
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-2001

Languages for Engineering Design: Empirical
Constructs for Representing Objects and
Articulating Processes
Clive L. Dym
Harvey Mudd College

Philip Brey
Universiteit Twente

This Book Chapter is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
Dym, C. and Brey, P. (2001). ‘Languages for Engineering Design: Empirical Constructs for Representing Objects and Articulating
Processes’. In: P. Kroes and A. Meijers (eds.), The Empirical Turn in the Philosophy of Technology. Research in Philosophy and
Technology 20. Londen: Elsevier/JAI Press, 119-148.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70977831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

This is a preprint version of the following article:
Dym, C. and Brey, P. (2001). ‘Languages for Engineering Design: Empirical Constructs for
 Representing Objects and Articulating Processes’. In: P. Kroes and A. Meijers (eds.),
 The Empirical Turn in the Philosophy of Technology. Research in Philosophy and Technology
 20. Londen: Elsevier/JAI Press, 119-148.

Languages for Engineering Design:
Empirical Constructs for Representing Objects

and Articulating Processes

Abstract
Design knowledge incorporates knowledge and information about designed
objects and their attributes, as well as about methods and means for undertaking
the design process. Such design knowledge is articulated in several different
representations or languages. This paper presents a typology of the languages of
engineering design, emphasizing the representation of designed objects and the
articulation and representation of the cognitive processes of design. Design
languages include verbal or textual statements, drawings and graphics, formulas,
and numbers. Still other design languages follow from computational styles. The
languages of design and their computer-based implementations are empirical in
origin, since observation reveals that these languages are derived not from an
overarching theory, but from our experience in trying to understand what we do
when we: talk about designed objects, articulate design processes, and teach
computers how to do these things as well.

Next to presenting a typology of the languages of engineering design, and
discussing the role of these languages in design activity, the paper also discusses
the possibility of automating design activity through the design and manufacture
of expert systems for product design. We will be looking at one of the most
advanced systems of this sort, the PRIDE system, and use our study of PRIDE to
discuss the possibilities and limits of automating design through the use of
expert systems.

2 Empirical Constructs for Representing Objects and Articulating Processes

1. Introduction
This paper arises from a shared interest in the kinds of knowledge employed by
engineers when doing design. We are interested in a better understanding of
engineering design, and we believe that such an understanding should centrally
involve an analysis of design knowledge and its the cognitive role in the design
process. We hold that the act of designing can be analyzed as a cognitive process,
and more specifically as a problem-solving process, in which designers go
through a series of cognitive steps to solve design problems in order to arrive at a
design that meets a sets of objectives while adhering to a set of constraints. An
analysis of design as a cognitive process should, we claim, identify the various
sorts of knowledge used in design (which we call design knowledge), and the
cognitive processes and procedures by which such knowledge is employed by
designers.

It is not our purpose in this paper, however, to offer a full-blown account of
design knowledge or the cognitive structure of the design process. We focus
instead on two more specific, interrelated issues that we believe can be helpful in
elucidating both design knowledge and the cognitive structure of design
processes. The first topic of our concern is the nature and the role of external
representational media, or languages, as we will call them, in design activity. By
external representational media (or representations) we mean representational
forms (e.g. symbols, images) that can be found outside the human mind. They
contrast with the inner mental representations that cognitive scientists have
argued exist in the human mind. Engineers use various sorts of external
representations in design activity, such as verbal descriptions, mathematical
equations, sketches, and graphs. We want to arrive at a typology of these sundry
representational forms, and assess their role in design.

The second issue concerns the possibility of automating design activity
through the design and manufacture of expert systems for product design. More
and more design activity relies on the use of computers, and there have been
efforts to actually automate design processes through the use of so-called
knowledge-based expert systems (KBESes) (Mittal, Dym and Morjaria, 1986;
Dym, Henchey et al., 1988; Dym, Summers et al., 1995). We will be looking at
one of the most advanced systems of this sort, the PRIDE system (Mittal, Dym

Empirical Constructs for Representing Objects and Articulating Processes 3

and Morjaria, 1986), and use our study of PRIDE to discuss the possibilities and
limits of automating design through the use of expert systems.

We would like to emphasize the ways in which these two topics are related.
For us, studying external representations in design and studying expert systems
for design constitute different ways in which both design knowledge and the
cognitive structure of design processes can be elucidated. Moreover, they are
approaches that may benefit each other. An analysis of the role of external
representations in design is likely to be helpful in an assessment of possibilities
and limitations of automating design through the use of expert systems, because
an expert system is itself an external representational medium that embodies
computational representations of design knowledge. Thus, any general
considerations on the role of external representations in design ipso facto also
apply to the computational representations found in expert systems. In other
words, understanding the role of external representations in design may help us
better assess the possibilities and limitations of automating design.

Conversely, we believe that our analysis of expert sytems such as PRIDE can
help us gain a better understanding of the role of external representations in
design, because such systems are intended as models of actual design processes.
We will try to assess how successful they are in this capacity, and what this
implies for the role of exernal representations in design.

Before we embark on a discussion of these two topcs, we want to explain what
moves us to study design knowledge and design processes, and what we take the
status and relevance of our joint project to be. We write this paper as an engineer
and a philosopher with a shared interest in engineering design. We both seek to
arrive at better theoretical analyses of engineering design that describe how
design processes are structured and explain how designers use their expertise to
arrive at new designs. We both believe that an analysis of design knowledge and
of cognitive processes and procedures in design is central to such an
undertaking. We believe that the study of design requires an interdisciplinary
effort. The result of our joint effort may be classified as a study in the newly
emerged interdisciplinary field of design studies, to which engineering, the
social sciences, and the humanities all contribute. However, we also each have
our own disciplinary interests, and we would now like to describe some of these
in order to explain how this research may be seen as contributing to our
respective disciplines.

One of us, Dym, is an engineer, and has been motivated to study design
because of a feeling, shared by many in the engineering community, that design

4 Empirical Constructs for Representing Objects and Articulating Processes

is a misunderstood activity that is not well represented in engineering education
or in engineering research. He believes that a more rigorous and scientific study
of design can contribute to better design education as well as better practice in
design research (cf. Dym, 1994a). Dym, moverover, has a particular interest in
artificial intelligence (AI) models of design, both as a vehicle for gaining greater
understanding of the cognitive process of design, and for their practical use as
design tools. Some of Dym’s work is described in Sections 2 and 3 of this paper
wherein we propose a typology of design representations and discuss the PRIDE
expert system.

The other author, Brey, is a philosopher with a research emphasis in the
philosophy of technology. He is interested in studying design because it has been
a neglected topic in the philosophy of technology, which has traditionally
focused on the consequences of technology while neglecting the engineering
practice from which technology stems. He has been concerned with the relation
between design and technological impacts (Brey, 1998a, b, 1999) and believes
that an analytical understanding of design knowledge and design processes is
required for the analysis and normative evaluation of the role of engineering
design in the coming about of the societal consequences of technological
innovations. Brey also believes, however, that a philosophy of design
engineering constitutes a topic for philosophy in its own right that can do for
engineering what the philosophy of science does for science: clarify and evaluate
methods, analyze and set standards for progress, and explore ontological and
epistemological issues within the discipline (Brey, 1996).

The outline of the remainder of the paper is as follows. In Section 2, a
typology of representational formats used in design engineering is proposed and
argued for, and a role in the design process is tentatively identified for each type
of representation. This section paves the way for a discussion (in Section 3) of
PRIDE, an example of a successful knowledge-based expert system used in
design. Section 4 briefly discusses some practical implication of the previous
sections. In Section 5 we address several issues that relate design knowledge
and cognition to applications of artificial intelligence and their validity.

2. The languages of engineering design
Design engineering, as practiced by designers, is analyzed by us as a cognitive
process, and more specifically, a problem-solving process. Our analysis of design
as a cognitive process is influenced in part by the successful use of programming
constructs derived from artificial intelligence (AI) to elucidate design knowledge

Empirical Constructs for Representing Objects and Articulating Processes 5

and formulate a theory of design (Dym and Levitt, 1991a; Dym 1994a).
Designers, we claim, normally find themselves working to meet a number of
goals or objectives while satisfying a number of constraints in the end product of
their design activity, which may be a blueprint, a list of fabrication specifications,
a prototype, or some other type of design plan. Their attempt to satisfy such
constraints may be analysed as a problem-solving activity in which designers try
to find design solutions that meet several objectives while satisfying multiple
constraints. In this process they employ design knowledge the specialized
knowledge that defines their expertise. Much, if not all of this knowledge is
representational in nature: it represents artifacts (designed objects) and their
attributes, as well as design processes and procedures.

In analyzing engineering design as a cognitive process, we do not mean to
deny the role of noncognitive factors in design. Certainly, the inner mental
processes of designers and their interaction with representational media
constitute only some of the factors that determine design outcomes. We are
aware, in particular, that designs are commonly explained in technology studies
as largely, if not exclusively determined by social factors, including the
interactions between different social groups, such as designers, corporations,
government agencies, and users (Bijker, Pinch & Hughes, 1987; Bijker & Law,
1992). A complete explanation of individual designs should certainly include
such factors. However, our purpose is not to explain design outcomes, but to
assess the cognitive structure of design activity. We hold that sociological or
economic analysis of technological innovation are well suited to explain why
certain specifications came to prevail over others in a design. However, such
analyses do not explain how it is that designers are able to turn a set of
specifications into a design plan. We believe that this latter process can only be
understood through the analysis of cognitive processes in design, even if a
further explanation of these cognitive processes may again require reference to
social factors.

A cognitive process is, in our analysis, not necessarily just a mental process.
Certainly, design activity is made up in part by inner mental processes (e.g.,
thought, concept formation, and reasoning) that take place within the minds of
designers. However, just as important as these mental processes is the systematic
interaction of designers with various sorts of external representational media that
aid them in their design activity. Designers write down their ideas on paper,
using various kinds of symbolical languages, they make various kinds of
graphical representations, they use computers to process information, and they

6 Empirical Constructs for Representing Objects and Articulating Processes

take in information by consulting various sorts of information sources. An
account of the cognitive structure of mathematical modeling, for example, would
probably be incomplete if it would only refer to mental processes in the head of
designer and made no reference to his interactions with calculators, computers or
other mathematical tools that directly affect the steps taken in modelling. A
proper cognitive analysis of design should therefore combine accounts of the
inner mental processes of designers with accounts of their interactions with these
various representational media.

In this section, we will analyze the external representational media used in
design. Our aim is to present a typology of the various types of external
representations used in design and to describe their role in the design process.
We will call these representational media the languages of design because they
consist of interconnected systems of representations (symbols, icons, etc.) that
function like languages in which design ideas are expressed and communicated.
It will become clear that external representations used by designers do not just
refer to objects and their attributes. They are also used to represent design
processes and procedures. We believe that this is true because designers do not
just try to prescribe what a designed artifact should look like, they also
continually think of the functions served by the artifact and its attributes, and of
subsequent steps in their design and manufacture. For example, there is evidence
that designers think about design processes when they begin to they create
sketches and drawings to represent the objects they are designing (Ullman,
Wood and Craig, 1990).

Thus, a complete representation of designed objects and their attributes
requires a complete representation of design concepts (e.g., design intentions,
plans, behavior, and so on) that are more difficult to represent than are physical
objects. Since the endpoint of engineering design thinking is most often a set of
fabrication specifications for objects, it is important to discuss the languages or
representations for both objects and processes (Dym, 1994a).

In order to describe an object, whether physical or conceptual, in detail or
abstractly, there must exist a language within which that description can be
written. There are several languages in which design information is cast (Dym,
1994a; Dym 1994b):

Verbal or textual statements are used to articulate design projects; describe

objects; describe constraints or limitations, especially in design codes (see
below); communicate between different members of design and

Empirical Constructs for Representing Objects and Articulating Processes 7

manufacturing teams; and document completed designs.

Graphical representations are used to provide pictorial descriptions of
artifacts. These visual descriptions include sketches, renderings, and
engineering drawings, are often interpreted within CADD systems.

Mathematical or analytical models are used to express some aspect of an
artifact’s function or behavior, and this behavior is in turn often derived
from some physical principle(s). Thus, this language could be viewed as a
physical representation language (cf. (Pahl and Beitz, 1984)).

Numbers are used to represent design information in several ways. Discrete
values appear in design codes and constraints (and as attribute values, e.g.,
part dimensions). Numbers also appear as continuously varied parameters
in design calculations or within algorithms wherein they may represent a
mathematical model.

We also add to this list two text-based representations that derive from
programming constructs used in symbolic computing and form core ideas of AI-
based programming (Dym and Levitt, 1991a). These two representations or
languages have highly stylized and specific syntaxes or grammars:

Rules prescribe specific action to be taken in a given situation. Normally

written in sets of IF–THEN clauses, the left-hand (IF) sides of the rules
define situation(s) that must obtain before a rule is applied, while the
right-hand (THEN) sides of the rules define actions to be taken. Rules are
used to represent design heuristics or rules of thumb and design codes.

Objects or frames are structures that can be used to represent objects and
their attributes. Frames are elaborate data structures that can be linked to
other frames through a variety of logic-based and/or procedural calls to
other data or attributes or to calculation methods. Objects, the heart of
object-oriented programming, are interesting because, together with their
networks of links and procedures for storing and passing data, they can
describe how physical and conceptual objects relate to each other.

We recognize that it is perhaps unusual to classify these two representation
schemes—rooted as they are in symbolic computation—as design languages.
However, our experience has shown that these particular constructs offer
effective means for stating and applying design knowledge. We have also found
that these structures can be used to organize and integrate design knowledge
represented in one or more of the other design languages, thus laying the

8 Empirical Constructs for Representing Objects and Articulating Processes

groundwork for developing integrated computational environments for design
(Dym, Garrett Rehak, 1992; Dym and Levitt, 1991b).

We could be extract other constructs from symbolic programming, e.g., logic
programming, neural networks, and genetic algorithms. However, we do not
identify them as design languages or representations for the following reasons.
Logic programming is really an implementation of predicate and propositional
calculus that has severe limitations in terms of its expressive power. We could
also argue that rules, as an extension of logic programming, serve design
representation purposes quite well. Neural networks attempt to imitate the
learning and knowledge transmission characteristics of the human brain. They
function by recognizing and classifying patterns that are in turn collections of
discrete numbers representing different aspects or characteristics of a problem.
This representation cannot represent more structured concepts, so neural
networks are limited in their ability to mimic and simulate human thought and
reasoning processes. Genetic algorithms are used to extract local and global
optima in discrete optimization problems. Here, problems are represented by
strings of attributes representing potential solutions to a problem, fitness
functions used to evaluate potential solutions that reflect problem constraints and
objectives, and a process by which generations of potential solutions are
generated by allowing reproduction and mutation of fit solutions from previous
generations. Genetic algorithm representations are limited to being variations of
a given topology, so their potential for representing reasoning is limited.

Clearly, we employ different languages to represent design knowledge at
different times. We often cast the same knowledge in different languages in
order to serve different purposes, which in turn requires that we find translations
between the different languages in order to represent different aspects of an
artifact or different phases of the design process. In the domain of structural
engineering, for example, a complete design of a structure requires the use of
many kinds of knowledge expressed in different representations (viz., Table 1).
In fact, we identify experts in part by their ability to select the right language at
the right time to solve a given problem. We recognize that different languages
may be employed, that different representations offer different insights and
utility, and that it is desirable to link these different languages in order to
seamlessly model a designed artifact and the design process.

Empirical Constructs for Representing Objects and Articulating Processes 9

2.1 Graphical representations
Graphical languages or representations include sketches, freehand drawings,
plots and graphs, and CADD models extending from simple wire-frame drawings
through elaborate solid models. Engineers have long engaged in putting “marks
on paper” while doing design, and they add supporting text, lists, dimensions,
and calculations to their sketches of objects and their associated functions, as
well as related plots and graphs (Ullman, Wood and Craig, 1990). The support
notes and other marks (and the drawings) facilitate a parallel display of
information as they can be surrounded with adjacent notes, smaller pictures,
formulas, and other pointers to ideas related to the object being drawn and
designed. One illustrative example is a sketch made by a designer working on the
packaging—to consist of a plastic envelope and the electrical contacts—to accept
the batteries that provide the power for a computer clock (cf. Figure 1). Here the
designer has jotted down some manufacturing notes adjacent to the drawing of
the spring contact. And, while not evident here, the designer might have
scribbled modeling notes (e.g., model the spring as a cantilever of stiffness?) or
suggestions (e.g., calculate the spring stiffness as if it were a cantilever beam) or
other design-related information.

Marginalia of all sorts are commonly experienced by anyone used to working
in an engineering environment. Engineers doing both analysis and design often
surround their pictures with text and equations. Conversely, sketches are often
drawn in the margins of documents, perhaps to elaborate a verbal description,

 as a rule:
IF a structural element has one dimension much thinner than

the other two

AND it is loaded in that direction
THEN it will behave as a plate in bending

 mathematically, the partial differential equation that governs the
deflections of bent, thin plates is D∇

4w(x, y) = q(x, y)
 verbally and numerically, the deflection of a floor in a residential building

should not exceed its length (in feet) divided by 360

Table 1. Alternate expressions of fundamental knowledge about plate
structures.

10 Empirical Constructs for Representing Objects and Articulating Processes

perhaps to indicate more emphatically a coordinate system or sign convention.
Thus, it should come as no surprise that sketches and drawings are as essential to
engineering design as any other representation.

Experience also suggests several major issues in graphical representation, as
evidenced in a listing of how drawings are used in the design process. Drawings
provide a permanent record of the shape or geometry of a design; facilitate the
communication of ideas among designers, and between designers and
manufacturing specialists; support the analysis of an evolving design; simulate
the behavior or performance of a design; and ensure that a design is complete, as
a picture and its associated marginalia could serve as reminders of still-undone
parts of that design. In fact, experience with graphical communication is so
compelling that it has been suggested that drawing is the method preferred by
mechanical engineering designers to represent external data (Ullman, Wood and
Craig, 1990).

Graphical representations of all kinds—whether done by hand or on a
computer, whether informally sketched or detailed in complex sets of blueprints,
whether bare or annotated with marginalia—represent a great deal of design
information. Clearly, there is much leverage to be gained by integrating these
representations with other kinds of representations (Dym and Levitt, 1991b).

2.2 Feature-based descriptions
We know that designers work in terms of aggregated information and concepts,
for example, shapes of surfaces and volumes, holes, fit, interference, tolerances,
and so on—even when they are thinking about geometry and topology. Thus, we
argue that a richer, more powerful representation is needed to enhance our ability
to reason about objects being drawn and designed, even if the reasoning is about
spatial issues. CADD (and originally CAD) systems have been used for some
time to draw pictures and plans of objects as they are being designed, but
designers clearly think about artifacts in ways that are much more encompassing
than the points, lines, and surfaces used in CADD systems. Feature-based
representation, as it is called, has emerged from just such attempts to enable
reasoning about objects for which data is stored in CADD systems (Cunningham
and Dixon, 1988; Finger and Dixon, 1989).

Features were originally thought of as volumes of solids that were to be
removed, typically by a machining process, because of the interest in relating a
part to some part of a process plan. More recently features have been taken to
include devices such as gears, bearings, and shafts, in the contexts of (1) relating

Empirical Constructs for Representing Objects and Articulating Processes 11

an artifact’s intended function to a form feature in the CADD representation and
(2) representing the physical features of an artifact so that they can be evaluated.
Examples of feature-based descriptions include: windows, corners, and tongues
for injection molding; walls and fillets for extrusion; and walls and boxes for
casting. Thus, the use of the term feature has broadened to include both form and
function, and the context has been extended to manufacturing and life-cycle
concerns of designed shapes and objects in which both geometric and behavioral
issues figure prominently. This is largely due to the fact that, as noted above,
designers tend to think in terms of particular forms that are intended to serve a
function imposed by the designer.

The part shown in Figure 2 is a locator for a piece that is formed within a
mold and is itself made through the process of injection molding (Dixon, Libardi
and Nielsen, 1989). In order to keep the molded piece at a desired location, the
shaded surfaces are required to remain parallel and at a specified distance from
one another. The tongue thus serves to locate the piece within the die. Changes
in any properties of the tongue must be consistent with the locating function.
Thus, modifications in the tongue’s geometry must be followed by
corresponding changes in the rest of the part that do not inadvertently defeat the
intended purpose. Similarly, the window over the tongue makes it easier to mold
the piece being molded within a two-plate die whose parting direction is normal
to the tongue, and it makes it easier to extract the part from the two-plate die.
Any changes in the nature of the window must be such that they do not defeat
the two purposes that the window serves in the present design.

We note that the design thinking just outlined is expressed in terms of the
tongue, the window, and the purposes these features will serve. We see that this
thought process is not about the coordinates that define the window opening or
the precise location and orientation of the face at the end of the tongue. The
thought process is done in terms of features and what features do in the final
design. Experienced designers thus aggregate design information in terms of an
artifact’s features because they are readily available, perhaps even “intuitively
obvious” choices as means to organize and apply design knowledge. Features are
also a bridge between graphical representations and the object-oriented
descriptions discussed in Section 2.4 because feature hierarchies are easily and
naturally represented in object-oriented descriptions.

2.3 Rules
The form of a rule is well-known. However, in order to show how rules are used

12 Empirical Constructs for Representing Objects and Articulating Processes

to express design information, one brief rule example is taken from a KBES
called DEEP that was built to assist designers in configuring electrical service for
residential plats (Dym, Summers et al., 1995). (The design process in DEEP is
described in Section 3.) The rule describes how separate building lots on a street
should be clustered or grouped so that they can be efficiently configured for
service. The rule combines heuristic design knowledge (i.e., a judgment about
how close lots on a street are, one to another) with some basic electrical
engineering knowledge (i.e., the transformer size needed to meet a specified
service demand):

IF the number of lots on the street is very close or equal to the

maximum number of services a 50 kVa transformer can serve
THEN cluster all of the lots on that street and serve them with a 50 kVa

transformer.

2.4 Object-oriented descriptions
It is now appropriate to delineate object-oriented representation as a prime
language of design. It clearly has evolved from the experience of both computer
scientists and designers as a means of organizing or clustering information about
a central core, while maintaining the ability to declare common attributes and
departures from defaults, as well as to call for data or calculations that are related
to the identity of the object who’s central core is thus described.

The frame shown in Table 2, also taken from DEEP (Dym, Summers et al.,
1995), illustrates how particular examples of a kind of object, called instances,
can be described in relationship to a class of objects that share common
attributes, in this case an instance of the class of transformers. This object
description contains slots for particular attributes (the left-hand column), and the
specific values for those attributes that distinguish the particular transformer in
question, that is, XFR50_1 (in the right-hand column). The slot for the attribute
DefaultType is inherited or passed down from the class Transformers, here as a
PADMOUNT transformer, unless it is overridden at the local level either by a
rule application or through intervention by the system user. In addition, the links
(not shown here) can be used to establish and maintain various kinds of
relationships, for example, a CONCRETE_PAD may be part-of a PADMOUNT
transformer, whereas a BURD is a kind-of transformer.

Figure 3 shows the inheritance lattice or object tree of all the objects in the
DEEP system. The figure shows how the class Transformers and its instances

Empirical Constructs for Representing Objects and Articulating Processes 13

(e.g., XFR50_1) fit into the overall structure of all the objects involved in this
particular design project. In fact, the classes Transformers and Handholes (that
are, typically, small underground structures containing electrical connection and
relay devices) are themselves subordinate to a more abstract class or
“superclass,” Structures, which is in turn part of the top-level class that contains
all the objects in the DEEP knowledge base. Note the heterogeneity of this
lattice; that is, it represents a mix of different kinds of physical structures and of
more conceptual objects, such as the Configurations, that represent
recommendations for the spatial layout of cables and other electrical equipment.

What may also be evident from our discussion—if not from the figure, is that
the branches of the object tree are not independent of one another, even though
they may appear to be in the pictorial representation of the tree. For example, the
transformer instance XFR50_1 has associated with it a specific location (the slot
Coordinates in Figure 1), and a set of lots that it serves (not shown in that figure,
although the total number of lots served is given in the slot MaxCustomers). The
location of this particular transformer and the lots it serves are identified in
appropriate slots in objects elsewhere in the tree; that is, in the classes
Configurations and Lots, respectively.

3 Modeling a design process

SLOT/ATTRIBUTE VALUE
SuperClass Components
Class Transformers
InstanceName XFR50_1
Type BURD
DefaultType PADMOUNT
Rating (kVa) 50
Size (ft2) 48
Structure Concrete
MaxConnections 6
Coordinates (X1, Y1)
MaxCustomers 21

Table 2. The instance XFR50_1 of the class Transformers of the DEEP

system. (There is more complexity than is visible because the links
between the instance and its classes are not shown.)

14 Empirical Constructs for Representing Objects and Articulating Processes

We now turn our discussion away from the languages of design to the modeling
of design processes using knowledge-based expert systems (KBESs). A KBES is
computer system that facilitates solving problems in a given field by drawing
inferences from a knowledge base, which is represented in symbolical form, and
which has been developed from human expertise. Work on KBESs is based on
the assumption, held by many artificial intelligence researchers, that a computer,
which is a universal symbol-manipulating device, has the capacity to generate
intelligent action that matches that of experts in a given field (cf. Newell and
Simon, 19xx). It is sometimes even assumed that KBESs can actually model or
mimic human thought processes, because intelligence is essentially a matter of
manipulating symbols according to formal rules, whether done by humans or by
computers.

In this section we describe the design process encapsulated in PRIDE, a
knowledge-based configuration design system for the mechanical design of
paper handling systems in copier machines (Mittal, Dym and Morjaria, 1986).
PRIDE is a particularly successful design system that was designed under the
assumption that human design intelligence could indeed be modeled on a
computer. PRIDE was also a pioneering demonstration of an empirical, AI-based
approach to capturing the experiential knowledge that is applied to the
performance of a design task, modeling real design processes, and furthering the
understanding and vocabulary of design as a discipline (Dym and Levitt, 1991a;
Dym 1994a; Mittal and Araya, 1986; Morjaria, 1989). It is even now a “real”
system, used daily as a design tool by designers doing feasibility studies for new
copiers. It was not just an academic exercise, but a convincing realization of the
kinds of representation and reasoning described herein. Our present discussion
focuses on a few of the key points of modeling the design process.

If we looked inside a copying machine, we would see paper moving rapidly
along a very complicated paper path, past various components and physical
processing elements, and under rather stringent constraints. While there are
several kinds of paper-handling systems, the PRIDE system focuses on transport
systems that use pinch rolls to “grab” and move pieces of paper. The design
requirements are tremendous and include geometrical properties (e.g., paper
entrance and exit locations and angles (see Figure 4)), timing constraints,
allowable skew with respect to the path, tolerances on engineering parameters,
and the ability to adapt to a variety of paper properties, including size, weight,
stiffness, and curl. Designers are required to make qualitative and quantitative
judgements while reasoning geometrically, algorithmically, and heuristically

Empirical Constructs for Representing Objects and Articulating Processes 15

about both physical objects and more abstract concepts.
We can decompose the design of a paper transport system into subproblems,

including designing a smooth path between the input and output locations,
deciding the number and location of pinch-roll stations to be placed along this
path, designing a “baffle” to be placed around the paper path to guide the paper,
designing the sizes of various pinch rolls (drivers and idlers), selecting the
proper materials for the pinch rolls and baffle, making decisions about paper
travel speeds and the forces on the paper produced by the pinch rolls, calculating
the time needed to move the various sizes of paper, and calculating the various
performance parameters and ensuring that they satisfy the requirements.
However, even with a very effective decomposition, the range of design tasks we
face is very diverse as it involves making decisions about geometry, spatial
layout, timing, forces, jam clearance, and so on, the totality of which are often
beyond the scope of a single engineer. The same transport has to be able to
handle different sizes and weights of paper, which often presents conflicting
constraints. For example, if the lengths (or widths) of the different sizes of paper
are far apart, then the constraint on the maximum separation of neighboring roll
stations for the smallest paper conflicts with the constraint on not having more
than two stations guiding the paper for the longer papers. The design of the paper
path is further complicated by obstructions that have to be avoided, as well as
adherence to strict requirements on the smoothness, continuity, and
manufacturability of the baffle in which the paper travels.

Paper-transport design is clearly a complex task that requires: spatial
reasoning about the geometry and routing of a paper path, and the placement of
particular components; component selection of the particular components or
subsystems (from a large array) needed to perform specified functions; and
component configuration of various subsystems in just the right way to obtain
some specified behavior. Given this complexity, what does the PRIDE system do
to be so helpful, either as a stand-alone design system or as a designer’s
assistant? In brief, PRIDE:

1. facilitates the designer’s choice of a planar path that avoids

obstructions caused by equipment items within the copier and lies
between specified input and exit points (see Figure 4);

2. automatically checks that all constraints on the path geometry (e.g.,

smoothness, minimum radii of curvature, etc.) are satisfied;

16 Empirical Constructs for Representing Objects and Articulating Processes

3. identifies a physical device (the baffle) in which the paper will be
carried along the path; and

4. identifies, designs, and locates along the path the pinch-roll pairs that

grasp and move the paper along the chosen path.

In fact, PRIDE simulates rather closely the actual design process that
experienced copier system designers have used for years. One of the results is
that feasibility studies for preliminary copier designs are now completed and
evaluated, with PRIDE’s assistance, in hours rather than weeks.

PRIDE uses several representation schemes to incorporate heuristic,
relational, and algorithmic aspects of the design problem, as well as several
inference schemes at different levels of abstraction. PRIDE also has a powerful
graphics interface that facilitates a rather complete simulation of the way human
designers actually design paper-handling subsystems for copiers. Figure 5 shows
a small part of an inheritance lattice that describes a paper-transport system
designated as Trans5. In this object-oriented representation (cf. Section 2.4),
Trans5 is an object with several attributes, some of which are linked to other
objects, some of which are physical (e.g., Roll2, Driver1), and some of which are
conceptual (e.g., Spec1). It can be seen that Trans5 has components that are
connected to it by one or more SubPart links (e.g., Driver1). In order to to
determine which specifications govern the input point, the InputSpecs link is
exercised to define the attributes of the design constraints at the point where the
paper enters this subsystem (e.g., Specs1).

Thus, a designer can reason about the device being designed (Trans5) because
questions can be asked of the system, for example, What are the output
specifications that govern this design? and, How many and what roll stations are
there in Trans5? And as is seen in Figure 5, the answers to these two questions
are, respectively, Specs2 and 4: Roll1, Roll2 With this representation for
devices and parts in place, attention can be turned to the design process in
PRIDE.

The knowledge base in PRIDE represents a design plan structured as a top-
down process of identifying and satisfying design goals and subgoals (Figure 6).
The design plan decomposes design goals into simpler steps. Figure 6 shows a
top-level goal of designing the paper transport, as well as goals for subproblems
such as deciding the number of roll stations and deciding the diameter of the
driver at station 4. This design plan will work only if PRIDE provides the

Empirical Constructs for Representing Objects and Articulating Processes 17

knowledge needed to order the steps, to perform each step, to detect failures in
the design requirements, and to suggest fixes for the failures.

The design process in PRIDE can be thought of as one in which a very
complex system is being configured. The geometry of a path along which the
paper will be transported must be established first (again, Figure 4). After the
path is established, the designers must choose components and establish their
configuration (e.g., size, location, materials, etc.) so that different kinds of paper
can be smoothly moved along the path, without jamming. The parts are chosen
from a database of parts in normal use. Thus, in terms of standard design
terminology [5], the process includes elements of both preliminary and detailed
design. The process can also be characterized as routine design because the
designers know how to decompose the design (cf. Figure 6), how to design the
subsystems and components, and what to do when a constraint is violated.

PRIDE’s problem-solving strategy may be thought of as generate–test–
analyze–advise–modify. It also makes very effective use of decomposition (as is
evident in Figures 4 and 5) and, although the details of this are not elaborated
here, constraint satisfaction. A few elements of the methods by which designs
are generated, and failures are analyzed and fixed, are now described.

A design goal in PRIDE is responsible for designing (and sometimes
redesigning) a small set of design parameters that describe some part or aspect of
the artifact being designed. Some of the design parameters in this domain are
paper path segments, paper path length, number of roll stations, diameter, width,
and material of each pinch roll, baffle gap, baffle material, and time taken by
each size of paper during transport. We show in table 3 a simplified
representation of the goal “Decide number and location of roll stations.” The
variables Descriptor and Name are used to describe the goal to the (human) users
of PRIDE. DesignMethods is an ordered list of all the alternate methods for
achieving the goal. In this example there is only one method for carrying out this
goal, that is, four subgoals be must achieved. Constraints contains the
verification knowledge about the acceptability of a design.

Where does the “generate” come into the picture? In fact, one of the values of
the slot DesignMethods could be a design generator, and the approach to
generating designs could itself vary. It should be noted that, from the point of
view of capturing a lot of design alternatives, the design generators are among
the most powerful design methods. These methods are all capable of generating
different values for the same (or a small set of related) design parameter(s). For
example, heuristic knowledge for making “good” guesses about initial values to

18 Empirical Constructs for Representing Objects and Articulating Processes

be generated could be attached to these methods. The generators in PRIDE also
specify the ranges of possible values and increments. In Table 4 we show a
design generator for the goal “Design driver diameter” that generates diameters
for the drivers (in a pinch-roll pair) from a known database of acceptable driver
diameters.

The particular type of generator shown in Table 4 belongs to the class
InstanceSetGenerator because the database is composed of instances of different
classes of objects. The generated objects are instances of DriverDiameter. It can
also be seen that this method specifies that 10 mm is a good starting value for the
diameter, probably because the experts have found this to be a good default
choice. Finally, it specifies that this instance object becomes the value of the
design parameter driver diameter.

If the current design runs into trouble, if some requirement is not satisfied, the
PRIDE problem solver analyzes the current partial design and tries to come up
with suggestions to overcome any violations. These modifications may be
heuristics reflecting a designer’s experience in fixing similar problems, or they
may be based on a more general problem-solving approach which analyzes

ATTRIBUTE VALUE

Type SimpleGoal
Name Goal5
Descriptor “Decide number and location of roll stations”
Status INIT
AnteGoals “Design Paper Path”
InputPara “Paper Path,” “length of PaperPath”
OutputPara “Number of RollStations,” “location of AllRolls”
DesignMethods (SubGoals
 Goal51: “Decide min number of rollStns”
 Goal52: “Decide Abstract Placing”
 Goal53: “Generate Concrete Location”
 Goal54: “Build RollStn Structure”)
Constraints (Constr8: “First Stn <= 100 mm.”
 Constr17: “Dist. between adj. stn <= 160mm.”
 Constr24: “Dist. between adj. stn >= 50mm.”)

Table 3. The goal “Decide number and location of roll stations” from the

PRIDE system.

Empirical Constructs for Representing Objects and Articulating Processes 19

dependencies between different parts of a design to suggest modifications that go
beyond knowledge directly represented in its knowledge base. Figure 7 shows
how advice is provided in PRIDE. In this example, the design goal “Decide
number of roll stations” calculates a number of roll stations which produces a
violation of the constraint on the maximum separation between roll stations.
Advice—in this case based on a built-in heuristic—is provided to say that the
number of roll stations should be larger than the number calculated.

PRIDE has many features beyond those discussed here, among which is the
capacity to maintain multiple designs simultaneously and to switch between
different partial designs so that designers can explore different options in
parallel. A designer can also selectively undo a design or impose additional
constraints. In fact, PRIDE’s many features make it very useful as a designer’s
assistant, because designers working with PRIDE often develop suitable designs
faster than either the system or the designer would have done alone.

Our snapshot of the design process in PRIDE illustrates how a complicated
configuration task can be described and analyzed with the aid of symbolic
representation and concomitant problem solving. Further, the stylized symbolic
descriptions we present contrast sharply with the numerical representations used
in procedural programs. This clearly opens the door to detailed and structured
discussions of design, both at the blackboard and on the workstation screen,
because both a vocabulary and a structure for talking about the design process
can clearly be realized.

ATTRIBUTE VALUE

type InstanceSetGenerator
name SetGen1
descriptor "Generate standard driver diameters"
assignTo (DesignObject defRollPair driver diameter)
initValue "Find a diameter of 10mm"
classes DriverDiameter
soFar NIL
status INIT

Table 4. The generator “Design driver diameter” from the PRIDE system.

20 Empirical Constructs for Representing Objects and Articulating Processes

4. Some application-oriented thoughts
We have reviewed the several languages of design, including verbal and textual
statements, graphical representations and images, mathematical and analytical
models, numbers, rules, and structured descriptions of objects. The last two
languages in particular, derived from current computational paradigms, offer
empirically-based support for representing and applying various kinds of design
knowledge. Inasmuch as these kinds of languages also offer a dual promise of
integrated design environments and of capturing designers’ intentions, we feel
that a brief discussion of these two issues is warranted.

There has long been a gap between the designers of artifacts and their makers.
Whether a natural evolution of the engineering profession or a reflection of an
economic model of specialized labor as a driving force in capitalism (although
we see it in societies built on vastly different economic premises), this gap is
nonetheless a source of continuing concern. One of its most common
expressions is the desire to tear down the legendary “brick wall” that is said to
exist between designers and manufacturing engineers.

There are many interesting issues about design communication. One is related
to delineating various aspects of integrating graphical and other representations
(e.g., object or device representations, analysis programs, codes, documentation,
and so on) within an integrated computational design environment. A second
issue is concerned with the concurrent use of design software by many users in
large design and manufacturing organizations. For example, in addition to the
technical issue of integrating different representations, we can easily identify the
need to handle different kinds of information that result from the social and
gepgraphical distribution of cognition.

We must also confront some other issues, for example, how do we maintain
control of an evolving design, understand how and why design decisions are
made, and understand how these decisions are propagated and enforced?
Wanting to understand why a design decision was made prompts a question:
What advantage can we gain by articulating, preserving, and communicating the
intentions that designers have for their design?

Designs are realizations of their designer’s intentions (Dym, 1994a).
However, design intentions are often subtle in their expression, or are masked by
the complexity of the designed artifact. The Kansas City Hyatt Regency failure
was due to the fabricator changing the structural connections for the second-floor
atrium walkway because he couldn’t hang it as originally designed (Pfrang,
1982; Petroski, 1982). The fabricator found that the long hanger rods were

Empirical Constructs for Representing Objects and Articulating Processes 21

unavailable, and he didn’t know that the designer intended to hang the second-
floor walkway directly from the roof truss, not from the fourth-floor walkway.
Had the designer been able to convey his intention automatically and
unambiguously, without waiting (in vain) for the question to be asked, this
tragedy might well have been avoided. Thus, one wonders whether the
representations described above could help convey a designer’s intentions to
whomever makes the final design.

Capturing the designer’s intent by conjuring up a description of both the
artifact and its intent is rather easy. Getting this information into the hands of the
fabricators is much harder. This view of capturing design intent leaves the
problem of transmitting design intent at the same abstract level as the discussion
of integration. Further, it ignores some recent attempts to use design intent as a
point of departure for reasoning about design. Now, the design process can be
viewed as one of refining abstract goals and objectives until a fabrication
specification emerges at the end of the process (Dym, 1994a). In this context,
design intent can be viewed as a recorded history of the design process in which
the reasons that design decisions were made are tracked as they are
implemented. That is, were design intent captured systematically, design
decisions could be reviewed and the consequences of revising them or undoing
them altogether would be better understood. Design intent becomes a reasoning
tool to help guide verification, modification, or reuse of designs, rather than
simply a retrospective glance at the process.

A representation of function and its links to form and its representations is
also a lively area of debate. Does the specification of function dictate a
specification of form? Can one infer function from form? There is thus a need to
interpret, refine, and represent at different levels of abstraction the intentions that
are embodied in a design. The question is, Are issues of intention for and
function of an artifact inextricably linked to the issue of representing the artifact?
That is, can function be thought of independently of the representation of the
device that performs that function? In fact, the examples indicate that the details
of the representation of the artifact can be chosen apart from the representation
of that function, subject only to the proviso that in the final analysis the
designers have to produce a set of complete and unambiguous specifications for
the manufacture of that artifact, which means that the representation must be
acceptable to the manufacturer.

22 Empirical Constructs for Representing Objects and Articulating Processes

5. Cognition, design, and artificial intelligence
So far, we have presented a typology of languages of design, together with a
brief description of their role in design processes, and we have discussed PRIDE,
a KBES that is intended to model a design process. Now we address some hard
questions about these two topics that we have previously postponed. First, we
have postponed the question of how the languages of design function in the
cognitive process of design, and specifically, how they relate to the inner mental
processes of designers. Second, we have postponed the question of whether
PRIDE provides a realistic model of the cognitive process of design, and, more
generally, of identifying the possibilities and limitations of KBESs as tools for
design and design modeling.

As for the first question, we have managed thus far to resist equating cognitive
processes to (inner) mental processes. Cognitive processes may take place in the
mind, in which case they are mental processes, but they may also take place
partially outside of the mind, as when they involve external representations and
manipulations performed with those representations. For example, when
someone uses pen and paper to calculate a sum, a full account of the cognitive
process by which the sum is calculated should not merely describe the mental
processes involved. Rather, it should also analyze the interactions that take place
with this medium. After all, this medium functions as a place for inscription,
storage and retrieval of information, just like human memory does. Likewise, an
analysis of design activity as a cognitive process should analyze both the mental
processes of designers and their interactions with various representational media.

At one level, we want to claim, languages of design function just like any
ordinary language like English or French: they are symbolical (or iconic) forms
that are decoded by designers in their effort to construct inner mental
representations that are used in the cognitive process of design activity. Often,
the result of this cognitive activity is one or more new external representations
(e.g., a blueprint, or mathematical model). For instance, a series of textual
statements that express design constraints may be read by a designer who uses
them to construct a mental image of an object that satisfies these constraint,
which in turn causes him to draw a graphical representation of such an object.
These cognitive activities evidently require special cognitive abilities. A
professinal designer has interpretive abilities that enable him or her to read and
understand languages of design (i.e., construct inner mental representations that
denote the meaning of the external symbols or images under consideration), and
cognitive abilities and background knowledge that enable him or her to translate

Empirical Constructs for Representing Objects and Articulating Processes 23

these mental representations into new representations that move one closer to a
complete design solution.

Cognitive scientist Donald Norman (1991, 1993a) has suggested that we
should think of external representations as cognitive artifacts: tools that serve to
aid and abet cognitive activity. External representations like texts and images
help us in the acquisition, storage and retrieval of information. To be good
cognitive tools, Norman suggests, external representations should adhere to three
criteria: They (1) “capture the important critical features of the represented world
while ignoring irrelevant ones,” (2) “are appropriate for the person, enhancing
the process of interpretation,” and (3) “are appropriate for the task, enhancing the
ability to make judgments, to discover relevant regularities and structures.”
(1993a: 52). These, then, are three outstanding criteria for the evaluating the use
of external design representations in the design process.

We hence propose that (external) design representations should be understood
as cognitive artifacts used by designers as information retrieval and storage
vehicles in the cognitive process of design, for the generation of mental
representations and (ultimately) novel external representations. What is needed
at this point is a more detailed account of the role of external representations in
cognition. This is still an ongoing research topic for cognitive science (see
Norman, 1993b; Winograd and Flores, 1986; Clark, 1997; Suchman 1987). For
them to be good cognitive artifacts, they must be in a representational format that
enables designers to encode only relevant features of a design, and that can be
decoded or ‘read’ well by the intended user of the representation, presenting him
or her with information that is, both in its form and in its content, immediately
relevant to his or her goals. Evidently, the quality of design and design
communication suffers when not all three of Norman’s criteria are met.

The other issue to be considered in this section is the status of KBESs as tools
for design and design modeling. We are both optimistic that KBESs can play an
increasingly important role in design. We are, however, divided over the
question of whether they can also be understood as adequate tools for design
modeling: Dym holds that they can provide good models of design processes,
whereas Brey believes that this is not the case. We agree that whether KBESs
can function as adequate models of the design process depends on whether they
are able to adequately model the cognitive processes involved in design. This
implies that there must be a structural similarity between the structure and
operations of KBESs and the cognitive processes of human designers.

It is widely agreed that KBESs, like other programs run on computers, are

24 Empirical Constructs for Representing Objects and Articulating Processes

physical symbol systems. That is, they are systems in which physically realized
symbols (e.g., zeros and ones, realized as the presence or absence of an electrical
current) are able to combine into symbol structures (structures composed of
multiple symbols related in some physical way) and are operated on through
processes of creation, modification, reproduction, and destruction. In this way,
evolving collections of symbol structures are produced over time. If KBESs are
to function as models or theories of design processes, it must be because the
symbol structures of KBESs, and operations performed on them, mimic the
representations and cognitive operations used in design by human designers.
This, in turn, implies that human designers (perhaps along with the external
representations used by them) are (at least by approximation) also physical
symbol systems. That is, the cognitive activity of human designers must be
analyzable as a process or creating, modifying, reproducing and destroying
symbol structures.

In fact, one influential account of human cognition that has been proposed in
cognitive science makes exactly this assumption. This approach to cognitive
science, that dates back to the very beginning of the field, features the physical
symbol systems hypothesis proposed by Newell and Simon (1963, 1972): “A
physical symbol-system has the necessary and sufficient means for general
intelligent action.” According to this hypothesis, intelligence is not only
something that can be exhibited by a symbol-processing system like a modern
digital computer. Intelligence is also essentially a matter of symbol processing
according to formal rules, and therefore the human mind is also a physical
symbol system. Mental processes are then rule-governed operations defined over
symbols or strings of symbols. This model is sometimes called cognitivism, and
when used in AI it is also called symbolic AI.

The usefulness of KBESs as models of the design process hence depends on
the plausibility of the central assumption of cognitivist cognitive science, i.e., the
physical symbol system hypothesis. We do not here want to repeat all the
arguments that have been proposed for and against cognitivism (e.g., Newell
and Simon, 1963, 1972; Fodor and Pylyshyn, 1988; Haugeland, 1981; Dreyfus,
1992). We merely want to point out the fact that the usefulness of KBESs as
models of the design process centrally depends on the truth of the physical
symbol systems hypothesis, and point out that this hypothesis is still hotly
debated.

We will now turn to the more practical question of how useful KBESs can be
expected to be in taking over design processes. Evidently, if cognitivism is true,

Empirical Constructs for Representing Objects and Articulating Processes 25

then one may expect future KBESs that adequately model design as it is done by
humans to automate an ever increasing part of design, with no principal limit to
what can be automated. If cognitivism is false, it does not follow immediately
that computers cannot be as good at design as human designers. Remember that
chess programs are able to display a significant level of expertise, while they are
widely believed to process information very differently than do chess
grandmasters. So perhaps KBESs can be designed that follow cognitive
procedures very different from human designers, but that are still successful at
design.

The question is then how successful they may be. In answering this question, it
useful to realize that design activities encompass a spectrum that ranges from
routine design of familiar parts and devices, through variant design that requires
some modification in form and/or function, to truly creative design of new
artifacts. We hold that existing KBESs, such as PRIDE, have excelled at (very
complicated) routine design, and that there is evidence that they can replicate
human expertise in this regard. This implies that for routine design, KBESs may
not just be used as intelligent assistants (e.g., PRIDE), but also as automated
designers (e.g., DEC’s R1 system, that routinely configures computer systems on
the factory floor (McDermott, 1982),a task previously performed by human sales
engineers).

KBESs successful at variant and creative design have yet to be constructed.
To the extent that it can guide the construction of KBESs, psychological research
on expertise suggests that this would require a new generation of KBESs that are
better capable of transfering knowledge to new knowledge domains and to
integrate knowledge so as to create new cognitive procedures. In a review of
psychological theories of expertise, cognitive scientist Keith Holyoak (1991)
argues for a distinction between routine and adaptive expertise. Routine
expertise involves the ability to quickly and accurately solve problems in a
limited problem domain. Experts who have routine expertise have developed
increasingly specialized, skilled knowledge to solve problems in local problem
domains. Adaptive expertise, however, includes the ability to transfer learned
skills to new domains, and to integrate different skills so as to create new
procedures out of routine expert knowledge (cf. Dörner & Schölkopf, 1991;
Hatano & Inagaki 1986). Genuine experts, and hence also, perhaps, expert
systems capable of adaptive and creative design, are able to adapt their skills so
as to go beyond routine expertise.

While we disagree on the usefulness of KBESs as models of design, we agree

26 Empirical Constructs for Representing Objects and Articulating Processes

that it cannot be prejudged whether KBESs are capable of variant and creative
design. The boundary between routine, variant and creative design, and between
routine and adaptive expertise, is a moving one, that is open to negotiation. The
possibilities and limitations of KBESs for variant and creative design will reveal
themselves in future generations of KBESs.

6. References
Brey, P. (1996). “Philosophy of Technology: A Time for Maturation,”

Metascience: An International Review Journal for the History, Philosophy and
Social Studies of Science, 9: 91-104.

Brey, P. (1998a), “New Media and the Quality of Life,” Society for Philosophy
and Technology Quarterly 3, 1-23.

Brey, P. (1998b), “The Politics of Computer Systems and the Ethics of Design,” In
M. J. van den Hoven (Ed.), Computer Ethics: Philosophical Enquiry.
ACM/SIGCAS Conference, Rotterdam University Press, Rotterdam, The
Netherlands, p. 64-75.

Brey, P. (1999). “Design and the Social Ontology of Virtual Worlds,” In A.
Nijholt, O. Donk and B. van Dijk (Eds.), Interactions in Virtual Worlds.
Proceedings of the XVth Twente Workshop on Language Technology, 5-12.

Bijker, W., and Law, J. (Eds.) (1992). Shaping Technology/Building Society:
Studies in Sociotechnical Change. Cambridge/London: MIT Press.

Bijker, W., Pinch, T., and Hughes, T., (Eds.) (1987), The Social
Construction of Technological Systems: New Directions in the
Sociology and History of Technology. Cambridge, MA: MIT Press.

Clark, A. (1997). Being There: Putting Brain, Body and World Together
Again, MIT Press, Cambridge, MA.

Cunningham, J. J. and Dixon, J. R. (1988), “Designing with Features: The Origin
of Features,” In Proceedings of the ASME Computers in Engineering
Conference, ASME, San Francisco, CA.

Dörner, D., and Schölkopf, J. (1991). “Controlling Complex Systems: Or,
Expertise as ‘Grandmother’s Know-How’,” In K. Ericsson and J. Smith
(Eds.), Towards a General Theory of Expertise: Prospects and Limits,
Cambridge, Cambridge University Press.

Dreyfus, H. (1992), What Computers Still Can't Do: A Critique of Artificial
Reason, MIT Press, Cambridge, Massachusetts.

Empirical Constructs for Representing Objects and Articulating Processes 27

Dixon, J. R., Libardi, E. C. Jr. and Nielsen, E. H. (1989), “Unresolved Research
Issues in Development of Design-With-Features Systems,” in Wozny, M. J.,
Turner, J. and Preiss, K. (Eds.), Proceedings of the 1989 IFIP WG 5.2
Second Workshop on Geometric Modelling, North-Holland, Amsterdam.

Dym, C. L., Summers, M. D., Demel, C. T. and Wong, C. S. (995), “DEEP: A
Knowledge-Based (Expert) System for Electric Plat Design,” Computing
Systems in Engineering, 6 (6): .

Dym, C. L. (1994a), Engineering Design: A Synthesis of Views, Cambridge
University Press, New York.

Dym, C. L.(1994b), “Representing Designed Artifacts: The Languages of
Engineering Design,” Archives of Computational Methods in Engineering, 1
(1): .

Dym, C. L., Garrett, J. H. Jr. and Rehak D. R. (1992), “Articulating and
Integrating Design Knowledge,” in Workshop on Preliminary Stages of
Engineering Analysis and Modeling, Second International Conference on
Artificial Intelligence in Design, Pittsburgh, PA, June.

Dym, C. L., Henchey, R. P., Delis, E. A. and Gonick, S. (1988), “Representation
and Control Issues in Automated Architectural Code Checking,” Computer-
Aided Design, 20 (3): . ..

Dym, C. L. and Levitt, R. E. (1991a), Knowledge-Based Systems in Engineering,
McGraw-Hill, New York.

Dym, C. L. and Levitt, R. E. (1991b), “Toward an Integrated Environment for
Engineering Modeling and Computation,” Engineering with Computers, 7
(4): .

Finger, S., and Dixon, J. R. (1989), “A Review of Research in Mechanical
Engineering Design. Part II: Representations, Analysis, and Design for the
Life Cycle,” Research in Engineering Design, 1: . ..

Fodor, J., and Pylyshyn, z. (1988). “Connectionism and Cognitive Architecture:
A Critical Analysis.” Cognition 28: 3-71.

Hatano, G., and Inagaki, K. (1986). “Two Courses of Expertise,” in H.
Stevenson et al. (Eds.), Child Development and Education in Japan,
Freeman.

Haugeland, J. (1981). “The Nature and Plausibility of Cognitivism,” in J.
Haugeland (Ed.), Mind Design, MIT Press, Cambridge, MA.

Holyoak, K. (1991). “Symbolic Connectionism: Toward Third Generation
Theories of Expertise,” In K. Ericsson and J. Smith (Eds.), Towards a
General Theory of Expertise: Prospects and Limits, Cambridge, Cambridge

28 Empirical Constructs for Representing Objects and Articulating Processes

University Press.
McDermott, J. (1982), “R1: A Rule-Based Configuration of Computer Systems,”

Artificial Intelligence, 19 (1): …..
Mittal, S. and Araya, A. (1986), “A Knowledge-Based Framework for Design,”

in Proceedings of AAAI-86, AAAI, Philadelphia, PA.
Mittal, S., Dym, C. L. and Morjaria, M. (1986), “PRIDE: An Expert System for

the Design of Paper Handling Systems,” IEEE Computer, 19 (7):
Morjaria, M. (1989), “Knowledge-Based Systems for Engineering Design,” in

AUTOFACT ‘89 Conference Proceedings, Detroit, MI.
Newell, A. and Simon, H. A. (1963), “GPS: A Program that Simulates Human

Thought,” in Feigenbaum, E. A. and Feldman, J. (Eds.), Computers and
Thought, McGraw-Hill, New York.

Newell, A. and Simon, H. A. (1972), Human Problem Solving, Prentice-Hall,
Englewood Cliffs, NJ.

Norman, D. (1991). “Cognitive Artifacts,” In J. M. Carroll (Ed.), Designing
Interaction: Psychology at the Human-Computer Interface (pp. 17-38),
Cambridge University Press, New York.

Norman, D. (1993a). Things that Make Us Smart: Defending Human Attributes
in the Age of the Machine, Addison-Wesley, Reading, MA.

Norman, D. (Ed.) (1993b). Special Issue on Situated Action. Cognitive Science,
17, 1.

Pahl, G. and Beitz, W. (1984), Engineering Design, Design Council Books,
London.

Petroski, H. (1982), To Engineer Is Human, St. Martin’s Press, New York.
Pfrang, E. O. (1982), “Collapse of the Kansas City Hyatt Regency Walkways,”

Civil Engineering, 52 (7): …
Simon, H. A. (1990), Personal Communication, 29 October.
Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-

Machine Communication, Cambridge, Cambridge University Press.
Ullman, D. G., Wood, S. and Craig, D. (1990), “The Importance of Drawing in

the Mechanical Design Process,” Computers and Graphics, 14 (2): …
Winograd, T., and Flores, F. (1986). Understanding Computers and Cognition:

A New Foundation for Design, Ablex, Norwood, NJ.

Empirical Constructs for Representing Objects and Articulating Processes 29

Figure 1. Design information adjacent to a sketch of the designed object (after

[7]).

Figure 2. An injection-molded part and some of its features (after [14]).

30 Empirical Constructs for Representing Objects and Articulating Processes

Empirical Constructs for Representing Objects and Articulating Processes 31

Structures

Streets

Lots

Configurations

Cables

DEEP

Handholes

Transformers

XFR25

XFR50

XFR75

Primary

Secondary

Service

HH1
HH2
HH3

XFR25_1

XFR50_1
XFR50_2

XFR75_1Vandersteen
Apogee
Bryston Lot1

Lot2
Lot3
Lot4
Lot5
Lot6
Lot7
Lot8
Lot9
Lot10
Lot11

TFConfig1
TFConfig2
TFConfig3
TFConfig4
TFConfig5
TFConfig6

Primary_1
Primary_2

Secondary_1
Secondary_2
Secondary_3
Secondary_4

Service_1
Service_2
Service_3
Service_4
Service_5

Figure 3. The inheritance lattice (or object tree) in the DEEP KBES (Dym,

Summers et al., 1995).

32 Empirical Constructs for Representing Objects and Articulating Processes

Figure 4. A snapshot of a sample paper path in PRIDE, including roll stations,
input and output points, and obstructing regions to be avoided by the
transport (after [1]).

Empirical Constructs for Representing Objects and Articulating Processes 33

Trans5
inputSpec Specs1
outputSpec Specs2
noRollStations 4
rollStations Roll1, Roll2
baffle ...

Driver1
partOf Roll2
... ...

Spec1
locatio n Loc1
angle 180
velocity ...

Roll2
partOf Trans5
driverShaft Driver1
idlerShaft Idler1

SubPart InputSpecs

SubPart

Figure 5. A stylized version of a small portion of the inheritance lattice that makes
up PRIDE’s knowledge base (after Morjaria, 1989).

34 Empirical Constructs for Representing Objects and Articulating Processes

Configure a
Paper Path

Design the
Idler

Design a Paper
Transport

Identify Number of
Roll Stations & Their

Locations

Design Roll Stations

For Each Roll Station

Design the
Driver

Choose
Number of
Stations

Generate
Range of
Locations

Identify
Locations

relates goals to subgoals, moving down goal tree

relates goals to their dependencies, moving to left from right

Figure 6. A stylized version of the goals and methods that make up PRIDE’s
design plan (after [1, 3]).

Empirical Constructs for Representing Objects and Articulating Processes 35

Figure 7. A stylized view of how design advice is handled in PRIDE (after
(Mittal and Araya, 1986)); see also (Morjaria, 1989)).

	Claremont Colleges
	Scholarship @ Claremont
	1-1-2001

	Languages for Engineering Design: Empirical Constructs for Representing Objects and Articulating Processes
	Clive L. Dym
	Philip Brey
	Recommended Citation

	Microsoft Word - Brey_Dym_2001_Language_Engineering-Design.doc

