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Abstract

Disrupting terrorist and other covert networks requires identifying and
capturing key leaders. Previous research by Martonosi et al. (2009) defines
a load metric on vertices of a covert network representing the amount of
communication in which a vertex is expected to participate. They suggest
that the visibility of a target vertex can be increased by removing other,
more accessible members of the network. This report evaluates the feasi-
bility of efficiently calculating the optimal subset of vertices to remove.

We begin by proving that the general problem of identifying the opti-
mally load maximizing vertex set removal is NP-complete. We then con-
sider the feasibility of more quickly computing the load maximizing single
vertex removal by designing an efficient algorithm for recomputing Go-
mory-Hu trees. This leads to a result regarding the uniqueness of Gomory-
Hu trees with implications towards the feasibility of one approach for Go-
mory-Hu tree reconstruction. Finally, we propose a warm start algorithm
which performs this reconstruction, and analyze its runtime experimen-
tally.
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Chapter 1

Introduction

Experts believe that clandestine organizations such as terrorist networks
are heavily dependent upon a well hidden leadership thus providing spe-
cific targets for disrupting the network. We also assume that the visibility
of an individual in the network correlates with the quantity of information
passing through that individual, and that this quantity of information is re-
lated to the individual’s position in the network’s structure. This suggests
that modifications to the network’s structure could be engineered to force
more information to pass through the target individual, thereby increasing
that member’s visibility. Specifically, Martonosi et al. (2009) proposed that
networks could be restructured by removing more easily located members
of the network.

We study the feasibility of quickly calculating which individuals to re-
move in order to optimally increase the target’s visibility.

1.1 Modeling of Covert Networks

We represent the clandestine network as a simple undirected graph with
vertices representing organization members, and we quantify the notion of
visibility due to communication passing through a vertex according to the
load metric proposed by Martonosi et al. (2009). Given a target vertex k,
let fij(G) be the value of a maximum flow (or equivalently, minimum cut)
between vertices i and j in graph G, and let G′ = G \ {v} be the subgraph
induced by V \ {v}. We define the load of k in G to be

L(k, G) = ∑
i<j∈V\{k}

fi,j(G)− fi,j(G \ {k})
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Figure 1.1: In this example graph, the load on k is only 3 because the flow
between most pairs of vertices does not depend on k. If v is removed, the
load increases to (m + 2)2; however, if u is removed, the load on k reduces
to zero.

Since G is a simple graph, fi,j is equivalent to the number of edge disjoint
(i, j)-paths, so we may interpret the load on k to be the sum over all possible
pairs i, j of the number of (i, j)-paths which must pass through k.

Our goal of maximizing the visibility of k is therefore represented as
maximizing k’s load. Since the effects of vertex deletion on load can be
complicated, determining an optimal subset of vertices to remove is non-
trivial. Figure 1.1 depicts an example calculation of load, and demonstrates
the effect of two possible vertex deletions.

1.2 Background Literature

Gomory and Hu (1961) described a tree structure (referred to today as a
Gomory-Hu tree) which encodes a minimum cut between each pair of ver-
tices in an undirected graph, and provided an algorithm for computing this
structure using only n − 1 maximum-flow computations. Gusfield (1990)
later offered a conceptually simpler algorithm. Goldberg and Tsioutsioulik-
lis (2001) experimentally compared variations of the Gomory-Hu and Gus-
field algorithms.

Bhalgat et al. (2007) described a randomized algorithm for construct-
ing Gomory-Hu trees of unweighted graphs in an expected time of Õ(mn).
This is the first algorithm which constructs Gomory-Hu trees without de-
pending on a minimum cut subroutine.

1.3 Overview

We begin by proving that the general problem of identifying the optimal
subset removal is NP-complete. This result indicates that a computation-



Overview 3

ally feasible solution is unlikely to exist.
A simpler variation of the problem is to identify the single vertex whose

deletion most significantly increases the load on k. A solution to this prob-
lem may then be applied as a subroutine in a heuristic or approximation
algorithm to solve the more general variation. The optimal single vertex
removal can be identified in polynomial time by a simple brute force algo-
rithm which calculates L(k, G \ {v}) for each v ∈ V \ {k} and returns the
best choice of v. However, since any heuristic or approximation algorithm
which utilizes a solution to the single vertex problem will make many calls
to this subroutine, we wish to develop a more efficient solution to the single
vertex problem.

Specifically, since the brute force algorithm requires many all-pairs min-
imum cut computations (or equivalently, Gomory-Hu tree constructions),
Martonosi et al. (2009) observed that the results of an all-pairs minimum
cut calculation in G may be applied towards a more efficient calculation of
all-pairs minimum cuts in G \ {v}.

Many Gomory-Hu trees may exist for a single graph. In Chapter 3,
we demonstrate that this diversity is due not only to vertex permutation,
but also the choice of minimum cuts when multiple such cuts exist. This
suggests that constructing the specific tree which changes least following a
vertex deletion is likely to be difficult.

Finally, in Chapter 4, we define a warm-start algorithm for recalculating
Gomory-Hu trees, and analyze its performance experimentally.





Chapter 2

The Load Maximizing Subset
Problem is NP-Complete

Perhaps the most applicable form of load maximizing vertex removal en-
tails identifying the optimal subset of vertices to remove subject to the con-
straint that the vertices we remove are among the accessible vertices. We
prove that this general variation of the problem is NP-complete, and there-
fore a polynomial time solution is unlikely to exist.

2.1 Problem Definition

Recall that the load on a vertex, k, as defined by Martonosi et al. (2009) is

L(k, G) = ∑
s,t∈V\k;s 6=t

fs,t(G)− fs,t(G \ k). (2.1)

In this proof, we will also refer to the load with respect to (s, t) defined
as

Ls,t(k, G) = fs,t(G)− fs,t(G \ k). (2.2)

An instance of the All-Pairs Load Maximizing Subset Problem (ALMSP)
is described by a 4-tuple (G, k, S, N) where G is a multi-graph representing
the covert network (note that the multi-graph is a more general structure
than a simple graph), k ∈ V is the target vertex, S ⊆ V is the set of vertices
for which deletion is feasible (ie: the set of accessible individuals in the
network), and N ∈ N is the minimum desired load on k. A solution is
represented by a set of vertices R ⊆ S such that

L(k, G \ R) ≥ N.
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s t

k

u

Figure 2.1: This simple graph (where the smaller vertices are stipulated
not to be in R) represents the multi-graph where the small vertices are not
present, and the pairs (s, k), and (u, t) are connected by 2 and 3 parallel
edges respectively.

An instance of the Single-Pair Load Maximizing Subset Problem (SLMSP)
is described by a 5-tuple (G, k, S, N, {s, t}), and a solution is a set of vertices
R ⊆ S such that

Ls,t(k, G \ R) ≥ N.

Although multi-graphs do not accurately model covert networks, we
justify their use by noting that a repeated edge {u, v} with r copies of itself
in E could be represented by edges {u, wi} and {wi, v}, where wi 6∈ S and
1 ≤ i ≤ r. Figure 2.1 depicts an example of a simple graph encoding a
multi-graph. This implies that for any form of LMSP, allowing or disallow-
ing parallel edges does not affect its complexity by more than a polynomial
factor. Henceforth, we may choose to either allow or disallow such edges
in our reductions.

2.2 Proof of NP-Completeness

We begin by proving that there exists a polynomial time reduction of SLMSP
to ALMSP. We will then prove that the SLMSP is NP-complete, implying
that ALMSP is NP-complete as well.

2.2.1 Reduction of SLMSP to ALMSP

Given an instance of SLMSP, P = (G, k, S, N, {s, t}), we construct an in-
stance of ALMSP, P′ = (G′, k, S, N′) such that a solution exists for P if and
only if a solution exists for P′. For this reduction, we do not permit parallel
edges.
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Figure 2.2: Figure 2.2a depicts an example of a graph G from an instance
of ALMSP. Figure 2.2b depicts the graph G′ constructed by our SLMSP to
ALMSP reduction. The dashed lines represent |V| parallel edges.

Choose M such that

M2 > 2(|V|3 − 2M|V|2). (2.3)

and define N′ = NM2. We construct G′ = (V ′, E′) where

V ′ = V ∪ {σi : 1 ≤ i ≤ M} ∪ {τi : 1 ≤ i ≤ M}

E′ = E ∪
|V|⋃
j=1

{{σi, s} : 1 ≤ i ≤ M} ∪
|V|⋃
j=1

{{τi, t} : 1 ≤ i ≤ M}.

The new graph is identical to G except for added vertices which are adja-
cent with |V| parallel edges to either s or t. Figure 2.2 depicts an example
of this reduction.

(⇒) Let R ⊆ S be a solution to P. We show that the same set is also a
solution to P′. Observe that for all i, j, fσi ,τj(G

′) = fs,t(G). It follows
that we can split the load on k in G′ into the contribution between
vertices in G and the contribution between vertices of form σi and τj.

L(k, G′ \ R) =L(k, G \ R)

+ M ∑
v∈V\{s,t,k}

Lv,s(k, G \ R)

+ M ∑
v∈V\{s,t,k}

Lv,t(k, G \ R)

+ M2Ls,t(k, G \ R)

(2.4)
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Since R is a solution to P, we know that Ls,t(k, G \ R) ≥ N. We may
then use Equation 2.4 to state

L(k, G′ \ R) ≥ L(k, G \ R) + M2Ls,t(k, G \ R)

≥ L(k, G \ R) + M2N
= N′

(⇐) Given a solution R ⊆ S to P′, we may write L(k, G′ \ R) ≥ N′. We use
Equation 2.4 and the fact that fu,v < |V| for any u, v to state

Ls,t(k, G \ R) ≥ 1
M2 [L(k, G′ \ R)− L(k, G \ R)− 2M|V|2]

≥ 1
M2 [N

′ − |V|3 − 2M|V|2]

= N − |V|
3 − 2M|V|2

M2

≥ N − 1
2

.

Since all our values are integers, it follows that Ls,t(k, G \ R) ≥ N.

2.2.2 SLMSP is NP-Complete

Calculating the load on k in a subgraph of G can be done in polynomial
time, implying that SLMSP is nondeterministically polynomial. In order
to prove our problem NP-complete, we need only show that there exists a
polynomial time reduction of 3SAT to SLMSP.

The 3-Satisfiability Problem (3SAT) entails determining the existence of
true/false assignments for the variables of a Boolean formula in 3-conjunctive
normal form (3CNF) which cause the formula to evaluate to true. A Boolean
formula in 3CNF consists of the conjunction of clauses of size 3, where a
clause is a disjunction of literals. For example, a formula in 3CNF with 3
variables may be

(xi or xj or xk) and (xi or xj or xk)

(where xj indicates the negation of variable xj), and one solution to this
instance is the valuation ν where ν(xi) = ν(xj) = true and ν(xk) = false.

Given a 3SAT instance with variables x1, . . . , xn, and clauses C1, . . . , Cm
(note that for this proof, n and m do not refer to the number of vertices and
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edges of a graph), we construct an instance (G, k, S, N, {s, t}) of SLMSP as
follows:

Let s be a vertex in G with two edges to each vertex {ci : 1 ≤ i ≤ n}.
For each i, ci is also incident to two edges leading to each of ai and bi. Both
ai and bi are adjacent to di via a single edge, and both are adjacent to t also
with a single edge. di is adjacent to the target vertex k. The target vertex
is incident to m + n edges between it and t. The features described so far
represent the 3SAT variables. We will choose xi = true if bi ∈ R, and
xi = false if ai ∈ R.

We then proceed to encode the m clauses. Let Cj (1 ≤ j ≤ m) be a
clause containing the negated or unnegated forms of three variables. Let
s be adjacent to uj with a single edge. For each variable xi` represented
in Cj, if xi` ∈ Cj, we create the edges {uj, ai`} and {ai` , vj}. If xi` ∈ Cj,
we instead construct {uj, bi`} and {bi` , vj}. Figure 2.3 depicts the SLMSP
instance constructed to encode a simple 3SAT instance.

Finally, we select N = m + n, and

S = {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n}.

We claim that for any instance of SLMSP which represents a 3SAT instance,
a solution exists to the SLMSP instance if and only if the 3SAT instance is
satisfiable as well.

(⇐) Given a satisfying valuation of the 3SAT variables ν : {xi : 1 ≤ i ≤
n} → {true, false}, we construct a SLMSP, (G, k, S, N, {s, t}) instance
as described earlier. It is easy to show that if we choose

R = {ai : ν(xi) = true} ∪ {bi : ν(xi) = false}

then

Ls,t(k, G \ R) = fs,t(G \ R)− fs,t(G \ (R ∪ {k})
= (m + 2n)− n = m + n

Since the Ls,t(k, G \ R) ≥ N, the problem instance is solved by R.

(⇒) Given that an SLMSP instance, P, which encodes a 3SAT instance, has
some solution R, we wish to show that a solution exists to the 3SAT
instance. In particular, we will show that the valuation

ν(xi) =

{
true : {ai, bi} ∩ R = {bi}
false : {ai, bi} ∩ R = {ai}

(2.5)
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Figure 2.3: The SLMSP instance constructed from the 3SAT instance with
four variables and a single clause {x1, x2, x3}.

will satisfy the 3SAT instance.

Notice that

Ls,t(k, G \ R) =
n

∑
i=1

min{2, fci ,t(G \ (R ∪ {s}))} −min{2, fci ,t(G \ (R ∪ {s, k}))}

(2.6)

+
m

∑
j=1

min{1, fuj,t(G \ (R ∪ {s}))} −min{1, fuj,t(G \ (R ∪ {s, k}))}.

(2.7)

We perform a case analysis to show that the terms in (2.6) each have
value at most one. Consider the ith term in the series. If both {ai, bi} ⊆
R, then ci is isolated, and the term is zero, if {ai, bi} ∩ R = ∅, then
the difference is again zero, and if exactly one of {ai, bi} is in R, then
the result is one. Furthermore, it is clear that all terms in (2.7) are
bounded above by one. Thus, since R is a valid solution, and the
equation contains exactly m + n terms, we conclude that each term is
equal to one.
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As demonstrated by our case analysis, this implies that for every pair
{ai, bi}, exactly one of the two is selected for removal. Thus our de-
scription of ν in (2.5) is well defined. Finally, since every term in
(2.7) has value one, the valuation leaves no clause without a satis-
fying variable. It follows that ν is a satisfying valuation for the 3SAT
instance, and that 3SAT ≤P SLMSP.

2.3 Summary

By proving this problem NP-complete, we have shown that an efficient
solution is unlikely to exist. Thus in order to continue pursuing load max-
imizing vertex deletions, we must resign to posing a more restricted prob-
lem, or seeking algorithms which do not guarantee optimality. One such
simplification entails identifying only the single vertex whose deletion max-
imizes the load on k. Furthermore, this simpler variant of the problem may
also serve as a subroutine to a heuristic or approximation algorithm for the
general problem we have shown to be NP-complete.

By only considering the optimal single vertex removal, we observe that
a polynomial time brute force algorithm exists for the problem (simply
compute L(k, G \ {v}) for each v ∈ V \ {k}, and return the best choice of
v). The ensuing chapters explore the feasibility of improving the efficiency
of this simple strategy by preserving information from the construction of
G’s Gomory-Hu tree in order to provide a warm start to the calculation of
of a Gomory-Hu tree for G \ {v} (v ∈ V).





Chapter 3

Gomory-Hu Trees

A Gomory-Hu tree for an undirected graph G is a tree T which encodes the
minimum cut value between every pair of vertices as well as a partition-
ing representing a cut of this value. For any pair of vertices u, v ∈ G, the
value of a minimum (u, v)-cut is equal to the weight of the lightest edge
on the unique (u, v)-path in T. Furthermore, we can obtain the partition
for a minimum cut of this value from the connected components that result
when this lightest edge is removed from T. Figure 3.1 depicts an example
graph and its corresponding Gomory-Hu tree.

A Gomory-Hu tree is particularly useful because it can be computed
with only n − 1 calls to a minimum cut subroutine as opposed to the (n

2)
calls required by a naı̈ve algorithm. Gomory and Hu (1961) defined the
first algorithm for constructing this structure, and Gusfield (1990) later pro-
duced a conceptually simpler algorithm. The Gusfield algorithm is de-
scribed in Appendix A.

a b

c d

a b

c d2

32

Figure 3.1: An example graph and its corresponding Gomory-Hu tree.
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3.1 Gomory-Hu Tree Diversity

It is easy to notice that the Gusfield algorithm will produce different trees
under different vertex permutations (consider Kn). The following result
demonstrates that diversity of valid Gomory-Hu trees for a graph G is not
a result of only the variety of vertex numberings, but also the potential
existence of multiple minimum cuts between vertices.

Proposition 3.1. Running the Gusfield cut-tree algorithm with every possible
ordering of vertices does not necessarily yield every valid Gomory-Hu tree for the
graph.

Proof. Consider the algorithm’s behavior on the complete graph G = Kn
using the following strategies for choosing a particular minimum-cut be-
tween vertices s and t.

• Choose the minimum cut (X, Y) where s ∈ X and |X| is as small as
possible. We call this an unbalanced minimum cut.

• Choose a minimum cut (X, Y) where s ∈ X and |X| − |Y| is as small
as possible. We will refer to this as a balanced minimum cut.

First we consider the Gusfield algorithm’s behavior on Kn using only
unbalanced minimum cuts. Since the set X derived from the minimum
cut is always a singleton set containing only s, the vector representing the
tree’s structure is never edited. It follows that the resulting tree is a star
graph centered about vertex 1 with all edges of weight n− 1.

Now consider the Gusfield algorithm’s behavior on Kn using a single
balanced cut at the first iteration, and unbalanced cuts for all subsequent
minimum cut calculations. After the first iteration, every vertex in X ex-
cept for s will have its edge in the vector tree redirected towards s. For
all subsequent iterations, X is a singleton set, so the tree’s structure is pre-
served. This ultimately yields a graph consisting of two star subgraphs and
an edge joining the stars’ centers.

These graphs are clearly not isomorphic, so it follows that using alter-
native vertex permutations does not account for the diversity of a graph’s
valid Gomory-Hu trees.

Figure 3.2 depicts two possible graphs produced by this construction
when n = 4.

One potential strategy for efficiently rebuilding a Gomory-Hu tree in
response to a vertex deletion is to explicitly build the original Gomory-
Hu tree such that for some subset of vertices, deletion of those vertices,
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a b

c d

a b

c d

a b

c d

3 3 3 3

33

Figure 3.2: An example of a graph with two distinct Gomory-Hu trees. The
difference is due to choices in minimum cuts as opposed to vertex permu-
tation.

causes the Gomory-Hu tree to change as little as possible. For example, if
we consider a Gomory-Hu tree for Kn structured as a star graph centered
about vertex r, deletion of any vertex except r has little effect on the tree’s
topology.

Our result suggests that constructing this specific tree which changes
least after a vertex deletion is likely to be difficult because not only will a
proper permutation have to be identified, but appropriate choices for min-
imum cut will also have to be made.





Chapter 4

A Warm-Start Algorithm for
Gomory-Hu Tree
Reconstruction

In order to facilitate the calculation of the optimal single vertex removal,
we now describe an algorithm for reconstructing the Gomory-Hu tree of
a simple graph G in response to vertex deletion. We begin with a brief
overview of the proposed algorithm followed by a detailed definition of
the necessary subroutines.

4.1 Algorithm Overview

The process begins with the initial construction of a Gomory-Hu tree T for
graph G. Since the reconstruction process will depend on more than the
minimum-cuts encoded in T, we define a slightly modified form of Gus-
field’s algorithm which, in addition to constructing a Gomory-Hu tree, also
provides a (u, v)-flow assignment for every edge {u, v} in G. We refer to
this algorithm as Gusfield-init.

In order to obtain a Gomory-Hu tree T′ for G \ {v}, we employ an-
other variation of Gusfield’s algorithm which we will refer to as Gusfield-
update. This algorithm behaves nearly identically to Gusfield’s original
algorithm, except every call to a maximum flow subroutine on vertices u
and v is preceded by a process which uses the flow assignments obtained
from Gusfield-init to build a (not necessarily maximum) (u, v)-flow assign-
ment in G′. This flow assignment is then used as a starting point for the
maximum flow subroutine.
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4.2 Subroutine Descriptions

We describe three major subroutines. The first subroutine, Gusfield-init,
constructs the initial Gomory-Hu tree from scratch. We then describe Gusfield-
update which uses flow assignments associated with an existing Gomory-
Hu tree to warm start the construction for a new Gomory-Hu tree (and col-
lection of flow assignments) following vertex deletion. Finally we describe
the join-paths subroutine which uses a set of edge disjoint (a, b)-paths and
a set of edge disjoint (b, c)-paths to construct a set of (a, c)-paths. This sub-
routine is used by both the Gusfield-init and Gusfield-update subroutines.

4.2.1 Gusfield-init

Given a graph G, this subroutine returns a Gomory-Hu tree T for G as
well as a (u, v)-flow assignment for every edge {u, v} in G, stored as a
list of edge disjoint (u, v)-paths. The following pseudocode will yield ar-
rays tree and weights which encode T’s topology and edge weights, and
flow-paths which stores the computed flow assignments corresponding
with the edges in T.

This subroutine returns, in addition to a tree structure with weights, a
vector flow-paths of length n where entry i contains a list of paths from i
to tree[i], and tree[i] is the vector describing the tree’s topology.

Gusfield-init Algorithm
Let tree be an array of length n which encodes the topology of the re-
sulting Gomory-Hu tree. Initially, tree[i] = 1 for all i. Ultimately, the
edges of the Gomory-Hu tree will be the pairs (i, tree[i]).
Let weights be an array of length n which stores the weight of edge
(i, tree[i]) in entry i.
Let flow-paths be an array of length n which, in position i, stores a list
of (i, tree[i])-paths.
for s = 2 to n do

t = tree[s]
Compute a minimum cut (X, X) between s and t where X is the set of
vertices on s’s side of the cut. Let fs,t be the size of this minimum cut,
and let st-paths be a list of edge disjoint (s, t)-paths obtained by the
max flow calculation which acquired the minimum cut.
weights[s] = fs,t
flow-paths[s] = st-paths
for i = 1 to n do

if i 6= s and i ∈ X and p[i] = t then
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reassign tree[i] = s
Use join-paths on reverse(flow-paths[s]) and flow-paths[i] to
construct a list of (i, s) paths, and store them in flow-paths[i].

end if
end for
if tree[t] ∈ X then

tree[s] = tree[t]
tree[t] = s
weights[s] = weights[t]
weights[t] = fs,t
Use join-paths on flow-paths[s] and flow-paths[t], and store the
result in flow-paths[s].
Reverse every path in st-paths and store the results in flow-paths[t].

end if
end for

4.2.2 Gusfield-update

This variation of the Gusfield algorithm is used to build the Gomory-Hu
tree T′ for graph G \ v. Its behavior is identical to that of the first variation
described above except that prior to computing a minimum cut between
vertices s and t, it uses the provided flow paths from the construction of T
to build a collection of (s, t)-paths in G. Those (s, t)-paths which make use
of v are discarded, and the remaining paths are used by a subsequent call
to the Ford-Fulkerson algorithm (a common maximum flow algorithm) to
warm start its calculation.

In order to assemble the (s, t)-paths, we begin by identifying the unique
(s, t)-path in the Gomory-Hu tree T. The flow paths associated with the
edges on this path in T are then stitched together using the join-paths sub-
routine to form a set of edge disjoint (s, t)-paths in G.

4.2.3 Join-Paths

The join-paths subroutine takes as input a list of edge disjoint (a, b)-paths,
and a list of edge disjoint (b, c)-paths, and returns a list of edge disjoint
(a, c)-paths. We use this subroutine to preserve the fs,t (s, t)-paths for every
edge (s, t) ∈ T while such edges may be redirected as the algorithm iter-
ates. The subroutine is again used to produce paths in G between vertices
which may not be adjacent in T.
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Subroutine Description

Let F = fa,b ≤ fb,c = F′, n = |V|, and m = |E|. We begin by describing the
data structures used in the algorithm. The inputs are a set of (a, b)-paths
Pi (1 ≤ i ≤ F) and a set of (b, c)-paths Qj (1 ≤ j ≤ F′). The paths are
represented as doubly linked lists of vertices. We assume the paths contain
no cycles (we can remove them otherwise).

Other data structures used in the algorithm include:

• gi (1 ≤ i ≤ F) is a boolean indicating whether the ith (a, b)-path has
been completed, yielding an (a, c)-path. All gi are initially false.

• hj (1 ≤ j ≤ F′) is an integer 1 ≤ hj ≤ F indicating that the path Qj is
being used to complement the path Pi. Initially, all hj = 0.

• pi (1 ≤ i ≤ F) is a pointer to some vertex in Pi. All pi are initially set
to a.

• qj (1 ≤ j ≤ F′) is a pointer to some vertex in Qj. All qj are initially set
to b.

• M is a hash table which maps edges to the index j associated with
path Qj using that edge.

The algorithm’s execution proceeds as follows:
while ∃gi = false do

for i = 1 to F do
if gi = true then

continue to next iteration
end if
gi = true
while the edge leading away from pi’s target in Pi is not in the table
M and pi does not point to the last entry of Pi do

Advance pi to the next entry in Pi.
end while
if the edge leading away from pi’s target in Pi has an entry in M
then

let j be the index returned by M
if hj 6= 0 then

ghj = false
end if
hj = i
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a b
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Figure 4.1: These figures depict an example of input to the join-paths sub-
routine. Figure 4.1a shows 3 edge disjoint (a, b)-paths, and Figure 4.1b
shows 3 edge disjoint (b, c)-paths.

while qj 6= pi do
let q′j be the next vertex in Qj

remove the edge (qj, q′j) from M
qj = q′j

end while
end if

end for
end while
for i = 1 to F do

if pi = b then
choose j such that qj = 0
form Ri by concatenating Pi with Qj

else
choose j = M[e] where e is the edge leading away from pi’s target in
Pi.
form Ri by concatenating the prefix of Pi ending with pi with Qj’s
suffix beginning with qj.

end if
end for
return the completed paths Ri
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Sample Execution

Consider the graph depicted in Figure 4.1. If we process the three paths in
the order (red, green, blue), then the join-paths subroutine would begin by
connecting the red (a, b)-path to the blue (b, c)-path as depicted in Figure
4.2a. Subsequently, the process will attempt to use the green (a, b)-path,
and find that it conflicts with the path assembled earlier. Since the green
(a, b)-path intersects the blue (b, c)-path on a later edge than the red path, it
gains possession of the (b, c)-path in Figure 4.2b. Similarly, when the blue
(a, b)-path is advanced, it takes possession of the blue (b, c)-path as shown
in Figure 4.2c.

In Figure 4.2d, we return to the red (a, b)-path which advances until
it intersects the green (b, c)-path, and in Figure 4.2e, the green (a, b)-path
gains possession of this (b, c)-path. Finally, the red (a, b)-path intersects
the red (b, c)-path as depicted in Figure 4.2f, and the subroutine terminates
since every path is complete.

Proof of Correctness

We claim that at the end of every iteration of the outermost for loop, every
gi set to true corresponds with a complete path between a and c that is
edge disjoint from all other such paths. For a given starting path Pi, if pi
points to b, a complete path is formed by selecting some j where hj = 0, and
concatenating Pi with Qj. Otherwise, the edge on Pi leading away from
pi’s target vertex is shared with some Qj, so the complete path involves
the concatenation of the prefix of Pi ending with pi’s target and Qj’s suffix
beginning with (but not including) qj’s target. We refer to Pi and Pi′ as the
prefix and Qj and Qj′ as the suffix of S and T respectively,

Since Pi and Pi′ are derived from the same flow assignment, they are
clearly edge disjoint. This implies that the prefixes of S and T are edge
disjoint, and an identical argument implies that the suffixes are also edge
disjoint.

Assume to the contrary that a suffix of one complete path shares an edge
with the prefix of another path. Without loss of generality, assume Pi shares
an edge (u, v) with Qj′ . The algorithm cannot reach such a state because at
some iteration, pi must equal u, and at this point, every edge preceding
(u, v) in Qj′ would have been removed from M thereby preventing any
(a, b)-path from attaching to Qj′ at an earlier edge. Furthermore, any (a, b)-
path Pi′′ previously attached to Qj′ is “released” by reseting gi′′ to false.
Since the intersection of these paths contradicts the state of the algorithm,
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Figure 4.2: Starting from the collection of (a, b) and (b, c) edge disjoint paths
from Figure 4.1, these figures demonstrate how the join-paths subroutine
arrives at a set of edge disjoint (a, c) paths. The solid arcs indicate complete
or in-progress (a, c)-paths.
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it follows that the prefix of any complete path does not share an edge with
the suffix of another, and thus that completed paths are edge disjoint.

Runtime

Each iteration of an inner-most while loop is associated with an edge in the
graph. Furthermore, the first loop visits every edge in ∪iPi at most once,
and the second visits the edges of ∪jQj at most once. Thus the asymptotic,
worst-case runtime is O(∑i |Pi|+ ∑j |Qj|) = O(m).

4.3 Experimental Performance

The worst-case asymptotic runtime of the warm-start algorithm described
above is not better than that of the naı̈ve brute force algorithm since in
the worst case, all of the preserved edge disjoint paths are lost following
the vertex deletion, and have to be rebuilt. Thus we sought to analyze
expected runtime. We were unable to reach an analytically derived asymp-
totic expected performance, so the two algorithms were implemented and
compared experimentally.

Both algorithms were implemented in Python, and tested on the ran-
dom graph models proposed by Erdős and Rényi (1960), Barabási and Al-
bert (1999), and Watts and Strogatz (1998). Erdős-Rényi graphs were tested
with p = 0.1 and p = 0.15. The m parameter (which indicates the degree of
a newly introduced vertex) for the Barabási-Albert model was varied with
graph size to produce graphs with constant density, and m0 (the size of the
initial graph) was always chosen to be m + 1. For the Watts-Strogatz model
we used β = 0.1 and k was varied with the graph size according to the
listed density.

The experiments were performed on commodity personal computers
with 3.0 GHz Intel Core 2 Duo processors and 4GB of RAM (note that the
Python implementations were not multi-threaded and therefore did not
make use of both processor cores). Each algorithm was tasked with sim-
ulating a brute force search for the load maximizing single vertex removal.
Thirty graphs were generated for each size/density combination, and the
algorithms were run once on each graph.

The plots in Figure 4.3 depict the results of these experiments. We
observe that the proposed algorithm produces the greatest performance
increase on larger graphs with greater density. Graphs produced by the
Erdős-Rényi and Watts-Strogatz models benefited most from the new algo-
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rithm, while those produced by the Barabási-Abert model required larger
graphs with greater density to show a positive performance improvement.
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(a)

(b)

(c)

Figure 4.3: These figures depict the warm-start algorithm’s experimental
performance on Erdős-Rényi (Fig. 4.3a), Barabási-Abert (Fig. 4.3b), and
Watts-Strogatz (Fig. 4.3c) random graphs. The y-axis indicates the time dif-
ference scaled by the time required by the naı̈ve algorithm, and the error
bars indicate one standard deviation. Each data point was acquired from
searches, on 30 different graphs, for the load maximizing single vertex re-
moval.



Chapter 5

Future Work and Conclusion

We propose two alternative approaches to efficient Gomory-Hu tree recon-
struction, and suggest the use of meta-heuristics to achieve good, if not
optimal, solutions to the NP-complete problem of identifying the load max-
imizing subset removal.

5.1 Alternative Gomory-Hu Tree Reconstruction Al-
gorithm

An alternative strategy for the recalculation of Gomory-Hu trees may work
by using the prior tree to determine whether the newly deleted vertex is
incident to any edge in a minimum cut between a pair of vertices. We
prove that in the process of constructing a Gomory-Hu tree, the Gusfield
algorithm encounters every minimum cut in the graph. This suggests that
an algorithm which produces the set of vertices incident to an edge that is
a member of a minimum cut could lead to an improved algorithm.

Picard and Queyranne (1980) describe an algorithm which generates
minimum cuts, but since the number of minimum cuts between vertices
may grow exponentially, such a process is not sufficient.

5.1.1 Proof that Gusfield’s Algorithm Encounters All Minimum
Cuts

A Gomory-Hu tree, T, only guarantees to encode one minimum cut be-
tween every pair of vertices (specifically, the minimum cut represented by
the lightest edge on the unique path between those vertices in T). Consider
again the Gomory-Hu tree of a cycle graph. As demonstrated in the proof
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x a

b y

A

B

X Y

Figure 5.1: This figure depicts the setup for the second case in Proposition
5.1 where vertices x and y are placed in separate supervertices as a result
of a minimum cut between a and b.

of 3.1, a star graph is a valid Gomory-Hu tree for this graph, but note that
between the center vertex of the star, and any other vertex, only one min-
imum cut is encoded despite the existence of many more. We now prove
that every minimum cut in a graph is encoded in the flow assignments ob-
tained while running the Gusfield algorithm.

Proposition 5.1. A single run of the Gusfield algorithm for constructing a Gomory-
Hu tree will encounter every minimum cut in the graph.

Proof. We say that the algorithm has encountered a minimum cut, (S, T), of
weight w if it computes a maximum flow between some vertex s ∈ S and
another vertex t ∈ T and fs,t = w.

Let G = (V, E) be a graph, and consider a minimum cut (X, Y) between
vertices x, y. At some point in the algorithm’s execution, two vertices in
the same supervertex as x and y (potentially x and y themselves) will be
selected, a minimum cut computed between them, and two new superver-
tices S1 and S2 will be formed with x ∈ S1 and y ∈ S2. In the case where
these vertices are x and y, the (x, y)-cut will clearly encounter (X, Y), but
the algorithm may split x and y when computing the minimum cut be-
tween some other vertices a and b yielding a cut (A, B) such that x ∈ A and
y ∈ B. Alternatively, x and y may be split into separate supervertices by a
cut between x and some b. We will show that in either of these cases, there
will continue to exist a pair of vertices in some supervertex of the growing
Gomory-Hu tree for which (X, Y) is a minimum cut until the cut (X, Y) is
encountered.
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In the latter case, let the minimum (x, b)-cut which separates x and y be
(A, B) where x ∈ A and b ∈ B. We first note that if b ∈ Y, (X, Y) is an (x, b)
cut and (A, B) is an (x, y)-cut, so fx,y = fb,x, and thus the flow calculation
between x and b encounters the cut (X, Y). If b ∈ X, note that (X, Y) is a
(b, y) cut, so

fb,y ≤ fx,y. (5.1)

Additionally, (A, B) is an (x, y)-cut, so

fx,y ≤ fx,b. (5.2)

Now we will apply an inequality introduced in Gomory and Hu’s paper
which states

fv1,vk ≥ min{ fv1,v2 , fv2,v3 , · · · , fvk−1,vk}.

This implies that fb,y ≥ min{ fb,x, fx,y}. Together with Equation 5.2, this
yields that fx,y ≤ fb,y, and this combines with Equation 5.1 to conclude that
fb,y = fx,y. Thus, following the (a, b)-cut, y and b will share the same su-
pervertex, and have (X, Y) as a minimum cut between them. So while our
cut of interest has not been encountered in this iteration, it is guaranteed to
be encountered in a later iteration.

Now we consider the case depicted in Figure 5.1 where x and y are
separated by a cut between two other vertices a and b. Notice that (A, B) is
then an (x, y)-cut, so it follows that fx,y ≤ fa,b where fu,v is the maximum
flow value between u and v. Equality would imply that the (a, b) flow
computation encountered (X, Y), so we only consider the case where

fx,y < fa,b. (5.3)

Furthermore, placing a and b on different sides of (X, Y) would also imply
that the cut has been encountered by the (a, b) flow calculation, so without
loss of generality, let a, b ∈ X.

We wish to show that one of the new supervertices obtained by the
(a, b)-cut will contain a pair of vertices which have (X, Y) as a minimum
cut. In particular, these vertices will be b and y, so we wish to show that
fb,y = fx,y. Since b ∈ X and y ∈ Y, (X, Y) is a (b, y)-cut and it follows that
fb,y ≤ fx,y, so now we need only demonstrate the reverse inequality

fx,y ≤ fb,y. (5.4)

Assume to the contrary that

fb,y < fx,y. (5.5)
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We begin by noting two additional inequalities. Since (X, Y) is an (a, y)-cut,
it follows that

fa,y ≤ fx,y, (5.6)

and since (A, B) is a (b, x)-cut, it follows that

fb,x ≤ fa,b. (5.7)

We again apply the inequality

fv1,vk ≥ min{ fv1,v2 , fv2,v3 , · · · , fvk−1,vk}.

• Equation 5.7 and fa,x ≥ min{ fa,b, fb,x} together imply

fa,x ≥ fb,x. (5.8)

• Equation 5.6, Equation 5.3, and fb,y ≥ min{ fa,b, fa,y} together imply

fb,y ≥ fa,y. (5.9)

• Equation 5.5 and fb,x ≥ min{ fb,y, fx,y} together imply

fb,x ≥ fb,y. (5.10)

• Equation 5.5, Equation 5.3, and fb,y ≥ min{ fa,b, fa,x, fx,y} together im-
ply

fb,y ≥ fa,x. (5.11)

• Equation 5.7, Equation 5.5, Equation 5.11, Equation 5.8, and fa,y ≥
min{ fa,b, fb,x, fx,y} together imply

fa,y ≥ fb,x. (5.12)

These inequalities together yield

fa,x = fa,y = fb,x = fb,y < fx,y < fa,b (5.13)

Let C(U), where U ⊆ {a, b, x, y}, denote the weight of the minimum cut
which disconnects each vertex in U from every vertex in {a, b, x, y} −U.

In general,

fx,y ≤ min{C(a, b, y), C(a, b, x), C(a, x), C(a, y)}, (5.14)
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but due to our earlier stipulation that a, b ∈ X, we find that fx,y =
C(a, b, x). Similarly,

fa,b ≤ min{C(a), C(a, x), C(a, y), C(a, x, y)} (5.15)

in general, and in our case, fa,b = C(a, x).
Equation 5.3 along with equations 5.14 and 5.15 then imply that

fx,y ≤ c, c ∈ {C(a), C(a, x), C(a, y), C(a, b, x), C(a, b, y), C(a, x, y)}. (5.16)

Equation 5.13 implies that none of the cuts in Equation 5.16 have weight
fa,x = fa,y = fb,x = fb,y leaving the conclusion that

fa,x = fa,y = fb,x = fb,y = C(a, b). (5.17)

Gomory and Hu proved the following lemma in their 1961 paper.

Lemma 5.1. Let (S, T) be a minimum cut in G separating vertices s ∈ S and
t ∈ T. Let u, v ∈ S, and let (U, V) be a minimum (u, v)-cut. If t ∈ U, then
(U′, V ′) = (U ∪ T, V ∩ S) is another minimum (u, v)-cut. If t ∈ V, (U′, V ′) =
(U ∩ S, V ∪ T) is another minimum (u, v)-cut.

We can apply this lemma to the crossing (a, b) and (b, y) cuts. Let s, t =
b, a, and u, v = b, y. Notice then that u, v ∈ S (since b, y ∈ B), and that t ∈ U
(since we proved that fa,x = C(a, b)). It then follows that (A ∪U, B ∩V) is
a minimum (b, y)-cut, and since this cut isolates y from a, b, and x, fb,y =
C(a, b, x). Finally, this contradicts equations 5.5 and 5.14.

5.2 Additional Future Work

The algorithm described in this thesis performs the Gomory-Hu tree cal-
culation using an algorithm based on minimum cuts, but recent work by
Bhalgat et al. (2007) shows that Gomory-Hu tree calculations could be per-
formed with expected time Õ(mn) using a randomized algorithm that ap-
plies an efficient tree packing algorithm to compute Steiner edge connectiv-
ity as its main subroutine . This algorithm may be better suited for Gomory-
Hu tree recalculation.

Since identifying the optimally load maximizing subset of vertices to
remove is NP-complete, a polynomial-time algorithm is unlikely to exist
for the problem as currently defined. Meta-heuristics such as simulated
annealing or genetic algorithms may prove successful at achieving locally
maximal results.
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5.3 Conclusion

This thesis sought to explore the computational feasibility of identifying
the load maximizing vertex set removal. We began by proving that the
problem is NP-complete, and therefore is not likely to have a polynomial
time solution. We then sought to improve the efficiency of a brute force
algorithm for identifying the load maximizing single vertex removal.

To do so, we considered designing an algorithm which efficiently recon-
structs Gomory-Hu trees following a vertex deletion. When considering
the feasibility of using Gomory-Hu trees which are most easily preserved
under vertex deletions, we proved that the Gomory-Hu tree of a graph
produced by Gusfield’s algorithm is not uniquely defined by the chosen
permutation of vertices since different choices in minimum cuts can also
produce different Gomory-Hu trees. This implied that such an approach
was unlikely to succeed.

Finally, we proposed an algorithm which uses flow assignments from
a Gomory-Hu tree construction for G to provide a warm start to the maxi-
mum flow subroutines in the construction of a new Gomory-Hu tree for G \
{v}. An implementation of this algorithm was tested against an implemen-
tation of the naı̈ve brute force algorithm and performance improvements
were observed on sufficiently large and dense Erdős-Rényi, Barabási-Abert,
and Watts-Strogatz random graphs.



Appendix A

The Gusfield Algorithm for
Gomory-Hu Tree Construction

The Gusfield (1990) algorithm for constructing Gomory-Hu trees improves
on the original algorithm proposed by Gomory and Hu by avoiding max-
imum flow calculations in graphs with contracted edges. Thus the new
algorithm is both easier to implement and to describe.

Given a graph G = (V, E) with an arbitrary ordering on the vertices
V = {v1, v2, . . . , vn}. Begin by creating a new graph T containing only one
supervertex, S1, represented by v1 which contains all vertices in V. As the
algorithm progresses, we will divide this supervertex until all supervertices
are made up of exactly one vertex of G, and the resulting tree will be the
returned Gomory-Hu tree.

Until each supervertex contains only one vertex, we arbitrarily select
the lowest-valued supervertex Sx ∈ V(T) (represented by vertex x) and
split it as follows. Select the lowest-valued non-representative vertex in Sx,
y, and compute a minimum cut, (X, Y), between x and y in the original
graph G. The old supervertex Sx now divides into S′x = X ∩ Si which is
represented by x, and Sy = Y ∩ Si which is represented by y. After splitting
Sx, all edges incident to this supervertex must be updated. Let e = {Sx, Sz}
be such an edge, and let z be the representative vertex of Sz. If z ∈ X,
replace e with {S′x, Sz}, and if z ∈ Y, replace e with {Sy, Sz}.

Gusfield also provides an alternative representation of this algorithm
described in the pseudocode below.

The n-vector tree encodes the topology of the resulting Gomory-Hu tree.
Initially, tree[i] = 1 for all i. Ultimately, the edges of the Gomory-Hu tree
will be the pairs (i, tree[i]).
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The n-vector weights stores the weight of edge (i, tree[i]) in entry i.
for s = 2 to n do

Compute a minimum cut between s and t = tree[s]. Let X be the set
of vertices on s’s side of the cut, and let fs,t be the resulting flow value.

weights[s] = fs,t
for i = 1 to n do

if i 6= s and i ∈ X and p[i] = t then
reassign tree[i] = s

end if
end for
if tree[t] ∈ X then

tree[s] = tree[t]
tree[t] = s
weights[s] = weights[t]
weights[t] = fs,t

end if
end for
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