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Languages for Engineering Design: 
Empirical Constructs for Representing Objects 

and Articulating Processes 
 
 

Abstract 
Design knowledge incorporates knowledge and information about designed 
objects and their attributes, as well as about methods and means for undertaking 
the design process. Such design knowledge is articulated in several different 
representations or languages. This paper presents a typology of the languages of 
engineering design, emphasizing the representation of designed objects and the 
articulation and representation of the cognitive processes of design. Design 
languages include verbal or textual statements, drawings and graphics, formulas, 
and numbers. Still other design languages follow from computational styles. The 
languages of design and their computer-based implementations are empirical in 
origin, since observation reveals that these languages are derived not from an 
overarching theory, but from our experience in trying to understand what we do 
when we: talk about designed objects, articulate design processes, and teach 
computers how to do these things as well.    

Next to presenting a typology of the languages of engineering design, and 
discussing the role of these languages in design activity, the paper also discusses 
the possibility of automating design activity through the design and manufacture 
of expert systems for product design. We will be looking at one of the most 
advanced systems of this sort, the PRIDE system, and use our study of PRIDE to 
discuss the possibilities and limits of automating design through the use of 
expert systems.  
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1. Introduction 
This paper arises from a shared interest in the kinds of knowledge employed by 
engineers when doing design. We are interested in a better understanding of 
engineering design, and we believe that such an understanding should centrally 
involve an analysis of design knowledge and its the cognitive role in the design 
process. We hold that the act of designing can be analyzed as a cognitive process, 
and more specifically as a problem-solving process, in which designers go 
through a series of cognitive steps to solve design problems in order to arrive at a 
design that meets a sets of objectives while adhering to a set of constraints. An 
analysis of design as a cognitive process should, we claim, identify the various 
sorts of knowledge used in design (which we call design knowledge), and the 
cognitive processes and procedures by which such knowledge is employed by 
designers.  

It is not our purpose in this paper, however, to offer a full-blown account of 
design knowledge or the cognitive structure of the design process. We focus 
instead on two more specific, interrelated issues that we believe can be helpful in 
elucidating both design knowledge and the cognitive structure of design 
processes. The first topic of our concern is the nature and the role of external 
representational media, or languages, as we will call them, in design activity. By 
external representational media (or representations) we mean representational 
forms (e.g. symbols, images) that can be found outside the human mind.  They 
contrast with the inner mental representations that cognitive scientists have 
argued exist in the human mind.  Engineers use various sorts of external 
representations in design activity, such as verbal descriptions, mathematical 
equations, sketches, and graphs. We want to arrive at a typology of these sundry 
representational forms, and assess their role in design. 

The second issue concerns the possibility of automating design activity 
through the design and manufacture of expert systems for product design. More 
and more design activity relies on the use of computers, and there have been 
efforts to actually automate design processes through the use of so-called 
knowledge-based expert systems (KBESes) (Mittal, Dym and Morjaria, 1986; 
Dym, Henchey et al., 1988; Dym, Summers et al., 1995).  We will be looking at 
one of the most advanced systems of this sort, the PRIDE system (Mittal, Dym 
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and Morjaria, 1986), and use our study of PRIDE to discuss the possibilities and 
limits of automating design through the use of expert systems. 

We would like to emphasize the ways in which these two topics are related. 
For us, studying external representations in design and studying expert systems 
for design constitute different ways in which both design knowledge and the 
cognitive structure of design processes can be elucidated. Moreover, they are 
approaches that may benefit each other. An analysis of the role of external 
representations in design is likely to be helpful in an assessment of possibilities 
and limitations of automating design through the use of expert systems, because 
an expert system is itself an external representational medium that embodies 
computational representations of design knowledge. Thus, any general 
considerations on the role of external representations in design ipso facto also 
apply to the computational representations found in expert systems. In other 
words, understanding the role of external representations in design may help us 
better assess the possibilities and limitations of automating design.  

Conversely, we believe that our analysis of expert sytems such as PRIDE can 
help us gain a better understanding of the role of external representations in 
design, because such systems are intended as models of actual design processes. 
We will try to assess how successful they are in this capacity, and what this 
implies for the role of exernal representations in design. 

Before we embark on a discussion of these two topcs, we want to explain what 
moves us to study design knowledge and design processes, and what we take the 
status and relevance of our joint project to be. We write this paper as an engineer 
and a philosopher with a shared interest in engineering design. We both seek to 
arrive at better theoretical analyses of engineering design that describe how 
design processes are structured and explain how designers use their expertise to 
arrive at new designs. We both believe that an analysis of design knowledge and 
of cognitive processes and procedures in design is central to such an 
undertaking. We believe that the study of design requires an interdisciplinary 
effort. The result of our joint effort may be classified as a study in the newly 
emerged interdisciplinary field of design studies, to which engineering, the 
social sciences, and the humanities all contribute. However, we also each have 
our own disciplinary interests, and we would now like to describe some of these 
in order to explain how this research may be seen as contributing to our 
respective disciplines.  

One of us, Dym, is an engineer, and has been motivated to study design 
because of a feeling, shared by many in the engineering community, that design 
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is a misunderstood activity that is not well represented in engineering education 
or in engineering research. He believes that a more rigorous and scientific study 
of design can contribute to better design education as well as better practice in 
design research (cf. Dym, 1994a). Dym, moverover, has a particular interest in 
artificial intelligence (AI) models of design, both as a vehicle for gaining greater 
understanding of the cognitive process of design, and for their practical use as 
design tools. Some of Dym’s work is described in Sections 2 and 3 of this paper 
wherein we propose a typology of design representations and discuss the PRIDE 
expert system.  

The other author, Brey, is a philosopher with a research emphasis in the 
philosophy of technology. He is interested in studying design because it has been 
a neglected topic in the philosophy of technology, which has traditionally 
focused on the consequences of technology while neglecting the engineering 
practice from which technology stems. He has been concerned with the relation 
between design and technological impacts (Brey, 1998a, b, 1999) and believes 
that an analytical understanding of design knowledge and design processes is 
required for the analysis and normative evaluation of the role of engineering 
design in the coming about of the societal consequences of technological 
innovations. Brey also believes, however, that a philosophy of design 
engineering constitutes a topic for philosophy in its own right that can do for 
engineering what the philosophy of science does for science: clarify and evaluate 
methods, analyze and set standards for progress, and explore ontological and 
epistemological issues within the discipline (Brey, 1996). 

The outline of the remainder of the paper is as follows. In Section 2, a 
typology of representational formats used in design engineering is proposed and 
argued for, and a role in the design process is tentatively identified for each type 
of representation. This section paves the way for a discussion (in Section 3) of 
PRIDE, an example of a successful knowledge-based expert system used in 
design. Section 4 briefly discusses some practical implication of the previous 
sections.  In Section 5 we address several issues that relate design knowledge 
and cognition to applications of artificial intelligence and their validity. 

2. The languages of engineering design 
Design engineering, as practiced by designers, is analyzed by us as a cognitive 
process, and more specifically, a problem-solving process. Our analysis of design 
as a cognitive process is influenced in part by the successful use of programming 
constructs derived from artificial intelligence (AI) to elucidate design knowledge 
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and formulate a theory of design (Dym and Levitt, 1991a; Dym 1994a). 
Designers, we claim, normally find themselves working to meet a number of 
goals or objectives while satisfying a number of constraints in the end product of 
their design activity, which may be a blueprint, a list of fabrication specifications, 
a prototype, or some other type of design plan. Their attempt to satisfy such 
constraints may be analysed as a problem-solving activity in which designers try 
to find design solutions that meet several objectives while satisfying multiple 
constraints. In this process they employ design knowledge the specialized 
knowledge that defines their expertise. Much, if not all of this knowledge is 
representational in nature: it represents artifacts (designed objects) and their 
attributes, as well as design processes and procedures.  

In analyzing engineering design as a cognitive process, we do not mean to 
deny the role of noncognitive factors in design. Certainly, the inner mental 
processes of designers and their interaction with representational media 
constitute only some of the factors that determine design outcomes. We are 
aware, in particular, that designs are commonly explained in technology studies 
as largely, if not exclusively determined by social factors, including the 
interactions between different social groups, such as designers, corporations, 
government agencies, and users (Bijker, Pinch & Hughes, 1987; Bijker & Law, 
1992). A complete explanation of individual designs should certainly include 
such factors. However, our purpose is not to explain design outcomes, but to 
assess the cognitive structure of design activity. We hold that sociological or 
economic analysis of technological innovation are well suited to explain why 
certain specifications came to prevail over others in a design. However, such 
analyses do not explain how it is that designers are able to turn a set of 
specifications into a design plan. We believe that this latter process can only be 
understood through the analysis of cognitive processes in design, even if a 
further explanation of these cognitive processes may again require reference to 
social factors. 

A cognitive process is, in our analysis, not necessarily just a mental process. 
Certainly, design activity is made up in part by inner mental processes (e.g., 
thought, concept formation, and reasoning) that take place within the minds of 
designers. However, just as important as these mental processes is the systematic 
interaction of designers with various sorts of external representational media that 
aid them in their design activity. Designers write down their ideas on paper, 
using various kinds of symbolical languages, they make various kinds of 
graphical representations, they use computers to process information, and they 
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take in information by  consulting various sorts of information sources. An 
account of the cognitive structure of mathematical modeling, for example, would 
probably be incomplete if it would only refer to mental processes in the head of 
designer and made no reference to his interactions with calculators, computers or 
other mathematical tools that directly affect the steps taken in modelling.  A 
proper cognitive analysis of design should therefore combine accounts of the 
inner mental processes of designers with accounts of their interactions with these 
various representational media.  

In this section, we will analyze the external representational media used in 
design. Our aim is to present a typology of the various types of external 
representations used in design and to describe their role in the design process. 
We will call these representational media the languages of design because they 
consist of interconnected systems of representations (symbols, icons, etc.) that 
function like languages in which design ideas are expressed and communicated. 
It will become clear that external representations used by designers do not just 
refer to objects and their attributes. They are also used to represent design 
processes and procedures. We believe that this is true because designers do not 
just try to prescribe what a designed artifact should look like, they also 
continually think of the functions served by the artifact and its attributes, and of 
subsequent steps in their design and manufacture. For example, there is evidence 
that designers think about design processes when they begin to they create 
sketches and drawings to represent the objects they are designing (Ullman, 
Wood and Craig, 1990).  

Thus, a complete representation of designed objects and their attributes 
requires a complete representation of design concepts (e.g., design intentions, 
plans, behavior, and so on) that are more difficult to represent than are physical 
objects. Since the endpoint of engineering design thinking is most often a set of 
fabrication specifications for objects, it is important to discuss the languages or 
representations for both objects and processes (Dym, 1994a).  

In order to describe an object, whether physical or conceptual, in detail or 
abstractly, there must exist a language within which that description can be 
written. There are several languages in which design information is cast (Dym, 
1994a; Dym 1994b):  

 
Verbal or textual statements are used to articulate design projects; describe 

objects; describe constraints or limitations, especially in design codes (see 
below); communicate between different members of design and 



Empirical Constructs for Representing Objects and Articulating Processes 7 

manufacturing teams; and document completed designs.  

Graphical representations are used to provide pictorial descriptions of 
artifacts. These visual descriptions include sketches, renderings, and 
engineering drawings, are often interpreted within CADD systems.  

Mathematical or analytical models are used to express some aspect of an 
artifact’s function or behavior, and this behavior is in turn often derived 
from some physical principle(s). Thus, this language could be viewed as a 
physical representation language (cf. (Pahl and Beitz, 1984)).  

Numbers are used to represent design information in several ways. Discrete 
values appear in design codes and constraints (and as attribute values, e.g., 
part dimensions). Numbers also appear as continuously varied parameters 
in design calculations or within algorithms wherein they may represent a 
mathematical model.  

We also add to this list two text-based representations that derive from 
programming constructs used in symbolic computing and form core ideas of AI-
based programming (Dym and Levitt, 1991a). These two representations or 
languages have highly stylized and specific syntaxes or grammars:  

 
Rules prescribe specific action to be taken in a given situation. Normally 

written in sets of IF–THEN clauses, the left-hand (IF) sides of the rules 
define situation(s) that must obtain before a rule is applied, while the 
right-hand (THEN) sides of the rules define actions to be taken. Rules are 
used to represent design heuristics or rules of thumb and design codes.  

Objects or frames are structures that can be used to represent objects and 
their attributes. Frames are elaborate data structures that can be linked to 
other frames through a variety of logic-based and/or procedural calls to 
other data or attributes or to calculation methods. Objects, the heart of 
object-oriented programming, are interesting because, together with their 
networks of links and procedures for storing and passing data, they can 
describe how physical and conceptual objects relate to each other.  

We recognize that it is perhaps unusual to classify these two representation 
schemes—rooted as they are in symbolic computation—as design languages. 
However, our experience has shown that these particular constructs offer 
effective means for stating and applying design knowledge. We have also  found 
that these structures can be used to organize and integrate design knowledge 
represented in one or more of the other design languages, thus laying the 
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groundwork for developing integrated computational environments for design 
(Dym, Garrett Rehak, 1992; Dym and Levitt, 1991b). 

We could be extract other constructs from symbolic programming, e.g., logic 
programming, neural networks, and genetic algorithms. However, we do not 
identify them as design languages or representations for the following reasons. 
Logic programming is really an implementation of predicate and propositional 
calculus that has severe limitations in terms of its expressive power. We could 
also argue that rules, as an extension of logic programming, serve design 
representation purposes quite well. Neural networks attempt to imitate the 
learning and knowledge transmission characteristics of the human brain. They 
function by recognizing and classifying patterns that are in turn collections of 
discrete numbers representing different aspects or characteristics of a problem. 
This representation cannot represent more structured concepts, so neural 
networks are limited in their ability to mimic and simulate human thought and 
reasoning processes. Genetic algorithms are used to extract local and global 
optima in discrete optimization problems. Here, problems are represented by 
strings of attributes representing potential solutions to a problem, fitness 
functions used to evaluate potential solutions that reflect problem constraints and 
objectives, and a process by which generations of potential solutions are 
generated by allowing reproduction and mutation of fit solutions from previous 
generations. Genetic algorithm representations are limited to being variations of 
a given topology, so their potential for representing reasoning is limited.  

Clearly, we employ different languages to represent design knowledge at 
different times. We often cast the same knowledge in different languages in 
order to serve different purposes, which in turn requires that we find translations 
between the different languages in order to represent different aspects of an 
artifact or different phases of the design process. In the domain of structural 
engineering, for example, a complete design of a structure requires the use of 
many kinds of knowledge expressed in different representations (viz., Table 1). 
In fact, we identify experts in part by their ability to select the right language at 
the right time to solve a given problem. We recognize that different languages 
may be employed, that different representations offer different insights and 
utility, and that it is desirable to link these different languages in order to 
seamlessly model a designed artifact and the design process.  
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2.1 Graphical representations 
Graphical languages or representations include sketches, freehand drawings, 
plots and graphs, and CADD models extending from simple wire-frame drawings 
through elaborate solid models. Engineers have long engaged in putting “marks 
on paper” while doing design, and they add supporting text, lists, dimensions, 
and calculations to their sketches of objects and their associated functions, as 
well as related plots and graphs (Ullman, Wood and Craig, 1990). The support 
notes and other marks (and the drawings) facilitate a parallel display of 
information as they can be surrounded with adjacent notes, smaller pictures, 
formulas, and other pointers to ideas related to the object being drawn and 
designed. One illustrative example is a sketch made by a designer working on the 
packaging—to consist of a plastic envelope and the electrical contacts—to accept 
the batteries that provide the power for a computer clock (cf. Figure 1). Here the 
designer has jotted down some manufacturing notes adjacent to the drawing of 
the spring contact. And, while not evident here, the designer might have 
scribbled modeling notes (e.g., model the spring as a cantilever of stiffness?) or 
suggestions (e.g., calculate the spring stiffness as if it were a cantilever beam) or 
other design-related information.  

Marginalia of all sorts are commonly experienced by anyone used to working 
in an engineering environment. Engineers doing both analysis and design often 
surround their pictures with text and equations. Conversely, sketches are often 
drawn in the margins of documents, perhaps to elaborate a verbal description, 

 as a rule:  
IF a structural element has one dimension much thinner than 

the other two 

AND it is loaded in that direction 
THEN it will behave as a plate in bending 

 mathematically, the partial differential equation that governs the 
deflections of bent, thin plates is D∇

4w(x, y) = q(x, y)  
 verbally and numerically, the deflection of a floor in a residential building 

should not exceed its length (in feet) divided by 360 
 

Table 1. Alternate expressions of fundamental knowledge about plate 
structures. 
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perhaps to indicate more emphatically a coordinate system or sign convention. 
Thus, it should come as no surprise that sketches and drawings are as essential to 
engineering design as any other representation.  

Experience also suggests several major issues in graphical representation, as 
evidenced in a listing of how drawings are used in the design process. Drawings 
provide a permanent record of the shape or geometry of a design; facilitate the 
communication of ideas among designers, and between designers and 
manufacturing specialists; support the analysis of an evolving design; simulate 
the behavior or performance of a design; and ensure that a design is complete, as 
a picture and its associated marginalia could serve as reminders of still-undone 
parts of that design. In fact, experience with graphical communication is so 
compelling that it has been suggested that drawing is the method preferred by 
mechanical engineering designers to represent external data (Ullman, Wood and 
Craig, 1990). 

Graphical representations of all kinds—whether done by hand or on a 
computer, whether informally sketched or detailed in complex sets of blueprints, 
whether bare or annotated with marginalia—represent a great deal of design 
information. Clearly, there is much leverage to be gained by integrating these 
representations with other kinds of representations (Dym and Levitt, 1991b). 

2.2 Feature-based descriptions 
We know that designers work in terms of aggregated information and concepts, 
for example, shapes of surfaces and volumes, holes, fit, interference, tolerances, 
and so on—even when they are thinking about geometry and topology. Thus, we 
argue that a richer, more powerful representation is needed to enhance our ability 
to reason about objects being drawn and designed, even if the reasoning is about 
spatial issues. CADD (and originally CAD) systems have been used for some 
time to draw pictures and plans of objects as they are being designed, but 
designers clearly think about artifacts in ways that are much more encompassing 
than the points, lines, and surfaces used in CADD systems. Feature-based 
representation, as it is called, has emerged from just such attempts to enable 
reasoning about objects for which data is stored in CADD systems (Cunningham 
and Dixon, 1988; Finger and Dixon, 1989).  

Features were originally thought of as volumes of solids that were to be 
removed, typically by a machining process, because of the interest in relating a 
part to some part of a process plan. More recently features have been taken to 
include devices such as gears, bearings, and shafts, in the contexts of (1) relating 
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an artifact’s intended function to a form feature in the CADD representation and 
(2) representing the physical features of an artifact so that they can be evaluated. 
Examples of feature-based descriptions include: windows, corners, and tongues 
for injection molding; walls and fillets for extrusion; and walls and boxes for 
casting. Thus, the use of the term feature has broadened to include both form and 
function, and the context has been extended to manufacturing and life-cycle 
concerns of designed shapes and objects in which both geometric and behavioral 
issues figure prominently. This is largely due to the fact that, as noted above, 
designers tend to think in terms of particular forms that are intended to serve a 
function imposed by the designer.  

The part shown in Figure 2 is a locator for a piece that is formed within a 
mold and is itself made through the process of injection molding (Dixon, Libardi 
and Nielsen, 1989). In order to keep the molded piece at a desired location, the 
shaded surfaces are required to remain parallel and at a specified distance from 
one another. The tongue thus serves to locate the piece within the die. Changes 
in any properties of the tongue must be consistent with the locating function. 
Thus, modifications in the tongue’s geometry must be followed by 
corresponding changes in the rest of the part that do not inadvertently defeat the 
intended purpose. Similarly, the window over the tongue makes it easier to mold 
the piece being molded within a two-plate die whose parting direction is normal 
to the tongue, and it makes it easier to extract the part from the two-plate die. 
Any changes in the nature of the window must be such that they do not defeat 
the two purposes that the window serves in the present design.  

We note that the design thinking just outlined is expressed in terms of the 
tongue, the window, and the purposes these features will serve. We see that this 
thought process is not about the coordinates that define the window opening or 
the precise location and orientation of the face at the end of the tongue. The 
thought process is done in terms of features and what features do in the final 
design. Experienced designers thus aggregate design information in terms of an 
artifact’s features because they are readily available, perhaps even “intuitively 
obvious” choices as means to organize and apply design knowledge. Features are 
also a bridge between graphical representations and the object-oriented 
descriptions discussed in Section 2.4 because feature hierarchies are easily and 
naturally represented in object-oriented descriptions.  

2.3 Rules 
The form of a rule is well-known. However, in order to show how rules are used 



12 Empirical Constructs for Representing Objects and Articulating Processes 

to express design information, one brief rule example is taken from a KBES 
called DEEP that was built to assist designers in configuring electrical service for 
residential plats (Dym, Summers et al., 1995). (The design process in DEEP is 
described in Section 3.) The rule describes how separate building lots on a street 
should be clustered or grouped so that they can be efficiently configured for 
service. The rule combines heuristic design knowledge (i.e., a judgment about 
how close lots on a street are, one to another) with some basic electrical 
engineering knowledge (i.e., the transformer size needed to meet a specified 
service demand):  

 
IF the number of lots on the street is very close or equal to the 

maximum number of services a 50 kVa transformer can serve 
THEN cluster all of the lots on that street and serve them with a 50 kVa 

transformer. 

2.4 Object-oriented descriptions 
It is now appropriate to delineate object-oriented representation as a prime 
language of design. It clearly has evolved from the experience of both computer 
scientists and designers as a means of organizing or clustering information about 
a central core, while maintaining the ability to declare common attributes and 
departures from defaults, as well as to call for data or calculations that are related 
to the identity of the object who’s central core is thus described.  

The frame shown in Table 2, also taken from DEEP (Dym, Summers et al., 
1995), illustrates how particular examples of a kind of object, called instances, 
can be described in relationship to a class of objects that share common 
attributes, in this case an instance of the class of transformers. This object 
description contains slots for particular attributes (the left-hand column), and the 
specific values for those attributes that distinguish the particular transformer in 
question, that is, XFR50_1 (in the right-hand column). The slot for the attribute 
DefaultType is inherited or passed down from the class Transformers, here as a 
PADMOUNT transformer, unless it is overridden at the local level either by a 
rule application or through intervention by the system user. In addition, the links 
(not shown here) can be used to establish and maintain various kinds of 
relationships, for example, a CONCRETE_PAD may be part-of a PADMOUNT 
transformer, whereas a BURD is a kind-of transformer. 

Figure 3 shows the inheritance lattice or object tree of all the objects in the 
DEEP system. The figure shows how the class Transformers and its instances 
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(e.g., XFR50_1) fit into the overall structure of all the objects involved in this 
particular design project. In fact, the classes Transformers and Handholes (that 
are, typically, small underground structures containing electrical connection and 
relay devices) are themselves subordinate to a more abstract class or 
“superclass,” Structures, which is in turn part of the top-level class that contains 
all the objects in the DEEP knowledge base. Note the heterogeneity of this 
lattice; that is, it represents a mix of different kinds of physical structures and of 
more conceptual objects, such as the Configurations, that represent 
recommendations for the spatial layout of cables and other electrical equipment.  

What may also be evident from our discussion—if not from the figure, is that 
the branches of the object tree are not independent of one another, even though 
they may appear to be in the pictorial representation of the tree. For example, the 
transformer instance XFR50_1 has associated with it a specific location (the slot 
Coordinates in Figure 1), and a set of lots that it serves (not shown in that figure, 
although the total number of lots served is given in the slot MaxCustomers). The 
location of this particular transformer and the lots it serves are identified in 
appropriate slots in objects elsewhere in the tree; that is, in the classes 
Configurations and Lots, respectively. 

3 Modeling a design process 

SLOT/ATTRIBUTE VALUE 
SuperClass Components 
Class Transformers 
InstanceName XFR50_1 
Type BURD 
DefaultType PADMOUNT 
Rating (kVa) 50 
Size (ft2) 48 
Structure Concrete 
MaxConnections 6 
Coordinates (X1, Y1) 
MaxCustomers 21 

 
Table 2. The instance XFR50_1 of the class Transformers of the DEEP 

system. (There is more complexity than is visible because the links 
between the instance and its classes are not shown.)  
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We now turn our discussion away from the languages of design to the modeling 
of design processes using knowledge-based expert systems (KBESs). A KBES is 
computer system that facilitates solving problems in a given field by drawing 
inferences from a knowledge base, which is represented in symbolical form, and 
which has been developed from human expertise. Work on KBESs is based on 
the assumption, held by many artificial intelligence researchers, that a computer, 
which is a universal symbol-manipulating device, has the capacity to generate 
intelligent action that matches that of experts in a given field (cf. Newell and 
Simon, 19xx). It is sometimes even assumed that KBESs can actually model or 
mimic human thought processes, because intelligence is essentially a matter of 
manipulating symbols according to formal rules, whether done by humans or by 
computers.  

In this section we describe the design process encapsulated in PRIDE, a 
knowledge-based configuration design system for the mechanical design of 
paper handling systems in copier machines (Mittal, Dym and Morjaria, 1986). 
PRIDE is a particularly successful design system that was designed under the 
assumption that human design intelligence could indeed be modeled on a 
computer. PRIDE was also a pioneering demonstration of an empirical, AI-based 
approach to capturing the experiential knowledge that is applied to the 
performance of a design task, modeling real design processes, and furthering the 
understanding and vocabulary of design as a discipline (Dym and Levitt, 1991a; 
Dym 1994a; Mittal and Araya, 1986; Morjaria, 1989). It is even now a “real” 
system, used daily as a design tool by designers doing feasibility studies for new 
copiers. It was not just an academic exercise, but a convincing realization of the 
kinds of representation and reasoning described herein. Our present discussion 
focuses on a few of the key points of modeling the design process.  

If we looked inside a copying machine, we would see paper moving rapidly 
along a very complicated paper path, past various components and physical 
processing elements, and under rather stringent constraints. While there are 
several kinds of paper-handling systems, the PRIDE system focuses on transport 
systems that use pinch rolls to “grab” and move pieces of paper. The design 
requirements are tremendous and include geometrical properties (e.g., paper 
entrance and exit locations and angles (see Figure 4)), timing constraints, 
allowable skew with respect to the path, tolerances on engineering parameters, 
and the ability to adapt to a variety of paper properties, including size, weight, 
stiffness, and curl. Designers are required to make qualitative and quantitative 
judgements while reasoning geometrically, algorithmically, and heuristically 
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about both physical objects and more abstract concepts.  
We can decompose the design of a paper transport system into subproblems, 

including designing a smooth path between the input and output locations, 
deciding the number and location of pinch-roll stations to be placed along this 
path, designing a “baffle” to be placed around the paper path to guide the paper, 
designing the sizes of various pinch rolls (drivers and idlers), selecting the 
proper materials for the pinch rolls and baffle, making decisions about paper 
travel speeds and the forces on the paper produced by the pinch rolls, calculating 
the time needed to move the various sizes of paper, and calculating the various 
performance parameters and ensuring that they satisfy the requirements. 
However, even with a very effective decomposition, the range of design tasks we 
face is very diverse as it involves making decisions about geometry, spatial 
layout, timing, forces, jam clearance, and so on, the totality of which are often 
beyond the scope of a single engineer. The same transport has to be able to 
handle different sizes and weights of paper, which often presents conflicting 
constraints. For example, if the lengths (or widths) of the different sizes of paper 
are far apart, then the constraint on the maximum separation of neighboring roll 
stations for the smallest paper conflicts with the constraint on not having more 
than two stations guiding the paper for the longer papers. The design of the paper 
path is further complicated by obstructions that have to be avoided, as well as 
adherence to strict requirements on the smoothness, continuity, and 
manufacturability of the baffle in which the paper travels.  

Paper-transport design is clearly a complex task that requires: spatial 
reasoning about the geometry and routing of a paper path, and the placement of 
particular components; component selection of the particular components or 
subsystems (from a large array) needed to perform specified functions; and 
component configuration of various subsystems in just the right way to obtain 
some specified behavior. Given this complexity, what does the PRIDE system do 
to be so helpful, either as a stand-alone design system or as a designer’s 
assistant?  In brief, PRIDE: 

 
1. facilitates the designer’s choice of a planar path that avoids 

obstructions caused by equipment items within the copier and lies 
between specified input and exit points (see Figure 4); 

 
2. automatically checks that all constraints on the path geometry (e.g., 

smoothness, minimum radii of curvature, etc.) are satisfied; 
 



16 Empirical Constructs for Representing Objects and Articulating Processes 

3. identifies a physical device (the baffle) in which the paper will be 
carried along the path; and 

 
4. identifies, designs, and locates along the path the pinch-roll pairs that 

grasp and move the paper along the chosen path. 
 

In fact, PRIDE simulates rather closely the actual design process that 
experienced copier system designers have used for years. One of the results is 
that feasibility studies for preliminary copier designs are now completed and 
evaluated, with PRIDE’s assistance, in hours rather than weeks.  

PRIDE uses several representation schemes to incorporate heuristic, 
relational, and algorithmic aspects of the design problem, as well as several 
inference schemes at different levels of abstraction. PRIDE also has a powerful 
graphics interface that facilitates a rather complete simulation of the way human 
designers actually design paper-handling subsystems for copiers. Figure 5 shows 
a small part of an inheritance lattice that describes a paper-transport system 
designated as Trans5. In this object-oriented representation (cf. Section 2.4), 
Trans5 is an object with several attributes, some of which are linked to other 
objects, some of which are physical (e.g., Roll2, Driver1), and some of which are 
conceptual (e.g., Spec1). It can be seen that Trans5 has components that are 
connected to it by one or more SubPart links (e.g., Driver1). In order to to 
determine which specifications govern the input point, the InputSpecs link is 
exercised to define the attributes of the design constraints at the point where the 
paper enters this subsystem (e.g., Specs1).  

Thus, a designer can reason about the device being designed (Trans5) because 
questions can be asked of the system, for example, What are the output 
specifications that govern this design? and, How many and what roll stations are 
there in Trans5?  And as is seen in Figure 5, the answers to these two questions 
are, respectively, Specs2 and 4: Roll1, Roll2 . . . . With this representation for 
devices and parts in place, attention can be turned to the design process in 
PRIDE.  

The knowledge base in PRIDE represents a design plan structured as a top-
down process of identifying and satisfying design goals and subgoals (Figure 6). 
The design plan decomposes design goals into simpler steps. Figure 6 shows a 
top-level goal of designing the paper transport, as well as goals for subproblems 
such as deciding the number of roll stations and deciding the diameter of the 
driver at station 4. This design plan will work only if PRIDE provides the 
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knowledge needed to order the steps, to perform each step, to detect failures in 
the design requirements, and to suggest fixes for the failures.  

The design process in PRIDE can be thought of as one in which a very 
complex system is being configured. The geometry of a path along which the 
paper will be transported must be established first (again, Figure 4). After the 
path is established, the designers must choose components and establish their 
configuration (e.g., size, location, materials, etc.) so that different kinds of paper 
can be smoothly moved along the path, without jamming. The parts are chosen 
from a database of parts in normal use. Thus, in terms of standard design 
terminology [5], the process includes elements of both preliminary and detailed 
design. The process can also be characterized as routine design because the 
designers know how to decompose the design (cf. Figure 6), how to design the 
subsystems and components, and what to do when a constraint is violated.  

PRIDE’s problem-solving strategy may be thought of as generate–test–
analyze–advise–modify. It also makes very effective use of decomposition (as is 
evident in Figures 4 and 5) and, although the details of this are not elaborated 
here, constraint satisfaction. A few elements of the methods by which designs 
are generated, and failures are analyzed and fixed, are now described.  

A design goal in PRIDE is responsible for designing (and sometimes 
redesigning) a small set of design parameters that describe some part or aspect of 
the artifact being designed. Some of the design parameters in this domain are 
paper path segments, paper path length, number of roll stations, diameter, width, 
and material of each pinch roll, baffle gap, baffle material, and time taken by 
each size of paper during transport. We show in table 3 a simplified 
representation of the goal “Decide number and location of roll stations.” The 
variables Descriptor and Name are used to describe the goal to the (human) users 
of PRIDE. DesignMethods is an ordered list of all the alternate methods for 
achieving the goal. In this example there is only one method for carrying out this 
goal, that is, four subgoals be must achieved. Constraints contains the 
verification knowledge about the acceptability of a design.  

Where does the “generate” come into the picture? In fact, one of the values of 
the slot DesignMethods could be a design generator, and the approach to 
generating designs could itself vary. It should be noted that, from the point of 
view of capturing a lot of design alternatives, the design generators are among 
the most powerful design methods. These methods are all capable of generating 
different values for the same (or a small set of related) design parameter(s). For 
example, heuristic knowledge for making “good” guesses about initial values to 
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be generated could be attached to these methods. The generators in PRIDE also 
specify the ranges of possible values and increments. In Table 4 we show a 
design generator for the goal “Design driver diameter” that generates diameters 
for the drivers (in a pinch-roll pair) from a known database of acceptable driver 
diameters.  

The particular type of generator shown in Table 4 belongs to the class 
InstanceSetGenerator because the database is composed of instances of different 
classes of objects. The generated objects are instances of DriverDiameter. It can 
also be seen that this method specifies that 10 mm is a good starting value for the 
diameter, probably because the experts have found this to be a good default 
choice. Finally, it specifies that this instance object becomes the value of the 
design parameter driver diameter.  

If the current design runs into trouble, if some requirement is not satisfied, the 
PRIDE problem solver analyzes the current partial design and tries to come up 
with suggestions to overcome any violations. These modifications may be 
heuristics reflecting a designer’s experience in fixing similar problems, or they 
may be based on a more general problem-solving approach which analyzes 

ATTRIBUTE VALUE 
 
Type SimpleGoal 
Name Goal5 
Descriptor “Decide number and location of roll stations” 
Status INIT 
AnteGoals “Design Paper Path” 
InputPara “Paper Path,”  “length of PaperPath” 
OutputPara “Number of RollStations,”  “location of AllRolls” 
DesignMethods (SubGoals   
  Goal51: “Decide min number of rollStns” 
  Goal52: “Decide Abstract Placing” 
  Goal53: “Generate Concrete Location” 
  Goal54: “Build RollStn Structure”) 
Constraints (Constr8: “First Stn <= 100 mm.”   
  Constr17: “Dist. between adj. stn <= 160mm.”  
  Constr24: “Dist. between adj. stn >= 50mm.”) 

 
Table 3. The goal “Decide number and location of roll stations” from the 

PRIDE system.  



Empirical Constructs for Representing Objects and Articulating Processes 19 

dependencies between different parts of a design to suggest modifications that go 
beyond knowledge directly represented in its knowledge base. Figure 7 shows 
how advice is provided in PRIDE. In this example, the design goal “Decide 
number of roll stations” calculates a number of roll stations which produces a 
violation of the constraint on the maximum separation between roll stations. 
Advice—in this case based on a built-in heuristic—is provided to say that the 
number of roll stations should be larger than the number calculated.  

PRIDE has many features beyond those discussed here, among which is the 
capacity to maintain multiple designs simultaneously and to switch between 
different partial designs so that designers can explore different options in 
parallel. A designer can also selectively undo a design or impose additional 
constraints. In fact,  PRIDE’s many features make it very useful as a designer’s 
assistant, because designers working with PRIDE often develop suitable designs 
faster than either the system or the designer would have done alone.  

Our snapshot of the design process in PRIDE illustrates how a complicated 
configuration task can be described and analyzed with the aid of symbolic 
representation and concomitant problem solving. Further, the stylized symbolic 
descriptions we present contrast sharply with the numerical representations used 
in procedural programs. This clearly opens the door to detailed and structured 
discussions of design, both at the blackboard and on the workstation screen, 
because both a vocabulary and a structure for talking about the design process 
can clearly be realized.  

 
 

ATTRIBUTE VALUE 
 
type InstanceSetGenerator 
name SetGen1 
descriptor "Generate standard driver diameters" 
assignTo (DesignObject  defRollPair  driver diameter) 
initValue "Find a diameter of 10mm" 
classes DriverDiameter 
soFar NIL 
status INIT 

Table 4. The generator “Design driver diameter” from the PRIDE system.  
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4. Some application-oriented thoughts  
We have reviewed the several languages of design, including verbal and textual 
statements, graphical representations and images, mathematical and analytical 
models, numbers, rules, and structured descriptions of objects. The last two 
languages in particular, derived from current computational paradigms, offer 
empirically-based support for representing and applying various kinds of design 
knowledge. Inasmuch as these kinds of languages also offer a dual promise of 
integrated design environments and of capturing designers’ intentions, we feel 
that a brief discussion of these two issues is warranted.  

There has long been a gap between the designers of artifacts and their makers. 
Whether a natural evolution of the engineering profession or a reflection of an 
economic model of specialized labor as a driving force in capitalism (although 
we see it in societies built on vastly different economic premises), this gap is 
nonetheless a source of continuing concern. One of its most common 
expressions is the desire to tear down the legendary “brick wall” that is said to 
exist between designers and manufacturing engineers.  

There are many interesting issues about design communication. One is related 
to delineating various aspects of integrating graphical and other representations 
(e.g., object or device representations, analysis programs, codes, documentation, 
and so on) within an integrated computational design environment. A second 
issue is concerned with the concurrent use of design software by many users in 
large design and manufacturing organizations. For example, in addition to the 
technical issue of integrating different representations, we can easily identify the 
need to handle different kinds of information that result from the social and 
gepgraphical distribution of cognition.  

We must also confront some other issues, for example, how do we maintain 
control of an evolving design, understand how and why design decisions are 
made, and understand how these decisions are propagated and enforced? 
Wanting to understand why a design decision was made prompts a question: 
What advantage can we gain by articulating, preserving, and communicating the 
intentions that designers have for their design?  

Designs are realizations of their designer’s intentions (Dym, 1994a). 
However, design intentions are often subtle in their expression, or are masked by 
the complexity of the designed artifact. The Kansas City Hyatt Regency failure 
was due to the fabricator changing the structural connections for the second-floor 
atrium walkway because he couldn’t hang it as originally designed (Pfrang, 
1982; Petroski, 1982). The fabricator found that the long hanger rods were 
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unavailable, and he didn’t know that the designer intended to hang the second-
floor walkway directly from the roof truss, not from the fourth-floor walkway. 
Had the designer been able to convey his intention automatically and 
unambiguously, without waiting (in vain) for the question to be asked, this 
tragedy might well have been avoided. Thus, one wonders whether the 
representations described above could help convey a designer’s intentions to 
whomever makes the final design.  

Capturing the designer’s intent by conjuring up a description of both the 
artifact and its intent is rather easy. Getting this information into the hands of the 
fabricators is much harder. This view of capturing design intent leaves the 
problem of transmitting design intent at the same abstract level as the discussion 
of integration. Further, it ignores some recent attempts to use design intent as a 
point of departure for reasoning about design. Now, the design process can be 
viewed as one of refining abstract goals and objectives until a fabrication 
specification emerges at the end of the process (Dym, 1994a). In this context, 
design intent can be viewed as a recorded history of the design process in which 
the reasons that design decisions were made are tracked as they are 
implemented. That is, were design intent captured systematically, design 
decisions could be reviewed and the consequences of revising them or undoing 
them altogether would be better understood. Design intent becomes a reasoning 
tool to help guide verification, modification, or reuse of designs, rather than 
simply a retrospective glance at the process.  

A representation of function and its links to form and its representations is 
also a lively area of debate. Does the specification of function dictate a 
specification of form? Can one infer function from form? There is thus a need to 
interpret, refine, and represent at different levels of abstraction the intentions that 
are embodied in a design. The question is, Are issues of intention for and 
function of an artifact inextricably linked to the issue of representing the artifact? 
That is, can function be thought of independently of the representation of the 
device that performs that function? In fact, the examples indicate that the details 
of the representation of the artifact can be chosen apart from the representation 
of that function, subject only to the proviso that in the final analysis the 
designers have to produce a set of complete and unambiguous specifications for 
the manufacture of that artifact, which means that the representation must be 
acceptable to the manufacturer. 
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5. Cognition, design, and artificial intelligence  
So far, we have presented a typology of languages of design, together with a 
brief description of their role in design processes, and we have discussed PRIDE, 
a KBES that is intended to model a design process. Now we address some hard 
questions about these two topics that we have previously postponed. First, we 
have postponed the question of how the languages of design function in the 
cognitive process of design, and specifically, how they relate to the inner mental 
processes of designers. Second, we have postponed the question of whether 
PRIDE provides a realistic model of the cognitive process of design, and, more 
generally, of identifying the possibilities and limitations of KBESs as tools for 
design and design modeling. 

As for the first question, we have managed thus far to resist equating cognitive 
processes to (inner) mental processes. Cognitive processes may take place in the 
mind, in which case they are mental processes, but they may also take place 
partially outside of the mind, as when they involve external representations and 
manipulations performed with those representations. For example, when 
someone uses pen and paper to calculate a sum, a full account of the cognitive 
process by which the sum is calculated should not merely describe the mental 
processes involved. Rather, it should also analyze the interactions that take place 
with this medium. After all, this medium functions as a place for inscription, 
storage and retrieval of information, just like human memory does.  Likewise, an 
analysis of design activity as a cognitive process should analyze both the mental 
processes of designers and their interactions with various representational media. 

At one level, we want to claim, languages of design function just like any 
ordinary language like English or French: they are symbolical (or iconic) forms 
that are decoded by designers in their effort to construct inner mental 
representations that are used in the cognitive process of design activity.  Often, 
the result of this cognitive activity is one or more new external representations 
(e.g., a blueprint, or mathematical model).   For instance, a series of textual 
statements that express design constraints may be read by a designer who uses 
them to construct a mental image of an object that satisfies these constraint, 
which in turn causes him to draw a graphical representation of such an object.  
These cognitive activities evidently require special cognitive abilities. A 
professinal designer has interpretive abilities that enable him or her to read and 
understand languages of design (i.e., construct inner mental representations that 
denote the meaning of the external symbols or images under consideration), and 
cognitive abilities and background knowledge that enable him or her to translate 
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these mental representations into new representations that move one closer to a 
complete design solution. 

Cognitive scientist Donald Norman (1991, 1993a) has suggested that we 
should think of external representations as cognitive artifacts: tools that serve to 
aid and abet cognitive activity.  External representations like texts and images 
help us in the acquisition, storage and retrieval of information.  To be good 
cognitive tools, Norman suggests, external representations should adhere to three 
criteria: They (1) “capture the important critical features of the represented world 
while ignoring irrelevant ones,” (2) “are appropriate for the person, enhancing 
the process of interpretation,” and (3) “are appropriate for the task, enhancing the 
ability to make judgments, to discover relevant regularities and structures.” 
(1993a: 52).  These, then, are three outstanding criteria for the evaluating the use 
of external design representations in the design process.   

We hence propose that (external) design representations should be understood 
as cognitive artifacts used by designers as information retrieval and storage 
vehicles in the cognitive process of design, for the generation of mental 
representations and (ultimately) novel external representations.  What is needed 
at this point is a more detailed account of the role of external representations in 
cognition.  This is still an ongoing research topic for cognitive science (see 
Norman, 1993b; Winograd and Flores, 1986; Clark, 1997; Suchman 1987).  For 
them to be good cognitive artifacts, they must be in a representational format that 
enables designers to encode only relevant features of a design, and that can be 
decoded or ‘read’ well by the intended user of the representation, presenting him 
or her with information that is, both in its form and in its content, immediately 
relevant to his or her goals.  Evidently, the quality of design and design 
communication suffers when not all three of Norman’s criteria are met.  

The other issue to be considered in this section is the status of KBESs as tools 
for design and design modeling.   We are both optimistic that KBESs can play an 
increasingly important role in design.  We are, however, divided over the 
question of whether they can also be understood as adequate tools for design 
modeling: Dym holds that they can provide good models of design processes, 
whereas Brey believes that this is not the case.  We agree that whether KBESs 
can function as adequate models of the design process depends on whether they 
are able to adequately model the cognitive processes involved in design.  This 
implies that there must be a structural similarity between the structure and 
operations of KBESs and the cognitive processes of human designers.   

It is widely agreed that KBESs, like other programs run on computers, are 
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physical symbol systems.  That is, they are systems in which physically realized 
symbols (e.g., zeros and ones, realized as the presence or absence of an electrical 
current) are able to combine into symbol structures (structures composed of 
multiple symbols related in some physical way) and are operated on through 
processes of creation, modification, reproduction, and destruction.   In this way, 
evolving collections of symbol structures are produced over time.  If KBESs are 
to function as models or theories of design processes, it must be because the 
symbol structures of KBESs, and operations performed on them, mimic the 
representations and cognitive operations used in design by human designers.  
This, in turn, implies that human designers (perhaps along with the external 
representations  used by them) are (at least by approximation) also physical 
symbol systems.   That is, the cognitive activity of human designers must be 
analyzable as a process or creating, modifying, reproducing and destroying 
symbol structures. 

In fact, one influential account of human cognition that has been proposed in 
cognitive science makes exactly this assumption.  This approach to cognitive 
science, that dates back to the very beginning of the field, features the physical 
symbol systems hypothesis proposed by Newell and Simon (1963, 1972): “A 
physical symbol-system has the necessary and sufficient means for general 
intelligent action.” According to this hypothesis, intelligence is not only 
something that can be exhibited by a symbol-processing system like a modern 
digital computer. Intelligence is also essentially a matter of symbol processing 
according to formal rules, and therefore the human mind is also a physical 
symbol system. Mental processes are then rule-governed operations defined over 
symbols or strings of symbols. This model is sometimes called cognitivism, and 
when used in AI it is also called symbolic AI.  

The usefulness of KBESs as models of the design process hence depends on 
the plausibility of the central assumption of cognitivist cognitive science, i.e., the 
physical symbol system hypothesis.  We do not here want to repeat all the 
arguments that have been proposed for and against cognitivism (e.g.,  Newell 
and Simon, 1963, 1972; Fodor and Pylyshyn, 1988; Haugeland, 1981; Dreyfus, 
1992).  We merely want to point out the fact that the usefulness of KBESs as 
models of the design process centrally depends on the truth of the physical 
symbol systems hypothesis, and point out that this hypothesis is still hotly 
debated.  

We will now turn to the more practical question of how useful KBESs can be 
expected to be in taking over design processes.  Evidently, if cognitivism is true, 
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then one may expect future KBESs that adequately model design as it is done by 
humans to automate an ever increasing part of design, with no principal limit to 
what can be automated.  If cognitivism is false, it does not follow immediately 
that computers cannot be as good at design as human designers.  Remember that 
chess programs are able to display a significant level of expertise, while they are 
widely believed to process information very differently than do chess 
grandmasters. So perhaps KBESs can be designed that follow cognitive 
procedures very different from human designers, but that are still successful at 
design. 

The question is then how successful they may be. In answering this question, it 
useful to realize that design activities encompass a spectrum that ranges from 
routine design of familiar parts and devices, through variant design that requires 
some modification in form and/or function, to truly creative design of new 
artifacts.  We hold that existing KBESs, such as PRIDE, have excelled at (very 
complicated) routine design, and that there is evidence that they can replicate 
human expertise in this regard.  This implies that for routine design, KBESs may 
not just be used as intelligent assistants (e.g., PRIDE), but also as automated 
designers (e.g., DEC’s R1 system, that routinely configures computer systems on 
the factory floor (McDermott, 1982),a task previously performed by human sales 
engineers).  

KBESs successful at variant and creative design have yet to be constructed. 
To the extent that it can guide the construction of KBESs, psychological research 
on expertise suggests that this would require a new generation of KBESs that are 
better capable of transfering knowledge to new knowledge domains and to 
integrate knowledge so as to create new cognitive procedures.  In a review of 
psychological theories of expertise, cognitive scientist Keith Holyoak (1991) 
argues for a distinction between routine and adaptive expertise.  Routine 
expertise involves the ability to quickly and accurately solve problems in a 
limited problem domain.  Experts who have routine expertise have developed 
increasingly specialized, skilled knowledge to solve problems in local problem 
domains.  Adaptive expertise, however, includes the ability to transfer learned 
skills to new domains, and to integrate different skills so as to create new 
procedures out of routine expert knowledge (cf. Dörner & Schölkopf, 1991; 
Hatano & Inagaki 1986).  Genuine experts, and hence also, perhaps, expert 
systems capable of adaptive and creative design, are able to adapt their skills so 
as to go beyond routine expertise.   

While we disagree on the usefulness of KBESs as models of design, we agree 



26 Empirical Constructs for Representing Objects and Articulating Processes 

that it cannot be prejudged whether KBESs are capable of variant and creative 
design.  The boundary between routine, variant and creative design, and between 
routine and adaptive expertise, is a moving one, that is open to negotiation.  The 
possibilities and limitations of KBESs for variant and creative design will reveal 
themselves in future generations of KBESs. 

 
 

6. References 
Brey, P. (1996).  “Philosophy of Technology: A Time for Maturation,” 

Metascience:  An International Review Journal for the History, Philosophy and 
Social Studies of Science, 9: 91-104. 

Brey, P. (1998a),  “New Media and the Quality of Life,” Society for Philosophy 
and Technology Quarterly 3, 1-23. 

Brey, P. (1998b), “The Politics of Computer Systems and the Ethics of Design,” In 
M. J. van den Hoven (Ed.), Computer Ethics: Philosophical Enquiry.  
ACM/SIGCAS Conference, Rotterdam University Press, Rotterdam, The 
Netherlands, p. 64-75. 

Brey, P. (1999).  “Design and the Social Ontology of Virtual Worlds,” In A. 
Nijholt, O. Donk and B. van Dijk (Eds.), Interactions in Virtual Worlds.  
Proceedings of the XVth Twente Workshop on Language Technology, 5-12. 

Bijker, W., and Law, J. (Eds.) (1992). Shaping Technology/Building Society:  
Studies in Sociotechnical Change.  Cambridge/London: MIT Press. 

Bijker, W., Pinch, T., and Hughes, T., (Eds.) (1987), The Social 
Construction of Technological Systems: New  Directions in the 
Sociology and History of Technology.   Cambridge, MA: MIT Press. 

Clark, A. (1997).  Being There: Putting Brain, Body and World Together 
Again,  MIT Press, Cambridge, MA. 

Cunningham, J. J. and Dixon, J. R. (1988), “Designing with Features: The Origin 
of Features,” In Proceedings of the ASME Computers in Engineering 
Conference, ASME, San Francisco, CA.  

Dörner, D., and Schölkopf, J. (1991). “Controlling Complex Systems: Or, 
Expertise as ‘Grandmother’s Know-How’,” In K. Ericsson and J. Smith 
(Eds.), Towards a General Theory of Expertise: Prospects and Limits, 
Cambridge, Cambridge University Press. 

Dreyfus, H. (1992), What Computers Still Can't Do: A Critique of Artificial 
Reason, MIT Press,  Cambridge, Massachusetts. 



Empirical Constructs for Representing Objects and Articulating Processes 27 

Dixon, J. R., Libardi, E. C. Jr. and Nielsen, E. H. (1989), “Unresolved Research 
Issues in Development of Design-With-Features Systems,” in Wozny, M. J., 
Turner, J. and Preiss, K. (Eds.), Proceedings of the 1989 IFIP WG 5.2 
Second Workshop on Geometric Modelling, North-Holland, Amsterdam.  

Dym, C. L., Summers, M. D., Demel, C. T. and Wong, C. S. (995), “DEEP: A 
Knowledge-Based (Expert) System for Electric Plat Design,” Computing 
Systems in Engineering, 6 (6): .  

Dym, C. L. (1994a), Engineering Design: A Synthesis of Views, Cambridge 
University Press, New York. 

Dym, C. L.(1994b), “Representing Designed Artifacts: The Languages of 
Engineering Design,” Archives of Computational Methods in Engineering, 1 
(1): .  

Dym, C. L., Garrett, J. H. Jr. and Rehak D. R. (1992), “Articulating and 
Integrating Design Knowledge,” in Workshop on Preliminary Stages of 
Engineering Analysis and Modeling, Second International Conference on 
Artificial Intelligence in Design, Pittsburgh, PA, June. 

Dym, C. L., Henchey, R. P., Delis, E. A. and Gonick, S. (1988), “Representation 
and Control Issues in Automated Architectural Code Checking,” Computer-
Aided Design, 20 (3): . .. 

Dym, C. L. and Levitt, R. E. (1991a), Knowledge-Based Systems in Engineering, 
McGraw-Hill, New York.  

Dym, C. L. and Levitt, R. E. (1991b), “Toward an Integrated Environment for 
Engineering Modeling and Computation,” Engineering with Computers, 7 
(4): . 

Finger, S., and Dixon, J. R. (1989), “A Review of Research in Mechanical 
Engineering Design. Part II: Representations, Analysis, and Design for the 
Life Cycle,” Research in Engineering Design, 1: . .. 

Fodor, J., and Pylyshyn, z. (1988).  “Connectionism and Cognitive Architecture: 
A Critical Analysis.”  Cognition 28: 3-71. 

Hatano, G., and Inagaki, K. (1986).  “Two Courses of Expertise,” in H. 
Stevenson et al. (Eds.), Child Development and Education in Japan, 
Freeman. 

Haugeland, J. (1981).  “The Nature and Plausibility of Cognitivism,” in J. 
Haugeland (Ed.), Mind Design, MIT Press, Cambridge, MA. 

Holyoak, K. (1991).  “Symbolic Connectionism: Toward Third Generation 
Theories of Expertise,” In K. Ericsson and J. Smith (Eds.), Towards a 
General Theory of Expertise: Prospects and Limits, Cambridge, Cambridge 



28 Empirical Constructs for Representing Objects and Articulating Processes 

University Press. 
McDermott, J. (1982), “R1: A Rule-Based Configuration of Computer Systems,” 

Artificial Intelligence, 19 (1): ….. 
Mittal, S. and Araya, A. (1986), “A Knowledge-Based Framework for Design,” 

in Proceedings of AAAI-86, AAAI, Philadelphia, PA. 
Mittal, S., Dym, C. L. and Morjaria, M. (1986), “PRIDE: An Expert System for 

the Design of Paper Handling Systems,” IEEE Computer, 19 (7):  
Morjaria, M. (1989), “Knowledge-Based Systems for Engineering Design,” in 

AUTOFACT ‘89 Conference Proceedings, Detroit, MI. 
Newell, A. and Simon, H. A. (1963), “GPS: A Program that Simulates Human 

Thought,” in Feigenbaum, E. A. and Feldman, J. (Eds.), Computers and 
Thought, McGraw-Hill, New York. 

Newell, A. and Simon, H. A. (1972), Human Problem Solving, Prentice-Hall, 
Englewood Cliffs, NJ. 

Norman, D. (1991).  “Cognitive Artifacts,” In J. M. Carroll (Ed.), Designing 
Interaction: Psychology at the Human-Computer Interface (pp. 17-38), 
Cambridge University Press, New York. 

Norman, D. (1993a). Things that Make Us Smart: Defending Human Attributes 
in the Age of the Machine, Addison-Wesley, Reading, MA. 

Norman, D. (Ed.) (1993b). Special Issue on Situated  Action.  Cognitive  Science, 
17, 1. 

Pahl, G. and Beitz, W. (1984), Engineering Design, Design Council Books, 
London. 

Petroski, H. (1982), To Engineer Is Human, St. Martin’s Press, New York. 
Pfrang, E. O. (1982), “Collapse of the Kansas City Hyatt Regency Walkways,” 

Civil Engineering, 52 (7): … 
Simon, H. A. (1990), Personal Communication, 29 October. 
Suchman, L. (1987).  Plans and Situated Actions: The Problem of Human-

Machine Communication, Cambridge, Cambridge University Press. 
Ullman, D. G., Wood, S. and Craig, D. (1990), “The Importance of Drawing in 

the Mechanical Design Process,” Computers and Graphics, 14 (2): … 
Winograd, T., and Flores, F. (1986).  Understanding Computers and Cognition: 

A New Foundation for Design, Ablex, Norwood, NJ. 



Empirical Constructs for Representing Objects and Articulating Processes 29 

 
 
 

 
Figure 1. Design information adjacent to a sketch of the designed object (after 

[7]). 

 
Figure 2. An injection-molded part and some of its features (after [14]). 
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Figure 3. The inheritance lattice (or object tree) in the DEEP KBES (Dym, 

Summers et al., 1995). 



32 Empirical Constructs for Representing Objects and Articulating Processes 

  

 
 
 
 
 
 
 
  

Figure 4. A snapshot of a sample paper path in PRIDE, including roll stations, 
input and output points, and obstructing regions to be avoided by the 
transport (after [1]).  
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Figure 5. A stylized version of a small portion of the inheritance lattice that makes 
up PRIDE’s knowledge base (after Morjaria, 1989).  
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Figure 6. A stylized version of the goals and methods that make up PRIDE’s 
design plan (after [1, 3]).  
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Figure 7. A stylized view of how design advice is handled in PRIDE (after 
(Mittal and Araya, 1986)); see also (Morjaria, 1989)).  
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