
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1987

Issues in the Design and Implementation of Expert
Systems
Clive L. Dym
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
C. L. Dym, “Issues in the Design and Implementation of Expert Systems,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 1 (1), 37-46, December 1987. DOI: 10.1017/S0890060400000135

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Articial Intelligence for Engineering,
Design, Analysis and Manufacturing
http://journals.cambridge.org/AIE

Additional services for Articial Intelligence for
Engineering, Design, Analysis and Manufacturing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Issues in the design and implementation of expert
systems

Clive L. Dym

Articial Intelligence for Engineering, Design, Analysis and Manufacturing / Volume 1 / Issue 01 / February
1987, pp 37 - 46
DOI: 10.1017/S0890060400000135, Published online: 27 February 2009

Link to this article: http://journals.cambridge.org/abstract_S0890060400000135

How to cite this article:
Clive L. Dym (1987). Issues in the design and implementation of expert systems. Articial
Intelligence for Engineering, Design, Analysis and Manufacturing, 1, pp 37-46 doi:10.1017/
S0890060400000135

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/AIE, IP address: 134.173.130.137 on 31 Jan 2014

(Al EDAM) (1987) 1(1), 37-46

ISSUES IN THE DESIGN AND IMPLEMENTATION
OF EXPERT SYSTEMS1

CLIVE L. DYM

Department of Civil Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, U.S.A.

This article discusses the issues that arise in the design and implementation of expert systems. These issues include: task
selection; the stages of development of expert system projects; knowledge acquisition; languages and tools; development and
run-time environments; and organizational and institutional issues. The article closes with some speculation about the future
development of expert systems.

1. Introduction

This article is concerned with the process of building
an expert system and, as such, its focus is on the
questions of how such a system is implemented or
built. For the purpose of this discussion, an expert (or
knowledge-based) system is one that uses knowledge
captured from experts to solve problems or do tasks
that involve reasoning. Such systems differ from
conventional algorithmic programs in that they
incorporate heuristics and other rule-oriented reason-
ing aids, and their architectures typically represent a
separation of the control of the program from the
knowledge of the domain (Dym 1985a). The tenor of
the discussion is discursive and tutorial, and pointers
to some of the salient literature are given. Among the
issues addressed that arise from implementation of a
system are the following:

What tasks are suitable for encapsulation within an
expert system? What are the stages of development of
an expert system?

How is knowledge acquired? Can more than one
expert be used? How are the experts interrogated?
How is conflict (among several experts) resolved?

What are the technical issues? What are the
appropriate languages and tools for developing a
serious system? What are the appropriate languages
and tools for running or delivering a rapid and
efficient system? How do tools and languages relate to
hardware?

Received 3 February 1987.

' T o appear in revised form as Chapter 3 of M. L. Maher (Ed.),
Expert Systems for Civil Engineering: Technology and Applications,
New York; American Society of Civil Engineers, 1987.

0890-0604/87/010037+ 10$02.00/0

What are the issues for the organizations that
undertake the building of expert systems? Are expert
systems expensive? How is access to the experts
guaranteed? How important is the commitment of
management? What are the advantages (i.e. com-
munity memory, standardization, training and educ-
tion) to management?

The article concludes with some speculation on future
issues in the building of expert systems, especially
those that appear to be affected by the advent of
parallel architectures. The most intriguing prospect
here is the possibility of successful interaction of
multiple expert systems acting concurrently.

Finally, it is again noted that the treatment of these
issues is discursive and somewhat idiosyncratic,
heavily conditioned by the author's own experience in
this field (Dixon and Dym, 1986, Dym, 1985a, 1985ft,
1987, Mittal and Dym, 1985, Mittal et al., 1986,
Morjaria et al., 1985).

2. Task selection and the stages of development

Careful selection of the task to be encapsulated in an
expert system is essential for the success of the system
development project. Several criteria for choosing
projects and tasks have been enumerated (Bobrow et
al., 1986, Dym, 1985a, Prerau, 1985) and will be
summarized here. It will subsequently be seen that the
winnowing of a list of candidate projects according to
these criteria is the first stage ('identification') in the
development of an expert system.

The task to be modelled in an expert system must
be clearly defined, rich in reasoning, and one that is
performed by an expert reasonably often and within a

37
(O 1987 Academic Press Limited

38 C. L. Dym

reasonable period of time. The task itself should be
fairly narrow and domain-intensive. It ought not to
depend on a lot of general and commonsense
knowledge about the world, and the number of
relevant concepts should be bounded and not unduly
large. If it is not rich in reasoning, and if more
specifically the task is capable of algorithmic solution,
it is not appropriate for expert system encapsulation.

What is a reasonable length for the time it takes to
do a task that will be captured in an expert system?
The conventional wisdom has it that the time should
be measured in hours, rather than in weeks or
months. It appears, however, that this is too simple an
answer. In fact, there are some tasks that take weeks
or months that require a lot of repetitive and tedious
work that can be successfully modelled in an expert
system (Dym et al., 1987). The real issue is the
underlying complexity of the task and the degree to
which it involves much creative thought. If a task
requires days or weeks of original and creative
thought by an expert, then it is more than likely not
suitable for encapsulation.

There should be available a substantial library of
case studies or test cases. This library is useful in the
knowledge acquisition process (see Section 3), for
testing implementations of the system, and for
confirming that the criteria for task performance time
and frequency have indeed been met. Test cases are
not readily produced if the task is performed only
sporadically, and a lack of repeatability or task
consistency is also signalled by a paucity of case
studies. The examination of a set of cases also helps
ensure that more of the knowledge is exposed, for
different examples expose new heuristics that were so
'completely obvious' in—or not relevant to—the cases
already examined.

The task must have clear—and typically economic—
value to the organization sponsoring the development
of an expert system because, as will be seen in greater
detail below, the building of an expert system is
expensive and time consuming. Thus, the expert
system must be capable of producing substantial
benefit for the sponsor to justify the committment of
sufficient resources to insure a successful outcome. A
particularly interesting example of this is the
R1/XC0N system developed by the Digital Equip-
ment Corporation (DEC) which will be discussed in
somewhat greater detail in Section 5 (McDermott,
1981).

The selection of a task for coding in an expert
system is the first step in building an expert system,
and in fact it may be viewed as the beginning of the
first of the five stages of system building (Buchanan ei
al., 1983). These stages can be characterized as

follows: identification, in which the important stages of
the problem are characterized and goals are set for the
entire project; conceptualization, during which the key
attributes of the task and its domain are made explicit
and some thought is given to issues of knowledge
representation; formalization, at which time a formal
model of the task, its attributes and their relationships
are represented in a particular scheme (or set of
schemes); implementation, during which time the
representation scheme is programmed using whatever
tool (programming language, shell, etc.) has been
chosen for the project; and testing, in which the
prototype system just implemented is exercised
against some of the case studies from the previously
assembled library of solutions. After the testing
phase, or rather, within the testing phase, feedback
loops are implemented which will lead to further
refinement of the prototype or even a complete

reformulation.
This conceptual model of how knowledge is

acquired, represented and coded hides to a large
extent the institutional and personal aspects of
capturing knowledge, as well as aspects of implement-
ing a system that will be used by its intended audience
and appreciated by its sponsors. This model also hides
the role that experts play in the design and
implementation of an expert system, and how
important it is to maintain their enthusiastic
participation throughout the life of the project. Some
of these aspects are addressed in greater detail below,
especially in Sections 3 and 5.

3. Knowledge acquisition

This section is devoted to a discussion of how
knowledge is acquired from the expert(s), an essential
step if there is to be an expert system! This part of the
system-building task transcends the first three stages
(identification, conceptualization and formalization) in
the paradigm outlined in the previous section. The
present discussion begins by focussing on what is
required in the way of knowledge. There then follows
a model of how the knowledge is obtained from the
experts themselves. Note that there will be continued
reference to multiple experts, reflecting in part the
author's strong bias that several experts ought to be
consulted in the process of building an expert system
(Mittal and Dym, 1985). In addition, it should be kept
in mind that other sources of expertise can be
exploited, including analysis programs, books, re-
search papers, reference manuals, etc.

Knowledge acquisition begins with choosing and/or
defining the task that will be encapsulated within the

Implementing expert systems 39

expert system. The choice, as noted earlier, depends
on several critical factors, including the time taken to
perform the task, its value, the availability of experts,
the reasoning involved, and so on. This phase of the
project also marks the formal entry of the knowledge
engineer, i.e. the expert in AI and/or computer
science who will lead the knowledge acquisition and
implementation phases of the expert system develop-
ment. (The knowledge engineers are distinct from the
domain experts, commonly referred to simply as the
experts, whose knowledge and expertise about the
domain is being put into the expert system.) As the
knowledge engineers being to familiarize themselves
with the task at hand, they will begin to develop a
domain vocabulary. That is, they will begin to acquire
and use the words, phrases, formulas, etc., which
comprise the natural language in which the task is
described. This is an important step in understanding
the domain and (later) in communicating with the
experts.

With the vocabulary in hand, the knowledge
engineer begins to sort out how the task is performed
by developing a model of the reasoning involved and
how it is applied. This is an intellectural exercise that
may be represented by a flow chart or by steps in a
protocol or so on; it is not (yet) a computer program
or even a formal representation. It is, rather, a paper
exercise in which the task is outlined and modelled so
that it can be evaluated for encapsulation. Of course,
the process of laying out the task often provides the
initial ideas about the subsequent representation of
the task, but that is a later step, one taken (typically)
by the knowledge engineers acting separately from the
domain experts. But, in terms of the domain
knowledge itself, the end of the acquisition process is
marked by the completion of a document, flow chart,
etc., that traces the task in its natural language and
makes explicit what knowledge is used, where, when,
and how a conclusion is reached.

The process of acquiring knowledge is an interactive
one representing a complex dialogue between the
domain experts and the knowledge engineers. Many
questions arise in such a process, including: How
many experts are needed? Is one expert enough? How
are experts to be identified? How does one verify an
expert's expertise? Can a domain expert also be
his/her own knowledge engineer? How are experts
interviewed? How are case studies used in the
process? Are there ways to resolve conflicts among
experts?

There is not sufficient space here to answer all these
(and related) questions. Rather, the approach taken
will be to set forth the strategy taken in the PRIDE
project (Mittal et ai, 1986), detailing along the way

the rationales and strengths of this particular strategy
(Mittal and Dym, 1985). The story picks up after an
agreement-in-principle had been reached between the
project sponsors (Xerox's Reprographics Business
Group in Webster, NY) and the knowledge engineers
(both located at the Xerox Palo Alto Research
Center) to build an expert system to aid in the
subsystem design of paper copiers. This particular
expert system would be built as a demonstration that
the technology could be used successfully in an
engineering environment in order to carry out better
engineering designs.

There were two designers within the sponsoring
organization who would work closely with the
knowledge engineers on this project. Through them,
and following the preliminary selection of a task for
encapsulation, in accord with the criteria set out in the
previous section, the knowledge engineers for the
PRIDE project arranged a set of interviews with a
panel of experts who worked within the sponsoring
organization. The initial motivation for this first set of
interviews was to confirm that there was a discrete,
repeatable, capturable task that might be worth
encoding. This was accomplished by keeping the two
designers as resident experts on the knowledge
engineers' side of the table, while individually
interviewing more than half a dozen other designers
who performed the task. The resident experts posed
the design problem to each of the other experts in
turn, acting as interlocutors and framing the problem
exactly as it would be handed to designers in practice,
with the experts then working out the design solution
at a blackboard.

This process produced some immediate dividends.
It became clear that all the experts followed a very
similar strategy for carrying out the design in terms of
how they decomposed the problem into subproblems,
worked on the subproblems, and then related the
partial designs to each other. While decomposition is
not a new technique for solving complex problems, it
was interesting and reassuring to see the similarities in
the subproblems chosen and in the strategies for
solving each subproblem. Thus, the task chosen
seemed to exhibit some regularity that each expert
was trained to exploit. Further, it also became clear
that there were interesting individual nuances that
emerged in each design, reflecting the varying
backgrounds of the individual designers, so that the
final assemblage of knowledge might benefit from
bringing together these separate strands of expertise.

A very important point needs mentioning here. The
design problem was posed to the experts in standard
form, together with the instruction that they proceed
as they would normally to achieve a successful design.

40 C. L. Dym

Thus, they were asked to do the design; they were not
asked to describe how they did it. This is important
because experts typically cannot give reliable accounts
of their expertise and how it is exercised. To extract
knowledge, it must be exercised on problems.

Again, the present forum does not allow a complete
discussion of all facets of knowledge acquisition. The
salient points of the experience described here are
that: more than one expert can be used to reinforce
the understanding of a repeatable and capturable
task; that individual expertise can be captured in such
a way as to augment the knowledge of all the users of
an expert system [see the discussion of community
memory in (Dym, 1985a) and (Mittal and Dym,
1985)]; and that experts should be asked to perform
their task, rather than describe it.

It is also worth adding that the library of case
studies emerges as an important part of the acquisition
process, especially where more than one expert is
involved. With more experts participating, there will
generally be more case studies available and thus
there are more opportunities to test cases that are new
to particular experts. This facilitates the exploration of
task regularity and the emergence of subtle features
and points that are not well understood, and it helps
highlight areas of conflict. Again, further details are
given elsewhere (Mittal and Dym, 1985).

4. Development and run-time programming
environments

Al LANGUAGES AND ENVIRONMENTS

Implementation is the next stage in the develop-
ment of an expert system, where programming of the
task is undertaken within a chosen representation
scheme. Applications projects in AI are usually
implemented in a high-level programming language
which can be considered to fall within one of three
groupings (Hayes-Roth et al., 1983): general purpose
programming languages; general purpose repre-
sentation languages; and domain-independent expert
system frameworks. Some very brief descriptions and
examples follow; comprehensive reference lists are
not included here as they are available elsewhere
(Harmon and King, 1985, Hayes-Roth et al., 1983,
Maher et al., 1984, Mullarkey, 1987, Rehak and
Fenves, 1985, Waterman, 1985).

The general purpose programming languages used in
AI are, typically, LISP and its dialects, especially in
the U.S., and PROLOG, largely in Japan and
Europe. LISP is an acronym for the list processing
language developed by John McCarthy in the 1950s,

whereas PROLOG is based on the predicate calculus
and was developed in Europe in the 1970s. These
high-level languages are quite often exercised in
exploratory programming environments that en-
courage experimentation with large chunks of
knowledge, abstraction, symbolic manipulation, and
tentative modifications. Some of the advantages of
these environments are outlined by Sheil (1983).

LISP has been the major force behind virtually all
the major AI innovations and the impetus for the
architectural design of symbolic processors.
PROLOG, while popular in Europe, has not been
accepted by the majority of AI researchers. PROLOG
does express knowledge in logical form, but it has a
single type of control structure that many believe is a
critical weakness.

There are many dialects of LISP, and names such as
Interlisp-D, Zeta LISP and MACLISP will be
encountered in the literature. However, Common
LISP has become the standard dialect because the
DOD funding agencies, and DARPA in particular,
have led the push toward a standardization of
programming languages.

It is worth repeating that the reason that these LISP
environments are so important is that they provide a
powerful set of software tools that tremendously
enhance programmer productivity (Sheil, 1983).
These development tools include code and memory
management, editing and debugging, and the ability
to handle (and abstract from) large chunks of
knowledge.

There are also software systems that facilitate the
task of building large expert systems by providing the
programmer with a high-level framework, as well as
editing and debugging tools. These systems, or
environments, are built on top of LISP environments,
and include general purpose representation language
environments and expert system frameworks.

General purpose representation languages are
programming languages designed specifically for
knowledge engineering. They are not tied to any
particular control or inference strategy, but they
facilitate the implementation of a range of problems
along the classification-formulation continuum. Such
languages include SRL, RRL, KEE, OPS5, ROSIE,
ART, LOOPS and AGE.

Domain-independent expert system frameworks,
usually referred to as 'shells', provide an inference
mechanism, which can then be applied by the addition
of domain-specific knowledge. These systems often
provide modules for knowledge acquisition and for
explanation. They often have their roots in specific
expert system projects, from which they thus derive
their control strategies. Examples of these expert

Implementing expert systems 41

system shells include EMYCIN (which was used in the
SACON experiment), KAS, HEARSAY-III,
EXPERT, and KMS/KES.

Paranthetically, it is worth noting that the term
'shell' is sometimes used to include general purpose
representation languages (e.g. KEE, LOOPS) as well
as expert system frameworks such as EMYCIN and
EXPERT. However, it is well to remember that the
general purpose language environments offer greater
flexibility because, as noted, they are not tied to a
particular control or inference strategy. The word
'shell' should be used to describe an expert system
framework within which a committment has been
made to a particular inference strategy. It follows, of
course, that use of a particular shell requires a good
match between the shell's control and representation
strategies and the task to be captured.

CONSIDERATIONS IN CHOOSING A
DEVELOPMENT ENVIRONMENT

Since the goal of an expert system project is the
design of a prototype system that demonstrates the
feasibility of capturing some task in an expert system,
the implementation phase should in general be
performed in an environment that allows a spectrum
of representation and control schemes to be invoked
and played with. Thus, from this point of view, one
would tend to downplay issues of efficiency and ease
of interfacing to any related analysis, modeling or
simulation programs that might form part of the
domain knowledge. However, there are still many
things to think about in choosing the right
environment (consisting of hardware, basic program-
ming language, and shell or tool) for developing an
expert system and, subsequently, for using it in a
run-time environment. Some of the issues are
explicated in this and the next sections.

For example, an expert system shell that embodies
the fewest a priori constraints in building an
application system on top of a core representation is
probably most desirable. That is, it is best to operate
on a principle of least committment to a single
representation scheme or a single control approach
until there is complete understanding of the issues of
representation and inference. However, this is not a
universally applicable principle because it assumes
that each expert system project is a research project.
In those instances where the representation and
control issues are well understood from the
beginning, then a more restrictive tool can be much
easier to use. If the paradigms match, then a lot of the
work that needs to be done is already incorporated
into the tool.

Among completely general environments and
representation languages, several choices are available
[see (Harmon and King, 1985) for a relatively
complete listing], although cost and hardware
considerations may limit the use of such general tools.
Intellicorp's KEE is similar to Xerox's LOOPS: both
allow integration of frame and rule representations,
coupled to several different control structures,
together with features of procedural and access-
oriented (also known as incorporating 'active values'
or 'demons') programming. KnowledgeCraft, de-
veloped by the Carnegie Group, could be a good
choice for some exploration and applications since it
embodies frames, backward-chaining and forward-
chaining, and also has hooks for system development.

Such general tools are run on LISP machines,
sometimes (still) in different dialects, and sometimes
the same product runs in different dialects on different
machines. The preferred choice of LISP dialect is
fairly clear, however, especially in light of the
Common LISP standard. Thus, one would ordinarily
select a different dialect of LISP only if the available
implementation of Common LISP is inefficient. Of
course this can be dealt with when moving to the
run-time environment. Another reason for choosing
an alternative dialect is that the software desired may
not exist in Common LISP, or the machine available
may not have an implementation of Common
LISP—although this is not likely to happen in the
future given the acceptance of the Common LISP
standard.

The quality of the Common LISP implementation is
an additional consideration in the joint decision of
Common LISP and hardware processor. There are
several metrics by which one might evaluate
competing implementations, including memory re-
quirements, the compactness of the code, its virtual
memory requirements (locality), variable lookup and
binding, data structure manipulation, type computa-
tions, arithmetic operations, and so on. Benchmarks
for common LISP implementations have been
proposed (Gabriel, 1985), but experience has not
shown great uniformity or consistency in the
application of these benchmarks to different Common
LISP implementations when running on different
platforms.

CONSIDERATIONS IN CHOOSING A RUN-TIME
ENVIRONMENT

Run-time considerations are quite different from
those outlined above and must perforce be addressed
in detail after substantial progress has been made on

42 C. L. Dym

the shape of the prototype expert system, its coupling
to and dependence on the development environment,
and on the kinds of hardware and software that might
be part of the delivered expert system. For example,
the expert system might be designed as a pre- or
post-processor to a numerical package, or it might be
intended to work in a CAD system in a design
environment. Thus, the particular nature of the
intended run-time environment will influence strongly
the way that the expert system is delivered.

However, some of the issues can be addressed here
and, to give the discussion some concreteness, it will
be cast into the context of considering an expert
system as an intelligent pre- and post-processor for
analysis packages based on the finite element method
(FEM). The ideas stem from the early stages of a
collaborative research effort on the feasibility of such
an application (Dym and Fenves, 1986, Fenves, 1985).
The most important issue in tying an expert system to
an FEM package concerns the means by which expert
system modules can be incorporated into present (and
future) FEM products that are (will be) commercially
available.

Most FEM codes are programmed in FORTRAN,
while the expert system modules will be developed in
an AI programming environment or within an expert
system shell. One way to interface the two would be
through file transfers. This would be a very weak
coupling that would inhibit information transfer
between the two systems.

Another possibility for developing efficient inter-
faces is the use of a common operating system (e.g.
UNIX) and its attributes (e.g. UNIX 'pipes').
However, given that many FEM codes are run in
VAX environments, with their VMS operating
systems, it is not clear how a match of operating
systems would be made, especially since UNIX is used
often in AI/LISP machines.

It would be much more desirable to have both the
FEM code and the expert system modules written in
the same language. This would allow tighter coupling
between the two, and would also make it easier for
vendors to develop and support their products.
However, in the short run this seems unlikely as it
would not be cost-effective to rewrite the expert
system modules in FORTRAN. It also seems unlikely
that the FEM codes will be recast in LISP. One
middle ground that appears viable is the recoding of
FEM codes into C. This might be possible because
there appear to be under development some
cross-compilers that would allow LISP programs to be
compiled into C or into 68000 assembly code. A
variation on this option is the coding of the expert
system into C as well, an idea which has received
some attention in the literature and the commercial

world of tool developers. However, as will be noted
below, the advent of new chips and the inherent
advantages of LISP (in terms of memory manage-
ment, programming environments, etc.) still leave
LISP as the language of choice for expert system
development and application (Barber, 1987).

There are two extremely important computational
issues that must be addressed in this phase of the
project: speed and memory. The issues arise because
Common LISP is a very large language that is also
memory intensive. It is also computationally intensive
and runs relatively slowly (several times slower than
C, for example). Thus, the following questions arise:
Is the CPU fast enough to run LISP at a practical
speed? Also, is there enough addressable memory to
handle both LISP and the application? (On its own,
LISP requires 2.5 to 3 MB. A more typical minimum
memory requirement is 4MB, with 8MB usually
being specified for more serious applications.)

Further, in terms of memory, it is of critical
importance that the run-time environment contain
sufficient primary memory to avoid unnecessary page
faults and thrashing. It was noted earlier that 8
megabytes of memory would usually be needed in a
development machine. This requirement may be
reduced as more compact versions of LISP are
developed, but it must be understood that these more
compact versions do not exist yet, nor is it clear when
they will exist, if at all, nor how effective they will be.

In terms of the FEM application being discussed
here, the issues appear as follows: Assuming that an
FEM analysis assistant can be successfully built in
functionally-specific modules, can one or more of the
modules be run in real-time, while the user waits, or
will they be run off-line in batch mode, or even
overnight? The answer to this question will clearly
affect the nature of the user interaction and the
manner in which the design process takes place.
However, an answer to this question will not be
available until after at least one module is developed,
and even then there will be variations in the size and
complexity of future modules.

In planning both the development and the run-time
phases of a project such as that envisioned here,
some things can be done to make the expert system
more efficient. The first is that the LISP program
should be compiled, although a LISP interpreter will
still be required. Second, one can structure the
rule-sets so that the user can control the order of
application of the rules, thus avoiding unnecessary
pattern-matching. Third,' applying the notion of
'meta-level' control, one can partition the rules to
ensure that only the immediately relevant rules are
fired in any given computation.

Lastly, one can look for hardware that makes use of

Implementing expert systems 43

the newer and faster LISP chips that are under
development. Such chips are 36 bit chips, rather than
32, and they facilitate the tagged-memory architecture
of LISP code by allowing type-checking, branching
and stacking to be done concurrently in micro-code.
These chips are expensive, but they are some five to
ten times faster than current LISP chips and are
expected to be available in the next year or two. In
addition, with the advent of new processors such as
the Intel 80286 and 80386, which are 16 and 32 bit
chips, respectively, there is sufficient execution speed
(1-2 mips for the 80286 and 3-4 mips for the 80386)
and memory (up to 16MB physical and 4 gigabytes
virtual for the 80286 and 4 gigabytes physical and 64
terabytes virtual for the 80386) to support substantial
expert system development and application (Barber,
1987).

It might be noted that, the above specifics
notwithstanding, the world of machines, speed and
memory is in a state of very rapid flux. Thus, the best
advice may be to proceed only after absorbing the
most recent information and anticipating that things
will change rapidly in the future. Thus, to the extent
one can favor open architectures and upward
compatibility, in the most general terms, the better off
one is likely to be.

5. Institutional issues

Institutional, or organizational aspects of expert
system building are not only important in their own
right, because of the commitment of resources
required for the building of a worthwhile and robust
system. They are also important because organiza-
tional issues interact strongly with some of the
technical issues, often to the point where they cannot
be considered as independent of each other. The key
institutional issue, of course, is the allocation of
resources, both to the system building project as a
whole and among the various phases as the project
proceeds. The impact of resource decisions will be felt
on the choice and characterization of the task to be
modelled, on the choice of the development
environment, on the knowledge acquisition process,
and on the delivery platform. By way of spotlighting
the interaction of technical and institutional issues, it
is worth looking at some examples of expert system
projects that are considered as success stories.

The Dipmeter Advisor is an expert system designed
to aid in the geological analysis of subsurface
formations by examining and interpreting magnetic
data taken from boring logs (Smith, 1984). Boring-log
analysts look at output from strip-chart recorders as
they try to interpret the geological data, and the

Dipmeter Advisor maintains this ability, incorporating
also various kinds of summary data and the ability to
scroll smoothly and quickly among various strips of
data. This required a large investment in the user
interface for this expert system. In fact, the
distribution of lines of code in the Dipmeter Advisor
is as follows:

inference engine
knowledge base
feature detection
user interface
support environment

8%,
22%,
13%,
42%,
15%.

Note that 42% of the code is taken up by the user
interface, while the amount devoted to the obvious
expert system components, the knowledge base and
the inference engine, is only 30% of Dipmeter
Advisor's code. This emphasis on the user inter-
face is not usual in expert system design. In the
PRIDE system, for example, about 40% of the
code is dedicated to the user interface (Mittal et ai,
1986).

This is an interesting example of how technical and
institutional implementation issues interact because
it speaks directly to the issue of how resources are
allocated as an expert system is being built. It is
important to recognize that the software created (and
the delivery platform used) must create an environ-
ment consistent with how the expert exercises his
expertise. Thus the knowledge engineers must put
forward an interface that can and will be used by the
experts and other potential users. Again, in the
PRIDE system, the starting point in the design
process captured there is an interface that allows the
designer/user to 'sketch' a path for a paper handling
subsystem in a way that is very close in feeling to how
it would have previously been done on a drawing
board (Mittal et ai, 1986, Morjaria et ai, 1985).

Dipmeter Advisor is also an interesting example
because of the time taken for its development and
evolution. It began as a research project in 1978, and
the first prototype was completed in 1980. The
prototype, containing 245 K bytes of DEC 2020 LISP
code and another 450 K bytes of VAX FORTRAN
code, was too slow. The second implementation was
completed in 1983, running on a Xerox workstation
with 650 K bytes of Interlisp-D code. The 1983
implementation was considered sufficiently fast and
robust for testing (Smith, 1984).

Another well-known expert system also started as a
research project in 1978 (McDermott, 1981). The
Rl/XCON system began at Carnegie-Mellon Univer-
sity in that year, with the first prototype being

44 C. L. Dym

delivered to DEC in 1980. However, it was not put
into regular use there until 1982, and even now it
requires a very large support and maintenance staff.
(Some fifty people work on this and related projects at
DEC.) However, it does successfully configure 97% of
all VAX orders, and thus its economic return is quite
substantial.

Both Dipmeter Advisor and Rl/XCON are often
cited to make the point that building a large and
robust expert system is a long and expensive process.
Both of these projects required years of research and
experimentation before they were adopted for regular
use. However, both of these systems were started long
before the availability and understanding of the kinds
of tools that are now taken for granted. It is not that
building large, 'industrial-strength' expert systems has
become cheap, but the process is not as expensive or
as time consuming as the Dipmeter Advisor and
Rl/XCON projects would indicate. Both the PRIDE
system and the LSC Advisor were brought to working
prototype stage within 12-18 months, and the
resource consumption of both these design system
projects was far less than the other projects just cited
(Dym et al., 1987, Mittal et al., 1986).

One of the less obvious costs in building such
systems is that of the experts' time. Clearly, while the
experts are involved in a system building project they
will be doing less of what they would otherwise be
doing in their various organizations. Further, without
the expert's active, enthusiastic and continuing
interaction with the knowledge engineers and other
system builders, the knowledge cannot be successfully
explicated and captured in the system. Thus, major
commitments must be made by the experts and by
their organizations. Without such commitments,
which obviously can be very expensive, serious system
building endeavors should not be undertaken.

Another aspect of expert system building that
requires major institutional commitments is the life of
the system after its development. An expert system
is—or at least should be—a dynamic system that
needs active maintenance and updating. New cases
and situations provide further experience that can be
added to the knowledge base, as can refinements of
the user interface and other features of the system.
(Recall that one of the real advantages of the
separation of knowledge and control in expert system
programming is that it facilitates the addition of
'chunks' of knowledge (Dixon and Dym, 1986, Dym,
1985a). This requires a commitment by management
to maintain and support the system, which really
means that the system should provide a continuing
benefit sufficient to justify to its sponsoring organiza-
tion this continuing expense.

6. Speculations on future system implementations

This section is devoted to a somewhat specialized
discussion of future expert system possibilities. The
motivation comes from extrapolation from a current
research project (Dym et al., 1987), taking account
also of current research in distributed processing at
the University of Massachusetts (Durfee et al., 1985).

The current project involves the development of an
expert system to do architectural code checking (Dym
et al., 1987). It is clear from architectural and
engineering practice that building and other structural
designs often need to meet more than one set of code
requirements. Indeed, the interaction of multiple
constraints sets in a design project is only one example
of how expertise in engineering projects may be
distributed, making the interaction of multiple sources
of knowledge a serious engineering issue. Other
examples include the interaction of subsystem
designers as an overall system design is assembled
(out of the various subsystems), the interaction of
multiple experts in achieving a diagnosis or in
developing an analysis strategy for a complex
problem, and the formulation of a coherent set of
plans for a project from the individual plans of several
involved parties.

It might be noted that the distribution of expert
systems and their interaction is not a dream for the
distant future. It is already clear that some of the
benefits of building (single) expert systems derive
from the ability to use them at a variety of sites- Such
use facilitates standardization of techniques, methods
and requirements among geographically dispersed
parts of an organization. It also allows localized
expertise to be distributed for training purposes, and
it allows the development of a community memory for
an institution (Dym, 1985a, Mittal and Dym, 1986).
The point is that the benefits of distributing a single
expert system are so clear and obvious that the
perceived possibilities of concurrent expert systems
will surely drive innovation in this area, especially
with the increasingly rapid development of parallel
processor hardware.

The study of the representation of and solutions to
these kinds of problems comprises that branch of
artificial intelligence usually called 'distributed AI'.
And perhaps the major issue is that of coupling
between the knowledge sources or expert systems.
The ideal scenario, of course, is that of tight coupling,
where operating systems and memory are shared, and
there are no synchronization problems. This is an
ideal, however, that cannot typically be met in a
complex engineering environment in which there is
already established a web of computers, peripherals,

Implementing expert systems 45

and the software and other hardware necessary to
achieve the objectives of a particular organization.

As noted above, a more typical environment in
which expert systems will interact is one wherein they
are loosely coupled. This denotes the situation
wherein each system could have its own data input
and will communicate with other expert systems over
a low-bandwidth channel. Clearly, in order to think
about the interactions of concurrently executing
expert systems, it has to be accepted that the
individual systems should not be designed as isolated,
closed expert systems. Rather, the individual expert
systems must be open and capable of a high degree of
interaction. Some of the research questions to be
faced in the development of complexes of expert
systems are as follows:

(1) How does an expert system solve subproblems
that interact?
(2) How is parallel processing done over a set of
expert systems?
(3) What is the appropriate representation scheme
for the highly abstract and processed data that will
be shared by the cooperating systems?
(4) What is the control mechanism that governs the
set of cooperating systems, and how does it interact
with the individual control systems of each
knowledge-based system?
These are only some of the research questions to be

addressed for an understanding of how cooperating
knowledge sources can be used to perform better
engineering. The kind of architecture typically
proposed for an ensemble of cooperating systems is
called the blackboard (Nii, 1986a, 1986ft), and a
specific example of such an architecture is the Generic
Blackboard (GBB) architecture developed at the
University of Massachusetts (Corkill et ai, 1986). But
the main point is that, new as they are, expert systems
are rapidly evolving, and as they do so they are
becoming more open and thus more widely applicable
to important engineering applications.

7. Conclusions

This article has been devoted to a discussion of the
implementation of an expert system, that is, of how to
make it happen. In the process many important issues
have been raised, some technical, some institutional,
some interactive between these two dimensions. It is
probably useful to close this discussion with some
warnings or maxims about expert system develop-
ment, as well as with a listing of some of the
advantages to an organization that sponsors the
development of an expert system.

As maxims, it is worth remembering that:
* Expert systems cannot do the impossible, e.g.,

cure cancer.
* Expert systems cannot do the extraordinary, e.g.,

make money on the stock market.
* Knowledge is expensive.
* It takes time to build a serious, robust expert

system.
* A single knowledge representation scheme is

often inadequate.
* Much more is known about developing diagnostic

and interpretive expert systems than about
planning and design systems.

Then why invest in an expert system? Because:
* Expert systems do not get tired. They can

perform routine tasks with high reliability and
consistency.

* The knowledge acquisition process deepens and
sharpens the experts' own understanding.

* Expert systems allow the experts to concentrate
on rarer, more interesting tasks.

* Expert systems can be used to train neophytes.
* Expert systems provide a community memory for

sharing and propagating knowledge.
* Expert systems, with networking, permit the

widespread standardization of techniques, meth-
ods, requirements, etc.

Acknowledgements

The author is grateful for helpful comments from
several collaborators: S. Gonick of Amerinex
Artificial Intelligence, Inc., and D. D. Corkill, R. P.
Henchey and E. A. Delis of the University of
Massachusetts. E. M. Riseman of the University of
Massachusetts provided useful comments on an early
version of Section 4 of this paper.

References

Barber, G. R 1987 LISP vs. C for implementing expert systems,
Al Expert 2(1), 28-31.

Bobrow, D. G., Mittal, S. and Stefik, M. J. 1986. Expert systems:
Perils and promise. Communications of the ACM 29(9), 880-894.

Buchanan, B. G. et al. 1983. Constructing an expert system. In:
Hayes-Roth, F., Waterman, D. A, and Lenat, D. B., Eds,
Building Expert Systems, Reading, MA: Addison-Wesley.

Corkill, D. D., Gallagher, K. O. and Murray, K. E. 1986. GBB: A
generic blackboard development system. In: Proceedings of the
Fifth National Conference on Artificial Intelligence, Vol. II,
Philadelphia, PA, pp. 1008-1014.

Dixon, J. R. and Dym, C. L. 1986. Artificial intelligence and
geometric reasoning in manufacturing technology, Applied
Mechanics Reviews 39(9), 1325-1330.

46 C. L. Dym

Durfee, E. H., Lesser, V. R and Corkill, D. D. 1985. Coherent
Cooperation Among Communicating Problem Solvers, Technical
Report 85-15.Amherst, MA: Department of Computer and
Information Science, University of Massachusetts.

Dym, C. L. 1985a. Expert systems: New tools for computer-aided
engineering, Engineering with Computers 1(1), 9-25.

Dym, C. L. (Ed.) 19856. Applications of Knowledge-Based Systems
to Engineering Analysis and Design New York: American
Society of Mechanical Engineers.

Dym, C. L. and Fenves, S. J. 1986. Feasibility study of a
knowledge-based expert system finite element modeling and
analysis assistant (FEMAA), a joint research project at the
University of Massachusetts and Carnegie-Mellon University
sponsored by the U.S. Air Force Office of Scientific Research,
1986-1987.

Dym, C. L., Delis, E. A. and Henchey, R. P. 1987. Representation
and control issues in automated architectural code checking,
manuscript in preparation

Fenves, S. J. 1985. A framework for a knowledge-based finite
element analysis assistant. In: C. L. Dym (Ed) , Applications of
Knowledge-Based Systems to Engineering Analysis and Design,
New York: American Society of Mechanical Engineers.

Gabriel, R. P. 1985. Performance and Evaluation of Lisp Systems,
MIT Press, Cambridge, MA, 1985.

Harmon, P. and King, D. 1985. Expert Systems, New York: John
Wiley.

Hayes-Roth, F., Waterman, D. A. and Lenat, D. B. 1983. (Eds).
Building Expert Systems, Reading, MA: Addison-Wesley.

Maher, M. L., Sriram, D. and Fenves, S. J. 1984. Tools and
Techniques for Knowledge-Based Expert Systems for Engineering
Design, Technical Report DRC-12-22-84. Pittsburgh, PA: Design
Research Center, Carnegie-Mellon University.

McDermott, J. 1981. Rl : The formative years, Al Magazine 2(2),

21-29.
Mittal, S. and Dym, C. L., 1985. Knowledge acquisition from

multiple experts, Al Magazine 6(2), 32-36.
Mittal, S., Dym, C. L. and Morjaria, M. 1986. PRIDE: An expert

system for the design of paper handling system, Computer 19(7),
102-114.

Morjaria, M., Mittal, S. and Dym, C. L. 1985. Interactive graphics
in expert systems for engineering applications. In: Proceedings of
the 1985 International Computers in Engineering Conference and
Exhibit. Boston, MA, pp. 235-241.

Mullarkey, P. W. 1987. Languages and tools for building expert
systems. In: Maher, M. L., Ed., Expert Systems for Civil
Engineering: Technology and Applications, New York: American
Society of Civil Engineers.

Nii, H. P. 1986a. Blackboard systems: The blackboard model of
problem solving and the evolution of blackboard architectures,
Al Magazine 7(2), 38-53.

Nii, H. P. 19866. Blackboard systems; Blackboard application
systems, blackboard systems from a knowledge engineering
perspective, Al Magazine 7(3), 82-106.

Prerau, D. S. 1985. Selection of an appropriate domain, Al
Magazine 6(2), 26-30.

Rehak, D. R. and Fenves, S. J. 1985. Expert systems in civil
engineering, construction and construction robotics, 1984 Annual
Research Review, Pittsburgh, PA: Robotics Institute, Carnegie-
Mellon University.

Sheil, B. 1983. Power tools for programmers, Datamation 29(2),
131-144.

Smith, R. 1984. On the development of commercial expert systems,
Al Magazine 5(3), 21-34.

Waterman, D. A. 1985. A guide to expert systems, Reading, MA:
Addison-Wesley.

Clive L Dym is Professor of Civil Engineering and Adjunct Professor of Computer and
Information Sciences at the University of Massachusetts, Amherst, where he has also been
Head of the Department of Civil Engineering (1977-1985). He was a Senior Scientist at
Bolt Beranek and Newman in Cambridge MA (1974-1977), and served on the faculties of
SUNY Buffalo (1966-1969) and Carnegie-Mellon University (1970)-1974). He has held
visiting appointments at the Technion-Israel Institute of Technology (1971), the Institute
for Sound and Vibration Research at the University of Southampton (1973), and Stanford
and the Xerox Palo Alto Research Center (1983-84). Dr. Dym completed undergraduate
work at the Cooper Union (1962), received an MS from the Polytechnic Institute of
Brooklyn (1964) and a PhD from Stanford University (1967). Dr Dym has done research
on a variety of problems in applied mechanics and acoustics. Recently his research
activities have focused on the development of expert (knowledge-based) systems for
engineering analysis and design. Dr Dym's research results have been published in some
60 journal articles and in seven books. He was the recipient of the 1980 Walter L Huber
Research Prize of the ASCE and the Western Electric Fund Award of the New England
Section of the ASEE (1983). He is on the Editorial Board of the Journal of Sound and
Vibration, has been an Associate Editor of the Journal of the Acoustical Society of
America, and is founding Editor of the new journal, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, published by Academic Press.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1987

	Issues in the Design and Implementation of Expert Systems
	Clive L. Dym
	Recommended Citation

	tmp.1391205416.pdf.bXgKZ

