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PHYLOGENY AND HISTORICAL ECOLOGY OF RHODOCOMA (RESTIONACEAE) FROM
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ABSTRACT

A macroevolutionary analysis of macroecological relationships in Rhodocoma revealed a complex
history of rapid ecological divergence, as well as genetic isolation via shifts in flowering times. The
rate and extent of divergence observed among even the youngest of species pairs indicated that the
selective forces driving these processes are strong enough to effect substantial amounts of ecological
change in relatively short periods of time, and are potentially important factors promoting the origin
and persistence of species diversity not only in Rhodocoma, but also the African Restionaceae as a
whole. These results also suggest that the rate and extent of ecological differentiation can vary between
lineages, and this may be a consequence of variations in the intensities of selective regimes or phy-
logenetic constraints that different lineages experience. Investigation into the nature of this differen-
tiation revealed that much of it has occurred along altitudinal gradients, but in tandem with substantial
shifts in other ecological parameters such as rainfall and fire survival. This multidimensionality of
ecological differentiation increases the number of possible combinations of ecological parameters and
may allow for a more precise partitioning of niche space.

Key words: ancestor reconstruction, Cape Floristic Region, historical ecology, niche conservatism,
Restionaceae, Rhodocoma.

INTRODUCTION

Rhodocoma Nees consists of eight species of African Res-
tionaceae (Linder 2002). The African Restionaceae comprise
a large (19 genera; 350 spp.) and ecologically important
clade of graminoid, dioecious, wind-pollinated perennials
largely restricted to the Cape Floristic Region (CFR) (Gold-
blatt 1978) of southern Africa (Linder 1991, 2002). As a
genus, Rhodocoma is distributed primarily in the eastern half
of the CFR and is distinguished from other African Restion-
aceae by the combination of pendulous male spikelets, sin-
gle-flowered female spikelets, and trilocular capsules (Linder
1984, 1991; Linder and Vlok 1991). More than ten years
ago, Linder and Vlok (1991) concluded that patterns of bio-
geography and ecological variation in Rhodocoma were con-
sistent with some form of sympatric speciation, driven by
selective forces across steep ecological gradients. Based on
a cladistic analysis of morphological and anatomical char-
acters, sister species were shown to be either sympatric or
parapatric, and distinguished by ecological (chiefly habitat)
factors. However, the limited character sampling and ab-
sence of two subsequently described species limited the
strength of these earlier conclusions. Here we present the
results of a reinvestigation of phylogenetic relationships in
Rhodocoma, incorporating these two additional species and
newly acquired DNA sequence data. Using an approach sim-
ilar to that developed by Linder and Hardy (2005), we also
quantify patterns of ecological differentiation in the genus
and reevaluate the potential influence of ecological factors
in Rhodocoma diversification. Using this combined macro-
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evolutionary and macroecological approach, we explore the
potential role of ecology in not only driving cladogenesis,
but also in promoting the maintenance of species richness in
Rhodocoma.

MATERIALS AND METHODS

Taxon Sampling

The eight recognized species of Rhodocoma were each
represented by a single sample. The immediate outgroup to
Rhodocoma is not certain. The family level analyses of Lin-
der (1984), Eldenäs and Linder (2000), and Linder et al.
(2000) have resolved the genus Thamnochortus Berg. as sis-
ter to Rhodocoma, a relationship supported by their sharing
numerous morphological attributes, including the possession
of pendulous male inflorescences. Accordingly, outgroup
sampling included 10 of the 32 species of Thamnochortus.
However, preliminary results from an ongoing phylogenetic
study of the African Restionaceae as a whole indicate that
while Thamnochortus and Rhodocoma are closely related,
they may not be sister taxa (Hardy and Linder unpubl. data),
and additional outgroup taxa were chosen in accordance with
these results. A complete list of these species and their
vouchers is presented in Table 1.

Character Sampling

DNA sequences were generated from the plastid regions
completely spanning the trnL intron through the trnL–trnF
intergenic spacer (Taberlet et al. 1991), the complete gene
encoding rbcL (Chase and Albert 1998), and the complete
atpB–rbcL intergenic spacer (Manen et al. 1994; Chiang and
Schaal 2000; Cuénoud et al. 2000), as well as matK and the
flanking trnK intron (Hilu and Liang 1997). Total DNA was
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Table 1. Species sampled for this study.

Taxon Voucher informationa (GenBank accession numbers)

Rhodocoma alpina H. P. Linder & Vlok
Rh. arida H. P. Linder & Vlok
Rh. capensis Nees ex Steud.
Rh. foliosa (N. E. Br.) H. P. Linder
Rh. fruticosa (Thunb.) H. P. Linder

Linder, Hardy, and Moline 7603
Linder et al. 7414
Linder et al. 7248
Linder et al. 7280
Linder et al. 7609

(AY640389)
(AY640390; AY690747; AY690785)
(AY640391; AY690748; AY690786)
(AY640392)
(AY640393; AY690749; AY690787)

Rh. gigantea (Kunth) H. P. Linder
Rh. gracilis H. P. Linder & Vlok

Linder et al. 7401
Linder et al. 7400

(AY640394; AY690750; AY690788)
(AY640395; AY881396; AY881470; AY881616)

Rh. vleibergensis H. P. Linder ined. Linder et al. 7426 (AY640396; AY690751; AY690789)
Thamnocortus erectus (Thunb.) Mast.
T. fruticosus Berg.

Linder et al. 7364
Linder et al. 7594

(AY640397; AY690771; AY690809)
AY640398; AY690755; AY690793)

T. gracilis Mast.
T. karooica H. P. Linder
T. levynsiae Pillans
T. lucens Poir.
T. nutans (Thunb.) Pillans

Linder et al. 7333
Linder et al. 7283
Linder et al. 7345
Linder 7147
Linder et al. 7350

(AY640399; AY690757; AY690795)
(AY640400; AY690758; AY690796)
(AY640401; AY690759; AY690797)
(AY640402; AY690774; AY690812)
(AY640403; AY690761; AY690799)

T. obtusus Pillans
T. paniculatus Mast.
T. pulcher Pillans

Linder et al. 7285
Linder et al. 7310
Linder et al. 7338

(AY640404; AY690775; AY690813)
(AY640405; AY690762; AY690800)
(AY640406; AY690765; AY690803)

Calopsis burchellii (Mast.) H. P. Linder
C. viminea (Rottb.) H. P. Linder
Restio insignis Pillans
Re. similis Pillans

Linder et al. 7393
Linder et al. 7200
Linder 7144
Linder et al. 7324

(AY640385; AY690743; AY690782)
(AY640386; AY690744; AY690783)
(AY640387; AY690745; AY690784)
(AY640388; AY690746; AY690820)

a All collections made in Cape Floristic Region, South Africa. All vouchers deposited in the herbarium (Z) at the Institute of Systematic
Botany, University of Zurich, Switzerland.

Table 2. Sequencing and PCR primers used for the trnK–matK and atpB–rbcL regions.

Name Locus Direction Sequence Utility Reference

Ar!F1c atpB–rbcL forward 5!-CCAGCACGGGCCGTATAATTTG-3! PCR and sequencing C. Hardy and P. Moline,
Univ. Zurich

Ar!R1a2
1f
636f
797r
rbcL rev

atpB–rbcL
atpB–rbcL
atpB–rbcL
atpB–rbcL
atpB–rbcL

reverse
reverse
forward
reverse
reverse

5!-CCTGGTTGAGGAGTTACTCGGAAT-3!
5!-ATGTCACCACAAACAGAAAC-3!
5!-GCGTTGGAGAGATCGTTTCT-3!
5!-CCGTTAAGTAGTCGTGCA-3!
5!-TCCTTTTAGTAAAAGATTGGGCCGAG-3!

Sequencing
Sequencing
Sequencing
Sequencing
PCR and sequencing

C. Hardy and P. Moline
Asmussen and Chase (2001)
Asmussen and Chase (2001)
C. Hardy and P. Moline
Asmussen and Chase (2001)

mk!F1
matk-r4
mk!B4
mk!A2

trnK–matK
trnK–matK
trnK–matK
trnK–matK

forward
reverse
reverse
forward

5!-AAGACYRCGACTGATCCT-3!
5!-CGCGTCAACAATACTTCT-3!
5!-CCTATAGAAGTGGATTCGTTC-3!
5!-CCAAAGTCAAAAGAGCAATTG-3!

PCR and sequencing
Sequencing
Sequencing
Sequencing

A. Kocyan pers. comm.
P. Moline
C. Hardy
C. Hardy

matk-r2
mk!B2
matk-f2
mk!R1

trnK–matK
trnK–matK
trnK–matK
trnK–matK

reverse
reverse
forward
reverse

5!-GGGACATCCTATTAGTAAA-3!
5!-CGAGCCAAAGTTCTAGCACAC-3!
5!-CCATTATTCCTCTCATTG-3!
5!-CATTTTTCATTGCACACGRC-3!

Sequencing
Sequencing
Sequencing
PCR and sequencing

P. Moline
C. Hardy
P. Moline
A. Kocyan pers. comm.

isolated from silica-gel-dried culms using the Dneasy" Plant
Mini Kit (QIAGEN, Inc.,Valencia, California, USA). Se-
quences for trnL–F were obtained as described in Eldenäs
and Linder (2000). The two regions spanning the contiguous
atpB–rbcL spacer plus rbcL, as well as matK and the flank-
ing trnK intron, were each amplified from a single poly-
merase chain reaction using the primers designated in Table
2. Sequences were generated using standard methods for
automated sequencing, using the primers designated in
Table 2.

Phylogenetic Analysis

Raw sequence data files were analyzed with the ABI
Prism# 377 Software Collection vers. 2.1 (Applied Biosys-

tems, Inc., Foster City, California, USA). Contigs were con-
structed in Sequencher# (Gene Codes Corporation, Ann Ar-
bor, Michigan, USA) and alignments were performed using
the default alignment parameters in CLUSTAL!X (Thomp-
son et al. 1997), followed by manual adjustment by eye with
the criterion of minimizing inferred evolutionary events,
where insertions/deletions (indels) and base substitutions
were equally weighted. These sequences were assembled
into a single matrix in WinClada vers. 1.00.08 (Nixon 2002).
Indels were coded at the end of the matrix as unordered
binary or multistate characters. The data matrix used in the
analysis is available from the authors, and at the following
website: http://www.treebase.org (accession #SN1741). Par-
simony searches were conducted with both PAUP* vers. 4.0
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Table 3. Ecological parameters coded. Altitude, Average annual rainfall, Rainfall seasonality (0 ! winter rain; 1 ! all year), Fire
survival mode (0 ! resprouting; 1 ! reseeding), Groundwater availability (0 ! none; 1 ! seeps), Bedrock (0 ! TMS; 1 ! shale; 2 !
granite; 3 ! silcrete; 4 ! enon conglomerate; 5 ! cave sandstone; 6 ! limestone; 7 ! acid coastal sand; 8 ! alkaline sand), and Soil
rockiness (0 ! none; 1 ! stony; 2 ! bedrock).

Altitude (km)
Average annual
rainfall (mm)

Rainfall
seasonality

Fire survival
mode

Ground water
availability Bedrock

Soil
rockiness

Calopsis burchellii
C. viminea
Restio insignis
Re. similis

0.25–0.35
0.05–1.4

1.2–1.8
0.05–1.5

600–1000
200–600
600–1200
600–1200

1
0, 1
0
0

0
0
1
—

0
0
0
0

3
0, 2, 3, 6, 7
0
0

1
1
1
0, 1

Rhodocoma alpina
Rh. arida
Rh. capensis
Rh. foliosa

1.6–2.0
0.5–0.8
0.9–1.5
0.3–0.9

900–1200
200–300
500–1000
700–1000

1
1
0, 1
1

0
1
0, 1
0

0
0
1
0

0
0, 4
0, 1
0

1
2
0, 2
1

Rh. fruticosa
Rh. gigantea
Rh. gracilis
Rh. vleiberensis

0.2–1.6
0.1–0.6
0.3–0.6
1.0–1.6

400–900
700–1000
700–1000
400–800

0, 1
1
1
0

0
1
1
1

0
0
0
0

0, 3, 5
0, 1
0
0

1
1
0, 2
1, 2

Thamnochortus erectus 0.01–0.2 400–1000 0, 1 0 0 8 0, 1
T. fruticosus
T. gracilis
T. karooica
T. levynsiae
T. lucens

0.0–1.2
0.1–0.6

0.45–1.0
0.5–1.0
0.1–1.0

400–1000
400–1000
100–400
800–1000
200–1200

0, 1
0
1
0
0

0
0
1
—
0

0
0
0
0
0

0, 2, 3, 6
0
0
0
0

0
1
1
2
1

T. nutans
T. obtusus
T. paniculatus
T. pulcher

0.9–1.0
0.01–0.2
0.01–0.2
0.03–0.5

1000–200
400–600

20–600
600–1200

0
0
0, 1
0

0
—
1
0

0
0
0
0

0
7
6
0

2
0
1
1

for Macintosh (Swofford 2002) using the ‘‘Branch and
Bound’’ option, and the heuristic options in NONA vers. 1.6
(Goloboff 1993), run as a daughter process from WinClada.
In NONA, 1000 tree searches were conducted, with each
search initiated with the generation of a Wagner tree, using
a random taxon entry sequence, and followed by tree-bisec-
tion-reconnection (TBR) swapping on the Wagner tree, with
one shortest tree retained and subjected to branch swapping.
All most-parsimonious trees accumulated during these
searches then were subjected to TBR swapping, including
swapping on all trees propagated during this phase of the
search, with up to 10,000 trees retained and swapped. Boot-
strap support values (Felsenstein 1985) were obtained using
NONA spawned as a daughter process in WinClada using
1000 replicates with 100 TBR searches each, holding one
tree per TBR search. Percentages were then based on the
strict consensus tree of each of the 1000 replicates (i.e., the
‘‘strict-consensus’’ bootstrap sensu Soreng and Davis 1998).

Branch lengths within the genus Rhodocoma were esti-
mated using maximum likelihood (ML). To do this, a mod-
ified matrix was constructed including only sequences from
Rhodocoma, including all sites in the aligned sequence data
set and excluding indel characters. ModelTest vers. 3.06 (Po-
sada and Crandal 1998) was then employed in tandem with
PAUP* to choose an adequately parameter-rich ML model
from a possible 56 models of sequence evolution that returns
the highest likelihood score not significantly different from
the scores returned for more complex models. Although
ModelTest vers. 3.06, by default, evaluates models based on
a neighbor-joining tree, the topology for Rhodocoma ob-
tained through parsimony analysis of the combined data set
was used. This required modifying the ‘‘modelblock’’ file

accompanying ModelTest by deleting the first command
block, which commands PAUP* to construct a neighbor-
joining tree. Then with the Rhodocoma matrix and parsi-
mony tree already opened and executed in PAUP*, the mod-
ified ‘‘modelblock’’ file is executed. The model selected by
ModelTest (the general time reversible [GTR] model of nu-
cleotide substitution, with six substitution types) was then
used to perform a likelihood ratio (LR) test (Felsenstein
1981) to assess rate heterogeneity in Rhodocoma. Using
PAUP*, likelihoods with and without assuming a clock were
calculated for the single most-parsimonious topology ob-
tained for Rhodocoma from the principal analysis. As the
LR test did not reject the clock (X2 ! 2.00, P " 0.01), ML
branch lengths were estimated under the assumption of a
clock, using the same parameters as above. The ultrametric
tree obtained was viewed and printed from TreeView vers.
1.6.6 (Page 1996).

Macroecological Parameters

The set of ecological parameters used by Linder and Har-
dy (2005) was somewhat modified and scored for each spe-
cies (Table 3). The selection of parameters and their defini-
tions were limited by the available data for each species, and
to those adequately characterized for the Cape Floristic Re-
gion. These parameters are ‘‘proxy’’ parameters for the mul-
titude of environmental variables that may be biologically
significant, and so are similar to the Ellenberg indicator val-
ues (Ellenberg 1974) used in Europe. Precise quantitative
measurements are not available for most species of the Cape
flora.
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Bedrock.—Species of Rhodocoma are restricted to soils de-
rived from the following types of bedrock: sandstone (Table
Mountain Sandstone or TMS), shale, silcrete, enon conglom-
erates, and cave sandstone (sandstone restricted to the Drak-
ensberg, finer textured and potentially more nutrient rich
than TMS). Some species of outgroup taxa may also be
found on granites, limestones, or acid or alkaline sands near
the coast. These soils have a characteristic particle size, pH,
nutrient profile, and conductivity (Lambrechts 1979), and so
the types recognized are proxy estimates of soil nutrients,
water retention, and conductivity. Although these soil cate-
gories are crude, they appear to characterize different veg-
etation types in the CFR, and the boundaries between them
are usually sharp.

Altitude.—Altitudinal variation among the species of Rho-
docoma ranges from near sea level to 2000 m. Altitude may
predict diurnal and annual temperature ranges, pan-evapo-
ration, insolation, and UV-B radiation.

Groundwater availability.—In the CFR with its dry and hot
summers, groundwater availability may be important to fa-
cilitate growth in the summer, particularly for shallow-rooted
monocots (Higgins et al. 1987). We recognize three habitats,
defined on the basis of groundwater availability: (i) well-
drained soils, (ii) seepages (which are saturated with water
for only certain periods of the growing season), and (iii)
stream banks, from which plants have continuous access to
groundwater. Plants of Rhodocoma occur in either of the first
two.

Soil rockiness.—Soil rockiness is an indirect descriptor of
soil depth and moisture availability during periods without
rain. Rockless soils in the CFR are generally deep, sandy
substrates and occur along the coastal plains and on sandy
plateaus on the mountains, which may be waterlogged in
winter and dry in the summer. Stony soils generally occur
on mountain slopes. These substrates are of generally deeper
soils, but with a profile broken by stones of various sizes.
The regions beneath the stones provide pockets of moisture
that plant roots can access, even during the arid summer
months when other soils, such as those of the sandy plains,
are dry. The third category comprises the very shallow soils
over bedrock.

Average annual rainfall.—Patterns of rainfall in the CFR,
particularly in the western Cape, are highly variable and gra-
dients are very steep (Campbell 1983). Totals range from
nearly 2000 mm per year in the highest elevations of the
mountains immediately facing the coast, to less than 200 mm
on the inland slopes of the interior mountain ranges such as
the Swartberg and Cederberg (Goldblatt and Manning 2000).
Although correlated along certain transects with other pa-
rameters such as altitude, Campbell (1983) has shown that
these correlations break down in other parts of the Cape, due
to complex interactions with other parameters such as aspect
and proximity to the coast. These data for Rhodocoma are
primarily estimates based on the rainfall isohyet maps of the
Trigonometrical Survey of South Africa.

Rainfall seasonality.—The seasonal distribution of rainfall
varies dramatically from the winter rainfall (dry summer)
regions in the west, to the all-year rainfall on the south coast,

and the summer rainfall (dry winter) region in the east
(Campbell 1983, and references cited therein). Rhodocoma
is distributed primarily in regions of all-year rainfall, al-
though Rh. fruticosa and Rh. capensis extend into the winter
rainfall regions of the west, to which Rh. vleibergensis is
restricted.

Fire survival mode.—Much of the CFR experiences fire at
least once every 30 years (Van Wilgen 1987) and this phe-
nomenon has been implicated as an important factor (via
disturbance) affecting local extinctions, suppressing com-
petitive exclusion and, consequently, promoting speciation
in the CFR (Cowling 1987). Moreover, Schutte et al. (1995)
demonstrated that plants of many non-geophytic species ex-
hibit one of two distinct mechanisms to survive or to rees-
tablish populations after such fires, and that these differences
may be linked to various other life-history traits of biological
and ecological significance to the species. Thus, fire survival
represents another variable in which ecological differentia-
tion may occur. In some species, all plants are killed by fire,
and the population has to be reestablished from seed. In oth-
er species, at least some, and often all, individuals survive
fire as roots, rootstocks, or rhizomes, and resprout from
these. Particular species of Rhodocoma (and Restionaceae,
in general) fit into one of these two types, although Rh. ca-
pensis is polymorphic for these features. The degree to
which the geographic pattern of these differences in fire sur-
vival is influenced by geographic patterns of fire frequency
is unknown, as accurate and comprehensive fire frequency
data are lacking.

Discovering and Interpreting Patterns of Ecological
Differentiation

Ecological similarity.—Ecological similarity was mea-
sured with the Jaccard coefficient, as implemented in
NTSYSpc (Rohlf 1998). The Jaccard coefficient was chosen
because it assesses similarity on the basis of shared occur-
rences in particular habitats or for particular variables, and
it does not take shared absences from other habitats or var-
iables into account. Thus, species are more similar if they
overlap more along certain environmental gradients or for
certain ecological variables. One-hundred percent overlap re-
sults in a Jaccard value of 1, and no overlap results in a
value of 0. Because Jaccard calculations require binary data,
each state (habitat or the like) of discretely coded environ-
mental and ecological characters was coded as a separate
binary character reporting the presence or absence of the
particular species in the given habitat or for the given vari-
able. As discussed by Linder and Hardy (2005), this enables
us to account for several species that are polymorphic for
certain environmental parameters (e.g., bedrock type). To
make continuously variable characters compatible with Jac-
card calculations, such characters were subdivided into in-
crements, each of which was coded as a separate binary
character as above. Altitude, for example, was subdivided
into 50 m increments. Average annual rainfall into 50 mm/
year increments. This method of coding allows for the cod-
ing of ranges in such characters. However, parameters such
as altitude and rainfall have ordered axes and for these the
Jaccard coefficient is not really a measure of similarity, as
it does not take order into account. Thus two species dis-
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Fig. 1.—Stepmatrix employed for Polymorphism Coding of three-
state (a, b, c) categorical parameters (e.g., soil rockiness). Equal
costs for both gains and losses of states.

tributed along an altitudinal gradient at 0–100 m and 101–
200 m, respectively, receive a pairwise Jaccard coefficient
of 0 because, although close, they do not overlap along that
gradient.

To avoid biasing a Jaccard calculation with undue influ-
ence from parameters with more states (e.g., altitude with
40 states of 50 m increments, vs. fire survival mode with
two states), Jaccard similarities were calculated for each pa-
rameter separately. These were then summed for each spe-
cies pair, and the average pairwise similarity was calculated.
The resulting similarity matrix was then represented in three-
dimensional space by a non-metric multidimensional scaling
(NMDS), as implemented in NTSYSpc, using the output
from a principal coordinates analysis of that same similarity
matrix as an initial configuration matrix.

Ecological, genetic, and phylogenetic distances.—Pairwise
ecological distances between species of Rhodocoma were
taken as one minus the pairwise Jaccard similarity (1 ! J).
Pairwise genetic distances were calculated in PAUP* using
the ‘‘uncorrected (p) distance,’’ which is the total number of
differences divided by the total length of the comparison
(i.e., the length of the aligned sequences plus indel charac-
ters). As some measure of the relationship between distance
and phylogenetic relatedness, the significance of the differ-
ence between the average distance values between sister vs.
non-sister species was tested by means of a t-test, as imple-
mented in Microsoft! Excel 2000. This was done separately
for both genetic distance and ecological distance. The cor-
relation between Jaccard ecological distance and genetic dis-
tance matrices was tested by means of a Mantel Test, as
implemented in NTSYSpc. Tests were conducted with 9999
randomizations.

Ancestral ecology reconstructions.—Hypotheses of ancestral
ecologies (habitat plus fire survival mode) were constructed
using optimization procedures. Reconstructions utilized the
entire tree (i.e., outgroup plus ingroup). Because individual
species may be ‘‘polymorphic’’ for categorical ecological
parameters and occur in ranges along the axes of the contin-
uously variable parameters altitude and rainfall, it is neces-
sary to apply reconstruction methods that account for these
phenomena. For the categorical parameters rainfall season-
ality, fire survival mode, groundwater availability, bedrock,
and soil rockiness, Polymorphism Coding (as per Hardy and
Linder [2005], and introduced by Maddison and Maddison
1992) was employed. This procedure is to code the possible
polymorphisms as separate states along with monomorphic
states in a single multistate character. A stepmatrix is then
employed to assign the desired transition costs (steps) be-
tween the states. We assigned equal costs for gains and loss-
es of states (Fig. 1) and then determined the most-parsimo-
nious solutions using Sankoff optimization (Sankoff and
Rousseau 1975) using Mesquite vers. 1.0 (Maddison and
Maddison 2003). However, because the maximum allowable
number of states in Mesquite is 56, the ecological parameter
bedrock, with its eight states, could not be optimized algo-
rithmically because the number of possible combinations of
these eight component states exceeds 56. Thus, Sankoff op-
timization for bedrock was carried out manually (Felsenstein
2004:13–15, 67–69).

For altitude and average annual rainfall, MaxMin Coding

(Hardy and Linder 2005) was employed. This procedure in-
volves coding the maximum and minimum of each species’
observed range as two separate characters. Both values are
optimized independently to internal nodes and the ancestral
ranges inferred to lie between the two values. Optimization
of these MaxMin-coded ranges employed linear parsimony
(LP) as implemented in Mesquite. LP minimizes the total
change throughout the tree. As LP tends to reconstruct many
branches with no change, in favor of relatively large
amounts of change on few branches, LP may incorporate an
implicit model of stabilizing selection with occasional adap-
tive shifts (Losos 1999).

Following the optimization of ecological parameters to in-
ternal nodes, a new Jaccard similarity matrix including both
the terminal nodes (extant species) and internal nodes (an-
cestors) was constructed for Rhodocoma. For altitude and
rainfall, ranges of equally parsimonious maxima or minima
were sometimes provided. In these cases, the average value
of the maximum or minimum as appropriate for a node was
scored in the Jaccard matrix. As above for the extant species
only, the resulting similarity matrix was then represented in
3-dimensional space by NMDS, again using the output from
a principal coordinates analysis of that same similarity ma-
trix as an initial configuration matrix. This produces a hy-
pothesis of ecological relationships between both extant and
ancestral species. This also allows for inferences of the ex-
tent and trajectories of ecological divergences. Although
there is uncertainty associated with ancestral reconstructions
in general (Frumhoff and Reeve 1994; Maddison 1995; Don-
oghue and Ackerly 1996; Schluter et al. 1997; Cunningham
et al. 1998; Sharkey 1999), these uncertainties do not distort
the ecological relationships represented between extant spe-
cies.

RESULTS

Phylogeny

The sequenced portion of the trnL–F region comprises
1077 aligned bases spanning the complete trnL intron, trnL
3" exon, and the trnL–trnF intergenic spacer. Of these, there
were 46 cladistically informative nucleotide sites in addition
to seven informative indel characters coded at the end of
matrix as separate binary or unordered multistate characters.
The sequenced region spanning the atpB–rbcL spacer con-
sisted of 983 aligned bases, comprising 101 base pairs (bp)
of the 5"-end of atpB plus 882 bp of intergenic spacer. Of
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Fig. 2–3.—The most-parsimonious cladogram with (2) and without (3) the outgroup.—2. Branch lengths (ACCTRAN) shown above the
branches, bootstrap percentages below (L ! 322, CI ! 0.78, RI ! 0.90).—3. Rhodocoma chronogram; scale of 100 is arbitrary.

these, there were 26 cladistically informative nucleotide sites
in addition to four informative indel characters. Complete
sequences for rbcL were 1437 bp in length from which came
18 informative substitution characters and no length varia-
tion. Additionally, a contiguous 61 bp region downstream of
rbcL (part of the same amplification product) was also se-
quenced, from which came three informative substitution
characters and no length variation. The sequenced region
spanning the entire matK gene and the flanking regions of
the trnK intron comprised 2493 aligned bases, with 114 in-
formative substitution characters and nine informative in-
dels. Thus, the combined molecular matrix comprises 6051
aligned bases and 207 cladistically informative substitution
characters and 20 informative indel characters. A simulta-
neous analysis in both NONA and PAUP* resulted in the
same single most-parsimonious tree (Fig. 2; L ! 322, CI !
0.78, RI ! 0.90).

This analysis strongly supports the monophyly of both
Rhodocoma and Thamnochortus. The rooting depicted in
Fig. 2 is based on a larger, Restionaceae-wide analysis. As
sampled here, Restio insignis is resolved as sister to Rho-
docoma and this clade is sister to Thamnochortus. Within
Thamnochortus the clade of T. levynsiae and T. pulcher is
sister to all other species of Thamnochortus. The next di-
verging lineage is the clade of T. gracilis and T. nutans. The
next diverging lineage is the clade of T. karooica and T.
paniculatus, which is sister to the clade (T. fruticosus (T.
obtusus (T. erectus, T. lucens))).

Rhodocoma is fully resolved with well-supported nodes.
Rhodocoma vleibergensis is sister to Rh. alpina and Rh. fru-

ticosa. This clade is sister to the clade of ((Rh. foliosa, Rh.
gigantea) (Rh. arida (Rh. capensis, Rh. gracilis))).

As there are no data (e.g., fossils) with which to calibrate
the molecular clock estimates, the ultrametric tree for Rho-
docoma (Fig. 3) was fitted onto an axis of relative time, with
the scale of 0 (present) to 100 (the ancestral node for Rho-
docoma). This shows that the three most recent speciation
events are represented by the three sister-species pairs (Rh.
alpina–Rh. fruticosa, Rh. capensis–Rh. gracilis, and Rh. fo-
liosa–Rh. gigantea).

Macroecology

The macroecological analysis was restricted to Rhodoco-
ma, for which all species were sampled and all nodes ro-
bustly resolved. The NMDS ordination of the average Jac-
card values of the eight Rhodocoma species is depicted in
Fig. 4. Distances between any two spheres representing spe-
cies reflect the degree of overlap in the ecological parameters
scored: nearer spheres represent species that overlap more
along the component environmental gradients or ecological
characters than do species represented by more distant
spheres. These results demonstrate that closely related spe-
cies do not necessarily occupy the closest points in the or-
dination and sister species do not generally exhibit greater
ecological overlap than non-sister species (Fig. 5; t-test, P
! 0.35). This is in contrast to a strong positive correlation
between genetic distance and phylogenetic distance (e.g.,
Fig. 6; P " 0.05). Because genetic distance is a good pre-
dictor of phylogenetic distance, and because the likelihood
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Fig. 4.—Non-metric multidimensional scaling of average ecological Jaccard values for the extant species of Rhodocoma. Species rep-
resented by spheres and listed by their specific epithets only.

Fig. 5–6.—Relationship between phylogenetic relatedness and average ecological (5) or genetic (6) distance. Vertical lines about each
point represent standard deviations.
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Fig. 7.—Relationship between genetic distance and ecological
distance: a plot of pairwise genetic distances against pairwise eco-
logical distances for each species pair in Rhodocoma.

Fig. 8.—Proportion of total ecological distance between sister species in Rhodocoma contributed by each parameter.

ratio test did not reject the assumption that genetic distance
is proportional to time since divergence (i.e., sequence evo-
lution has been clock-like), a plot of pairwise ecological dis-
tances against pairwise genetic distances (Fig. 7) graphically
depicts the lack of any correlation between ecological dis-
tance and phylogenetic distance or time since divergence. A
Mantel Test confirms this (r ! "0.081; P ! 0.366). An
analysis of the individual ecological parameters contributing
to differentiation of the most recently diverged species (i.e.,
sister species) reveals that differentiation has occurred along
multiple ecological axes (Fig. 8).

Historical Ecology

Using optimization procedures, hypotheses of ancestral
ecologies (habitat plus fire survival mode) were constructed
(Fig. 9) and a Jaccard ecological similarity matrix for both
ancestral and extant species was produced. Based on this
Jaccard matrix, a combined NMDS ordination of both an-
cestral (internal) and extant (terminal) nodes (Fig. 10, 11)
was performed, allowing the inference of the relative extent
and trajectory of ecological differentiation among not only
sister species, but all lineages through time.

The ancestral species to all Rhodocoma may have been a
reseeding species distributed along middle elevations on
well-drained and stony sandstone-derived soils in regions
with 500–1000 mm of rain per year, distributed either pre-
dominantly during winter months (DELTRAN) or more
evenly throughout the year (ACCTRAN). The ACCTRAN
option depicts a habitat similar to that along the coastal
mountains of the present day southern Cape. The basal split
within the genus appears to have occurred primarily along
an altitudinal gradient, with the Rh. vleibergensis–Rh. alpina
lineage remaining at upper-middle to high elevations (node
4), and the lineage leading to the remainder of Rhodocoma
contracting its range to middle elevations below 900 m (node
2). In the latter lineage, the cladogenic event represented by
node 2 is associated with a shift from stony soils of medium
depth to shallow soils over bedrock (the Rh. arida–Rh. grac-
ilis lineage; node 3). The cladogenic event represented by
node 3 is associated primarily with a shift by the Rh. arida
lineage into a much lower rainfall regime (presently occur-
ring in the Little Karroo), concomitant with the expansion
by the Rh. capensis–Rh. gracilis lineage from shallow soils
over bedrock, onto deeper, rockless soils. The cladogenic
events represented by nodes 4, 5a, and 5b are associated with
the evolution of the resprouting fire survival mode from re-
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Fig. 9.—Ancestral ecological reconstructions in Rhodocoma. Reconstructions utilized the entire cladogram (including the outgroup), but
are shown here for Rhodocoma only. Inferred state changes in italics and underlined. States separated by an ‘‘&’’ indicates that both states
are present in that taxon or ancestor. States separated by an ‘‘or’’ indicates ambiguity (sensu ACCTRAN/DELTRAN) in the optimization
procedure as to which state is reconstructed as optimal for that particular ancestor. Nodes numbered chronologically; the oldest (1) represents
the ancestral node for Rhodocoma. TMS ! Table Mountain Sandstone. Scale of 100 arbitrary.

seeding ancestors independently in the Rh. alpina–Rh. fru-
ticosa, Rh. capensis, and Rh. foliosa lineages, successively.
Concomitant with a shift in fire survival mode, there is an
incomplete partitioning along an altitudinal gradient between
node 5b descendants Rh. foliosa and Rh. gigantea. The sub-
sequent cladogenic event represented by node 5a is associ-
ated with the evolution of Rh. capensis into exclusively
moist, seepage habitats, thereby releasing it from a direct
reliance on rainfall for water for at least part of the year and,
concomitant with this, expanding to encompass a wider
range of—including drier—rainfall regimes. All of the most

recent speciation events leading to extant sister species (in-
cluding that represented by node 6) are associated with par-
titioning along altitudinal gradients, as well as expansions
onto soils derived from additional types of bedrock such as
silcrete, shale, and enon conglomerate.

DISCUSSION

Phylogeny

Precise comparison of the Rhodocoma topology obtained
here and that obtained by Linder and Vlok (1991) is impos-
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Fig. 10–11.—Non-metric multidimensional scaling of average Jaccard values for the extant species (terminal nodes) and internal (an-
cestral) nodes of Rhodocoma. Extant species listed by their specific epithets only; internal nodes numbered chronologically from the ancestral
node, as obtained from the chronogram in Fig. 3.—10. ACCTRAN optimization of rainfall seasonality (ancestor and node 4 optimized to
‘‘all-year rainfall’’).—11. DELTRAN optimization of rainfall seasonality (ancestor and node 4 optimized to ‘‘winter rainfall’’).

sible because Rh. vleibergensis and Rh. foliosa (described or
assigned species status after 1991) were not represented in
the study of Linder and Vlok. Even accounting for this sam-
pling discrepancy, the topologies from both studies appear
to be generally incongruent. A decision as to which topology
is more strongly supported is not straightforward, as both
studies have their potential weaknesses. The analysis of Lin-
der and Vlok was based on fewer than 15 morphological
characters, whereas the current analysis was based on ca.
6000 aligned nucleotide bases and over 230 informative
characters. Although the current analysis provides more
strongly supported nodes in terms of bootstrap and raw char-
acter support measures, it is compromised by the interpretive
complications arising when working only with plastid se-
quences due to the potential for not detecting phenomena
such as introgression and lineage sorting (Doyle 1992). The
current analysis, however, has a complete sampling of the
extant species of Rhodocoma, and so the details of the to-
pological discrepancies will not be discussed and the topol-
ogy of Linder and Vlok will not be considered further.

One noteworthy aspect of the topology from the current
analysis is the position of Restio insignis as sister to Rho-
docoma, the implications of which are twofold. The first,
that the genus Restio Rottb. is not monophyletic, is not sur-
prising given that the genus of ca. 89 species is recognized
primarily on the basis of symplesiomorphic characters (Lin-
der 1991) and that the combined molecular and morphology-
based cladistic analysis of the African Restionaceae by Eld-
enäs and Linder (2000), which included seven Restio spe-
cies, suggested that the genus may indeed be polyphyletic.

The second implication is that Thamnochortus and Rhodo-
coma may not be sister clades, thereby calling into question
a long held view of relationships (e.g., Linder 1984; Linder
et al. 2000; Eldenäs and Linder 2000), as well as the ho-
mology of the pendulous male spikelets, the culm anatomy
with scattered cavities, and the pollen aperture shape shared
by both. Regarding each of these questions, however, it
seems prudent to reserve judgment until a better taxonomic
sampling of the genus Restio, as well as nuclear data, are
obtained.

This study provides strong support for the monophyly of
Rhodocoma (Fig. 2), with this clade having been recovered
in 99% of the 1000 bootstrap replicates. Curiously, however,
the initial morphological support for Rhodocoma was weak.
Linder (1984) separated Rhodocoma from Restio because it
shared the above-mentioned synapomorphies with the highly
distinctive Thamnochortus, but support for the monophyly
of Rhodocoma was limited to a seed coat character. An ad-
ditional autapomorphy for the genus is the reduction to just
one flower per pistillate spikelet, although this transition has
occurred independently elsewhere in Restionaceae (Linder
2002).

The basal split in Rhodocoma is inferred to be that be-
tween the clades (Rh. vleibergensis (Rh. alpina, Rh. fruti-
cosa)) and ((Rh. gigantea, Rh. foliosa) (Rh. arida (Rh. ca-
pensis, Rh. gracilis))), each clade being recovered in 100%
of the bootstrap replicates. The former clade may be char-
acterized as generally occurring at higher altitudes (!1000
m) than the latter, although one member of the former (Rh.
fruticosa) is highly variable and also extends into lower el-
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Fig. 12.—Range of flowering times recorded for species of Rhodocoma. Determined from observations in the field by the authors, in
addition to herbarium specimen data from the Bolus (BOL) and Zurich (Z) herbaria. Species abbreviated by their specific epithets.

evations. There are no known morphological characters sup-
porting the monophyly of the clade (Rh. vleibergensis (Rh.
alpina, Rh. fruticosa)), resulting from the membership of Rh.
vleibergensis. Indeed on herbarium sheets Rh. vleibergensis
is difficult to distinguish from Rh. arida, a member of the
other clade, although these two species are easily distin-
guished in the field based on habit and geography (Linder
2002). The loss of a sheath mucro would unambiguously
support the monophyly of the second clade ((Rh. gigantea,
Rh. foliosa) (Rh. arida (Rh. capensis, Rh. gracilis))), al-
though parallel losses of the mucro would also have to be
hypothesized to have occurred within Thamnochortus and in
Rh. fruticosa (Linder 2002).

In two out of three cases, the sister species resolved here
are concordant with expectations. Rhodocoma foliosa is re-
solved as sister to Rh. gigantea, the former being a parapa-
tric segregate of the latter and distinguished by minor dif-
ferences in spikelet size, habit, and ecology (Linder 2002).
Previous reviews treated these two as conspecific (Linder
1991). Both species occur on the wet, south-facing slopes,
or cool valleys of the coastal mountains in the southern Cape
and are distinguished from others in the genus by their great-
er stature and the clusters of sterile branches at the nodes of
fertile branches. The position of Rh. alpina as sister to Rh.
fruticosa is consistent with the former’s status as a higher
altitude segregate of the latter, with larger spathes and short-
er, stouter culms (Linder and Vlok 1991). Although Rh. al-
pina is parapatric to nearly sympatric with Rh. fruticosa,
their differing flowering times (summer vs. autumn, respec-
tively; Fig. 12) may aid in maintaining their specific bound-
ary. The only sister species relationship that is unexpected
is that between Rh. gracilis and Rh. capensis, but perhaps
only because of the autapomorphic morphology and ecology
of the latter. Rhodocoma capensis is unusual in the genus
because of its huge tussock-forming habit, dense whorls of
fertile branches, and unusually diffuse inflorescence struc-
ture. It is also the only species to have made the transition
from well-drained soils to seepages where constant access
to groundwater is provided for extended periods throughout
the year.

Historical Ecology

According to Linder and Vlok (1991), the differentiation
of sister species and lineages in Rhodocoma along ecologi-

cal, rather than geographical gradients provided evidence for
the importance of ecological speciation (Schluter 2000) in
the genus. Indeed, these same criteria are commonly used to
make inferences of ecological speciation (e.g., Linder 1985;
Schliewen et al. 1994; Shaw et al. 2000; Johannesson 2001).
Where sister lineages are sympatric or parapatric and spe-
cific boundaries are maintained despite the potential for gene
flow provided by their geographical proximity to one anoth-
er, it is plausible that the differential selective forces asso-
ciated with any interspecific ecological differences may have
been strong enough to override the homogenizing effects of
gene flow and affect speciation. For example, the three spe-
cies in Linder and Vlok’s clade (Rh. alpina (Rh. arida, Rh.
fruticosa)) are distributed in ‘‘rings’’ around each other, with
Rh. arida being widespread in the Little Karoo, Rh. fruticosa
occurring on the slopes of the mountains surrounding the
Little Karoo, and Rh. alpina occurring at the highest alti-
tudes on these mountains. These three nested sets of sister
lineages were not only parapatric, but geographically envel-
oped each other, making a model of allopatric speciation
difficult to conceive and identifying their differentiation
along temperature and moisture gradients as possible agents
of the speciation events from which they came. In the to-
pology obtained in the current analysis, however, the ‘‘cen-
ter’’ of the ring, Rh. arida, is no longer sister to the para-
patric Rh. alpina and Rh. fruticosa, so this particular sce-
nario of ecological, sympatric speciation is no longer appli-
cable.

In the topology of Rhodocoma obtained here, two of the
three pairs of sister species (Rh. alpina and Rh. fruticosa;
Rh. foliosa and Rh. gigantea) are parapatric, and the mem-
bers of both pairs are differentiated along ecological gradi-
ents (Rh. alpina and Rh. fruticosa primarily along the linked
gradients of altitude and rainfall, whereas Rh. foliosa and
Rh. gigantea differ primarily in fire survival mode). Addi-
tionally, each of these sets of sister species are distinguished
by differences in flowering time; e.g., spring vs. autumn in
the case of Rh. foliosa and Rh. gigantea, and summer vs.
autumn in the case of Rh. alpina and Rh. fruticosa (Fig. 12).
The evolution of prezygotic reproductive barriers (such as
flowering time shifts) is one plausible response to strong
differential selection among sympatric or parapatric popu-
lations or species (Grant 1966; Levin 1978), and therefore
is compatible with an ecological model of speciation or spe-
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cies maintenance (Ehrlich and Raven 1969; Andersson
1990). Although each member of the third sister species pair
of Rh. capensis–Rh. gracilis also flowers in a different sea-
son and occurs in a habitat substantially different from the
other’s in terms of groundwater availability and altitude (Ta-
ble 3; Fig. 9), these species are allopatric (Linder and Vlok
1991) and so there is no evidence that these species diverged
in sympatry. This is not to say that ecological factors and
the attendant selective forces did not have a prominent role
in the evolution of each of these latter two species, but only
that there is no evidence that these forces operated, or that
their divergence was initiated, in sympatry or parapatry.

Regardless of the driving forces and geography of speci-
ation in Rhodocoma, it is evident that the history of diver-
sification in the genus has been one of rapid ecological dif-
ferentiation among sister lineages, and genetic isolation via
shifts in flowering times. Substantial ecological divergence
among even the youngest of species pairs indicates that the
selective forces driving these processes are strong enough to
effect substantial amounts of change in relatively short pe-
riods of time, and are potentially important factors promot-
ing the origin and persistence of species diversity not only
in Rhodocoma, but also the African Restionaceae as a whole.
The speed and extent to which sister lineages have diverged
ecologically can be appreciated in part by the observation
that phylogenetic or genetic distances are not reliable indi-
cators of ecological distance (Fig. 5–7), but this can only be
fully understood with some estimate of the relative trajec-
tories and nature of ecological divergence events (Fig. 10,
11). Such an estimate reveals that the historical ecology of
Rhodocoma is complex and, on the whole, directionless such
that at any time the ecological trajectories of some lineages
are convergent, in terms of net Jaccard distance, with those
of other initially divergent lineages. While for some time
there may be a positive correlation between ecological dis-
tance and time during the divergence of two sister lineages,
the overall pattern of ecological differentiation for the clade
as a whole may mask this correlation.

A further implication of the high rates and overall pattern
of ecological evolution in Rhodocoma is that the concept of
phylogenetic niche conservatism (Harvey and Pagel 1991;
Holt and Gaines 1992; Holt 1996) is not supported. An ad-
equate evaluation of this concept probably eludes us here
not only because a single and unifying concept of the
‘‘niche’’ may not be tenable, but also because we do not
presume to have accurately portrayed the niches of these
species. At best we have quantified just a few niche dimen-
sions, with a strong emphasis on habitat. Nevertheless, niche
conservatism is consistently conceptualized in terms of the
tendency for adaptation in ecological dimensions to be slow
and evolutionarily conservative such that closely related spe-
cies are more ecologically similar than distantly related spe-
cies. Given the seven ecological parameters analyzed here,
this is clearly not the case for Rhodocoma. While similar
results have been found elsewhere (e.g., Rice et al. 2003),
studies that support niche conservatism are in the majority
by far (e.g., Peterson et al. 1999; Ackerly 2003 and refer-
ences cited therein).

An additional discovery concerning the historical ecology
of Rhodocoma concerns the nature of change. Consistent
with what was demonstrated for several other Cape clades

by Linder and Hardy (2005), diverging lineages in Rhodo-
coma have consistently differentiated along multiple envi-
ronmental/ecological axes. A comparison between sister spe-
cies, for example, reveals that although these most recent
divergence events primarily involved differentiation along
altitudinal gradients, substantial shifts also occurred along
rainfall gradients and in fire survival (Fig. 8). A consequence
of this multidimensional nature of macroecological differ-
entiation is an increase in the number of apparent yet, from
a plant perspective, more precisely defined habitats. As sug-
gested by Linder and Hardy (2005), this ability to more fine-
ly partition ecological space by exploiting multiple ecolog-
ical dimensions may be an attribute that distinguishes spe-
cies-rich from species-poor clades. Comparative studies of
both species-rich and species-poor clades are needed to test
this hypothesis.
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ciation suggested by monophyly of crater lake cichlids. Nature
368: 629–632.

SCHLUTER, D. 2000. The ecology of adaptive radiation. Oxford Uni-
versity Press, New York, USA. 296 p.

, T. PRICE, A. Ø. MOOERS, AND D. LUDWIG. 1997. Likelihood
of ancestor states in adaptive radiation. Evolution 51: 1699–1711.

SCHUTTE, A. L., J. H. J. VLOK, AND B. W. VAN WYK. 1995. Fire
survival strategy: a character of taxonomic, ecological and evo-
lutionary importance in fynbos legumes. Pl. Syst. Evol. 195: 243–
259.

SHARKEY, M. J. 1999. Transition confidence and modified mean val-
ues: confidence measures for hypotheses of character state tran-
sition between nodes and ancestral state optimizations. Cladistics
15: 113–120.

SHAW, P. W., G. F. TURNER, M. R. IDID, R. L. ROBINSON, AND G. R.
CARVALHO. 2000. Genetic population structure indicates sympatric
speciation of Lake Malawi pelagic cichlids. Proc. Roy. Soc. Lond.,
Ser. B., Biol. Sci. 267: 2273–2280.

SORENG, R. J., AND J. I DAVIS. 1998. Phylogenetics and character



226 ALISOHardy and Linder

evolution in the grass family (Poaceae): simultaneous analysis of
morphological and chloroplast DNA restriction site character sets.
Bot. Rev. (Lancaster) 64: 1–85.

SWOFFORD, D. L. 2002. PAUP* phylogenetic analysis using parsi-
mony (*and other methods), vers. 4.0. Sinauer Associates, Inc.,
Sunderland, Massachusetts, USA.

TABERLET, P., L. GIELLY, G. PAUTOU, AND J. BOUVET. 1991. Universal
primers for amplification of three non-coding regions of chloro-
plast DNA. Pl. Molec. Biol. 17: 1105–1109.

THOMPSON, J. D., T. J. GIBSON, F. PLEWNIAK, F. JEANMOUGIN, AND D.
G. HIGGINS. 1997. The CLUSTAL!X windows interface: flexible
strategies for multiple sequence alignment aided by quality anal-
ysis tools. Nucl. Acids Res. 25: 4876–4882.

VAN WILGEN, B. W. 1987. Fire regimes in the fynbos biome, pp. 6–
14. In R. M. Cowling, C. D. Le Maitre, B. McKenzie, R. P. Prys-
Jones, and B. W. Van Wilgen [eds.], Disturbance and dynamics
of fynbos biome communities. South African National Scientific
Programmes, Rep 135, CSIR, Pretoria, South Africa.


	Aliso: A Journal of Systematic and Evolutionary Botany
	2007

	Phylogeny and Historical Ecology of Rhodocoma (Restionaceae) from the Cape Floristic Region
	Christopher R. Hardy
	H. Peter Linder
	Recommended Citation


	tmp.1368400769.pdf.2VgY4

