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PLASTICITY OF CHASMOGAMOUS AND CLEISTOGAMOUS REPRODUCTIVE
ALLOCATION IN GRASSES

GREGORY P. CHEPLICK

Department of Biology, College of Staten Island, City University of New York,
Staten Island, New York 10314, USA
(cheplick@mail.csi.cuny.edu)

ABSTRACT

Cleistogamy is more common in grasses than in any other angiosperm family. Both self-fertilized
cleistogamous (CL) spikelets and open-pollinated chasmogamous (CH) spikelets are typically pro-
duced. Relative allocation to CL and CH varies among species and populations, and is influenced by
ontogeny and environment. The balance between reproductive modes can be expressed as a CH/CL
ratio. This ratio is very plastic and stressful conditions can result in values <1.0. In Amphicarpum
purshii, an annual with subterranean CL spikelets, CH/CL declined as density increased because CH
decreased more than CL as size was reduced by intraspecific competition. In the shade-tolerant annual
Microstegium vimineum, CH/CL was lowest in large greenhouse-grown plants in an unlimited, sunny
environment, but was highest in small plants from a shady forest interior; tiller vegetative mass often
showed a negative allometric relation to CH and CL allocation. In the perennial Dichanthelium clan-
destinum, CH and CL allocation varied among populations, but there was no consistent effect of light
on CH/CL. The phenology of reproduction strongly affects CH/CL. In Danthonia spicata, CH/CL was
high early in the season as CH flowering commenced, but dropped quickly as axillary CL spikelets
matured; A. purshii showed the opposite pattern because CL reproduction occurred first. The assump-
tion that cleistogamy simply provides reproductive assurance should be reevaluated in light of new
information on phenology and allometry. Changes in the balance between CH and CL caused by
environmental factors may be indirect effects of size. Evolutionary models that do not explore the
plasticity and allometry of CH and CL reproduction may not be useful in predicting the myriad patterns
1n nature.

Key words: allometry, chasmogamy, cleistogamy, grasses, phenotypic plasticity, Poaceae, reproduc-

tive allocation.

INTRODUCTION

Cleistogamy (CL) is the production of flowers that do not
open and undergo self-fertilization ‘“‘in the bud” (Lord
1981). Most species that have CL flowers can and do con-
tinue to make open, potentially cross-pollinated chasmoga-
mous (CH) flowers. Because an individual usually can make
both floral forms and they may be present at the same time,
CL species are often considered to have a mixed breeding
system or ‘“‘multiple strategy’’ (Lloyd 1984; Schoen 1984;
Redbo-Torstensson and Berg 1995; Masuda et al. 2001). Due
to the structural and developmental differences typically
found between CH and CL flowers (and sometimes, between
the resulting fruits and seeds), CL species are also consid-
ered to show reproductive dimorphism (Lord 1981; Clay
1983a; Schoen and Lloyd 1984; Cheplick 1994; Plitmann
1995).

In Poaceae, CL is more common than in any other angio-
sperm family and has been reported in over 320 species
(Campbell et al. 1983). Cleistogamy may be due to spikelets
that do not open because of modified floral parts, precocious
maturation while retained within enclosing leaf sheaths, or
lodicule failure (Campbell 1982; Heslop-Harrison and Hes-
lop-Harrison 1996). For example, Campbell (1982) de-
scribed how, in some species of Andropogon L., spikelets
within the raceme sheath can go through anthesis and self-
fertilize before the inflorescence fully emerges from the en-
closing sheath. Without detailed observation, the above types

of CL may be difficult to detect in the field and have prob-
ably led to underestimates of the extent of self-fertilization
in grasses. Other types of CL are more readily observed by
casual inspection. ‘‘Sheath fertilization’’ involves the reten-
tion of spikelets on non-emergent, axillary inflorescences en-
closed within leaf sheaths and is the most common type of
CL in grasses (Campbell et al. 1983). Depending on the
species, axillary spikelets may be found all along the stem
axis or be mostly concentrated at the basal nodes (Dykster-
huis 1945; Dobrenz and Beetle 1966; Cheplick and Clay
1989; Cheplick 1996). In a few grasses, CL spikelets and
caryopses (seeds) mature at the ends of specialized culms
beneath the soil surface (Campbell et al. 1983; Cheplick
1994).

The relative extent of CL can vary greatly both between
and within phylogenetically related species (Campbell
1982). Perhaps the best example is Clay’s (1983a) detailed
comparison of multiple populations of four species of Dan-
thonia DC. Percent CL was defined as the number of CL
spikelets divided by the number of CH + CL spikelets.
Hence, % CL shows the fraction of the total flowers that
were CL at the time the population was sampled. For five
populations of D. sericea Nutt., mean % CL (= SE) was
only 2.7 *£ 0.3%, while for two populations of D. compressa
Austin % CL was 50.2 = 1.0%. Populations were most var-
iable for D. spicata (L.) P. Beauv., ranging from 5 to 43%
CL (x = SE = 24.5 * 0.4%). Because higher % CL in D.
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spicata was associated with disturbed and mown habitats;
Clay (1983a) suggested grazing pressure might generally fa-
vor increased levels of CL in grasses, a view shared by oth-
ers (Dyksterhuis 1945; Campbell et al. 1983).

Other research has indicated that the extent of CL in
grasses can vary among seed-derived sibships (Clay 1982;
Cheplick and Quinn 1988) and among clonal replicates in
perennials (Cheplick 1995). In Amphicarpum purshii Kunth,
an annual, the ratio of seeds from CH spikelets to those from
CL spikelets had a significant narrow-sense heritability of
0.56 (Cheplick and Quinn 1988). For the perennial Dan-
thonia spicata, Clay (1982) reported broad-sense heritabili-
ties of 0.53 and 0.72 in the field and greenhouse, respec-
tively, for the proportion of CL spikelets produced per tiller.
Although simple recessive inheritance of CL (one to three
genes) has been reported in some grain crops (Merwine et
al. 1981; Chhabra and Sethi 1991; Kurauchi et al. 1993;
Ueno and Itoh 1997), like most life-history traits in wild
species, CL is likely to be under quantitative genetic control
(Mazer and LeBuhn 1999). Given the primacy of genetic
variation to the microevolution of populations, it is surpris-
ing that so little effort has gone into documenting quantita-
tive genetic variation in the extent of CL vs. CH in different
species.

Theory

Theoretical considerations of the evolution of CL have
involved comparative cost-benefit analyses of CH vs. CL
flower production (Schoen and Lloyd 1984) or variation in
the relative fertility of the two floral types (Redbo-Torstens-
son and Berg 1995; Masuda et al. 2001). Because the pa-
ternal costs of producing prodigious amounts of pollen in
outcrossed spikelets may be high in grasses (e.g., Schoen
1984), maternal reallocation of conserved resources to CL
spikelets could enhance plant fitness by increasing the num-
ber or size of maturing seeds (Schoen and Lloyd 1984;
Lloyd 1987). Indeed, seeds of CL spikelets are heavier than
those of CH spikelets in a number of grass species (Camp-
bell et al. 1983; Schoen 1984; Cheplick 1994). Assuming no
inbreeding depression, this can translate into more successful
establishment of seedlings that germinate from the seeds of
CL spikelets (Cheplick and Quinn 1983; Clay 1983b;
Schoen 1984).

The production of CL flowers might compensate for the
loss in fruit set due to the unsuccessful fertilization of many
CH flowers, providing ‘‘reproductive assurance’’ (Redbo-
Torstensson and Berg 1995; Culley 2002). Where environ-
ments fluctuate between conditions that are favorable and
unfavorable for each reproductive mode, CL may be envis-
aged as a ‘‘bet-hedging strategy” (e.g., Berg and Redbo-
Torstensson 1998). The relative balance between CH and CL
should depend on the ability of a plant to assess and respond
to environmental variation (Schoen and Lloyd 1984). In the
model presented by Masuda et al. (2001), seasonal variation
in the fertility of CH flowers was used to explain why some
species switch between reproductive modes during the
course of the growing season.

There is no question that the relative production of CH
and CL flowers, fruits, and seeds is markedly plastic in most
facultatively CL plants (e.g., Schemske 1978), including
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grasses (Clay 1982, 1983a; Bell and Quinn 1987; Cheplick
1995). Environmental factors known to affect the extent of
CL in grasses include light, soil nutrition and moisture, and
competition and herbivory. Because CL flowers are energy
efficient for a plant to produce and provide reproductive as-
surance (Schemske 1978; Schoen 1984; Schoen and Lloyd
1984), it has long been noted that whenever environmental
conditions are stressful there tends to be greater reproduction
by CL compared to CH (Dyksterhuis 1945; Wilken 1982;
Campbell et al. 1983). Hence, the ratio of CH to CL is ex-
pected to decline with increasing environmental stress. It is
also recognized that both CH and CL depend on ontogeny,
varying with plant size and phenological stages in ways that
may be predictable for some species (Clay 1982; Jasieniuk
and Lechowicz 1987; Cheplick and Clay 1989; Cheplick
1994; Diaz and Macnair 1998). As will be explored later in
this paper, the challenge for the future generation of models
of the evolution of mixed CH/CL breeding systems will be
to account for the marked plasticity of the two reproductive
modes in relation to environmental factors. In addition, they
will need to explore the relations of plant size and pheno-
logical stage to observed changes in the extent of CL shown
during plant development.

Objectives

Given the predictions made by theoretical models for the
evolution of CH/CL and the complexities inherent in trying
to understand life-history traits that vary greatly with envi-
ronmental conditions, one objective of this paper will be to
summarize information on the relative allocation to CH and
CL in a variety of grasses exposed to variable environments.
The balance between reproductive modes will be expressed
as a CH/CL ratio. Because many of the changes in this bal-
ance that are mediated by environmental factors may be the
indirect effect of plant size, a second objective will be to
present allometric relationships of CH and CL to vegetative
mass for several grass species for which data are available.
A final objective is to describe how temporal changes in CH/
CL are related to the phenology of the two reproductive
modes.

MATERIALS AND METHODS
Data Sources

Information on CH and CL allocation expressed as a pro-
portion of plant (or tiller) dry mass in relation to environ-
mental factors was obtained from published sources. Ratios
of CH/CL were calculated from allocation or dry mass data.
Allometric relationships between CH or CL allocation and
vegetative mass were characterized by regression analysis
and results are depicted in conventional log,,—log,, plots
(Niklas 1994). Vegetative mass is the sum of root and shoot
mass.

The following environmental factors and grasses were ex-
amined: density for Amphicarpum purshii (Cheplick 1982;
Cheplick and Quinn 1983), soil nutrients for A. purshii (Che-
plick 1989), and Triplasis purpurea (Walter) Chapm. (Che-
plick 1996), light and soil moisture for six Dichanthelium
clandestinum (L.) Gould populations (Bell and Quinn 1987),
and light for Microstegium vimineum (Trin.) A. Camus (Che-
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plick unpubl. data; see below). In addition, phenological data
on CH and CL allocation were used to depict temporal
changes in CH/CL across a single growing season in Am-
phibromus scabrivalvis (Trin.) Swallen (Cheplick and Clay
1989), Amphicarpum purshii (Cheplick 1982), and Danthon-
ia spicata (Cheplick and Clay 1989).

Data for Microstegium vimineum.—Japanese stiltgrass is an
Asian species that has become very invasive in the eastern
USA (Hunt and Zaremba 1992; Gibson et al. 2002). Al-
though it is a summer annual C, grass, it is shade tolerant
(Horton and Neufeld 1998) and tends to grow in mesic de-
ciduous forests where it can form a dense, lawn-like mono-
culture underneath the canopy. In temperate regions, it re-
cruits from seed in early spring and produces culms that can
branch and root from the lowermost nodes. Terminal ra-
cemes that bear CH spikelets emerge in late summer. The
spikelets undergo anthesis and mature seed in early autumn.
In addition, CL spikelets form on sheath-enclosed axillary
racemes beginning at the uppermost nodes in late summer.
Mature seeds from CH and CL spikelets are present simul-
taneously on individual plants in early autumn.

A large stand within a forest in Millstone Township, cen-
tral New Jersey, USA, was selected for detailed study. Com-
plete tillers with mature seeds were collected every 20 m
along a transect through the shady forest understory on 5
Oct 2001 until seeds from 20 plants had been sampled. All
seeds were stratified at 4°C for four months on moistened
filter paper in petri dishes. Seedlings obtained from these
seeds were used to establish a greenhouse population of M.
vimineum on 3 May 2002. There were 120 plants, 6 per
family. Details of this experiment are reported elsewhere
(Cheplick 2005). For the present purpose, it should be rec-
ognized that these plants experienced a high-resource envi-
ronment, growing in high light and supplied with mineral
nutrients (fertilizer) on two occasions. As terminal racemes
with seeds of CH spikelets matured (4 Sep—15 Oct 2002), a
single, large senesced tiller was sampled. Tiller length, num-
ber of branches, and culm, leaf, terminal CH, and axillary
CL seed dry mass (after two days at 60°C) were obtained.
Data were collected for 20 randomly selected individuals
(one per maternal family).

To compare the very large plants from the high-resource,
greenhouse environment to plants in the more stressful nat-
ural environment, two tiller populations were sampled at the
field site in autumn 2002, when tillers bore mature CH and
axillary CL racemes. On 15 Oct, tillers were collected from
the forest edge where plants experienced full sun (1100—
1800 pmol/m?/s) for at least 2—4 hr/day. On 24 Oct, 20 ad-
ditional tillers were collected from within the shaded forest
interior where light levels during the previous growing sea-
son (barring sunflecks) were only 5-30 pmol/m?s for the
entire day (Cheplick unpubl. data).

These tillers from the “‘edge’ and ‘‘shaded” populations
were dried for two days at 60°C and data were recorded as
for the greenhouse population described above. It should be
noted that the genetic background for all three experimental
groups (greenhouse, edge, shaded) should be similar because
all plants sampled had been part of the large original M.
vimineum stand at the field site.

Cheplick

ALISO

Table 1. Dry mass (mg) of vegetative (root + shoot) parts, and
CL and CH spikelets and seeds of Amphicarpum purshii reared in
a greenhouse at variable densities. Pots were 11.4 cm in diameter.
Data adapted from Cheplick (1982). Values are x = SE; N = 10.
Coefficients of variation are in parentheses.

Density Vegetative CL CH
Control (1/pot) 7229 * 614 922 * 11.0 563 £ 4.8
(26.8) (37.8) (26.9)
Low (5/pot) 338.7 = 20.5 44.0 £ 22 115 £ 13
(19.1) (15.5) (34.6)
Medium (15/pot) 216.5 = 4.6 314+ 14 24 03
(6.7) (14.2) (43.4)
High (30/pot) 174.7 = 84 27.1 = 1.7 1.1 £0.2
4.8) (19.3) (62.0)
RESULTS

Density

Plasticity of CH and CL allocation in relation to density
was determined from an experiment with the amphicarpic
annual Amphicarpum purshii (Cheplick and Quinn 1983), a
species with subterranean CL spikelets and aerial, terminal
CH spikelets (Cheplick 1994). In an intraspecific competi-
tion experiment, plants were reared in a greenhouse at four
densities: 1, 5, 15, and 30 per 11.4 cm diameter pot. These
will be referred to as control, low, medium, and high den-
sities, respectively, and correspond to 98.0, 489.9, 1469.6,
and 2939.2 plants/m?. These treatments nicely bracket the
natural range in density from 152/m? to 2808/m? (calculated
from data in Cheplick 1982). The experiment lasted three
months and there were ten replications of each density (Che-
plick and Quinn 1983). At harvest, despite a decrease in the
dry mass of both CH and CL reproductive components with
increasing density (Table 1), CL allocation was remarkably
constant, varying only from 13 to 16% (Fig. 1). In contrast,
CH allocation declined from 8% in the control to 0.6% at
the highest density. Thus, CH/CL showed a precipitous de-
crease with increasing density (Fig. 2).

Because A. purshii size was also reduced significantly
with density (Table 1; Cheplick and Quinn 1983), the allom-
etry of CH/CL to vegetative dry mass (i.e., root + shoot
mass) was determined across densities. The relationship of
CH/CL to vegetative mass (VM) was best described by a
polynomial regression (Fig. 3): log(CH/CL) = —26.0 + 17.8
log VM — 3.1 log(VM)? (N = 30, 2 = 0.84, P < 0.001).
In this species, CH/CL tends to increase up to a point, but
then levels off to where the allocation to CH is about 60%
that of allocation to CL in the largest plants (Fig. 3). It is
also noteworthy that CH allocation was more variable than
CL allocation at low, medium, and especially high density,
as assessed by coefficients of variation (Table 1).

Soil Fertility

Plasticity of the balance in CH and CL in relation to soil
fertility was explored for Triplasis purpurea, an annual with
axillary CL. In this greenhouse study, plants were exposed
to three treatments: low nutrients (water only), medium nu-
trients (1.5 g/liter 20-20-20 N-P-K fertilizer) and high nutri-
ents (3 g/liter 20-20-20 N-P-K fertilizer). Details of the
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Amphicarpum purshii
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Fig. 1, 2.—Relation of CH and CL allocation, and CH/CL, to
intraspecific density in Amphicarpum purshii. All bars are x = SE;
N = 10.—1. Percent allocation of vegetative mass to CH and CL.
2. Ratio of CH to CL.

I
High

growing conditions are available in Cheplick (1996). Al-
though plant size data were not recorded, the number of
seeds matured in CH and CL spikelets and their dry masses
were determined. The mean total number of seeds/tiller, %
CL seedst/tiller, and CH/CL mass ratio are shown in Table 2.
Not surprisingly, higher nutrient levels enhanced seed output
(for log,, transformed no. seeds, F = 8.49, P < 0.001); how-
ever, the percent of seeds matured in CL spikelets was high
(75-81%) regardless of nutrient conditions (for arcsine,
square-root transformed proportion of CL seeds, F = 1.34,
P > 0.2; Table 2). With medium or high levels of nutrients,
CH/CL showed no significant increase relative to low nutri-
ents (for arcsine, square-root transformed CH/CL, F' = 0.53,
P > 0.5).

In a study of the effects of nutrient availability in Amphi-
carpum purshii, plants were subjected to high (3 g/liter 20-
20-20 N-P-K fertilizer) or low (water only) nutrients and
harvested when senesced (Cheplick 1989). Although high
nutrients resulted in significantly greater vegetative mass (x
* SE: 384.1 £ 9.7 mg in high vs. 287.3 = 15.6 mg in low
nutrients), the dry mass of CL and CH seeds was not cor-
related with vegetative mass (Cheplick 1989). From these
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Fig. 3.—Allometry of CH/CL (log,,—log,, plot) in the intraspecific
competition experiment with Amphicarpum purshii. Symbols show
plants from control (@), low (), medium (A), and high (V) density
treatments (see Cheplick and Quinn 1983).

data, CH/CL ratios were calculated. There was no significant
difference in CH/CL in high nutrients (0.2468 = 0.0207) vs.
low nutrients (0.2289 * 0.0106) (r = 0.76, P > 0.5).

Light and Soil Moisture

In a detailed study of the effects of soil moisture and light
intensity on the plasticity of CH and CL allocation patterns,
Bell and Quinn (1987) investigated six populations of the
caespitose perennial Dichanthelium clandestinum. Seeds
were collected from six sites in central New Jersey that dif-
fered in soil moisture and light levels. Some plants were
reared in a greenhouse along a soil moisture gradient, while
others were subjected to one of three light treatments: high
(68-86% full sun), medium (31-40% full sun), or low (11—
14% full sun). Allocation to CL was always much greater
than allocation to CH in all treatments. Across the soil mois-
ture gradient, allocation to CH remained relatively constant,
but was <1% in all populations. However, the proportion of
the reproductive allocation comprising CL flowers increased
as soil moisture decreased, in accordance with the expecta-
tion of greater CL under stressful conditions. Nevertheless,
it may be suspected that the changes in CH/CL across the
moisture gradient were simply indirect effects of plant size

Table 2. Mean (* SE) number of seeds per tiller, percent of
seeds from CL spikelets, and CH/CL mass ratio for Triplasis pur-
purea reared in a greenhouse at three levels of soil nutrients (N =
13 per nutrient level). See Cheplick 1996.

Nutrients No. seeds % CL CH/CL

Low 4475 + 4.67 80.95 = 2.98 0.2678 = 0.0631
Medium 80.92 + 6.43 74.59 + 3.01 0.3439 = 0.0591
High 78.00 = 9.12 77.64 = 2.69 0.3012 = 0.0422
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Fig. 4—Relation of CH/CL to light intensity for six populations Q 0.8 1
of Dichanthelium clandestinum in New Jersey, USA. Data were cal- I 06 - T
culated from mean values for % CH and % CL reported in Bell and o T
Quinn (1987). 0.4 -
0.2
because biomass was significantly lower whenever soil 0.0

moisture was limited (Bell and Quinn 1987).

Populations showed variable patterns of plasticity in CL
allocation along the moisture gradient. The two populations
that showed a relatively high allocation to CL at low soil
moisture were from sites where soil moisture was typically
low, suggesting increased CL as a possible adaptation to dry
conditions.

In the light intensity experiment, populations of D. clan-
destinum differed significantly in allocation to CH and CL
within and across all light treatments (Bell and Quinn 1987).
Hence, there were genetically based differences in popula-
tion allocation patterns to CH and CL. Ratios of CH/CL
were calculated from the allocation data (Fig. 4) in Bell and
Quinn (1987). Populations varied from no effect of light on
CH/CL (population 3 in Fig. 4), a decrease in CH/CL with
increasing light (population 6), and an increase in CH/CL
with increasing light (population 5). Population 5 was the
only example of the predicted increase in CH under high
resource conditions (Fig. 4).

For the three populations of the invasive annual Micros-
tegium vimineum, mean (* SE) vegetative mass for the
greenhouse-, edge-, and shade-reared tillers was 796.2 =
56.3 mg, 281.2 £ 25.8 mg, and 140.1 = 17.8 mg, respec-
tively. The greenhouse tillers had the lowest allocation to
both CH (2.1 £ 0.1%) and CL (5.1 * 0.4%) (Fig. 5). Tillers
from the sunny edge habitat had the highest allocation to CH
(7.7 = 0.9%) and CL (15.1 = 1.3%). Tillers from the shaded
forest interior allocated a similar amount of biomass to CH
(6.0 £ 0.6%) and CL (6.9 £ 0.7%). Interestingly, CH/CL
was lowest in the resource-rich greenhouse and did not differ
from that of field tillers from the edge habitat (Fig. 6). How-
ever, tillers from the shaded habitat had the highest CH/CL

I I I
GREENHOUSE EDGE SHADE

Fig. 5, 6.—Relation of CH and CL allocation, and CH/CL, to
population source in Microstegium vimineum. Bars are x = SE; N
= 20 (except for edge where N = 15).—5. Percent allocation of
tiller vegetative mass to CH and CL.—6. Ratio of CH to CL.

ratio, despite being collected from a population with a very
high intraspecific density (Cheplick 2005).

Because the three tiller groups differed greatly in size,
allometric relationships of CH and CL allocation to vege-
tative mass (VM) were plotted (Fig. 7, 8). For shaded tillers
there was a significant decrease in % CH with increasing
VM (log [% CH] = 1.64 — 0.44 log VM; 2 = 028, P <
0.05), but this relationship was insignificant for edge (1> =
0.13, P > 0.05) and greenhouse (> = 0.03, P > 0.05) tillers.
In contrast, there was a highly significant decrease in % CL
with increasing VM for greenhouse tillers (log[% CL] =
3.33 — 0.92 log VM; 2 = 0.50, P < 0.01). Percent CL and
VM were not correlated in edge (> = 0.11, P > 0.05) or
shaded (2 = 0.14, P > 0.05) tillers. Due to these allometric
patterns, CH/CL was positively related to VM in the green-
house tillers (log[CH/CL] = —2.59 + 0.77 log VM; 2 =
0.29, P < 0.01). Thus, the largest plants in the most re-
source-rich environment preferentially allocated more to CH
relative to CL, in agreement with the idea of CH as an op-
portunistic mode of reproduction.

Phenology

In the previous studies of CH and CL allocation patterns,
data were collected at a single point in time, typically when
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Fig. 7, 8.—Allometry of percent CH and CL allocation (log,,—
log,, plots) for three population sources in Microstegium vimineum
from central New Jersey, USA. Tillers were from the shaded woods
(A), sunny edge habitat ((J), or greenhouse (O).—7. Percent allo-
cation of tiller vegetative mass to CH.—S8. Percent allocation of tiller
vegetative mass to CL.

plants were mature and had produced seeds in both CH and
CL spikelets. However, the phenology of CH and CL flow-
ering can vary greatly between species, further complicating
research into the evolution of mixed breeding systems. As
an example, contrasting temporal patterns of CH and CL
reproduction are presented for three cleistogamous grasses.

In the caespitose perennial Danthonia spicata, apical CH
flowering precedes CL flowering and axillary CL seeds con-
tinue to mature at the upper nodes as plants age (Cheplick
and Clay 1989). In a population originally collected from
Durham, North Carolina, USA, but maintained in a garden
plot in Bloomington, Indiana, USA, CH/CL dropped from
2.8 to 1.1 over a three-week period (Fig. 9). For another
population collected from the field in Monroe County, In-
diana, USA, CH/CL was 7.9 in mid-Jun, but declined to 3.3
by Jul (Fig. 10). This drop in CH/CL is predominantly due
to an increase in CL allocation over time; CH allocation only
varied between 9.3 and 11.0% in the garden population and
decreased from 15.1 to 13.3% in the field population over
five weeks. At the same time, CL allocation increased from
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3.3 to 9.1% in the garden and from 1.9 to 3.3% in the field
(Cheplick and Clay 1989).

In the rhizomatous perennial Amphibromus scabrivalvis,
a population collected from Louisiana, USA, was reared out-
doors in Bloomington, Indiana, USA. Reproductive tillers
were sampled at three stages (Cheplick and Clay 1989): ear-
ly (before terminal CH panicles had emerged), mid (at the
time of terminal panicle maturation), and late (one month
later). Percent allocation to CL increased from 7.0 to 14.3%
while CH allocation increased from O to 20.6%. Hence, CH/
CL showed a pronounced increase between early and late
developmental stages (Fig. 11).

Data on CH and CL allocation over time were also ex-
tracted for the annual amphicarpic grass Amphicarpum pur-
shii from Appendix A in Cheplick (1982). Fifteen plants
were harvested from a field population 2 km south of Lake-
hurst in the Pinelands of New Jersey, USA, once every two
weeks throughout the summer growing season. In this spe-
cies, CL spikelets and seeds are matured on subterranean
culms throughout the summer, while aerial spikelets and
seeds on open panicles are produced only in late summer or
early autumn. Between 16 and 30 Jul, CL allocation in-
creased from 12.1 to 29.1%, but CH/CL was zero because
CH panicles were not yet present (Fig. 12). Between 13 Aug
and 10 Sep, CH allocation increased from 1.3 to 6.8%.
Therefore, CH/CL increased substantially from 0.03 to 0.16
during this period (Fig. 12).

DISCUSSION

Chasmogamous and cleistogamous reproductive alloca-
tion in grasses with mixed breeding systems varies greatly
among species and populations within species. Variation
among populations is not surprising given the plasticity of
CH and CL in relation to environmental factors such as light,
soil moisture and fertility, and competitive stress. Within nat-
ural populations, underlying all of the environmental influ-
ences on CH/CL is variation in the plasticity of genotypic
responses. Genetically based differences in the phenotypic
plasticity of CH and CL across populations can be detected
by common garden experiments (Fig. 4; Bell and Quinn
1987). Variation in CL among seed-derived sibships (Clay
1982; Cheplick and Quinn 1988) or cloned genotypes (Che-
plick 1995) reveal that the raw material for population mi-
croevolution exists in the few CL grasses examined to date.

In addition to environmental and genetic considerations,
temporal changes during development (ontogeny) and the
life cycle (phenology) can contribute to observed variation
in the balance of CH and CL, as depicted by the CH/CL
ratio. The mass of vegetative parts such as leaves, stems,
and roots increases during the development of both annual
and perennial grasses as tillers increase in size and number.
Given an allometric relationship between vegetative mass
and % CH or % CL, any environmental factor that slows (or
speeds) development and changes plant size can indirectly
alter the CH/CL ratio (Fig. 3). The drastic reduction in size
associated with increasing intraspecific competition in Am-
phicarpum purshii (Table 1) and the relative decrease in %
CH (but not % CL) explains the decrease in CH/CL as den-
sity increases (Fig. 2).

The theoretical expectation that the relative proportion of
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Fig. 9-12.—Contrasting patterns in the phenology of CH and CL in three grasses over a single growing season.—9. Danthonia spicata
in a garden plot in Bloomington, Indiana, USA (N = 15, 14, and 13 for 7 Jun, 15 Jun, and 21 Jun, respectively).—10. Danthonia spicata
from a field site in Monroe County, Indiana (N = 30 per date).—11. Amphibromus scabrivalvis from Louisiana, USA, but reared outdoors
in Bloomington, Indiana. ‘‘Early” is before terminal CH panicle emergence (N = 10), “‘mid” is at the time CH panicles were mature (N
= 16), and ‘‘late” is one month later (N = 10).—12. Amphicarpum purshii from a field site in the Pinelands of New Jersey, USA (N =
15 per date).
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the reproductive allocation devoted to CL would be greatest
under environmentally stressful conditions is restricted to
certain grasses exposed to specific conditions. This expec-
tation is certainly not universal and cannot be unequivocally
applied to all CL grasses studied to date. In A. purshii, most
reproductive allocation was to CL at high density (Fig. 2).
However, low soil nutrient availability did not significantly
change the CH/CL ratio in this species, despite the smaller
size of plants relative to those in higher nutrient conditions
(Cheplick 1989). Likewise, in Triplasis purpurea, CH/CL
was not significantly changed by decreasing soil fertility (Ta-
ble 2). In Dichanthelium clandestinum, the proportion of the
reproductive allocation composed of CL spikelets increased
with soil moisture stress, in agreement with theoretical ex-
pectations; however, there was no consistent effect of light
on CH/CL and the ratio was greatest under low light con-
ditions for some populations (Fig. 4; Bell and Quinn 1987).
Finally, data for Microstegium vimineum revealed that the
lowest CH/CL ratios were obtained for the largest plants in
the most resource-rich environment (Fig. 7, 8)!

In short, the proximate reason for plasticity in the CH/CL
balance across variable environments can be exposed when
the allometry of reproductive allocation is explored. Size
dependence of both CH and CL has been recognized in other
herbaceous plants with mixed breeding systems (Wilken
1982; Jasieniuk and Lechowicz 1987; Cheplick 1994; Berg
and Redbo-Torstensson 1998; Diaz and Macnair 1998).
Clearly, future studies of putative adaptive responses of CH
and CL to environmental conditions should not ignore the
role of size in mediating resource partitioning to both repro-
ductive modes.

The patterns detected in the reproductive allocation to CH
and CL for a particular species will also be closely linked
to flowering phenology, which may be relatively fixed and
not necessarily related to size. When CH precedes CL, a
seasonal decline in CH/CL is expected (Fig. 9, 10), while
the reverse is expected when CH follows CL (Fig. 11, 12).
The phenological timing may be especially important in an-
nual herbs of disturbed environments where the risks of early
mortality can be high (Bazzaz 1996). For example, because
Amphicarpum purshii allocates resources to CL much earlier
in the growing season than it does to CH (Fig. 12), early
death might mean that an individual has reproduced, but
only via seeds matured in CL spikelets. The consistency in
CH/CL phenology of species such as A. purshii provides a
solid argument for an evolutionarily fixed strategy of repro-
duction. To date, it is not known to what extent mortality
risks have contributed to the evolution of this particular phe-
nological pattern in A. purshii, or any other annual CL spe-
cies. For perennials in which seed recruitment is compara-
tively rare, early production of seeds by CL to provide re-
productive assurance may not be a tenable evolutionary hy-
pothesis (e.g., Berg and Redbo-Torstensson 1998).

Clearly, when trying to compare species or different ex-
perimental treatments within a species, investigators must be
careful to only compare data recorded at equivalent pheno-
logical stages. Researchers should also be well aware of the
relative timing of CH and CL reproduction for the species
under study and how phenology might impact experimental
results.
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Conclusions

Identifying the selective forces responsible for the evo-
lution of mixed breeding systems in the grasses has been
confounded by the tremendous phenotypic plasticity found
among genotypes, populations, and species. It is clear that
environmental factors, both abiotic and biotic, can alter the
balance between CH and CL and that some proportion of
the phenotypic changes in reproductive allocation can be at-
tributed to changes in plant size. However, the ecological
and evolutionary consequences of plasticity in CH and CL
allocation have not been thoroughly characterized.

Population genetic structure is strongly affected by the
highly inbred nature of CL breeding systems (Sun 1999;
Green et al. 2001; Lu 2002). Although within-population
molecular genetic diversity may be low, high levels of ge-
netic differentiation can occur between populations (Godt
and Hamrick 1998; Sun 1999). It is likely that such species
exist as genetically different inbred lines that occasionally
outcross (Green et al. 2001; Lu 2002). Significant quantita-
tive genetic variation in life-history traits occurs among sib-
ships in highly inbred species (Clay 1982; Cheplick and
Quinn 1988; Charlesworth and Charlesworth 1995). Hence,
the evolutionary potential of CL grasses may be consider-
able.

Further research is needed to test the models for the evo-
lution and maintenance of CL, as noted over 20 years ago
in the review by Campbell et al. (1983). The assumption that
CL mostly provides reproductive assurance should be re-
evaluated in light of information on allometric relationships
and phenological patterns. Characterization of the molecular
and quantitative genetic variation within and among popu-
lations, and the plasticity of life-history traits, will be nec-
essary to further refine evolutionary models and understand
the ecological success of species with mixed breeding sys-
tems.
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