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A mathematical model of immune response to
tumor invasion

L.G. de Pillis®*, A. Radunskaya ®!

“ Harvey Mudd College, Department of Mathematics, Claremont, CA 91711, USA
b Pomona College, Department of Mathematics, Claremont, CA 91711, USA

Abstract

Recent experimental studies by Diefenbach et al. [1] have brought to light new information about how the immune
system of the mouse responds to the presence of a tumor. In the Diefenbach studies, tumor cells are modified to
express higher levels of immune stimulating NKG2D ligands. Experimental results show that sufficiently high levels of
ligand expression create a significant barrier to tumor establishment in the mouse. Additionally, ligand transduced tumor
cells stimulate protective immunity to tumor rechallenge. Based on the results of the Diefenbach experiments, we have
developed a mathematical model of tumor growth to address some of the questions that arise regarding the mechanisms
involved in the immune response to a tumor challenge. The model focuses on the interaction of the NK and CD8* T
cells with various tumor cell lines using a system of differential equations. We propose new forms for the tumor-immune
competition terms, and validate these forms through comparison with the experimental data of [1].

Keywords: Cancer; Tumor; Vaccine; Immunotherapy; Population models; Competition models; Mathematical modeling;

Immune system; Ordinary differential equations

1. Introduction

A tumor’s response to treatment depends on many fac-
tors, including the severity of the disease, the application of
the treatment, and the strength of patient’s own immune re-
sponse. Mathematical modeling of this process is viewed as
a potentially powerful tool in the development of improved
treatment regimens. The mathematical modeling of tumor
growth and treatment has been approached by a number of
researchers using a variety of models over the past decades.

Therapeutic cancer vaccines have been studied recently
in the medical community as a promising new adjuvant
therapy. It is therefore important that we begin to develop
mathematical models of tumor growth that include an im-
mune system response, and ultimately a response to vaccine
therapy.

To that end, we have developed a mathematical model
of tumor-immune interactions to address some of the ques-
tions that arise regarding the mechanisms involved in the
immune response to a tumor challenge. Our model is
based upon and validated by recent experimental studies by
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Diefenbach et al. [1], in which mouse tumor cell lines are
modified to express higher levels of immune stimulating
NKG2D ligands. The experimental results show that suffi-
ciently high levels of ligand expression create a significant
barrier to tumor establishment in the mouse. Additionally,
ligand transduced tumor cells stimulate protective immu-
nity to tumor rechallenge. There is hope that these treat-
ments with ligand-transduced tumor cells will eventually
lead to the ability to effectively eliminate pre-established
tumors, as well as naturally arising tumors.

Our mathematical model focuses in particular on the
interaction of the NK and CD8" T cells with various tu-
mor cell lines using a system of differential equations. The
model is used to explore the dynamics of tumor rejec-
tion, as well as to describe the development of protective
immunity to subsequent tumor challenges.

The mathematical structure of the model is based upon
earlier modeling work [2], in which tumor growth, an
immune response, and chemotherapy treatment are rep-
resented by a system of four differential equations. Our
representation also extends other lower-dimensional mod-
els, such as that described in [3] in which different cell
populations are represented as interacting species. Other
mathematical models that include an immune interaction
with a tumor are described in [4-12].
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2. The model

We focus on tissue near the tumor site, and we assume
a homogeneous tumor. We will first present our biological
assumptions, many of which are based upon the findings of
[1]. We will then develop our model equations.

2.1. Model equations

The main conclusions of the experiments in [1] can be
summarized as follows:

e NKG2D ligand expression (at sufficiently high levels)

— causes activation of CD8" T cells and NK cells
— presents a significant barrier to tumor establishment

e Ligand transduced tumor cells can stimulate protective
immunity to tumor rechallenge.

e Typical levels of NKG2D ligands naturally found on
most tumor cell lines are suboptimal. It is hoped that
tumor immunity can be boosted by engineering cells
with higher ligand levels.

The specific biological assumptions we will take into
account when developing our model equations are based
both on accepted knowledge of immune system function
as well as on conclusions stated in [1]. The assumptions
include:

(1) The tumor cells grow logistically in the absence of
an immune response. (This assumption is based on
previous work, and is also suggested by graphs in [1]
of tumor growth in mice without an immune response.)

(2) Both natural killer cells (NK) and CD8" T cells can
kill tumor cells.

(3) Both NK cells and CD8" T cells are activated by
tumor cells. Kill rates of both immune cell populations
are increased when the tumor cells have been ligand-
transduced. (This assumption is directly based on the
findings of [1].)

(4) There is a background level of NK cells, even without
any tumor being present.

(5) CD8* T cells are not present in the absence of tumor
cells.

(6) Both natural killer cells and CD8" T cells eventually
become inactivated after some number of interactions
with tumor cells.

We will denote the three cell populations by:
e T(t), tumor cell population at time ¢
e N(t), natural killer cell population at time ¢
e L(r),CD8" T cell population at time ¢
Using the above list of assumptions, we describe the
system as three coupled differential equations:

i—f:aT(l—bT)—FN(T,N)T—FL(T,L)T 1)
dN eT?
— =e— fN+——=N—-Iy(T,N) 2)

dt h+T?

; 2
= o T @

The form of the equations was derived based on the
principle of using the simplest form which would conform
to the data. The two terms in the first equation, Fy and F,
represent the fraction of tumor cells killed in interactions
with the two types of immune cells. Traditionally in the
literature these competition terms are proportional to the
competing populations, (see [2,4,7]). This form is generally
justified by considering a cell-kinetic mechanism through
which each immune cell has some fixed probability of en-
countering each tumor cell. In this model we will propose a
different functional form for the interaction of tumor cells
with the antigen-specific CD8™ cells.

Using the traditional form for the competition terms
means letting Fy = cN and F;, = dL for some parameters
¢ and d that need to be found through fitting with experi-
mental data. However, when fitting for the parameters ¢ and
d, we found that the linear product term produced growth
curves for T that were not a particularly good fit to the data
provided in [1]. Instead, we found that we could produce
curves that better fit the data by allowing

Fy(T,N)=cN¢¥ and
F (T, Ly=d(L/T)*/((L/T)* +1)

“)

See Figs. 2 and 3.

The form of this term is supported by observations from
[1]. In particular, both in vitro and in vivo experiments indi-
cate that percent lysis appears to be a function of the ratio
of CD8" T cells to tumor cells, explaining the appearance
of (L/T). Furthermore, the data indicate that the percent
of cells lysed never exceeds a maximum, resulting in the
rational form given in Eq. (4).

The “recruitment” term in Eq. (2), gT?/(h +T?), is of
degree two, since, once again, this is the simplest form for
the equation best fitting the data provided in [1]. For the
NK cells, it is assumed that recruitment is a function of the
total number of tumor cells in the system.

In Eq. (3), “deadT” represents the number of tumor
cells lysed by CD8" T cells, i.e. deadT = F; - T. The re-
cruitment term, also a rational function of degree two, is a
function of deadT alone, and does not depend directly on
NK-cells or on the total amount of dead tumor cells in the
system. This is because in [1] it is noted that it is ligand
expression that results in the priming of tumor specific T
cells, independent of the generation of cell debris by NK
cells. Diefenbach et al. point out that although there are
other studies which show that irradiated RMA cells can
be effective in vaccinating mice, their own studies show
that only mice vaccinated with irradiated ligand-transduced
cells developed immunity. Those vaccinated with irradiated
control-transduced tumor cells did not. Since it is under-
stood that the CD8" T cells are stimulated by the presence
of tumor cells that have been recognized and processed
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by the immune system, our recruitment term is a func-
tion of the population of tumor cells that have already
been attacked by T cells. In keeping with the Diefenbach
observations, this recruitment term does not include the
population of dead tumor cells generated by interactions
with NK cells, or those which die naturally.

We also choose the “inactivation terms” to be

where p and ¢ are parameters that have to be chosen to fit
the experimental data. These simple forms for Iy and I,
are sufficient to allow for a good data fit, and represent the
fact that immune cells are inactivated after some amount of
interaction with tumor cells.

The model can be used to simulate the effect of en-
hancing ligand expression on tumor cells by allowing the
relevant parameters to depend on the tumor-cell type. The
relevant parameters in this model are ¢ and d, the effec-
tiveness of the immune cells, along with g and j, the
recruitment parameters.

The parameters were estimated from the data in [1]
by minimizing a least-squares distance using optimization
software built into Matlab6. From [1] we were able to get
data on the growth curves of different tumor cell types in
the absence of an immune response, which allowed us to
fit for parameters a and b (see Fig. 1). The competition
parameters ¢ and d, as well as the exponents ey and
er, were found by fitting to data that measured percent
specific lysis as a function of CD8% T-cell to tumor-cell
or NK-cell to tumor-cell ratios. See Figs. 2 and 3. Data
measuring percent of IFN-y producing immune cells as a
function of ligand expression allowed us to fit for immune
recruitment rates stimulated both by ligand-transduced and
control-transduced tumor cells. Other parameters, such as
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the background source rate for NK-cells and death rates for
immune cells, were taken from the literature, e.g. [3].

Figs. 4 and 5 show simulations which reflect the re-
sults in [1]. Ligand transduced cells stimulate the im-
mune response enough to control tumor growth, while
control-transduced tumor cells escape immune protection.
In Fig. 5, the immune system is rechallenged after priming
with ligand-transduced cells, showing the development of
immunity.

The new forms for the competition terms we propose in
Eq. (1) may suggest some insight about the mechanisms
of the tumor-immune interactions. In contrast to NK cells,
CD8* T cells have to be primed by the tumor cells in order
to be activated. Therefore, for the CD8* T-cell to tumor-
cell competition term, dead”’, there were four different data
sets to be fitted: priming with control-transduced cells and
with ligand-transduced cells, then challenging with control-
transduced and ligand-transduced cells. Experimental data
indicated that the least effective combination was both to
prime and to challenge with control-transduced cells, in
which case there was at most around 10% lysis. In that
case, the exponent e, was about 1. The most effective
combination was to prime and then challenge with ligand-
transduced cells, resulting in a maximum of nearly 70%
lysis. In this case, the exponent e, was closer to 0.56.
This may indicate that ligand expression allows for fewer
interactions between T cells and tumor cells to be more
effective.

3. Summary

Further simulations and analysis explore the possibili-
ties of using ligand-transduced cells in vaccines, suggesting

Estimates of tumor growth parameters: a = .5822, b = 2.33*10°8
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Fig. 1. Curve fit for parameters a and b.
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Estimates of c-values using a product term
45 T

40 — Nonligand-transduced Cells / 1
O

—— Ligand-transduced Cells
*

25 T

20 ]

10 10’ 10°
c-values: 4.502e-006 7.0264e-005, errors: 3.4609 0.867

Estimates of c-values using exponential form of competition: en=1 44, e|=1
45 T

40 - /4
— Non-ligand-transduced cells /
o

—— Ligand-transduced cells /
35 * / 7

25 ]

20 T

10’ 10°

c-values: 4.2*10°8, 7*10°°, errors: 2.9, .86

Fig. 2. Curve fit for the parameters ¢ both with and without ligands. Top: with a product competition term; bottom: with an exponential
competition term.
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Non-ligand Parameters: Tumor Escapes
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Fig. 4. Top: System evolution with tumor escape. Bottom: System evolution with tumor controlled.
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Rechallenge with non-ligand cells after priming with ligand-transduced cells
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Fig. 5. Top: System evolution with non-ligand rechallenge. Bottom: System evolution with ligand-transduced rechallenge.
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optimal doses and timing of treatments. We note that this
model presents tumor-immune interaction terms of a qual-
itatively different form than those commonly used. This
form provides a good fit with experimental data resulting
from priming and rechallenge by different combinations of
tumor cell types. The mathematical model then suggests a
rethinking of the mechanism by which NK cells and CD8*
cells induce tumor cell lysis. These hypothetical mecha-
nisms could be tested in the laboratory, allowing further
refinements of the model and ideas for treatment.
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