out

differences above and below the micelle transition. Our analysis shows that the de-

gree distribution of the system is bimodal and consists of two Poissonian distributions

with different average degrees. The number of nodes in each of them as well as the

distribution of links depend on temperature. By comparing the eigenvalue spectra

of the simulated gel networks with those of reconstructed networks, the most likely

topology at each temperature is determined. Topological changes occur at the tran-

sition temperatures reported in our previous study [19]. Below the micelle transition

the topology can be described by a robust bimodal network in which superpeer nodes

are linked among themselves and all peer nodes are linked only to superpeers. At
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even lower temperatures the peers completely disappear leaving a structure of inter-

connected superpeers.

3.1 Characteristic temperatures for the gel transtion

As mentioned before, at low temperatures the system undergoes a gel transition:

due to the aggregates an extended network forms that prohibits flow. Since the

volume fraction is approximately 30%, a glass transition, typically displayed in higher-

density systems, is not observed. A previous study [19] has defined four characteristic

temperatures for the gel transition. At low temperature the relaxation time as a

function of temperature diverges either as a stretched exponential at T0 = 0.29 or

as a power-law at Tc = 0.4. Above TA = 0.75 the dependence of relaxation time

on temperature becomes of Arrhenius type. Geometric percolation occurs at high

temperature of T = 1.5. Chapter 6 will study the percolation properties more in

detail. At the micelle transition temperature Tm = 0.51 the number of reversible

bonds φ strongly increases ( ∂2φ
∂T 2 = 0) and the specific heat peaks, characteristic for

a second order phase transition. Below Tm the overall structure of the reversible

network changes and a peak in the micelle size distribution becomes visible [19, 22].

Between Tm and T0 collective modes of relaxation are still available to the system and

cause a net flow over long time periods. In this chapter we investigate the structure

of the SGN and how it changes with temperature. To this end, we compare it with

that of complex networks found elsewhere in nature [23].

3.2 Complex network study of the polymeric gel

A complex network can be described as a set of nodes with links in between. In the

well-known Erdös-Rényi (ER) random network [23], every pair of nodes is linked with
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Figure 3.1: A 2D schematic illustrating the definition of nodes (black circles) and
links (black lines) for a hypothetical bead-spring configuration. The beads at both
chain ends are red and the others blue. Note that all simulations are performed in
3D.

a probability p. The degree distribution of this network, which describes the number

of links k per node, is Poissonian:

P (k) =
〈k〉k e−〈k〉

k!
(3.1)

The average degree〈k〉 = Np = 2l
N

, where l equals the number of links and N the

number of nodes. In order to compare the simulated gels to other complex networks,

we call an aggregate of endgroups a node. A polymer chain is identified as a link

(unless both ends belong to the same aggregate). In a recent paper [24] a graph for

reversible polymers was defined in the same way. In our simulations it is possible

that the ends of more than one polymer chain connect the same pair of aggregates. If

this is the case, we still count it as one link. Also it is possible that both endgroups

of the polymer chain connect to each other (loops). These loops are not included in
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Figure 3.2: Degree distributions of the networks obtained from simulations at various
temperatures.

the study, since they are not elastically active. A schematic picture illustrating the

definition of a node and a link is shown in figure 3.1.

The degree distribution of the networks is shown in figure 3.2. The probability

distribution is bimodal and qualitatively similar to the aggregate distribution of the

model at hand [19] and to that reported by others [22, 25] for simulations of polymers

with different chain lengths and interaction potentials. The goal of this study is to

quantify the distribution and to characterize the topological changes using graph the-

ory. As shown in figure 3.3 for T = 0.55, a superposition of two Poisson distributions

with different values of <k> fits the data,

P (k) = nS
〈k〉kS e−〈k〉S

k!
+ nP

〈k〉kP e−〈k〉P

k!
(3.2)

Such a bimodal degree distribution is characteristic of complex networks which con-

tain two types of nodes. Nodes in the distribution with the higher <k> value <k>S
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Figure 3.3: Degree distribution for T=0.55 (circles). The dotted line shows a fit to
equation (3.2) using the values in table 3.1. The stars result from a reconstruction of
the gel network as described in the text.

are called “superpeers” (S), those in the other distribution “peers” (P) [26]. nS and

nP are the fractions of superpeer and peer nodes, respectively. Within the simula-

tions links break and new ones form all the time. In such a dynamic network, nodes

alternate between being part of the superpeer and peer distribution.

Table 3.1 lists the values of nS, nP , <k>S , and <k>P of the fits to the SGN for

a range of temperatures. With decreasing temperature nS increases. Below T=0.4

nP =0 and a single distribution of superpeers remains. The correlation coefficient

(CC) of the fit is excellent at high temperatures, but becomes less accurate at tem-

peratures below T = 0.5. We found that the single distribution below T = 0.4 has

a slightly higher variance than predicted by a Poissonian model. Nevertheless, the

data indicates that the SGN can be described by two Poissonians, whose relative

contributions depend on temperature. This is shown in figure 3.4, where the fraction

of superpeer nodes nS is plotted. The inset shows its rate of change. This rate peaks
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Figure 3.4: Fraction of superpeers as a function of temperature. The inset shows the
rate of change of the fraction of superpeers.

at the micelle transition (T = 0.5). At this temperature there is a strong increase

in the average aggregate size. Moreover, the data in figure 3.4 suggest that there is

a qualitative change in the shape of their degree distribution and in the topology of

the network structure.

3.3 Construction of related networks that mimic

the gel network

To obtain further insight into these topological changes of the SGN with temperature,

related networks (RN) were constructed according to the following recipe. At each

temperature, we assign random coordinates in a 3D unit cell to N nodes maintaining

the nS / nP ratio from table 3.1. Next, links are added in such a way that the

desired values of <k>S and <k>P are obtained. To this end, the number of links

between superpeers lSS,, the number of link between peers lPP, and the number of
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Table 3.1: Results of fits of degree distributions to equation (3.2)

T nS nP <k>S <k>P CC
5.0 0.063 0.937 1.512 0.420 1.000
3.0 0.100 0.900 1.915 0.533 1.000
2.2 0.124 0.876 2.238 0.621 1.000
1.8 0.137 0.863 2.551 0.716 1.000
1.5 0.165 0.835 2.731 0.735 1.000
1.2 0.193 0.807 3.264 0.890 1.000
1.0 0.226 0.774 3.867 1.045 1.000
0.8 0.303 0.697 4.784 1.266 1.000
0.7 0.380 0.620 5.544 1.402 0.999
0.6 0.525 0.475 6.552 1.387 1.000
0.55 0.604 0.396 7.131 0.997 1.000
0.5 0.777 0.223 7.765 0.830 0.991
0.45 0.991 0.009 8.356 0.984 0.976
0.4 1.0 0.0 8.620 0.976
0.3 1.0 0.0 8.720 0.960

links between a peer and a superpeer lPS are chosen such that:

〈k〉S = (2lSS + lPS)/nS

〈k〉P = (lPS + 2lPP )/nP
(3.3)

Initially, all links are chosen randomly. Further modifications are necessary given

that the SGN is a spatial graph [23], because chain molecules that form the links

have a finite size. They are approximately 7 σ long when fully stretched. Hence we

allow only links between nodes that are shorter than a certain cutoff distance. The

number of each type of link and hence the values of <k>S and <k>P are unchanged.

To decide on the value of the cutoff distance, we calculate clustering coeffcients. For

a particular node, the clustering coefficient is defined as the fraction of its neighbors

that connect among themselves. The clustering coefficient of the entire network is

obtained by averaging over all nodes of degree two and up [23]. Spatial dependence

causes the clustering coefficient of a network to increase. Figure 3.5 shows the clus-
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Figure 3.5: The clustering coefficient as a function of temperature. The circles are for
the SGN. After rewiring the values change to those indicated by the blue triangles.
The red squares are the calculated values from equation (3.5).

tering coefficient as a function of temperature for the SGN (circles). It turns out that

the clustering coefficient of a graph with purely random links is much smaller than

that of the SGN, as expected. A RN is constructed by adjusting the cutoff distance

so as to match its clustering coefficient to that of the SGN. At T = 0.55 a cutoff

distance of 0.28 is needed. Given the dimensions of our system this corresponds to

6.6σ . At higher T , the value of the cutoff distance slightly increases. The degree

distributions of the RN are similar to that of the SGN (shown in figure 3.3 for T =

0.55). This finishes the description of the construction of the RN.

To further explore the relation between the SGN and random graphs we have

investigated what happens to the clustering coefficient of the SGN when spatial de-

pendence is removed. This task is achieved through a rewiring process in which links

of restricted length are replaced by ones with arbitrary length in such a way that
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the degree distribution is preserved 1 . During rewiring, the clustering coefficient

decreases. Its steady state values are shown in figure 3.5 (triangles). Also shown is

the theoretical value of the clustering coefficient [27] of an ER network with average

degree <k>:

C =
〈k〉

N

[

〈k2〉 − 〈k〉2

〈k〉2

]2

(3.4)

where N , the total number of nodes, is matched to that observed in the SGN.

As one can see, the clustering coefficients of the rewired SGN are very close to those

predicted by this equation. We now further investigate the spatial dependent SGN

using the RN for which the clustering coefficient was matched by restricting the length

of allowed links. The network topology is quantified in more detail by the number of

links and their distribution (lSS, lPP , and lPS). There is still one degree of freedom

in choosing these three numbers in such a way that equation (3.3) is satisfied. Hence

another property is needed to decide which link distributions best mimic the simulated

gel networks.

3.4 Eigenvalue spectra for studying topological changes

To this end, we calculate the spectral density ρ (λ) of the adjacency matrix of a

specific configuration of the SGN [28]:

ρ(λ) =
1

N

N
∑

j=1

δ (λ − λj), (3.5)

where the λj are the eigenvalues of the adjacency matrix. The results are averaged

over 100 independent configurations of the SGN. The result is shown for T = 0.55

in figure 3.6(a). The spectrum of the SGN is then compared with that of RNs for a

1Starting with the configuration taken from the SGN, endpoints of two links are switched accord-
ing to the following procedure: i) Randomly select links lhi and ljk connecting nodes nh , ni and nj

, nk , respectively. ii) Remove links lhi and ljk , followed by the creation of new links lhj and lik if
none of these links already exist.
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Figure 3.6: A comparison of the spectral density of of the SGN (a) with RN’s (b, c,
and d). In (b) the networks of peers and superpeers are disconnected (lPS=0), (c)
is for the case that peers do not link among themselves (lPP=0), and (d) shows the
RN that matches the SGN. In this case lSS/ltot=0.85±0.01, lPP/ltot=0.02±0.01, and
lPS/ltot=0.13±0.01.

range of choices for the number of links, chosen such that equation (3.3) is satisfied.

As seen in figure 3.6, when lPS=0 and hence lPP is maximum (b), the spectrum

possesses many peaks. This is due to an abundance of disconnected clusters (groups

of nodes linked together). The spectrum of a network in which lPP=0 and hence all

peers are only connected to superpeers (c) is the smoothest. In all cases the spectrum

is asymmetric. As we report in chapter 4, this is due to the spatial dependence

of the network. Without spatial dependence, ER networks are symmetric in the

limitN → ∞. We use the height of the peak at λ = -1 as a criterion to determine the

value of lPP for which the RN spectrum best matches that of the SGN. As we show

in chapter 4, the height of this peak depends on the number of triangles. A triangle

is a structure in which three links connect three nodes. An increase in lPP leads to an
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Figure 3.7: Percentage of each type of link as a function of temperature. Circles for
lSS/ltot , squares for lPP/ltot, and diamonds for lPS/ltot. Lines are guides for the eye.
The cartoons show the transitions in the peer-superpeer networks. Superpeers are
shown as closed dots and peers as open dots.

increase in the number of triangles and hence in the peak height at λ = -1. The best

match is shown in figure 3.6(d). In this case lSS/ltot=0.85±0.01, lPP /ltot=0.02±0.01,

and lPS/ltot=0.13±0.01. Here ltot = lSS +lPP +lPS. We found that the fractions of the

“giant network component” [23] in the SGN and RN at these settings are comparable

as well.

A similar comparison is performed for all temperatures. The results are shown in

figure 3.7. Sketches of the peer-superpeer network are displayed as well. At the highest

temperatures the system consists of two separate networks (D). If the temperature is

lowered, links between peers and superpeers are formed (C). Gradually the number

of peers and the number of links in between them decrease. At T = 0.5 the number
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of links between peers vanishes and every peer is linked to a superpeer (B). Finally,

below T = 0.4 only superpeers and links between them remain (A).

3.5 Conclusions

We conclude that during the transition from a fluid to a gel state the SGN undergoes

several topological changes. These were studied by means of graph theory, consider-

ing aggregates as nodes and polymer chains as links. Construction of representative

bimodal graphs (RN) has allowed us to investigate their topology in detail. Spatial

effects were accounted for by restricting the size of links in such a way that the cluster-

ing coefficient of the RNs matches that of the SGNs. By comparing spectral densities,

we were able to determine the number of links between peers and between superpeers,

as well as those connecting peers to superpeers. We detected that significant changes

in the topology occur at temperatures we have previously characterized [19] as tran-

sition temperatures. Most importantly, below the micelle transition temperature Tm

= 0.5 links between the peers disappear. The resulting topology has been widely

studied in the literature [29, 30] and was shown to be extremely robust. Moreover,

below Tc = 0.4 the peer nodes themselves disappear and a single degree distribution

remains. Given that the topological changes occur at the same temperatures as the

rheological transitions observed in previous work, we believe that these effects could

be intimately related.
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Chapter 4

Eigenvalue spectra of
spatial-dependent networks

This chapter is a modified version of the paper “Eigenvalue spectra of spatial-dependent

networks” by J. Billen, M. Wilson, A. R. C. Baljon, and A. Rabinovitch, published

in Physical Review E [31].

In the previous chapter we studied the eigenvalue spectrum of the polymeric gel.

This revealed that because of spatial dependence, the spectrum was assymetric. In

this chapter we will study in detail the influence of the spatial dependence on the

spectral density of a network. Many real life networks exhibit a spatial dependence,

i.e. the probability to form an edge between two nodes in the network, depends

on the distance between them. When increasing spatial dependence in Erdös-Rényi,

scale-free and small-world networks, it is found that the spectrum changes. Due to

the spatial dependence the degree of clustering and the number of triangles increase.

This results in a higher asymmetry (skewness). Our results show that the spectrum

can be used to detect and quantify clustering and spatial dependence in a network.
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4.1 Introduction

An increase in computational resources has led to a considerable interest in complex

networks over the last decade. Initially most studies handled networks in the dimen-

sionless network space. Many real-life networks however live in a geographic space

in which it is more favorable to form edges between nodes that are close to each

other. For this reason interest in these spatial networks (SN) has increased in the last

few years. SN can be found in the fields of communication (Internet [32]), biology

(neural networks [33]), transportation (airport [34, 35], rail [36], and road networks

[34]), social networks [37] (friendships), and disease spreading [38]. To determine the

existence of spatial dependency of a network one can look at several measures [34]. A

spatial measure is the distribution of the Euclidean distance (ED) between nodes. In

contrast, the so-called graph distance, measures the number of edges traversed along

the shortest path from one vertex to another (path length). In this work we propose

a more prominent method to detect spatial dependence based on the spectral density

of a network. The eigenvalue spectrum of the adjacency matrix of a graph contains

information related to important topological features of the graph. Therefore, it could

also reflect the structural changes induced by spatial dependence. Eigenvalue spectra

have been extensively studied for most common network models such as Erdös-Rényi

(ER) random graphs, small-world networks, and scale-free networks [28]. In this

work we study the influence of spatial dependence on the spectra of these networks

in Euclidean space. In Section 2 we define the spectral density and its properties. In

Section 3, the models are introduced. The resulting spectra are presented in Section

4. Section 5 discusses the results.
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4.2 Eigenvalue spectrum of networks

The spectrum of a graph is the set of eigenvalues,λj , of a graph’s adjacency matrix A

[28]. The graphs under investigation are undirected and devoid of loops and multiple

edges. Hence the adjacency matrix is real and symmetric, possessing real orthogonal

eigenvalues [39]. The spectral density of a graph with N nodes can be defined as

ρ(λ) =
1

N

N
∑

j=1

δ (λ − λj) (4.1)

Since the spectrum contains all the topological information of the graph, it can be

used to classify the network. The spectra of ER random, scale-free, and small-world

structures in dimensionless network space have been studied extensively [28]. For the

ER random network the spectral density exhibits a Wigner semicircle. The scale-free

network displays a symmetric triangular bulk spectrum. A small-world network is

constructed by placing nodes on a circle, connecting the k nearest neighbors and then

randomly rewiring each edge with a probability p [40]. At p = 0 the small-world

network has a regular structure and at p = 1 it becomes ER. The spectrum of the

small-world network exhibits several peaks for small p values, because of its regularity

[28] and it goes over to the semicircular shape when p approaches 1. The moments

of the spectral density of a graph are related to its topology and the sth moment of

ρ(λ) can be written as

ms =
1

N

N
∑

j=1

(λj − µ)s =

∫

(λj − µ)sρ(λ)dλ (4.2)

ince the spectrum contains all the topological information of the graph, it can be

used to classify the network. The spectra of ER random, scale-free, and small-world

structures in dimensionless network space have been studied extensively [28]. For the

ER random network the spectral density exhibits a Wigner semicircle. The scale-free
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network displays a symmetric triangular bulk spectrum. A small-world network is

constructed by placing nodes on a circle, connecting the k nearest neighbors and then

randomly rewiring each edge with a probability p [40]. At p = 0 the small-world

network has a regular structure and at p = 1 it becomes ER. The spectrum of the

small-world network exhibits several peaks for small p values, because of its regularity

[28] and it goes over to the semicircular shape when p approaches 1. The moments

of the spectral density of a graph are related to its topology and the sth moment of

ρ(λ) can be written as

ms =
1

N

N
∑

j=1

(λj − µ)s =

∫

(λj − µ)sρ(λ)dλ (4.3)

with µ the mean eigenvalue. Since the adjacency matrix contains no loops, its trace

will be zero and hence µ = 0. Ds = Nms is the so called “number of directed paths

of the graph that return to their starting vertex after s steps” [41]. Skewness and

kurtosis are often used to describe shape characteristics of a distribution [42] and can

be used to characterize the spectra. The skewness is a measure of the asymmetry of

a distribution and is defined as:

S =
m3

m
3/2
2

=
N−1

∑

i λ
3
i

σ3
(4.4)

with σ2 = m2 =< k > the standard deviation [23]. The kurtosis is K is a measure of

the peakedness of a distribution and is defined as:

K =
m4

m2
2

− 3 (4.5)

For a Gaussian distribution m4

m2

2

= 3 and K=0. A semicircular distribution is known

to have S = 0 and K = −1.
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4.3 Construction of spatial ER, scale-free, and small-

world networks in Euclidean space

To construct spatial ER, scale-free, and small-world networks, N nodes are randomly

placed in Euclidean space in a 1× 1× 1 box. Then l edges are created, favoring ones

of shorter ED’s, leading to a network with average degree < k >= 2l/N . Spatial

dependence is obtained by choosing the probability pi,j to form an edge between 2

nodes i and j to depend on the ED di,j between them:

pi,j ∝
d−α

i,j
∑

b,c d−α
b,c

(4.6)

The strength of the spatial selection is determined by the value of the “proximity

factor” α. When α = 0 there is no spatial dependence. For α → ∞ only the closest

edges will be chosen. We now discuss in more detail the construction method for

each of the 3 networks under investigation. In our simulations we use N = 1000

and l = 5000 resulting in < k >= 10. All data result from averages over 100

configurations.

Table 4.1: Average ED for spatial-dependent networks.

α 0 2 4 6 8 10
ER/SW, p = 1.00 0.480 0.328 0.169 0.120 0.109 0.105
SW, p = 0.75 0.386 0.278 0.278 0.278 0.107 0.104
SW, p = 0.50 0.291 0.224 0.143 0.113 0.106 0.103
SW, p = 0.25 0.195 0.165 0.125 0.109 0.104 0.102
Lowest cost/ER α → ∞ 0.100 0.100 0.100 0.100 0.100 0.100
SF 0.480 0.339 0.196 0.147 0.133 0.128

4.3.1 Spatial ER network

In a spatial ER network, each possible edge receives a connection probability as in

equation (4.6) favoring nearby nodes (α > 0). Once an edge is formed, the probability
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Figure 4.1: The average clustering coefficient over all nodes as a function of the path
length for spatial dependent networks. (a) Random ER for different α. The data
point for α → +∞ corresponds to the lowest cost network. (b) Spatial dependent
scale-free network for different α. (c) Small-world network for α = 3 and α = 6 for
different p. For comparison data of figure 4.1a is shown as well.

for creating that edge is set to zero and the new probabilities are calculated. Repeating

this process l times, a network with a Poisson connectivity distribution with a peak

at < k >= 2l/N is obtained. Alternatively we could have formed an edge between

each pair of nodes with a certain probability p [23]. This would have given roughly

the same results. Table 4.1 shows the average edge length for different values of α.

For higher α shorter edges are formed. The clustering coefficient [43] as a function

of average path length over all nodes is shown in figure 4.1a. The effect of proximity

is visible by a strong increase in the clustering coefficient and a moderate increase in

path length.

4.3.2 Spatial scale-free network

For constructing a spatial scale-free network we follow a procedure based on [44]:
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• Select at random a subset of n0 nodes and connect them. Nodes that have

connections are called active.

• Take an inactive node i at random and connect it with an active node j with

probability (up to a normalization factor)

pi,j ∝ (kj + 1)d−α
i,j (4.7)

where kj is the degree of node j, and di,j is the ED between nodes i and j. For each

of the nodes, we repeat step 2) m = 5 times until all nodes are active. The degree

distribution for α = 0 shows a drop-off with a power law and < k >= 2m = 10.

For large values of α the proximity effect limits the choice of available connections

thereby limiting the degree distribution, resulting in a deviation from a power law

behavior, as predicted in [44]. The effect of proximity is an increase in the clustering

coefficient (figure 4.1b). The path length is smaller than that of an ER network due

to the presence of hubs with a very high degree.

4.3.3 Spatial small-world network

In a dimensionless small-world (SW) network, a regular structure is obtained by

placing N nodes on a ring and connecting each of them to its < k > nearest neighbors

[40]. Then each edge is rewired with a probability p. For intermediate p the system

shows the small-world property, characterized by a small path length and a high

clustering coefficient. For p = 1 the ER random network is obtained, exhibiting a

small path length and a low clustering coefficient. For p = 0 the regular network stays

intact. For the small-world network in 3D Euclidean space, we create a lowest cost

configuration as the analogy of the regular structure. A lowest cost structure is found

in brain networks where the cost of edges is optimized [45]. This structure is obtained

by calculating the distance between all possible pairs of nodes, and connecting the
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N < k > /2 ones that are closest to each other. The construction method for the

spatial SW is therefore as follows:

• Calculate the ED between every possible pair of nodes, and connect the N <

k > /2 closest ones. This is the lowest cost network.

• Consider rewiring each edge with a certain probability p. If rewiring takes place,

the current edge is destroyed and replaced by a new edge while closer edges

are favored depending on α according to equation (4.6). During the rewiring

process, creation of every possible edge is allowed, but only once 1. At the end

of this rewiring cycle double edges can exist (except for p = 0 or p = 1).

• The “doubles” that exist after the rewiring cycle are now rewired, but this time

only non-existing edges are allowed. Hence in the final configuration there are

no multiple edges.

The network is completely determined by two parameters: the rewiring probability

p and the proximity factor α. Note that the SW with proximity network for p = 1

and a certain α will correspond to the spatial ER for the same α. We see from figure

4.1c that the clustering coefficient for the small-world network is always higher than

that for the ER for intermediate values of p. For p = 0 and p = 1 both networks have

the same clustering coefficient. p = 0 is the lowest cost network with the shortest

edges possible and is identical with the ER network with α → ∞. For α = 5 similar

results are found. Again, table 4.1 shows that for higher proximity, the average ED

decreases.

1During the rewiring process, the formation of double edges is allowed. However during the
construction, each edge can only be made once. Doubles are formed when the original edge is not
rewired.
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Figure 4.2: Eigenvalue spectra for spatially dependent networks: (a) ER, (b) scale-
free, (c) small-world for α = 0, (d) small-world for α = 5.

4.3.4 Eigenvalue spectrum of spatial networks

The spectral densities for the ER random network for different values of α are shown

in figure 4.2a. As expected for α = 0 we find a semicircle. For α = 5 the spectrum is

asymmetric. The peak shifts to the left, and the right tail becomes fat. For α = 10,

-1 is the most abundant eigenvalue. The spectrum for the scale-free network is shown

in figure 4.2b. Without proximity a triangular shape is found. For increased α the

peak of the spectrum shifts to the left while the right-hand tail becomes fatter, and

for α = 10 the peak is at -1. The small-world network with no proximity is shown in

figure 4.2c. p = 1 corresponds to an ER network. For lower p values the peak shifts

to the left and the right tail becomes heavier. For the lowest cost network, p = 0, we

find a peak at -1 and a very fat tail to the right. The small-world network for α = 5

is shown in figure 4.2d. For p = 1 the small-world network again corresponds to the

ER network with α = 5. For decreasing p there is a transition to the lowest cost
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Figure 4.3: Skewness (a) and kurtosis (b) for spatial dependent networks.

network (p = 0), and the peak at -1 becomes more prominent. All spectra show an

increased asymmetry with increased α. In order to quantify this effect we investigate

the skewness S of the spectra in figure 4.3. For the semicircle the skewness is slightly

higher than 0. This is due to the finite system size. As we will argue in Section 4,

for N → ∞, S → 0 in an ER network. For increased α the network becomes more

positively skewed and S increases. The lowest cost network shows the highest S.

Next, we look at the peakedness in terms of the kurtosis K. For the small-world and

the ER random networks, the kurtosis increases with α. For the semicircle K is close

to -1 as expected. The lowest cost network has the highest K. For the scale-free

network the kurtosis decreases for small α, and then increases for higher α.

4.4 Discussion

4.4.1 Skewness

To understand the observed asymmetry in figure 4.2 and the increase in skewness

with α in figure 4.3a, we go back to the definition of skewness, equation (4.4). This

can be transformed into:

S =
D3

Nσ3
(4.8)
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Since σ2 = m2 =< k > is independent of α, the skewness is directly dependent on the

number of directed paths (DP) starting from a vertex and returning to that vertex

after 3 steps, D3. We studied the general Ds behavior for an ER network, a spatial

ER network and the lowest cost network (fig. 4.4). The ER network with α = 0 has

a significant lower number of DP with odd s than DP of even s. This zigzag pattern

is a consequence of the fact that, except for a few connections, a random graph looks

like a tree and a tree has no DP of odd length. An ER network has no DP of odd

length for N → ∞ [28]. The number of DP with 2 steps D2 = Nm2 = N < k > is

independent of α. As a result of the spatial dependence there is a strong increase in

D3 and D5. We can understand the increase in D3 with α (figure 4.4) by comparing

the number of triangles T for the ER network with the number for a spatial network

using a regular lattice. On a triangle one can define 6 directed paths (starting from

each of the tree nodes and going either clockwise or counterclockwise).

Hence

D3 = 6T (4.9)

where T is the number of triangles. A triangle consists of 3 nodes all having degree

k = 2. Consider an ER network, and start from a specific node. There are on the

average
(

<k>
2

)

possible choices to pick 2 of its neighbors. The probability that these

2 neighbors are connected and a triangle is formed equals the total number of links

l = N < k > /2 divided by the possible total number of possible links N(N − 1)/2.

Therefore the number of triangles in the ER network is:

T =
N

3

< k >!

(< k > −2)!2!

N < k >

2

2

N(N − 1)
≈

1

6
< k >2< k − 1 > . (4.10)

The 1/3 comes from overcounting (each triangle has 3 corners). Combining equa-

tion (4.8)-(4.10) we find

S =
< k >2< k − 1 >

Nσ3
=

< k >1/2< k − 1 >

N
(4.11)
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Figure 4.4: The number of directed paths Ds in an ER network without proxim-
ity (squares), with strong proximity (α = 8, circles), and the lowest cost network
(diamonds).

This shows that the non-zero skewness for the ER with α = 0 in figure 4.3 is due to

the finite system size. We have verified this finite-size effect numerically. We have

also observed that in an “anti-proximity” network, where α is negative and distant

edges are favored, S → 0 for α → −∞. We now consider the number of triangles in a

network with proximity. Assume the nodes are placed on a 2D triangular lattice with

coordination number z = 6 and that only nearest neighbors (NN) can be connected

(lowest cost network). The number of triangles is different than the one for a simple

ER network since the probability p that the two chosen neighbors are connected, is

not the same. First of all the probability that the 2 chosen neighbors are NN of each

other equals 2z
z(z−1)

= 2
z−1

. Second, the number of possible links equals Nz/2 in this

case. Hence the number of triangles equals:

T =
1

3
N

< k >!

(< k > −2)!2!

2

z − 1

< k >

z
=

N

3z(z − 1)
< k >2< k − 1 > (4.12)
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For large N this is substantially higher than for the ER network. From equation (4.8)-

(4.9)-(4.11) we find here

S =
2 < k >2< k − 1 >

σ3z(z − 1)
=

2 < k >
1

2 < k − 1 >

z(z − 1)
(4.13)

We note that the increase in clustering coefficient with proximity observed in figure

4.1 is also due to an increase in the number of triangles T . The clustering coefficient

of a node i with degree ki is defined as the number of triangles ti in which vertex i

participates normalized by the maximum possible number of such triangles [43]:

ci =
2ti

ki(ki − 1)
(4.14)

In a system with N nodes the average clustering coefficient

C =
1

N

N
∑

i=1

2ti
(ki)(k1 − 1)

(4.15)

For large < k >,ki(ki − 1) is sharply peaked around < ki(ki − 1) >. In this case

C =
1

N < ki(ki − 1) >

N
∑

i=1

2ti =
6T

N < ki(ki − 1) >
(4.16)

, where we have used that T = 1
3

∑N
i=1 ti, since each triangle contributes to 3 nodes.

For an ER network with no spatial dependence, T is independent of N , hence both

S and C are inversely proportional to N according to equation (4.11) and equa-

tion (4.15). The inverse dependence of C is a well known property [23]. For lowest

cost networks, the number of triangles increases linearly with system size N and

hence S and C are independent of system size. Further we have performed our anal-

ysis in two dimensions, but since equation (4.16) is dependent solely on the number

of triangles we expect similar results for different dimensions.

4.4.2 Relation between skewness and clustering coefficient

By combining equation (4.8)-(4.16) and using σ =< k >1/2 [23] it is observed that

S =
6T

Nσ3
=

6T

N < k >3/2
= C

< k(k − 1) >

< k >3/2
(4.17)
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Figure 4.5: Skewness as a function of average clustering coefficient for the spatial ER
network (circles). Equation (4.17) is added as a solid line with a slope of 3.16.

This shows that the skewness is an alternative measurement of the clustering of a

network. We have numerically verified equation (4.17) by calculating the skewness as a

function of the clustering coefficient for different values of α for the spatial ER network

(figure 4.5). The measured values (circles) are in good agreement with the values

predicted by equation (4.17) (solid line). For the scale-free network the condition

under which equation (4.16) is a good approximation does not hold and we find a

slope different than the one expected by equation (4.17). Asymmetry arises from the

increase in the number of triangles in a network. Therefore, any method (not only the

introduction of spatial dependence) which increases T would also increase asymmetry.

For instance, increasing clustering in networks can be achieved by constructing a

scale-free network in which, with a certain probability, the step of adding a node with

preferential attachment is replaced by the creation of a triangle as described in [39].

We have constructed such networks and found indeed an increase in S, similar to the

increase in the spatial ones.
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4.4.3 The peak at -1

For all spatial networks it is observed that the spectrum peaks at -1 for high α values.

This peak is also related to the observed increase in the number of triangles in the

spatial network. To verify this hypothesis, we created an ER network and connected

some of the dead-end vertices (nodes with degree 1) in two different ways. First, only

dead-end vertices that are both connected to a common node were connected hence

creating a triangle. Next, dead-end vertices were chosen at random and connected.

For the first method we observed that the spectrum was a semicircle with a distinct

peak at -1. The second method did not alter the semicircular distribution of the

regular ER network. We conclude that the peak at -1 is induced by the spatial

nature of the network. For high α this leads to the connection of nodes that are close

to each other, resulting in an increase of triangles.

4.4.4 Kurtosis

We observed an increase in kurtosis with α for all SW and ER networks (figure 4.3b).

For increasing α the peak grows and shifts to the left (figure 4.2). For the scale-free

network, the kurtosis first decreases (figure 4.3b). This is the result of a combination

of 2 effects. First, the pure scale-free network already has a sharp peak and hence

high kurtosis around λ = 0. Second, for high α the degree distribution deviates from

a power law (figure 4.1 in [44]). Hence the network is not scale-free anymore and

the sharp peak decreases. Only at sufficiently high α values, the peak at -1 that is

characteristic of spatial dependence appears and K increases again.
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4.5 Conclusions

We have performed a study on the eigenvalue spectrum of spatial networks by mod-

eling spatial ER, scale-free, and small-world networks. It was found that a positively

skewed spectrum is a universal property of all spatial networks. We have shown that

the increase in skewness is related to the increase in number of triangles in the system.

We believe that the observed peak at -1 is also due to the increase in triangles. Our

results show that the eigenvalue spectrum can also be used as a tool to detect cluster-

ing in a network. One way to achieve such clustering is by spatial dependence. The

spectrum asymmetry is therefore a tool to study the degree of spatial dependence.

The spectrum sheds more information on the network structure than measures such

as ED distribution or path length. For instance, in the previous chapter the spectrum

was used to determine the maximum length of an edge in a simulated polymeric gel

[21].
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Chapter 5

Simulations of associating
polymers under shear

5.1 Introduction

In many systems, homogeneous flow is unstable above a critical applied shear rate or

shear stress. The fluid may relax down to and maintain the shear stress plateau by

separating into macroscopic coexisting bands of differing local viscosities and internal

structuring. This phenomenon is called shear banding and has been observed in a

wide variety of systems, such as emulsions, dispersions, granular materials, foams,

telechelic polymers, and wormlike micelles (WMs). As mentioned in chapter 1, WMs

are reversible breakable aggregates of surfactant molecules. As they are model com-

pounds for polymers, shear banding has been most extensively studied experimentally

in WMs [3, 46, 47, 48, 49, 50, 51, 52, 7]. Shear banding is usually observed using opti-

cal methods such as flow-induced birefrengence (FIB) [3], particle-image velocimetry

(PIV) [3], light and small-angle neutron scattering (SANS) [46], and nuclear magnetic

resonance (NMR) imaging [49].

One explanation for shear banding lies in the existence of multiple branches in

the underlying constitutive curve relating shear stress to the shear rate γ̇ in homo-

geneous flow, as shown in figure 5.1 [7]. The shear stress at first increases and then
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drops behind a shear rate ˙γM , corresponding to the maximum of the σ(γ̇) curve.

If the applied shear rate lies in the decreasing part of the flow curve, the initially

homogeneous flow becomes mechanically unstable. The mechanical characterization

of such a non-homogeneous flow is the existence of a plateau (σ(γ̇) = σp) in the

existing flow curve. Several non-monotonic rheological constitutive equations exist,

and correspond to different competing models [53, 46, 47]. One such model is the

Johnson-Segalman model [54], which leads to a modification of equation (1.4)

σ(γ̇) =
Gγ̇τ

1 + (1 − a2)γ̇2τ 2
+ ηγ̇ (5.1)

with a a slip parameter, G a constant, and τ the relaxation time. The first term

here is a viscoelastic term that causes the stress to decrease for intermediate γ̇ due

to the finite relaxation time of the system. For low and high γ̇, the stress increases

monotonically and homogeneous velocity profiles are expected. The lever rule state

that the interface between both bands increases gradually with the shear rate while

the local shear rates in both bands are constant. The average of the local shear rates

in the bands must be that of the applied bulk shear rate:

γ̇ = α1 ˙γc1 + α2 ˙γc2 (5.2)

where α1 + α2 = 1. Although some experiments confirm the lever rule [51, 47],

others indicate that the the bands still grow in time once the constant stress in a

transient measurement has been reached [3] and that the interface position strongly

fluctuates with time [52, 49]. Also, it has theoretically been shown using the Johnson-

Segalman model, that the picture of two stable bands separated by a stable interface

is insufficient to explain the complex behavior at the interface [55].

Shear banding in telechelic polymers has been studied more recently [56, 2, 57].

From these studies, it is clear that the picture of two bands, separated by a smooth

49



interface that increases linearly with shear, is oversimplified. Sometimes three bands

are observed and the behavior depends strongly on many parameters (tempera-

ture/atomic concentration, chemical structure, relaxation times of materials) [56, 17]

along with the details on how the flow curve was obtained [2]. Shear banding is a

complex problem that is still poorly understood.

Simulations can help in shedding new light on some aspects of the problem. They

allow us to study several properties on the microscopic scale that are impossible to

measure experimentally, such as the weight of the links in the network, the aggregate

size distributions, the lifetime of a junction, atomic concentration, etc. The goal

here is to verify the existence of shear banding within the system and investigate

if any differences between the bands are inherent to the formation of the two shear

rate bands. To our knowledge, simulations have not yet focused on these properties

specifically in the scope of shear banding.

Next, we will address some other effects of shearing the simulated system. As

explained in chapter 3, each polymer chain in our system can either form a loop or

a bridge. If both endgroups of the chain are part of the same aggregate, a loop is

formed. If both endgroups are part of different aggregates, the polymer chain bridging

those aggregates will be referred to as a bridge. There are reports of an increase in

number of loops under application of shear in simulation [58]. The loops then form

flowerlike micelles connected by bridgelike chains. Because of the abundance of the

looplike chains, the internal stress in the network decreases. Experimentalists often

explain such a drop in terms of an increase in loops and a decrease in elastically

active bridges [10, 2]. Other topological differences could also occur under shear. For

example, aggregates could be linked by more chains on average. This would also

lower the number of links. By assigning a weight to each link (the number of bridging

chains it consists of), we will investigate changes in the strength of the network. This
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Figure 5.1: Schematic representation of a non-monotonic flow curve exhibiting plateau
behavior indicative of shear-banding, taken from [3]. The dotted part corresponds to
an unstable flow.

is experimentally impossible and to our knowledge, has never been taken into account

before.

5.2 Methods

5.2.1 Application of constant shear and stress response

All results are at a temperature T = 0.35, well below the micelle transition. The top

wall is moved with a velocity v. 5% of the polymer chains are permanently grafted

to the top wall in order to shear the whole system. Hence the shear rate is γ̇ = v
h
. A

constant shear rate is applied that is varied between 1.79×10−6τ−1 and 3.58×10−2τ−1.

The relaxation time of the system, obtained from diffusion data in earlier work [19] is
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equal to 9.455 × 10−8τ−1. Hence, all shear rates under consideration are larger than

the inverse relaxation time and the system is in a non-equilibrium state. The force F

required to move the upper wall is obtained from interactions between the wall atoms

and the polymer beads. The shear stress is defined as

Shear stress =
F

A
(5.3)

with A the wall area. A transient stress response is then obtained by applying a

constant shear rate to the system for a long time and continuously measuring the

stress. Such a transient stress response is often shown as a function of shear strain,

which is the deformation in the x-direction divided by the distance between the two

walls, h = 27.84σ.

5.2.2 Velocity profiles

To calculate velocity profiles, the distance traveled in the x-direction by each indi-

vidual atom in the gel is recorded over a time interval ∆t = 2500τ . The resulting

velocities are binned in 56 slabs of thickness 0.5 σ, according to the average of the

particle’s initial and end location in the z-direction. In this way, several (typically

19) consecutive velocity profiles are recorded, and the time average of these different

profiles over 50000τ is calculated.

5.3 Results

5.3.1 Stress response

The stress, is shown in figure 5.2. For low strain the response is linear. This is

followed by a stress maximum which corresponds to the yield point. The maximum

occurs at a strain of 1.5 σ, independent of shear rate. These results are in agreement

with experiments on triblock copolymers [10], where it is shown that the position
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Figure 5.2: Stress response for γ̇ = 1.07×10−5τ−1, 2.1×10−5τ−1, 3.59×10−5τ−1, 1.07×
10−3τ−1.

of the stress peak is determined by the length of the polymer backbone. Consistent

with [59], our simulations show a stress overshoot. Once this peak is overcome, we

see that the system yields and the stress drops (strain softening [10]) and fluctuates

around an average value. Such fluctuations have been reported in experiments on

telechelics as well [2, 57]. The average stress as measured after the peak for each

shear rate is shown in figure 5.3. At low shear rates below γ̇ = 3.59 × 10−4τ−1, the

average stress only sligthly increases over a two orders of magnitude increase in the

shear rate. For higher shear rates, the stress strongly increases. A fit shows a slope

of 0.08 in the plateau regime. Most experiments show a significant positive slope in

the stress-plateau regime both for WMs [50, 51, 47, 48, 52], and for telechelics [2].
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Figure 5.3: Average stress taken after the stress peak. Below γ̇ = 3.59 × 10−4τ−1

there is a plateau-like regime with slope 0.08.

5.3.2 Shear banding

Shear bands were most clearly visible for γ̇ = 3.59 × 10−4τ−1. Figure 5.4 shows the

velocity profile of the particles in x-direction as a function of the distance perpen-

dicular to the moving wall. The result is obtained by averaging over 7 equivalent

runs that were cooled from different configurations at high temperature and sub-

sequently sheared. This averaging was necessary since single velocity profiles were

found to show complex behavior, with slightly different shear rates in both bands

and a chaning location of the interface. There exist two regions of different slope

below and above 17.1 ±0.5σ. The shear rates in both bands are only a factor of 4.3

different (γ̇ = 1.6 − 7.11 × 10−4τ−1), which is close to what is found in experiments

on telechelics [2], but less than observed for WLM [47]. When looking at a wide

range of shear rates, the study of many velocity profiles was necessary. There was

a lot of variation in shear rates in both bands, position of the interface, occurrence
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Figure 5.4: Velocity profile for γ̇ = 3.59 × 10−4τ−1 showing two regions of different
shear rate. The shear rate in the low shear rate band is γ̇1 = 1.6 × 10−4τ−1 and the
high shear band is γ̇2 = 7.11 × 10−4τ−1.

of shear banding (sometimes two bands only existed over a certain time interval, or

three bands were observed). We concluded that we did not find clear evidence of the

lever rule as the interface position did not increase significantly with increasing shear

rate. As mentioned already in the introduction, also experiments report on a complex

shear banding scenario in telechelics where the lever rule does not hold [56, 2].

5.3.3 Microscopic differences between shear bands

Table 5.1 shows a comparison of several microstructural quantities between the un-

sheared system, the low shear rate band, and the high shear rate band for γ̇ =

3.59 × 10−4τ−1. Data in the low and high shear rate band are obtained from aver-

ages over slabs between 1.8 and 5.8 σ from the walls. We observed strong spatial

fluctuations in the interface over time, in agreement with experiments [56]. There-
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fore, the slabs are chosen at a safe distance from both the time-averaged interface

and the wall, the latter in order to exclude wall effects. As expected, a stretching

of the chains causes a strong increase in end-to-end distance R2 under shear. The

stretch is identical in both bands, though. The bead concentration is not affected

by shear. However, the high shear rate band contains more aggregates, but many

of them consist of a single endgroup. A more detailed comparison of the aggregate

sizes in the unsheared system and in both shear bands is given in figure 5.5, which

shows the aggregate size distribution. As expected in the unsheared gel state the

distribution peaks around a preferred value of 16 end groups. After the application

of shear this value increases to 22. Such shear-induced aggregation has been reported

previously as other simulations of self-associating polymers observed a widening of

the aggregate size distribution [58]. In experiments on WMs the formation of larger

size aggregates has been suggested, although only in the high shear rate band [52].

Besides shear-induced aggregation also the breaking of smaller aggregates (fewer than

ten endgroups) is enhanced. This effect is most outspoken in the high shear rate band,

which is the main difference between the distributions for low and high shear rate

band. A measure for the dynamics of the system is the average lifetime of a junction.

Table 5.1: Overview of microstructural differences between unsheared and low and
high shear rate band for γ̇ = 3.59 × 10−4τ−1.

Property unsheared low shear rate high shear rate
〈R2〉 [σ2] 15.45 ± 0.10 23.15 ± 0.90 22.65 ± 0.50

bead concentr. [beads/σ3] 0.62 ±0.01 0.62 ±0.01 0.61 ± 0.01
agg. density [ 10−3 agg/σ3] 8.62 ± 0.04 7.90 ± 0.04 8.94 ± 0.15

average agg. size 17.90 ± 0.16 19.66 ± 0.23 17.82 ± 0.56
agg. size 1 [10−4 agg/σ3] 1.030 ± 0.115 5.030 ± 0.151 7.941 ± 0.103

junction lifetime [kτ ] 1 895 ± 153 11.22 ± 3.14 3.645 ± 0.625

Therefore, we measure the ratio of the junctions that survive over a given time inter-
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Figure 5.5: Aggregate size distributions for unsheared system (solid line), low shear
band (dot-dash line), and high shear band (thin line) for γ̇ = 3.59 × 10−4τ−1.

val ∆t. The lifetime is now defined as the time after which 1/e of the initial junctions

survive. It is important to note that if two endgroups were separated temporarily

but reunite later, the junction is still counted as surviving under the condition it is

present at ∆t. This means we consider the “effective lifetime” of a junction [60, 61],

which can be thought of as the average time for the initially bonded junction to no

longer recombine. This is of interest because it is typically measured in rheological

experiments. The result of shear is a strong increase in dynamics which results in a

decrease in lifetime of two orders of magnitude. This effect is strongest in the high

shear rate band. We found that all the properties described above point out a differ-

ence between both shear rate bands. However the change is gradual as a function of

the distance between the walls, rather than a sharp change at the interface.
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5.3.4 Loop/bridge ratio and weight of the links

It is often mentioned that under shear a large fraction of the chains connects with

both ends contained within the same aggregate (loop) instead of bridging between

aggregates (bridge) [57, 10]. The number of loops and bridges is shown in figure 5.6.

For γ̇ = 3.59×10−4τ−1, about 5% of the number of bridges are transferred into loops

during the simulation time, but this occurs gradually and especially for high values

of the strain, when the system is yielding. The drop in number of links is much more

abrupt and occurs simultaneously with the stress overshoot and subsequent drop in

figure 5.2, as indicated by the arrow. For low strain, the number of bridges barely

changes and there are fewer links than with no strain. This means that the aggregates

become linked by a higher number of bridging chains. We define the weight of a link

as the number of bridging chains between the two aggregates.

Figure 5.7 shows the link weight distribution for the sheared system gathered after

the yield peak, together with the distribution of the unsheared system. It is clear

that there are more links of large weight under shear. The crossover from a higher

probability to find a link of a certain weight in the sheared than in the unsheared

system, takes places at weight = 3. The “weak” links, consisting of only a single or a

double bridge, are ruptured easily and decrease under shear. The maximum weight

that is found in a link in the the system increases with shear rate from weight = 6

(unsheared) to weight = 16. We conclude there are two processes as result of the

shear. Initially the system strongly reorganizes. Since the number of bridges only

slightly changes, many weak links disappear in favor of growing strong links. For

large strain rates, this resilient network slowly turns bridges into loops. Our results

verify the experimentally hypothesised change in loop/bridge ratio, but since this only

occurs at high strain rates, the change in link weight distribution needs to be taken
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Figure 5.6: Evolution of number of bridges, links, and loops in the system for γ̇ =
3.59×10−4τ−1. A loop is a chain where both endgroups form a junction. A bridge is a
chain that bridges two aggregates. A link is a connection between two aggregates and
can consist of multiple bridging chains. The number of bridges linking two aggregates
is the weight of the link.

into account to explain the decrease in stress response once the system is yielding.

This idea is supported by the inset in figure 5.7 which shows the change in average

weight

〈w〉 =
∑

wP (w) (5.4)

under shear. 〈w〉 increases as soon as the shear is applied. The formation of such

a system consisting of links of high weight, is a direct result of the shear-induced

aggregation. This can be seen by studying the relation between the average size of

two aggregates that are connected, and the weight of the link between them, shown

in figure 5.8. The weight of the link increases linearly with the aggregate size. Recent

studies in our group show that the larger the link weight, the more it is aligned with
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Figure 5.7: Link weight distribution for unsheared and γ̇ = 3.59×10−4τ−1. The inset
shows the increase in 〈weight〉 which corresponds to the peak in the stress response.

the bounding walls (not shown here). This alignment does not occur for the unsheared

system, for which the orientation of the chains with respect to the walls was random.

Hence we envision a topology in which layers of aggregates are connected by strong

links with many chains parallel to the walls. Weaker links with a few chains, that are

more easily broken, connect in between these layers. Such layering of aggregates has

been indeed observed in aggregate density profiles (not shown here).

5.4 Conclusions

We applied a wide range of shear rates to the system and observed a region in the

shear-stress curve where the shear only slightly increases. Within this region, shear

banding was observed. The interface between both shear bands fluctuates over time

and our results confirm that the lever rule does not hold in telechelics.

Several microstructural changes were observed between both shear bands. Under
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Figure 5.8: The average size of two aggregates as a function of the weight of the link
in between them for γ̇ = 3.59 × 10−4τ−1.

shear there is a strong increase in dynamics, as indicated by the reduction of the

effective lifetime. This effect is stronger in the high shear rate band and therefore,

many aggregates consisting of a single endgroup are created. This results in more

aggregates in the high shear rate band, but since many of them only consist of one

endgroup, the average size is lower. The gradual change of these properties as a

function of distance to the moving wall indicate that the reason for those differences

are more likely to be the strong increase in dynamics, rather than inherent structural

differences between both bands.

We found a change in topology as a function of shear. The size distribution of

the sheared system indicates shear-induced aggregation: the system looses its pref-

erence to form aggregates of a specific size and the formation of larger and smaller

size aggregates is enhanced. The resulting bimodal distribution is known to be more
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robust against failure [29] than a single-peaked distribution, suggesting shear induces

a structural change into a more resilient network. This picture is verified by investi-

gating the weights of the links. As soon as the shear is applied, there is a decrease

in the number of links in the network. The aggregates that are only weakly linked

and have a weight lower than three, rupture more easily. The aggregates that are

strongly connected with weight higher than three, grow and get connected stronger.

Our results are of importance in the light of recently developed models that describe

a stress drop as a result of a decreased bridging factor [57, 10]. We find indeed that

a signifcant number of bridges is transferred into loops under shear, but only at high

strain rates. The change in number of links occurs almost instantaneously and corre-

sponds with the overshoot in the stress response. This indicates that the connectivity

of the network and the nature of the links (weight) needs to be taken into account to

explain the stress drop, and not merely the number of bridging chains in the system.

The observed rearrangement is a direct consequence of shear-induced aggregation.
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Chapter 6

Percolation and gelation

We discuss the percolation properties of a polymeric gel network. Because of its

reversible nature, geometric percolation occurs at a temperature well above the gel

transition. To understand rheological changes that take place at the transition, the

network consisting of long-lived junctions needs to be taken into account. For this net-

work, a percolating path ceases to exist after a certain time that depends on tempera-

ture. We show that Vogel-Fulcher-Tamman (VFT) theory describes this temperature-

dependence with high accuracy and that the temperature at which this time diverges

corresponds to T0 = 0.29. This is in perfect agreement with the gelation temperature

obtained from earlier work. Next, we study the temperature-dependence of the perco-

lation properties. A master curve can be constructed for the percolation probabilities

and survival rates. The empirical scaling factors follow the Williams-Landel-Ferry

(WLF) equation. The T0 obtained from WLF is in exact agreement with the one

obtained from VFT. These results are important in support of recent discussions that

report on similarities between gelation phenomena and glass transition.
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6.1 Introduction

Percolation theory describes the transition between a state where the system consists

of a set of finite size aggregates to a state where an infinite cluster spans the system. In

previous work, we showed that in glassy systems, percolation is strongly related to the

glass transition [62]. For a thin glassy film confined between two walls, heterogeneity

in the dynamics was found. This heterogeneity peaks at a specific time interval. When

the mobility is considered over this time interval, throughout the system domains of

clearly lower mobility exist. Percolation in the direction perpendicular to the wall of

such immobile beads occurs at the glass transition. This causes changes in mechanical

properties at this transition.

Also for the gel transition, rheological changes (gelation) are believed to be related

to structural changes (percolation). In the classical picture, starting from the sol state,

an increase in the volume fraction of the particles (or a decrease in temperature) leads

to the formation of aggregates. Eventually, one or more clusters of aggregates will

span the system (geometric percolation). These spanning clusters are able to transmit

stresses between the opposite sides of the system. As the volume fraction increases

further, more and more particles join the spanning cluster and the elastic behavior

of the system builds up. However, this picture is only valid for chemical gels, where

the junctions are permanent (e.g vulcanized rubber). For the reversible gels in this

study, this simplified picture does not hold. In our system, geometric percolation

occurs at T = 1.5, well above the transition temperatures that are characteristic for a

gel transition [19]. At this temperature the system can still flow, since the junctions

that give rise to a percolating path only are temporary. Geometric percolation does

not take into account the dynamic nature of the gel. Other work already showed

that gelation in a system with reversible junctions does not correspond to geometric
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percolation [5]. A better approach is to consider only the network formed by the

junctions that exist over longer time periods. Therefore in this chapter the goal is to

study percolation of the network made up by endgroups who have long-lived junctions

and see how this is related to the gel transition.

6.1.1 Relation gel transition and glass transition

Recently it has been pointed out that there are natural parallels between reversible

gelation and glass transition [63] and there is considerable interest in unifying these

two classes of disordered materials [64]. The glass transition is a reversible transition

in amporphous materials from a hard and relatively brittle state into a molten or

rubber-like state. There is a massive change in physical properties, such as an increase

in relaxation times of many decades. One similarity between glasses and gels lies in

relaxation dynamics. For glasses, two pronounced relaxation processes, known as α

and β relaxation, govern the near-glass transition. The fast α relaxation originates

from the localized motion of particles inside cages that are formed by their neighboring

particles. The slow β relaxation expresses the breakup of particle cages. Experimental

measurements on the light scattering properties of gelatin indicate analogies to such

glass-like relaxation behavior [65]. The long-time component of the relaxation time

spectrum follows a power law in relaxation time for both. However the powerlaw

exponent has a different sign [66, 67]. Another similarity is that the diffusivity data

for the gel can be fit well using the Vogel-Fulcher form, which is known to describe

the relaxation in glasses [19]. Furthermore, gels and glasses are difficult to distinguish

rheologically. Both show a critical slow down in the approach of the liquid-to-solid

transition. Similarities between vitrification and gelation have also been pointed out.

Vitrification is the creation of a glass and is achieved by rapidly cooling a liquid

through the glass transition. This is similar to the change in dynamic properties that
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occur in a gel. At the micelle transition temperature Tm there is an abrupt increase in

the number and lifetime of junctions, resulting in the formation of larger, permanent

aggregates. Recent work uses a simple lattice model to show that depending on

the volume fraction and quench path, the system can behave as a uniform liquid,

solution, or as an inhomogeneous glass or gel [68]. It is proposed that a mechanism

for gelation is an extension of the glassy state; gelation is seen as an incomplete

phase separation arrested by the onset of the glass transition. Also for colloidal gels

similarities with gels have been discussed [69]. In the light of these discussions, one of

our concerns is to investigate the connection between gelation and glass by studying

the temperature dependence of the percolation properties. We show that techniques

used for shifting visco-elastic properties in glasses, like Williams-Landel-Ferry and

Vogel-Fulcher-Tamman theory, also hold for the gel.

6.2 Survival rate and percolation: Definitions

To study the network consisting of junctions that live longer than average, we in-

troduce the concept of the survival rate. This is defined as the number of junctions

between endgroups that have not permanently disappeared after a certain time. This

concept is explained in figure 6.1. The numbers on the picture correspond to the sizes

of the aggregates that result from the junctions between endgroups. At a certain time

t0 we record the number of junctions n0 that exist in the system. Then at time in-

terval t= t0 + ∆t it is recorded how many of the initial junctions n(t) still exist. The

ratio

s(t) = n(t)/n0 (6.1)

is called the survival rate (SR). If a junction temporarily breaks in between t0 and

t0 +∆t but forms again later, it is counted as surviving, under the condition it exists
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Figure 6.1: Clarification of survival rate. 15 endgroups are shown, with 10 junctions
in between them resulting in 4 aggregates. At t0 there is a path that spans the whole
system. At t0 + ∆t, 3 out of 10 junctions have disappeared. The surviving junctions
now form 7 smaller aggregates and percolation has vanished.

at t0 + ∆t. This fully takes into account the reversible nature of our network. In the

example cartoon n0 = 10, n(t) = 7 and the SR is 0.7. The junctions in green will

not exist anymore at t0 + ∆t. The time where SR reaches 1/e of its initial value is a

measure for the effective lifetime [60, 61], as mentioned in the previous chapter. This

is measured in rheological experiments, and can be thought of as the average time for

the initially bonded junction to no longer recombine.

The system is said to be percolating after a certain time, if the aggregates that

result from the surviving junctions between endgroups form a path that spans over

the system from the bottom wall to the top wall. In the cartoon the system is initially

percolating at t0. At t0 + ∆t some vital junctions are broken and percolation is lost.
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6.3 Williams-Landel-Ferry equation

We are interested in describing the effect of temperature on the percolation prop-

erties. For glassy systems, above the glass transition there are tremendous changes

in viscoelastic properties that characterize the system. Below the glass transition

such changes do not appear. The properties can be expressed in terms of a single

function at a reference temperature Tref , whose form can be determined experimen-

tally, whether or not it can be conveniently represented by an analytical expression.

This is known as the time-temperature superposition and is only valid if the shape

of the property is the same for adjacent T . The scaling factors a(T ) are determined

empirically by making everything superpose:

a(T ) =
tT

tTref

(6.2)

with tTref
and tT the time for the property of interest to reach a certain level at the

reference temperature and the current T . These empirical scaling factors follow the

Williams-Landel-Ferry (WLF) equation:

ln a(T ) =
−C1(T − Tref)

C2 + (T − Tref)
(6.3)

with C1 and C2 empirical constants adjusted to fit the values of a(T ). For glassy

systems the universal values are C1 = 17.44 and C2 = 51.6 K. WLF is mathematically

equivalent to the Vogel-Fulcher-Tamman (VFT) law that is often used to describe the

dependence of relaxation times τ on temperature:

τ(T ) = τ0 exp(
B

T − T0
). (6.4)

Here τ0 and B are material parameters. In previous work studies showed that the

relaxation times diverges at T0 = 0.29. This corresponds to the the gelation tempera-

ture at which the diffusivity goes to zero, and the viscosity becomes infinite [19]. Tref
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Figure 6.2: The survival rate for different temperatures. Results were obtained by
averaging over 5 configurations.

and T0 are directly related [70]:

T0 = Tref − C2 (6.5)

WLF is typically used in glasses [71]. We are interested to see if the above described

techniques hold for the percolation properties of the gel.

6.4 Results

6.4.1 Survival rate and percolation probability

The SR is shown in figure 6.2 on a log-log scale for temperatures between T = 0.40

and T = 0.6. Results are obtained by averaging over 5 different starting points. For

the lower temperatures, the junctions survive over longer times. For T < 0.4, the time

to simulate the data exceeds practical hardware limits. We introduce the percolation

probability. For a time interval ∆t we record the surviving junctions for 50 sets, with

different starting points. For each set it is checked if at least one percolating path
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Figure 6.3: (a) Percolation probability as a function of time interval. (b) Same data
shifted using emperical scaling factors.

exists that spans across the system, as discussed in figure 6.1. The average probability

for this to occur is the percolation probability (PP) and is shown in figure 6.3 (a) as

a function of the chosen time interval. The curves display similar shapes, and for the

lower temperatures, percolation occurs at much longer time scales. Each time interval

results in a corresponding SR. The PP is shown as a function of the SR in figure 6.3

(b). For T ≤ 0.5 the graphs overlap. The onset of deviations corresponds to the

micelle transition temperature Tm = 0.5. In previous work it was shown that at this

temperature, the number of junctions increases sharply and size distributions become

single peaked [19]. It can be understood that these low T show similar percolation

behavior, as we showed in chapter 3 that their topology is similar (consisting of a

densely connected network of superpeers).

6.4.2 Determination of gelation temperature and T -dependence
of percolation properties

The percolation threshold of the system is defined as the time interval for which

the PP equals 0.5. This is shown for different temperatures in figure 6.4. When we

fit this with VFT, equation (6.4), we obtain τ0 = 0.28, B = 1.48, and a divergence

temperature in exact agreement with the gelation temperature found in previous work
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Figure 6.4: Percolation threshold for different temperatures. The VFT fit from equa-
tion (6.4) uses τ0 = 0.28054, B = 1.48605, and T0 = 0.29375.

T0 = 0.29. T0 is independent of the definition of percolation threshold, as the same T0

is obtained for e.g. a PP of 0.8. This shows that percolation can be used to determine

the gelation temperature.

Next, we are interested in seeing if percolation properties show a universal temperature-

dependent behavior. We choose Tref = 0.4. The motivation for this choice is that the

SR still decays significantly so it is computationally possible to gather sufficient data,

and it is close to, but above gelation. Figure 6.5 shows the same data as figure 6.3 (a)

but shifted empirically so that the curves correspond at T = 0.4 for PP 0.5. The used

shift factors a(T )PP,emp are shown in table 6.1 and the PPs correspond very well. For

T > 0.6 the curves clearly differed (not shown here). The corresponding regime is in

agreement with the temperature regime up to where the VFT holds in figure 6.4. The

WLF constants can now be extracted by fitting −1/ ln a(T )PP,emp using a linearized

form of the WLF equation (6.3) [72]. The agreement for this was excellent, with a
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correlation coefficient 0.997. We obtain C1 = 14.35 and C2 = 0.11. C1 is close to the

one found for glassy system. C2 is significantly lower than what is found for glasses,

since in our system temperature is expressed in Lennard-Jones units. Table 6.1 also

shows that the shift factors a(T )PP,WLF , predicted by the WLF equation (6.3), are

close to the empirical ones. As the VFT equation is mathematically equivalent to

the WLF equation, we should also be able to shift the percolation probabilities using

equation (6.4) and the VFT parameters obtained by fitting the percolation tresholds

using VFT (figure 6.4). The resulting shift factors a(T )PP,V FT indeed agree with the

empirical and WLF shift factors. A final test to see if WLF and VFT hold for the

PP is to obtain T0 using the relation between the WLF and VFT parameters from

equation (6.5). We find T0 = 0.291, in agreement with the T0 from the actual VFT

fit in figure 6.4.

Also for the SR a master curve can be obtained using WLF. The shifted curves

use empirical shift factors a(T )SR,emp and correspond at SR of 0.5, as shown in figure

6.5 (b). The linearized WLF fit for a(T )SR,emp shows a correlation coefficient 0.986

and we obtain C1 = 9.30 and C2 = 0.040. The table shows that a(T )SR,emp and

a(T )SR,WLF correspond closely. The shift factors for SR are different from the ones

used for PP. The WLF is typically used for viscoelastic properties such as storage

shear modulus, loss modulus, and relaxation modulus. It can be argued that the

governing processes in PP are similar to those for relaxation times. This is confirmed

by the fact that we found that T0 from the VFT fit for percolation threshold is the

same as the fit obtained from relaxation times.
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Figure 6.5: (a) Percolation probability from figure 6.3 (a) shifted empirically. (b)
Survival rate from figure 6.1 shifted empirically. In both cases Tref = 0.4. The
scaling factors a(T )pp,emp and a(T )sr,emp are shown in table 6.1.

Table 6.1: Shift factors for percolation probabilities (PP) and survival rates (SR)
for Tref = 0.40. The scaling factors are obtained as follows: a(T )PP,emp through
equation (6.2) with tT the time at which PP is 0.5; a(T )PP,WLF using equation (6.3)
with C1 = 14.35 and C2 = 0.11; a(T )PP,V FT using equation (6.4) with τ0 = 0.28054,
B = 1.48605, and T0 = 0.29375; a(T )SR,emp with tT the time at which SR 0.5;
a(T )SR,pred through equation (6.3) with C1 = 9.30 and C2 = 0.040.

T ln a(T )PP,emp ln a(T )PP,WLF ln a(T )PP,V FT ln a(T )SR,emp ln a(T )SR,WLF

0.40 0 0 0 0 0
0.425 -2.67 -2.69 -2.66 -3.71 -3.62
0.45 -4.72 -4.53 -4.48 -4.79 -5.21
0.50 -6.75 -6.89 -6.78 -6.53 -6.68
0.55 -8.1 -8.33 -8.19 -7.55 -7.37
0.60 -9.39 -9.31 -9.13 -8.35 -7.77

6.5 Conclusions

In summary, we show that the percolation properties of the network made up of

junctions that survive over longer timescales can be used to determine the gelation

temperature. The percolation threshold at a certain temperature is a measure for the

time at which percolation ceases to exist in the surviving network. These thresholds

follow VFT behavior and it is predicted that at T0 = 0.29 this timescale diverges.

This is in agreement with the gelation temperature obtained in earlier work and
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shows that percolation can be used to obtain the gelation point. Next we studied

the temperature dependence of the percolation probabilities. These show universal

behavior and a master curve can be constructed. The empirical scaling factors follow

the WLF equation, which is commonly used to describe the connection between the

temperature and the relaxation time of a polymeric material. Also the survival rates

correspond when shifted using WLF. The idea that VFT and WLF hold in our system

is further confirmed by the fact that the T0 from WLF is in agreement with the one we

obtained from the VFT fit of the percolation thresholds. Our results support the idea

that the gel transition shows similarities to the glass transition. It is important to

further quantify this agreement. Molecular glasses show specific aging signatures, such

as intrinsic isotherms, asymmetry of approach, and memory effect. To elucidate the

relationship between the behavior of colloidal suspension and glasses, these signatures

have been tested in recent work [73]. Similar tests could be performed for reversible

gels.
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Chapter 7

General conclusions and future
prospects

In this dissertation we have performed a detailed study of a simulated telechelic poly-

mer gel network. In chapter 3 we focus on the network when there is no stress applied.

Concepts from complex network theory were used, by identifying the aggregates as

nodes and the polymer chains as links. The degree distribution is bimodal and con-

sists of two Poissonians. We distinguish between two different communities of nodes;

peers and superpeers. The average degrees of both Poissonians and the ratio of peers

to superpeers changes and depends on the temperature. By creating dummy net-

works that show matching eigenvalue properties to the simulated gel, we characterize

the topological changes that accompany the sol-gel transition temperatures. Below

the micelle transition temperature, the network takes a resilient structure. It consists

of a highly connected network of superpeers, of which some are connected to “dan-

gling” peers, while the peers do not show connections amongst themselves. Such a

bimodal network is very robust against failure and is common in design of informatics

networks.

As a continuation of this work, the chemical kinetics of the aggregation processes

were recently studied in our group [74]. Aggregates can either break apart producing
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smaller components or join together forming larger size aggregates. This can give

more information on how the larger aggregates in the system are formed- does this

take place by joining two medium-sized aggregates or does it occur progressively by

adding single endgroups? From this study it seems that at low temperatures (T=0.45)

aggregates mainly form by addition of smaller size aggregates to an existing larger

one. The breaking process is different- aggregates break into more or less equally

sized aggregates. At higher temperatures the reactions are more uniform: aggregates

break into aggregates of all different sizes.

While studying the eigenvalue spectra of the gel, it was observed that spatial

dependent networks show asymmetric eigenvalue spectra. By introducing a spatial

dependence to ER, spatial, and small-world networks, it is shown in chapter 4 that

a positively skewed spectrum is a universal property for all spatial dependent net-

works. Eigenvalue spectrum can be used to measure the clustering of a network (fig-

ure 4.5) and the relation between clustering coefficient and skewness of the network is

mathematically derived in equation (4.17). Because of the ongoing developments in

geographical information systems (GIS), spatial data is collected on many real-world

systems. It would be interesting to calculate eigenvalue spectra for such networks

and match our findings with real-world examples. The spectra gives more informa-

tion than traditional tools to measure clustering, such as Euclidean distance or path

lengths, and could be included in GIS mapping software.

Eventually the goal is to study our system under stress, as many of the applica-

tions of gels deal with out of equilibrium systems. In chapter 5 we studied the system

under application of a constant shear rate. The transient stress response shows vis-

coelastic properties: a stress overshoot, followed by a stress drop and fluctuations

around an average value. There is a region in which the average stress does not sig-

nificantly increase when the shear rate is increased over several orders of magnitudes.
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Within this region, the velocity profiles shows signs of shear-banding and the system

consists of two bands that move with a different shear rate. The interface between

those bands shows spatiotemporal fluctuations. The lever rule, that predicts a smooth

interface between the bands whose position moves with increasing shear rate, does not

hold in our system. The simulation allows for a detailed study of possible differences

between physical properties between both bands. This gives us new information on

atomic concentration, lifetime of junctions, average aggregate size and size distribu-

tions in both bands, which are experimentally impossible to measure. We find that

some of these properties change gradually across the polymer film, but no sharp in-

crease is detected at the interface. The system shows shear-induced aggregation, and

larger aggregates are formed upon application of shear. These aggregates are con-

nected by links of higher weight, while weak links of low weights, break more easily.

The resulting size distribution is bimodal, once again indicating a restructuring of the

system. We observe a decrease in number of bridging chains in favor of the number

of loops, but only at timescales far longer than at which the initial rearrangement

occurs. Future work should consist of studying the exact structural changes in more

depth. A time-dependent picture of the changing topology is of interest. Also a study

of the reaction rates under shear is important. This, in combination with a study of

the reaction rates of the loops and bridges might reveal more information on how the

rearranged structure comes into existence and what changes occur after the initial

rearrangement.

Our current experiments are performed under constant shear. Oscillatory shear

measurements can be a source of new information. In such experiments the top wall

is oscillated by applying a sinusoidal strain. In small oscillatory shear measurements

(SAOS) the response is linear. For large oscillatory shear measurements (LAOS), the

deformations are larger and the system shows non-linear behavior. From the stress
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response the dynamic moduli can be calculated. The in-phase behavior (storage or

elastic modulus) G′ measures the stored energy and represents the elastic portion. The

out-of-phase behavior (loss or viscous modulus) G” represents the energy dissipated as

heat, the viscous portion. The moduli can also be studied as function of temperature.

In this way the dynamical gelation point, the cross-over point between G′ and G”

as a function of temperature, can be determined. Also, gels have a uniform and

predictable rheological response in vivo, regardless of the mechanical environment to

which they are subjected. It can be tested if G′ does not change significantly for

different ranges of the stress and strain, as is the case for triblock copolymers [14].

The relation between percolation and gelation has been a topic of discussion over

several decades. In chapter 6 the approach for this problem is to only look at the part

of the gel network that survives over long timescales. This network is responsible for

the rheological behavior that makes gels so interesting. The percolation threshold

is a measure for the timescale at which a percolating path in this network ceases to

exist. The change with temperature of this timescale can be described by the Vogel-

Fulcher-Tamman law. We show that at the gelation temperature, the percolation

threshold diverges. This indicates percolation can be used to determine the glass

transition. Next, it is shown that a master curve can be constructed by shifting per-

colation properties such as percolation probability and survival rate. The shift factors

are well described by the Williams-Landel-Ferry equation. As this is a method com-

monly used for shifting viscoelastic properties in glasses, this is in support of recent

discussions that point out similarities between glass and gel transition. The three

classical aging signatures observed in molecular glasses could be tested to give more

insight in these similarties. In such experiments, structural properties are measured

after performing specific temperature changes. For instance, one could measure the

time for the property to reach equilibrium, upon cooling to an increasingly lower
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temperature. Another experiment consists of two temperature change steps with the

same magnitude: a down-jump from T1 + ∆ to T1 and an up-jump from T1 − ∆ to

T1, and a measurement of the recovery in both cases. Also memory experiments can

be performed, in which the sample is first cooled from T0 to Ti, allowed to partially

recover, and then again increased. Similar aging experiments could be performed to

further quantify similarities between gels and glasses.
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Srinivasa Rao Pullela, and Zhengdong Cheng. Signatures of structural recovery in

colloidal glasses. Phys. Rev. Lett., 106:095701, 2011.

[74] Mark Wilson, Avinoam Rabinovitch, and Arlette R. C. Baljon. Aggregation kinetics

of a simulated telechelic polymer. Phys. Rev. E, 84:061801, 2011.

90


	Claremont Colleges
	Scholarship @ Claremont
	2012

	Simulated Associating Polymer Networks
	Joris Billen
	Recommended Citation



