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Abstract

Collaborative filtering based recommender systems use information about a user’s

preferences to make personalized predictions about content, such as topics, people,

or products, that they might find relevant. As the volume of accessible information

and active users on the Internet continues to grow, it becomes increasingly difficult

to compute recommendations quickly and accurately over a large dataset. In this

study, we will introduce an algorithmic framework built on top of Apache Spark

for parallel computation of the neighborhood-based collaborative filtering problem,

which allows the algorithm to scale linearly with a growing number of users. We also

investigate several different variants of this technique including user and item-based

recommendation approaches, correlation and vector-based similarity calculations, and

selective down-sampling of user interactions. Finally, we provide an experimental

comparison of these techniques on the MovieLens dataset consisting of 10 million

movie ratings.
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Chapter 1

Introduction

1.1 Collaborative Filtering Based Recommender

Systems

The volume and diversity of information available on the web has grown exponentially

in recent years in part due to the fact that modern web technologies have reduced the

barrier to creating and distributing new information online. As a result of this, the

content that is relevant to a particular user has become more specialized and harder

to find.

Recommender systems aim to solve this problem by taking in a user’s past actions,

such as articles they’ve read or products they’ve purchased and rated, to identify po-

tential user preferences. Instead of providing a generic experience to every user,

recommender systems personalize the experience of each user by surfacing content

that is particularly relevant to their observed interests. If implemented correctly,

recommender systems can be extremely effective at increasing engagement and pur-

chasing. Today, many of the worlds most heavily trafficked websites, such as Netflix,

LinkedIn, Amazon, and Twitter employ recommender systems to engage their users

with relevant, personalized content.
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In this study, we will focus on neighborhood-based collaborative filtering methods,

which are a well-known technique used in recommender systems. Neighborhood-based

collaborative filtering methods are item-based, meaning user preferences are inferred

solely from what items the they and other users in the dataset have interacted with.

As opposed to content-based methods, which incorporate descriptive or categorical

data of each item into the model, neighborhood-based methods have the advantage

of being able to incorporate new items easily, since each new item does not have to be

classified into a specific genre or tied to a set of attributes. Furthermore, they provide

results that are easily justifiable, since each user’s recommendations are derived from

their own interaction history and the list of neighbor items or users.

1.2 Challenges Associated with Large-scale Col-

laborative Filtering

Due to the reasons outlined above, neighborhood-based methods are often preferred in

large-scale, industrial use cases [5], even though other approaches can achieve higher

prediction quality. As the size of the dataset grows, the scalability of neighborhood-

based collaborative filtering recommender systems becomes essential.

However, neighborhood-based collaborative filtering is a memory-based approach,

meaning that it utilizes the entire collection of every user’s interaction histories to

generate predictions. As a result, they are highly computationally intensive and

cannot scale to handle millions of users. Although most large-scale recommendations

utilize an offline approach, in which the recommendations for each user in the dataset

are computing all at once in a batch format, the application must be fast enough to

compute new recommendations as users interest’s expand and evolve.

Moreover, large-scale recommender systems suffer from heavy-tailed item interac-

tion distributions, wherein the most active users or ”power users” have an extensive

item interaction history that is exponentially more than number of items in the in-
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teraction history of an average user in the dataset. As a result, a disproportionate

amount of computation is required to calculate their item recommendations, adding

further complexity to the problem.

Lastly, the sparsity of large item sets that occurs as the number of items in the

dataset grows can inhibit the accuracy of large-scale collaborative filtering recom-

mender systems. In such systems, even the most active users may have interacted

with less than 1% of the total number of items in the dataset. Certain items are inter-

acted with more often, while others incur extremely few user interactions. As a result,

recommendation accuracy suffers, since users share relatively fewer item interactions

with one another.

1.3 Collaborative Filtering in a Cluster Comput-

ing Environment

Due to their data-intensive nature, recommender systems which employ neighborhood-

based collaborative filtering methods are especially prone to scalability problems. Im-

plementing such systems on one machine, although feasible, is disadvantageous from

an efficiency and cost standpoint if the computational requirements of the system

outpace the machine’s performance. Furthermore, it exposes the system to downtime

risks if the machine fails. However, many of these problems can be solved by imple-

menting recommender systems in a cluster computing environment via a distributed

data processing framework such as Hadoop/MapReduce [3].

Implementing applications on a distributed data processing framework involves

loading a driver program onto one machine, called the master node, which controls

the execution of the program and data flow in the other machines in the cluster,

called worker nodes. Each worker node in the cluster handles a small portion of the

total computation in parallel with other worker nodes, thus improving the overall

speed of computation for the program. By utilizing multiple machines, the risk of
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downtime if a single machine in the cluster fails is eliminated due to the ability of

other machines in the cluster to redistribute the work of the failed worker node.

Moreover, the advent of cloud computing services such as Amazon Web Services

enables machines to be rented temporarily on demand and added to the cluster at

any time, allowing for seamless scalability if more computational power is needed.

The low cost of renting virtual machines has served to further reduce the upfront

cost of implementing large-scale, data intensize workflows and has contributed to the

popularity of using cluster-computing for large-scale recommender systems

The technical approach for applying this to collaborative filtering methods, in-

volves modifying the underlying algorithm to utilize the programming model specific

to the data-processing platform in use. For example, the Hadoop framework imple-

ments the MapReduce programming model, in which the user specifies a map function

that processes a key/value pair to generate a set of intermediate key/value pairs and

a reduce function that merges all intermediate values associated with the same in-

termediate key. Once this is done, the underlying parallel processing platform uses

a distributed file system to provide high throughput access to the data and manages

the horizontal scalability of adding more machines to the cluster and dealing with

machine failures.

1.4 Related Work

Neighborhood-based collaborative filtering methods are a well-known approach in

academic literature to the problem of recommending relevant content to a user. Re-

search has been devoted to investigating the use of different similarity metrics to

measure the pairwise comparisons of users and items [1]. Research has also been

done to address the problem of item interaction sparsity in a large dataset in the

context of neighborhood models [5]. For example, certain methods, such as Latent

Semantic Indexing (LSI), analyze the user-item representation matrix to identify re-

lations between different items and the use these relations to compute the prediction
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score for a given user-item pair.

More recently, research on scalable collaborative filtering methods has shown that

selective down-sampling of user interactions can improve the scalability of collabo-

rative filtering algorithms with minimal effect on prediction quality. However, due

to novelty of parallel data-processing tools and the ever-evolving nature of data-

processing technology, there is limited research on collaborative filtering methods

which utilize distributed computation. While prior work in this area has shown that

it is possible to parallelize neighborhood-based collaborative filtering algorithms with

MapReduce [4] [5] [9], MapReduce is not well-suited to expressing iterative, multi-

stage algorithms and is relatively inefficient for such applications.

1.5 Overview

In this study, we propose an algorithmic framework for fast, scalable neighborhood-

based collaborative filtering recommendations. We improve the scalability of the

neighborhood-based collabortive filtering technique by implementing the underlying

algorithm on Spark [8], a newly introduced distributed cluster computing system plat-

form for efficient computation on large datasets, which, unlike Hadoop/MapReduce,

is well-suited to the iterative, multi-step applications. The framework is open-source

and is publicly available on GitHub, at https://github.com/evancasey/sparkler,

under the MIT license.

Since no literature has been published so far on neighborhood-based collabora-

tive filtering methods on Spark, this research seeks to investigate how Spark can be

used to implement and improve the scalability of the well-known neighborhood-based

collaborative filtering algorithm. This research builds off the ideas presented in imple-

mentations of other machine learning algorithms on Spark, such as Alternating Least

Squares [2] and Gradient Descent [6]. It also builds off of several ideas implemented in

the MapReduce framework for item-based collaborative filtering presented by Schelter

et al. [5], such as selective down sampling of power users and the use of a broadcast
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variable to store the item similarity matrix, which will be discussed later on is this

paper. While research has been done on scalable user-based collaborative filtering

[9], there is even less research available on this method than the item-based variant.

As a result, this study presents concepts that may be useful for future research on

scalable user-based collaborative filtering methods.

In this paper, we provide the following contributions to the current body of re-

search on scalable recommender systems:

• We introduce an algorithmic framework for efficient neighborhood-based col-

laborative filtering on Apache Spark that scales linearly with a growing user

base.

• We describe how to implement both user and item-based recommendation ap-

proaches, as well as a variety of similarity measures, in an efficient manner using

the high-level programming model provided by Apache Spark.

• We investigate the core differences underlying the Spark and Hadoop/MapReduce

frameworks and discuss why Spark is especially efficient in certain cases.

• We present an experimental evaluation of the different recommendation and

similarity methods on the Movielens dataset.

The rest of this paper is organized as follows: In section 2 we provide the reader

with an introduction to the collaborative filtering problem and describe the algo-

rithmic challenges it presents. In section 3 we describe Spark in detail and develop

the item-based parallel algorithm. In section 4 we investigate the variants of this

algorithm, including user-based recommendations and different similarity measures.
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Chapter 2

User-based Collaborative Filtering

2.1 Problem Statement

In a typical collaborative filtering scenario, we have a list of n items I = {i1, i2, ..., in}

and a list of k users U = {u1, u2, ..., uk}. Let M be a n × k matrix where each Mu,i

entry represents the rating score, or opinion, of a user u about an item i with its

value being a real number or missing. The item iteraction history of a particular user

u is the u-th row of M . The absence of a rating at a given Mu,i index occurs when a

user has not yet rated the i-th item. The task of the user-based collaborative filtering

algorithm is to predict the items that will have the highest utility for a given user

u ∈ U based on u’s rating scores and the preferences of users with similar interaction

histories to u. This idea is based on the notion that users with similar preferences

will gain utility out of the same items and thus a user’s future preference toward a

given item can be inferred from the opinions of that user’s nearest neighbors (the

users with similar interaction histories).
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2.2 Mathematical Formulation

The first step in the user-based collaborative filtering algorithm is to obtain M , the

user-item ratings matrix. We obtain M by mapping over every user in our dataset and

collecting the corresponding item and rating pairs of that user into a list representing

that user’s item interaction history. We contruct M by aggregating each user’s item

interaction list into a list of lists.

Once the ratings matrix, M , has been obtained, the second step is to compute the

similarities between users and obtain each user’s nearest neighbors. The similarity

between any ux, uy ∈M can be computed by a variety of different similarity measures

(which we investigate later on in this study), but we will use the popular cosine

similarity method in this example which is calculated by the following equation:

sim(ux, uy) =

∑
i∈Pux,uy

rux,iruy ,i√ ∑
i∈Pux,uy

rux,i
2
√ ∑

i∈Pux,uy

ruy ,i
2

(2.1)

where Pux,uy represents the subset of items i ∈ I for which both users have rated,

rux,i is the rating of user ux on item i and ruy ,i in the rating of user uy on item i. The

cosine similarity method applies Euclidean (L2) normalization to the user vectors,

represented by ux and uy, which projects them onto the unit sphere. Their similarity

is then calculated by taking their dot product, which is the cosine of the angle between

the points denoted by the vectors. Since the ratings of each user are positive, the

output of cosine similarity in this case is bounded by [0, 1].

After computing the similarity between every ux, uy ∈ U , the third step is to

calculate the predicted rating for each item that a given user u ∈ U has not yet rated.

Again, a variety of approaches to computing the predicted ratings exist, but we will

use the widely used weighted sums approach in this example, which is calculated by

the following equation:
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rux,i = r̄ux +

∑
uy∈Rux,i

(ruy ,i − r̄ux)sim(ux, uy)√ ∑
uy∈Rux,i

sim(ux, uy)
(2.2)

where Rux,i represents the subset of users uy ∈ U other than ux that have rated item

i and r̄ux is the average item rating of user ux. The weighted sums approach takes

the average of the ratings of the active user’s neighbors, and weights each of them

according to the neighbor user’s similarity with the active user.

Lastly, we compute the top n item recommendations for a given user ux by finding

the n items i ∈ I with the highest predicted rating rux,i. Since the predicted rating

measures our prediction for how relevant a particular item is to the active user, we

pick out the top n highest scored items from the weighted sums calculation.

2.3 Sequential Algorithm

The standard sequential approach for computing the top n item recommendations

for a single user u with cosine similarity and weighted sums is shown in Algorithm 1

below:

Algorithm 1 Sequential user-based collaborative filtering approach with cosine sim-
ilarity and weighted sums
1: Inputs:

• M , the user-item ratings matrix. Each Mu,i element represents a rating and
is either in N or empty.
• u, the user we’d like to compute recommendations for.
• n, the number of item recommendations to return, where n ∈ N.
• Sim(u, v), a user-defined function which computes the cosine similarity
between two user vectors u and v. (2.1)
• WeightedSums(u, S) a user-defined function which computes the predicted
rating for each item prediction for a given user u. (2.2)
• TopNRecommendations(Ru, n), a user-defined function which sorts the
scored predictions and outputs the top n highest ranked items.

2: Outputs:
• Ru(n), the top n recommendations for user u
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3: for user v ∈ M do
4: if v 6= u then
5: Su,v ← Sim(u, v)
6: end if
7: for item i ∈M do
8: if u did not interact with i then
9: Ru ← WeightedSums(u, i, Su,v)
10: end if
11: end for
12: end for
13: Ru(n) = TopNRecommendations(Ru, n)

2.4 Properties

User-based collaborative filtering has the benefit of being easily understandable, since

its method for recommending items to a user is inspired by how we often discover

new content in real life. The nearest neighbors in user-based collaborative filtering

can be thought of as our friends or family who recommend movies, books, or items

that they’ve personally interacted with and evaluated.

Under the sequential user-based collaborative filtering approach, we observe that

the worst case time complexity of computing the top N recommendations for a given

user is O(nk), where n is the number of items and k is the number of users in our

user-item matrix, M . Although there are ways to reduce this time complexity even in

the sequential approach, each additional user increases the complexity of computing

recommendations for any given user by a factor of n. As more users are added to

the dataset, it’s easy to see why the scalabality of user-based collaborative filtering

becomes a serious issue.

Furthermore, in user-based collaborative filtering, computing recommendations

for a new user requires recomputing the active user’s nearest neighbors over the entire

set of users. In the context of a large-scale recommender system, this is a significant

performance bottleneck since the total number of users k in the dataset is usually

much higher than the number of items n.
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2.5 Item-based Collaborative Filtering

Item-based collaborative filtering is a similar algorithm to user-based collaborative

filtering which also uses the neighborhood approach for computing recommendations.

In item-based collaborative filtering, the algorithm infers a user’s preferences by com-

puting the most similar items to each item they have interacted with. The same

similarity measures used in user-based approaches apply for item-based approaches,

except the similarity between item pairs is calculated instead. Once the most similar

items are found, we computed item recommendations via the weighted sums method

as before, except the active user’s rating of each item and the similarity score of each

neighbor item are used in place of the user similarity score and the item ratings of

each neighbor user.

The advantage of this approach is that adding a new user to the system does not

require recomputing the entire user similarity matrix, since the item similarities do

not change with a new user. Once the item similarity matrix has been computed, item

recommendations for a new user can be computed quickly, since only the weighted

sums calculation is required to compute them. Moreover, since the relationships be-

tween items tend to be relatively static, item-based collaborative filtering can provide

recommendations of equal quality to the user-based approach with less online compu-

tation [5]. For these reasons, item-based collaborative filtering is often the method of

choice for large-scale commercial recommender systems. In the next section, we will

discuss how to implement a parallelized version of the item-based approach. In section

4 we will also present a parallelized implementation of the user-based approach.
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Chapter 3

Parallelized Implementation on

Apache Spark

3.1 Introduction to Apache Spark

Apache Spark is a fast and general-purpose cluster computing system similar to the

Hadoop data-processing platform that was originally developed in the AMPLab at UC

Berkeley [7] [8]. Similar to Hadoop, Spark is built on top of the Hadoop Distributed

File System, but unlike Hadoop it is not tied to an acyclic dataflow model such as

MapReduce or Dryad. Instead, Spark utilizes a cyclic dataflow model in which the

output of each parallel operation is cached in memory on each machine in the cluster.

At each stage of the algorithm, the cached data can be accessed directly without

having to repeatedly read from the file system or the master node.

The dataflow model of a single parallel operation in Spark is illustrated in figure

3-1 below. By caching the data in memory on each worker node, Spark ultimately

reduces amount of data being passed over the network and as result is especially

well-suited to iterative algorithms which reuse a working set of data across multiple

parallel algorithms. In these circumstances, the reduced amount of data passed over

the network enables Spark applications to run significantly faster when compared
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to disk-based implementations on Hadoop [2]. In certain cases, Spark applications

have achieved up to a 10x speed increase over Hadoop, although this result is highly

dependent on the nature of the underlying algorithm.

Figure 3-1: Illustration of the Data Flow in Spark

As a biproduct of Spark’s data flow model, iterative algorithms that cannot be

expressed well in the two-stage MapReduce programming model are more easily im-

plemented on Spark. Furthermore, the use of in-memory caching of partitioned data

on each worker node enables fast, interactive analysis of big datasets. Frameworks

such as Pig and Hive, which are built on top of Hadoop and used to perform ad-hoc

exploratory data analysis, incur significant latency when compared to Spark from

having to read data from disk with each MapReduce job.

3.2 Programming Model

Implementing parallel programs in Spark is accomplished through the use of a driver

program that runs on the master node of a Spark cluster and is responsible for express-

ing the high-level control flow of a Spark job. Within a driver program, a Spark user

defines a series of operations, such as map, reduce, and filter, which are executed on
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each of the worker nodes in the cluster. This dataflow programming model is accom-

plished through the use of several core abstractions provided by the Spark framework,

most notably resilient distributed datasets, parallel operations, and shared variables,

which we will discuss in detail below.

The resilient distributed dataset (RDD) is a read-only collection of objects par-

tioned across a set of machines that can be rebuilt if a partition is lost. In a Spark

program, data is first read in from a distributed file system, such as the Hadoop Dis-

tributed File System (HDFS), into an RDD object. The RDD is then parallelized by

the driver program, causing it to be partitioned and sent to multiple nodes. RDDs

are lazy and ephemeral by default, meaning that the data in each partition only be-

comes available when used in a parallel operation and is discarded from memory after

use. However, for data that is intended to be reused later on in the algorithm, the

persistence on an RDD can be altered by the use of a cache action, which advises

Spark to keep the RDD in memory of the worker nodes to improve performance.

Once data has been read into an RDD, the initialized RDD can be transformed

by applying parallel operations to it. For example, a parallel operation might be used

to pass each element in an RDD object through a user-defined function via the map

operation. If the user-defined function transforms values of type X to values of type

Y, then each element in the RDD will consist of values of type Y after the operation is

applied. Spark offers a number of different parallel operations which can be applied

on RDDs, but we will discuss only a few of them here which are relevant to the

collaborative filtering algorithm. These include:

• map

Passes each element in the RDD through a user-defined function. Each element

in the resulting RDD is the output of this function applied on the element in

the original RDD

• filter

Passes each element in the RDD through a user-defined predicate function which
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returns a boolean value. Each element in the resulting RDD is made up of

elements in the original RDD for which the predicate function returns True.

• groupByKey

Aggregates the elements in an RDD based on the key of each element. When

called on an RDD consisting of (K,v) pairs, returns all (K,Seq[V]) pairs where

each key in the resulting RDD is unique.

• collect

Sends all elements in the RDD to the driver program, to be used when user

wants to collect the results in the master node.

Lastly, Spark also enables the use of shared variables, such as broadcast and ac-

culumulator variables for accessing or updating shared data accross worker nodes.

Shared variables are copied to each worker node, and no updates to the variables

on those nodes are propagated back to the driver program. In specific, if a large

read-only piece of data is accessed in multiple parallel operations, using a broadcast

variable is more efficient than storing that data in a read-write variable across tasks,

since the data associated with that object is ensured to be only shipped to each worker

once. Although the data in a parallelized RDD object is cached on each worker node

already, the use of a broadcast variable prevents having to package the data stored

in it with every task, thus increasing the efficiency of the Spark application.

3.3 Algorithm

In this section we will describe the implementation of item-based collaborative filter-

ing on Spark. As described in Figure 3-2, the algorithm is made up of two separate

components, item similarity computation and top n recommendations computation.

The item similarity computation is executed first, followed by the top n recommen-

dation computation. Since the top n recommendation computation uses the output

of the item similarity computation, we initialize a broadcast variable to efficiently
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embed the user similarity matrix in each worker node.

Figure 3-2: Diagram of Item-based Collaborative Filtering on Spark

3.3.1 Computing Item Similarities

Similar to the sequential approach, the first step in the parallel user similarity com-

putation is to obtain M , the user-item ratings matrix. In this case, we initialize a

SparkContext object and use Spark’s textFile operation to read in the data from

Amazon S3 into parallelized collection, specifying the number of partitions to dis-

tribute the data across. We then construct M by mapping over every item in our

dataset and collecting the corresponding user and rating pairs of that item. We then

call cache to advise Spark to keep the RDD in memory of the worker nodes for

improved performance. The rest of the item similarity computation proceeds below:
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Algorithm 2 Parallel Item Similarity Computation
1: Inputs:

• Mu,∗, an RDD representing the user-item ratings matrix, keyed on the user
index. Each Mu,∗ element represents a rating and is either in N or empty.
• Sim(((u, v), Seq(V ))), a user-defined function which computes the cosine
similarity between two users u and v. V is a list of item-rating pairs for which
u and v have both interacetd with (2.1).
• SampleInteractions(K,Seq(V ), n), a user-defined function which applies
selective down sampling to Seq(V ), a sequence of items. If the length of
Seq(V ) exceeds n, the resulting value is a sample of n items from Seq(V ).
• KeyOnFirstItem(((u, v), V )), a user-defined function which converts the
key from (u, v) to u and appends v to the front of the value V resulting in a
(u, V ) tuple. This is used to to key pairwise objects on a single item.
• NearestNeighbors(K,Seq(V ), k), a user-defined function that takes in the
list of neighbor items to K, and outputs the k items with the highest
similarity to K.
• Map(f, (K,V )), Filter(f, (K,V )), and GroupByKey((K,V )) as defined
previously, where (K,V ) denotes an RDD object and f is a user-defined
function.

2: Outputs:
• Su,v, the sparse user similarity matrix. Each Su,v element is either in [0, 1]
or empty.

3:

4: function pairwiseItems(M , n)
5: itemRatingPairs←Map(FindItemPairs(),Map(SampleInteractions(n),Mu,∗)))
6: pairwiseItems← GroupByKey(itemRatingPairs)
7: emit pairwiseItems
8: end function
9:

10: function itemSimilaity(pairwiseItems, k)
11: itemSims←Map(KeyOnFirstItem(),Map(Sim(), pairwiseItems)
12: nearestItems← map(NearestNeighbors(k), GroupByKey(itemSims))
13: emit nearestItems
14: end function
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3.3.2 Computing the Top-N Recommendations

Once the item similarity matrix has been computed, the next step is to compute

the top n recommendations for each user. This is done by iterating through the

item interaction history of each user and computing the weighted sums score for each

item’s neighbor items. In order to efficiently access the item similarity matrix, we

call broadcast on the output of the parallel item similarity computation and pass

this variable, nearestItems into the parallel top n recommendation function as a

parameter. By storing the item interaction history as a broadcast variable, we reduce

the amount of data being transmitted over the network. The top n recommendation

computation is described in Algorithm 3 below:

Algorithm 3 Parallel Top N Recommendations Computation
1: Inputs:

• Mu,∗, an RDD representing the user-item ratings matrix, keyed on the user
index. Each Mu,∗ element represents a rating and is either in N or empty.
• nearestItems, the top k similar items for each item in M , as described in
Algorithm 2. This variable is initialized as a broadcast variable.
• n, the number of item recommendations to return.
• WeightedSums(K,V,NearestItems, n), a user-defined function that
computes the item recommendations for each user K using the weighted sums
approach (2.2).
• Map(f, (K,V )) and GroupByKey((K,V )) as defined previously, where
(K,V ) denotes an RDD object and f is a user-defined function.

2: Outputs:
• itemRecs, the top n item recommendations for the active user u.

3:

4: function GroupedItemRatings(M)
5: UserItemRatings← GroupByKey(Mu,∗)
6: emit UserItemRatings
7: end function
8:

9: function TopNRecommendations(UserItemRatings,NearestItems, n)
10: ItemRecs←Map(WeightedSums(NearestItems, n), UserItemRatings)
11: emit ItemRecs
12: end function
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3.4 Experimental Evaluation

In this section we present the results of an experimental evaluation of our parallel

algorithm on a large dataset. We first evaluate the parallel algorithm on a local ma-

chine running Spark 0.8.1 with one 4-core CPU, 16gb of memory, and one 128gb SSD.

We find that the speedup increases linearly at first, but diminishes as the application

becomes bottlenecked by network bandwith with more partitions. Next, we rented a

cluster of m1.xlarge instances from Amazon Web Services, each running Spark 0.8.1

with 15gb of memory and eight virtual cores each, and show the linear speedup with

a growing number of machines. In both experiments, we used the MovieLens 10M

dataset, consisting of 10 million ratings applied to 10,000 movies from 72,000 users.

3.4.1 Speedup

For the experiments on a local machine, we ran the Spark application in local mode

and measured the runtime as we increased the number of data partitions α, or nodes

in the cluster. Each time we run the algorithm, we specify α, which Spark uses to

determine the number of nodes to distribute the work across. On a single machine,

Spark sets this value to the total number of available cores in the machine if α exceeds

this value.

In order to measure the performance of the parallel algorithm, we denote Tα as

the average runtime of the algorithm with α data partitions, and Ts as the baseline

speed for the algorithm with one data partition. We define the speedup with respect

to α as follows:

Speedup =
Tα
Ts

In Figure 3-3, our results show that increasing the number of partitions achieves

linear speedup from 1 to 2 partitions, but then incurs diminishing speedup across
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more partitions. From monitoring the system utilization during runtime, we find

that this is due to network limitations of running Spark programs on one machine.

As the number of partitions grows, the program becomes I/O bound, meaning that

it’s speed is limited by the speed of input/output operations on that machine. After

4 partitions, we observe that the rate of speedup dramatically decreases, since Spark

has expended the number of available cores on the machine.

Figure 3-3: Speedup for a growing number of partitions on one machine

Despite the limitation of running Spark applications on a single machine, our ex-

periments on a cluster of m1.xlarge instances on Amazon Web Services yielded much

more favorable results. For these experiments, we used the Amazon ElasticMapRe-

duce computing infrastructure to run our algorithm on a cluster of m1.xlarge ma-

chines. We repeatedly ran the item-based collaborative filtering algorithm with an

increasing number of clusters and observed the runtime complexity of the algorithm.

However, as opposed to the case of a standalone Spark cluster, we define Ts as the

speed of the parallel algorithm on a cluster with 1 worker node and 1 master node in
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order to factor in the fixed cost of initializing the Spark cluster on Amazon Elastic

MapReduce. Figure 3-4 shows the linear speedup of the item-based collaborative

filtering algorithm with a growing number of machines.

Figure 3-4: Speedup for a growing number of machines in Amazon EC2

3.4.2 Optimizations

In order to achieve the linear speedup with the number of machines, we limited the

item similarity computation to compute the 50 most similar items per item, which

helps limit the search space for computing the top n most similar items. This is a

common approach in academic literature, and has been shown to have a trivial effect

on rating prediction quality if n is set substantially high [1]. We also applied selective

down sampling of item interactions, as presented in the work of Schelter et. al [5], to

limit the number of items in the interaction histories of power users. We set p, the

size of the interaction cut off, to 500, which is above the p > 400 mark that Schelter
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et. al to be the adequate for maintaining prediction quality.
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Chapter 4

Variants of Neighborhood-based

Collaborative Filtering

4.1 Parallel User-based Collaborative Filtering

In this section we will discuss how to implement user-based collaborative filtering on

Spark. The user-based approach, like the item-based approach is split up into two

main components, the user similarity computation and the top n recommendation

computation. The user similarity computation is essentially identical to item sim-

ilarity computation in item-based collaborative filtering, except that the algorithm

computes pairwiseUsers instead of pairwiseItems and the Sim function computes

the similarity between users instead of items.

When computing the top n recommendations with user-based collaborative filter-

ing, item recommendations are generated by searching through the item interaction

history of each neighbor user to the active user. This differs from the item-based ap-

proach, in which we generate item recommendations from the neighbor items of each

item the active user has interacted with. As a result of this, we initialize a broadcast

variable to store the item interaction histories of each user in the dataset which we use

to fetch the item interaction history of each of the active user’s neighbor users. Again,
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this differs from the item-based approach where we broadcasted the item similarity

matrix. The top n recommendation algorithm for user-based collaborative filtering is

described in Algorithm 4 below:

Algorithm 4 Parallel Top N Recommendations Computation for User-based Col-
laborative Filtering
1: Inputs:

• M∗,i, an RDD representing the user-item ratings matrix, keyed on the item
index. Each Mu,∗ element represents a rating and is either in N or empty.
• nearestUsers, an RDD representing the top k similar users for each user in
M .
• groupedUserRatings, the item interaction history for each user in M . This
object is initialized as a broadcast variable.
• n, the number of item recommendations to return.
• WeightedSums(K,V,NearestUsers, n), a user-defined function that
computes the item recommendations for each user K using the weighted sums
approach (2.2).
• Map(f, (K,V )) and GroupByKey((K,V )) as defined previously, where
(K,V ) denotes an RDD object and f is a user-defined function.

2: Outputs:
• itemRecs, the top n item recommendations for the active user u.

3:

4: function TopNRecommendations(nearestUsers, groupedUserRatings, n)
5: ItemRecs←Map(WeightedSums(groupedUserRatings, n), nearestUsers)
6: emit ItemRecs
7: end function

4.2 Similarity Measures

In both item-based and user-based approaches, different notions of similarity can be

used when computing the user or item similarity matrix. While there is no perfect

similarity measure, certain datasets can be especially suited towards a particular

similarity measure depending on factors such as rating scale and distribution or if the

dataset consists of explicit/implicit feedback. In this section we will describe three of

the most commonly used similarity measures besides cosine similarity, which include

adjusted cosine similarity, Pearson correlation, and Jaccard similarity. The following

descriptions of each similarity measure will be phrased in the context of user-based
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collaborative filtering, as in Section 2.

The first of these similarity metrics is adjusted cosine similarity, which, similar

to cosine similarity, is measured by normalizing the user vectors ux and uy and com-

puting the cosine of the angle between them. However, unlike cosine similarity, when

computing the dot product of the two user vectors, adjusted cosine similarity uses

the deviation between each of the user’s item ratings, denoted ru, and their average

item rating, denoted r̄u, in place of the user’s raw item rating. In equation form, the

adjusted cosine similarity computation is expressed as:

sim(ux, uy) =

∑
i∈Pux,uy

(rux,i − r̄ux)(ruy ,i − r̄uy)√ ∑
i∈Pux,uy

(rux,i − r̄ux)2
√ ∑

i∈Pux,uy

(ruy ,i − r̄uy)2
(4.1)

where Pux,uy represents the subset of items i ∈ I for which both users have rated,

rux,i is the rating of user ux on item i and ruy ,i in the rating of user uy on item i. The

main advantage of this approach is that in item-based collaborative filtering, the item

vectors consist of ratings from different users who often have varying rating scales.

Another approach to measuring similarity is the Pearson correlation coefficient.

Like adjusted cosine similarity, Pearson correlation is concerned with accounting for

changes in the rating scale across users and items. However, instead of using the

difference between the user’s rating ru of an item and their average item rating r̄u,

Pearson correlation takes the deviation between ru and r̄i, the average of all ratings

for that item. In equation form, the Pearson correlation coefficient computation is

expressed as:

sim(ux, uy) =

∑
i∈Pux,uy

(rux,i − r̄i)(ruy ,i − r̄i)√ ∑
i∈Pux,uy

(rux,i − r̄i)2
√ ∑

i∈Pux,uy

(ruy ,i − r̄i)2
(4.2)

where Pux,uy represents the subset of items i ∈ I for which both users have rated,

rux,i is the rating of user ux on item i, ruy ,i in the rating of user uy on item i, and r̄i
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represents the average rating of all users u ∈ U on i.

In many cases, the implicit feedback of a user-item interaction, that is, whether

or not a user interacted with an item at all, can provide valuable information about

a user’s preferences. The Jaccard similarity is one such measure that uses this infor-

mation when measuring similarity across user or item vectors. In equation form, the

Jaccard similarity computation is expressed as:

sim(ux, uy) =
|rux ∩ ruy |
|rux ∪ ruy |

(4.3)

where rux ∩ ruy is the number of items which ux and uy have both rated, and rux ∪ ruy
is the total number of items collectively rated by ux and uy. Jaccard similarity has

the advantage of being easily computed and applicable for cases in which explicit

feedback, such as ratings, are not available.

4.3 Experimental Evaluation

In this section we present the results of an experimental evaluation of the different

similarity measures as described above. We compare the accuracy of the item-based

collaborative filtering algorithm with each similarity measure on the MovieLens 10M

dataset. As in the evaluation of parallel item-based collaborative filtering, we apply

an interaction cut of p = 500 and use the top 50 most similar items for each item in

the top n recommendations stage.

4.3.1 Mean Absolute Error

For evaluating the accuracy of the item recommendations computed by item-based

collaborative filtering, we use Mean Absolute Error (MAE), a popular evaluation

metric for collaborative filtering algorithms. Mean Absolute Error is a measure of the

deviation of the predicted rating of an item by a user from the actual rating specified
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by the user. We compute MAE by taking the average of these deviations for every

item in the user’s interaction history, for each user in U . In equation form, MAE is

expressed as:

MAE =

∑
i∈N
|pi − qi|

N
(4.4)

where pi is the predicted rating of the item i computed by the collaborative filtering

algorithm, and qi is the actual rating of the item i specified by the user. The lower

the MAE, the more accurate the collaborative filtering algorithm is at predicting the

item preferences of each user.

4.3.2 Comparison

In order to compute the accuracy of each similarity measure in the item-based col-

laborative filtering algorithm, we split the dataset into a training set and test set

and compare the predicted item ratings computed by running the algorithm on the

training set with the actual user-specified item ratings in the test. We construct the

training and test sets by randomly partitioning the item ratings of each user with

a training/test ratio of .9. That is, the item interaction history of each user in the

training and tests sets is a random sample of their item ratings from the original

dataset, but 90% of them appear in the training set and the remaining 10% appear

in the test set. Figure 4-1 shows the results of effect of each similarity measure on

the accuracy of the item-based collaborative filtering algorithm.

By comparing the resulting MAE of the item-based collaborative filtering al-

gorithm between these similarity measures, we find that adjusted cosine similarity

achieves the highest accuracy, with an MAE of .762. We also find that Pearson

correlation achieves the second highest accuracy with an MAE of .841.
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Figure 4-1: Impact of Similarity Metric on Item-based Collaborative Filtering Accu-
racy
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Chapter 5

Conclusion

In this study we illustrated how to build a scalable neighborhood-based collaborative

filtering recommender system on Apache Spark. We provided the reader with an

understanding of neighborhood-based collaborative filtering methods and discussed

the challenges of implementing them at scale. We introduced the core concepts behind

Spark’s novel data flow programming model and provided implementations of both

user and item-based collaborative filtering algorithms on it.

Using a large dataset consisting of 10 million ratings, we provided an experimental

evaluation of neighborhood-based collaborative filtering on Apache Spark and showed

computational speedup that scales linearly with a growing number of machines. We

discussed how optimizations such as selective down sampling of item interactions

and neighborhood size can be applied to improve runtime performance. Finally, we

compared several correlation and vector based similarity metrics and evaluated their

effects on prediction quality.

In future work, we hope to investigate how Spark can be leveraged for a diverse

set of collaborative filtering applications, such as online recommender systems and

content-based approaches. Since there are many ways to customize collaborative

filtering algorithms on a distributed data processing framework, it is hard to determine

from academic literature exactly how the framework presented here compares with
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similar Hadoop-based frameworks. Future research may uncover which framework is

ideally suited for the neighborhood-based collaborative filtering algorithm.
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Appendix A

Python Code for Parallel

User-based Collaborative Filtering

# User-based Collaborative Filtering on pySpark with cosine similarity

# and weighted sums

import sys

from collections import defaultdict

from itertools import combinations

import random

import numpy as np

import pdb

from pyspark import SparkContext

def parseVectorOnUser(line):

’’’

Parse each line of the specified data file, assuming a "|" delimiter.

Key is user_id, converts each rating to a float.
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’’’

line = line.split("|")

return line[0],(line[1],float(line[2]))

def parseVectorOnItem(line):

’’’

Parse each line of the specified data file, assuming a "|" delimiter.

Key is item_id, converts each rating to a float.

’’’

line = line.split("|")

return line[1],(line[0],float(line[2]))

def sampleInteractions(item_id,users_with_rating,n):

’’’

For items with # interactions > n, replace their interaction history

with a sample of n users_with_rating

’’’

if len(users_with_rating) > n:

return item_id, random.sample(users_with_rating,n)

else:

return item_id, users_with_rating

def findUserPairs(item_id,users_with_rating):

’’’

For each item, find all user-user pairs combos. (i.e. users with the same item)

’’’

for user1,user2 in combinations(users_with_rating,2):

return (user1[0],user2[0]),(user1[1],user2[1])

def calcSim(user_pair,rating_pairs):
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’’’

For each user-user pair, return the specified similarity measure,

along with co_raters_count.

’’’

sum_xx, sum_xy, sum_yy, sum_x, sum_y, n = (0.0, 0.0, 0.0, 0.0, 0.0, 0)

for rating_pair in rating_pairs:

sum_xx += np.float(rating_pair[0]) * np.float(rating_pair[0])

sum_yy += np.float(rating_pair[1]) * np.float(rating_pair[1])

sum_xy += np.float(rating_pair[0]) * np.float(rating_pair[1])

# sum_y += rt[1]

# sum_x += rt[0]

n += 1

cos_sim = cosine(sum_xy,np.sqrt(sum_xx),np.sqrt(sum_yy))

return user_pair, (cos_sim,n)

def cosine(dot_product,rating_norm_squared,rating2_norm_squared):

’’’

The cosine between two vectors A, B

dotProduct(A, B) / (norm(A) * norm(B))

’’’

numerator = dot_product

denominator = rating_norm_squared * rating2_norm_squared

return (numerator / (float(denominator))) if denominator else 0.0

def keyOnFirstUser(user_pair,item_sim_data):

’’’

For each user-user pair, make the first user’s id the key
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’’’

(user1_id,user2_id) = user_pair

return user1_id,(user2_id,item_sim_data)

def nearestNeighbors(user,users_and_sims,n):

’’’

Sort the predictions list by similarity and select the top-N neighbors

’’’

users_and_sims.sort(key=lambda x: x[1][0],reverse=True)

return user, users_and_sims[:n]

def topNRecommendations(user_id,user_sims,users_with_rating,n):

’’’

Calculate the top-N item recommendations for each user using the

weighted sums method

’’’

# initialize dicts to store the score of each individual item,

# since an item can exist in more than one item neighborhood

totals = defaultdict(int)

sim_sums = defaultdict(int)

for (neighbor,(sim,count)) in user_sims:

# lookup the item predictions for this neighbor

unscored_items = users_with_rating.get(neighbor,None)

if unscored_items:

for (item,rating) in unscored_items:

if neighbor != item:
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# update totals and sim_sums with the rating data

totals[neighbor] += sim * rating

sim_sums[neighbor] += sim

# create the normalized list of scored items

scored_items = [(total/sim_sums[item],item) for item,total in totals.items()]

# sort the scored items in ascending order

scored_items.sort(reverse=True)

# take out the item score

ranked_items = [x[1] for x in scored_items]

return user_id,ranked_items[:n]

if __name__ == "__main__":

if len(sys.argv) < 3:

print >> sys.stderr, \

"Usage: PythonUserCF <master> <file>"

exit(-1)

sc = SparkContext(sys.argv[1],"PythonUserItemCF")

lines = sc.textFile(sys.argv[2])

’’’

Obtain the sparse item-user matrix:

item_id -> ((user_1,rating),(user2,rating))

’’’

item_user_pairs = lines.map(parseVectorOnItem).groupByKey().map(
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lambda p: sampleInteractions(p[0],p[1],500)).cache()

’’’

Get all item-item pair combos:

(user1_id,user2_id) -> [(rating1,rating2),

(rating1,rating2),

(rating1,rating2),

...]

’’’

pairwise_users = item_user_pairs.filter(

lambda p: len(p[1]) > 1).map(

lambda p: findUserPairs(p[0],p[1])).groupByKey()

’’’

Calculate the cosine similarity for each user pair and select the

top-N nearest neighbors:

(user1,user2) -> (similarity,co_raters_count)

’’’

user_sims = pairwise_users.map(

lambda p: calcSim(p[0],p[1])).map(

lambda p: keyOnFirstUser(p[0],p[1])).groupByKey().map(

lambda p: nearestNeighbors(p[0],p[1],50))

’’’

Obtain the the item history for each user and store it as a broadcast variable

user_id -> [(item_id_1, rating_1),

[(item_id_2, rating_2),

...]

’’’
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user_item_hist = lines.map(parseVectorOnUser).groupByKey().collect()

ui_dict = {}

for (user,items) in user_item_hist:

ui_dict[user] = items

uib = sc.broadcast(ui_dict)

’’’

Calculate the top-N item recommendations for each user

user_id -> [item1,item2,item3,...]

’’’

user_item_recs = user_sims.map(

lambda p: topNRecommendations(p[0],p[1],uib.value,100)).collect()
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Appendix B

Python Code for Parallel

Item-based Collaborative Filtering

# Item-based Collaborative Filtering on pySpark with cosine similarity

# and weighted sums

import sys

from collections import defaultdict

from itertools import combinations

import numpy as np

import random

import csv

import pdb

from pyspark import SparkContext

from recsys.evaluation.prediction import MAE

def parseVector(line):

’’’

Parse each line of the specified data file, assuming a "|" delimiter.
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Converts each rating to a float

’’’

line = line.split("|")

return line[0],(line[1],float(line[2]))

def sampleInteractions(user_id,items_with_rating,n):

’’’

For users with # interactions > n, replace their interaction history

with a sample of n items_with_rating

’’’

if len(items_with_rating) > n:

return user_id, random.sample(items_with_rating,n)

else:

return user_id, items_with_rating

def findItemPairs(user_id,items_with_rating):

’’’

For each user, find all item-item pairs combos. (i.e. items with the same user)

’’’

for item1,item2 in combinations(items_with_rating,2):

return (item1[0],item2[0]),(item1[1],item2[1])

def calcSim(item_pair,rating_pairs):

’’’

For each item-item pair, return the specified similarity measure,

along with co_raters_count

’’’

sum_xx, sum_xy, sum_yy, sum_x, sum_y, n = (0.0, 0.0, 0.0, 0.0, 0.0, 0)

for rating_pair in rating_pairs:
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sum_xx += np.float(rating_pair[0]) * np.float(rating_pair[0])

sum_yy += np.float(rating_pair[1]) * np.float(rating_pair[1])

sum_xy += np.float(rating_pair[0]) * np.float(rating_pair[1])

sum_y += rt[1]

sum_x += rt[0]

n += 1

cos_sim = cosine(sum_xy,np.sqrt(sum_xx),np.sqrt(sum_yy))

return item_pair, (cos_sim,n)

def keyOnFirstItem(item_pair,item_sim_data):

’’’

For each item-item pair, make the first item’s id the key

’’’

(item1_id,item2_id) = item_pair

return item1_id,(item2_id,item_sim_data)

def nearestNeighbors(item_id,items_and_sims,n):

’’’

Sort the predictions list by similarity and select the top-N neighbors

’’’

items_and_sims.sort(key=lambda x: x[1][0],reverse=True)

return item_id, items_and_sims[:n]

def topNRecommendations(user_id,items_with_rating,item_sims,n):

’’’

Calculate the top-N item recommendations for each user using

the

weighted sums method

’’’
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# initialize dicts to store the score of each individual item,

# since an item can exist in more than one item neighborhood

totals = defaultdict(int)

sim_sums = defaultdict(int)

for (item,rating) in items_with_rating:

# lookup the nearest neighbors for this item

nearest_neighbors = item_sims.get(item,None)

if nearest_neighbors:

for (neighbor,(sim,count)) in nearest_neighbors:

if neighbor != item:

# update totals and sim_sums with the rating data

totals[neighbor] += sim * rating

sim_sums[neighbor] += sim

# create the normalized list of scored items

scored_items = [(total/sim_sums[item],item) for item,total in totals.items()]

# sort the scored items in ascending order

scored_items.sort(reverse=True)

# take out the item score

# ranked_items = [x[1] for x in scored_items]

return user_id,scored_items[:n]
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if __name__ == "__main__":

if len(sys.argv) < 3:

print >> sys.stderr, \

"Usage: PythonUserCF <master> <file>"

exit(-1)

sc = SparkContext(sys.argv[1], "PythonUserCF")

lines = sc.textFile(sys.argv[2])

’’’

Obtain the sparse user-item matrix:

user_id -> [(item_id_1, rating_1),

[(item_id_2, rating_2),

...]

’’’

user_item_pairs = lines.map(parseVector).groupByKey().map(

lambda p: sampleInteractions(p[0],p[1],500)).cache()

’’’

Get all item-item pair combos:

(item1,item2) -> [(item1_rating,item2_rating),

(item1_rating,item2_rating),

...]

’’’

pairwise_items = user_item_pairs.filter(

lambda p: len(p[1]) > 1).map(

lambda p: findItemPairs(p[0],p[1])).groupByKey()

’’’
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Calculate the cosine similarity for each item pair and select the

top-N nearest neighbors:

(item1,item2) -> (similarity,co_raters_count)

’’’

item_sims = pairwise_items.map(

lambda p: calcSim(p[0],p[1])).map(

lambda p: keyOnFirstItem(p[0],p[1])).groupByKey().map(

lambda p: nearestNeighbors(p[0],p[1],50)).collect()

’’’

Preprocess the item similarity matrix into a dictionary and store

it as a broadcast variable:

’’’

item_sim_dict = {}

for (item,data) in item_sims:

item_sim_dict[item] = data

isb = sc.broadcast(item_sim_dict)

’’’

Calculate the top-N item recommendations for each user

user_id -> [item1,item2,item3,...]

’’’

user_item_recs = user_item_pairs.map(

lambda p: topNRecommendations(p[0],p[1],isb.value,500)).collect()

’’’

Read in test data and calculate MAE
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’’’

test_ratings = defaultdict(list)

# read in the test data

f = open("tests/data/cftest.txt", ’rt’)

reader = csv.reader(f, delimiter=’|’)

for row in reader:

user = row[0]

item = row[1]

rating = row[2]

test_ratings[user] += [(item,rating)]

# create train-test rating tuples

preds = []

for (user,items_with_rating) in user_item_recs:

for (rating,item) in items_with_rating:

for (test_item,test_rating) in test_ratings[user]:

if str(test_item) == str(item):

preds.append((rating,float(test_rating)))

mae = MAE(preds)

result = mae.compute()

print "Mean Absolute Error: ",result
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