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On the Computational Complexity of the Reticulate

Cophylogeny Reconstruction Problem

RAN LIBESKIND-HADAS1 and MICHAEL A. CHARLESTON2

ABSTRACT

The cophylogeny reconstruction problem is that of finding minimal cost explanations of

differences between evolutionary histories of ecologically linked groups of biological organ-

isms. We present a proof that shows that the general problem of reconciling evolutionary

histories is NP-complete and provide a sharp boundary where this intractability begins. We

also show that a related problem, that of finding Pareto optimal solutions, is NP-hard. As

a byproduct of our results, we give a framework by which meta-heuristics can be applied

to find good solutions to this problem.

Key words: coevolution, cophylogeny, computational complexity, NP-completeness.

1. INTRODUCTION

IT IS COMMONLY RECOGNIZED that many biological questions must be answered within an evolutionary

framework, particularly those comparing taxonomically related organisms. Logically, this extends to

studies of the relationships among groups of ecologically linked organisms, such as parasites and their

hosts, or genes and the species that house them. The study of coevolution thus requires a theory of

cophylogenetics, just as any study involving a comparison of species requires the field of phylogenetics.

Cophylogenetics relies on estimating relationships among species that are no longer present, by making

inferences based on “known” phylogenetic histories of groups of organisms. That is, we are presented with

the histories of two ecologically linked taxonomic units (taxa), such as parasites and hosts, and a set of

known associations between them, and must reconstruct the ancestral associations. The known associations

are perforce from the present: there is generally no fossil evidence to support particular associations of

parasites and hosts.

We focus on one of the major methods called cophylogeny mapping. With this approach, we consider

two histories represented as phylogenetic networks, and the associations between their tips. We attempt to

map one network into the other in order to construct a set of coevolutionary events that best explains the

current observations.

Naturally this approach has its supporters and detractors but we note that it is generally agreed to be

highly intuitive in that the solutions presented are readily interpreted. Moreover, the method is general
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in that it can accommodate a fairly complex model of coevolution, with multiple event costs and sound

statistical testing of the level of inferred congruence between the two histories. The main issue with

cophylogeny mapping is not that it relies on estimates of either history (which is usually the case though

there are ways to deal with the inherent uncertainty in that process), but that it is computationally very

intensive. In typical studies with more than a dozen or so taxa, existing mapping methods for finding

optimal solutions rapidly become unfeasible, particularly when the phylogenies are only slightly, or not at

all, congruent.

In the standard cophylogeny reconstruction problem, we are given a host tree H , a parasite tree P , a

function ' mapping the leaves (extant taxa) of P to the leaves of H , and costs associated with each of

four biologically plausible operations: codivergence, duplication, host switching, and loss (Fig. 1). The

objective is to find a least cost association of the trees that can be constructed with the four permitted

operations. Note that it is possible to perform such analyses with a more general costing scheme by using

the concept of Pareto optimality. As it is not generally possible to assign costs to the events leading to

similarity and difference between the two phylogenies, the four event costs can be left unassigned and

subject only to the constraint that codivergence is less costly than the other events.

Algorithms for the cophylogeny reconstruction problem in tree phylogenies have been studied by a

number of researchers (Charleston, 1998; Merkle and Middendorf, 2005; Page, 1994; Ronquist, 1995,

1998). However, not all phylogenies are trees; there are many cases in which hybridization results in

new species, resulting in reticulate phylogenies (Brockelman and Gittins, 1984; Harrison and Rand, 1989;

Marshall and Brockelman, 1986; Xu, 2000). Thus, there is practical interest in generalizing the cophylogeny

reconstruction problem to phylogenetic networks: directed acyclic graphs in which there is a single source

of in-degree zero and any number of sinks of out-degree zero (Charleston, 2002). Vertices of in-degree

greater than one correspond to hybridization events and nodes of out-degree greater than one correspond

to divergence events.

As far as we are aware, there are no other methods for comparing evolutionary trees with hybridization

events that capture the asymmetry we observe in the cophylogeny problem. While Bordewich and Semple

found (Bordewich and Semple, 2007) that minimum hybridization is NP-Hard, their problem is in terms

of different possible trees for the same leaf set; similarly, Than et al.’s PhyloNet package (Than, Ruths,

and Nakhleh, 2008) compares networks on the same taxa, rather than on ecologically linked systems such

as hosts and parasites.

The reconstruction problems for both phylogenetic trees and networks is generally believed to be

computationally intractable. However, in over a decade of study of these problems, no proofs of their

intractability have been reported. To the best of our knowledge, this paper makes the first contribution in

this direction.

Specifically, we show that the cophylogeny reconstruction problem is NP-complete when the host

phylogeny is reticulate, even if the parasite phylogeny is a tree. Moreover, we provide a sharp boundary

between where this problem is polynomial-time solvable and where it becomes NP-complete. As explained

FIG. 1. (a) A simple tanglegram with host tree H (heavy lines, left) and parasite tree P (right), and the associations

' between their tips (dashed); (b) two possible reconstructions that explain the relationship between H and P .
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at the end of Section 4, our NP-completeness result implies that the Pareto case is also NP-hard. Finally,

we describe a meta-heuristic-based approach to finding good, but not necessarily optimal, solutions and

provide a portable and easily modifiable implementation as a research tool.

2. PREVIOUS WORK

Most earlier work on the cophylogeny reconstruction problem assumes that the host and parasite

phylogenies are trees. When host switches are not permitted in the trees, the problem can trivially be

solved optimally in linear time (Ma et al., 2000; Zhang, 1997). However, the presence of host switching

operations evidently makes the problem much harder. Therefore, previous work has consisted of heuristics

(Merkle and Middendorf, 2005; Ronquist, n.d.), which are fast but do not guarantee optimal solutions, and

exact algorithms, which take exponential time in the worst case but provide optimal solutions (Charleston,

1998; Page, 1994; Ronquist, n.d.). The problem of finding optimal solutions for trees has been widely

regarded as computationally intractable, but no proof of intractability has been discovered to date.

Assuming that the order of the divergence events in the host tree is known, Ronquist (1995, 1998)

sketches several algorithms for finding optimal solutions in polynomial time but observes that these

approaches can take exponential time if no ordering is known a priori. Charleston (1998) advances a graph

theoretic approach using the notion of jungles to solve the problem optimally, but the algorithm also requires

exponential time in general. This approach is used in the TreeMap software tool (Charleston and Page,

n.d.). Merkle and Middendorf (2005) propose heuristics that work well in practice but do not guarantee

optimal solutions and these heuristics are used in the Tarzan software tool (Merkle and Middendorf, n.d.).

It should be noted that one of the subproblems that arises in the Tarzan approach is NP-complete, and it

is this subproblem that necessitates heuristics. However, the fact that this particular approach involves a

NP-complete subproblem does not imply that the cophylogeny problem itself is NP-complete, but rather

that this particular approach to the problem involves a computationally intractable step.

3. TERMINOLOGY, NOTATION, AND PROBLEM STATEMENT

A phylogenetic network is a connected directed acyclic graph (DAG) G D .V; E/ with the following

properties:

� There is a single node of in-degree zero called the “source.”
� No node has both in-degree and out-degree equal to one.
� No node has both in-degree and out-degree greater than one.
� All nodes of out-degree zero have in-degree one. These nodes are called the tips of the network.
� The maximum in-degree and out-degree over all nodes is bounded by some constant. (Typically this

constant is two, but larger constants are permitted.)

Each edge corresponds to the lifetime of a taxonomic unit (e.g., species), and each internal (non-tip) node

corresponds to a divergence or hybridization event involving that taxon. However, in the host network, the

source node is restricted to have a single out-going edge to a node that represents the most recent common

ancestor (mrca) of the tips. This is required in order to account for events in the parasite phylogeny that

predate the mrca in the host phylogeny. In the parasite network, the source node represents the mrca of its

tips.

Internal nodes of in-degree one correspond to divergence events whereas non-source nodes of out-degree

one correspond to hybridization events. Edges ending at tips of the network correspond to extant taxa.

Note that in the special case that all non-source nodes have in-degree one, the network is a tree. In this

case, the tips are the leaves of the tree.

By analogy to trees, we say that a node v is a child of node u if there is an edge .u; v/ in the network.

Similarly, we say that v is a descendant of u, if there is a path from u to v. (Note that by this definition

each node is a descendant of itself.) It is important to note that in this formulation nodes correspond to
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events. Thus, the terms “children” and “descendants” refer to the topology of the networks rather than the

ancestry of taxa.

Let H and P denote the host and parasite networks, respectively. We consider a map in which every

node p in P is associated with either a node or an edge in H . The node or edge with which p is associated

is called the image of p with respect to this map. We assume a conventional model with four event types:

codivergence, duplication, host switching, and loss.

We consider the events that give rise to nodes in P , other than the source and its unique adjacent node.

Given an edge .p; q/ in P , if p is associated with a node v in H then q arose from codivergence at v. If,

on the other hand, p is associated with an edge .u; v/ in H then q arose from a duplication on .u; v/ and

further, if q is associated with an edge that is not a descendant of .u; v/, then a host switch also occurred.

It is not permitted for all children of p to undergo host switches because this would lead to untraceable

and biologically unreasonable solutions (Charleston, 2002).

Loss arises from any one of three processes: lineage sorting, extinction, and sampling failure. Extinction

and sampling failure are indistinguishable from the remaining process of lineage sorting, which arises

when a path from the image of p to the image of q contains at least one node of H as an intermediate

node. The number of such intermediate nodes is the number of losses incurred on that path. Additionally,

if parasite node p is associated with host node v, indicating a codivergence, then the out-degree of p,

out.p/, must be less than or equal to the out-degree of v, out.v/. If the out-degrees are not equal, then it

assumed that out.v/� out.p/ losses are incurred. This treatment enables us to decouple evolutionary event

costs from the nodes in P and allows us to treat multifurcating phylogenies appropriately.

The divergence and hybridization events represented in a phylogenetic network may occur at different

times, resulting in different overlaps in the lifetimes of the taxa and thus different sets of feasible solutions

to the reconstruction problem. From a computational perspective, the precise actual times are unimportant;

the relative times of these events suffice since only relative times are needed to determine where host

switching may or may not occur. Further, dating divergence times in phylogenetics is notoriously difficult

and error-prone, so it is a conservative treatment to use only their relative times (Ho et al., 2005).

The notion of relative time is captured as follows: Given host network H D .VH ; EH / and parasite

network P D .VP ; EP /, let nH D jVH j and nP D jVP j. In general the nH CnP events in these two networks

can occur in at most nH C nP distinct relative times. (In fact, this is a generous overestimate since in most

cases all of the tips can be assumed to be contemporaneous at “current time.”) These possible relative

times are represented by the set of positive integers T D f1; : : : ; nH C nP g. Let I denote the set of

subsets of the form fa; a C 1; : : : ; b � 1; bg where a; b 2 T and a � b. A time function tH W VH ! I

assigns each event in H with a set of relative times when the event may have occurred. Similarly, a time

function tP W VP ! I assigns each event in P with a set of relative times when the event may have

occurred.1

An instance of the Generalized Cophylogeny Reconstruction Problem (GCRP) comprises a 6-tuple .H D

.VH ; EH /; P D .VP ; EP /; tH ; tP ; '; �/ where H is the host network, P is the parasite network, tH is the

time function for H , tP is the time function for P , ' is a mapping from the extant taxa of P into the

extant taxa of H , and � is a 4-tuple cost vector .�C ; �D; �S ; �L/ representing the costs of codivergence,

duplication, host switching, and loss events, respectively. The objective is to find a mapping ˆ W P ! H

that extends ', can be constructed by a set of codivergence, duplication, host switching, and loss events

with respect to the given time functions tH and tP , and is of minimum total cost with respect to the given

cost vector.

The sharp complexity boundary that we prove here comprises two results:

Theorem 1. GCRP is solvable in polynomial time for the set of instances .H D .VH ; EH /; P D

.VP ; EP /; tH ; tP ; '; �/ such that P is a tree and for all v 2 VH , jtH .v/j D 1.

Theorem 2. The decision problem associated with GCRP is NP-complete for the set of instances

.H D .VH ; EH /; P D .VP ; EP /; tH ; tP ; '; �/ such that P is a tree and for all v 2 VH , jtH .v/j � 2.

1The assumption that the relative times associated with an event form a consecutive set of integers is biologically

motivated but the computational results in this paper apply for the more general case that the sets are arbitrary.
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Theorem 1 states that if the relative times of all of the events in H are fixed and P is a tree,

the reconstruction problem can be solved in polynomial time. Related ideas have been sketched for the

reconstruction problem for pairs of trees (Ronquist, 1998), but differences arise when the host phylogeny

may be reticulate. This result also forms the basis of efficient heuristics presented in Section 5.

Theorem 2, our main contribution, shows that if the “fixed time” constraint of Theorem 1 is only slightly

relaxed, so that some events may have occurred at one of two different times, the problem becomes

computationally intractable.

3.1. A polynomial time algorithm for the “fixed time” case

In this section, we give a polynomial time dynamic programming algorithm under the “fixed time”

assumption of Theorem 1. We describe a conceptually simple algorithm to establish the polynomial time

bound, although optimizations are possible that further improve the running time.

Let .H D .VH ; EH /; P D .VP ; EP /; tH ; tP ; '; �/ be an instance of GCRP such that P is a tree and for

all v 2 VH , jtH .v/j D 1. Since jtH .v/j D 1 for all v 2 VH , we henceforth use tH .v/ to denote either the

set or the unique element of that set, where the usage is clear from context. Given two nodes u; v 2 VH ,

the distance from u to v, denoted dist.u; v/, is the length of the shortest path from u to v in H and is 1

if v is not reachable from u.

The lifetime of .u; v/ in EH , denoted `.u; v/, is defined to be the set ftH .u/ C 1; : : : ; tH .v/g. An event

p 2 VP may be associated with the lineage .u; v/ 2 EH at time t if t 2 tP .p/ \ `.u; v/. Note that

in this formulation, a parasite node p is always associated with an edge .u; v/ in the host network. A

codivergence event arises when a parasite is associated with .u; v/ at the endpoint of the lifetime, tH .v/,

which effectively associates node p with node v. A duplication event arises when a parasite is associated

with .u; v/ at some time before tH .v/.

In order to correctly account for loss events, we define the loss count function, losses..u; v/; t; .y; z//,

as follows:

1. If t D tH .v/ then losses..u; v/; t; .y; z// D dist.v; y/.

2. If t ¤ tH .v/ then losses..u; v/; t; .y; z// D 0 if .y; z/ D .u; v/ and otherwise losses..u; v/; t; .y; z// D

dist.v; y/ C 1.

Next, let cost..p; .u; v/; t/; .q; .y; z/; t 0// denote the cost that arises from inducing association .q;

.y; z/; t 0/ from association .p; .u; v/; t/ where q is a child of p and t 0 > t . The cost is defined as

follows:

Case 1: t D tH .v/. If y is a descendant of v then a codivergence event is indicated and

cost..p; .u; v/; t/; .q; .y; z/; t 0// D �C C �Llosses..u; v/; t; .y; z//

and otherwise cost..p; .u; v/; t/; .q; .y; z/; t 0// D 1.

Case 2: t ¤ tH .v/. There are two subcases:

1. If .y; z/ D .u; v/ or y is a descendant of v then a duplication event is implied and cost

..p; .u; v/; t/; .q; .y; z/; t 0// D �D C �Llosses..u; v/; t; .y; z//.

2. If .y; z/ ¤ .u; v/ and y is not a descendant of v then a duplication followed by a host switch

event is implied. In this case, if there exists some edge .w; x/ 2 EH such that t 2 `.w; x/

and .w; x/ D .y; z/ or y is a descendant of x then

cost..p; .u; v/; t/; .q; .y; z/; t 0//

D �D C �S C min
.w;x/2EH s:t: t2`.w;x/

�Llosses..w; x/; t; .y; z//

and otherwise cost..p; .u; v/; t/; .q; .y; z/; t 0// D 1.

Finally, we compute an optimal cost solution via dynamic programming. Let � be a dynamic program-

ming table with dimensions jVP j � jEH j � .jVH j C jVP j/ where �.p; .u; v/; t/ denotes the least cost over
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all solutions for the subtree of P rooted at p, assuming event p occurs on host .u; v/ at time t . When p

is a tip, v is a tip, t 2 tP .p/ \ tH .v/, and '.p/ D v, we set �.p; .u; v/; t/ D 0. All tips of P are now

marked as “visited.” All other entries of � are initialized to 1.

In the dynamic programming step, we consider each p such that all of its descendants in P have been

previously marked as “visited.” Let children.p/ denote the set of children of p. For each .u; v/ 2 EH and

each t 2 tP .p/ \ `.u; v/ compute �.p; .u; v/; t/ as follows:

� If tH .v/ D t and v is a divergence node then let S denote a set of associations with the following

property: For each qi 2 children.p/ there exists a single association .qi ; .yi ; zi/; ti / 2 S and ti > t . The

set S must have the property that there exists a set of paths in H such that each path starts at v, has

last edge .yi ; zi/, and no two such paths have their first edge in common. Let S denote the set of all

such sets S . Then

�.p; .u; v/; t/ D min
S2S

X

a2S

cost.a/ C �.a/

In the event that the out-degree of the parasite node p, out.p/, is less than the out-degree of v, out.v/,

then we must add �L.out.v/ � out.p// to the value of �.p; .u; v/; t/.
� If tH .v/ ¤ t then let T denote a set of associations with the following property: For each qi 2 children.p/

there exists a single association .qi ; .yi ; zi /; ti / 2 T and ti > t , as before. The set T must have property

that at least one .yi ; zi / is descendant from v. Let T denote the set of all such sets T . Then

�.p; .u; v/; t/ D min
T 2T

X

a2T

cost.a/ C �.a/

When �.p; .u; v/; t/ has been computed for every .u; v/ and t , node p is marked as “visited” and the

process is repeated until all nodes in P are marked as “visited.”

While the algorithm described here computes the cost of an optimal solution, the standard method

of keeping annotations in the dynamic programming table can be used to reconstruct the actual optimal

solutions. The correctness of this algorithm can be verified by induction. The algorithm can easily be

shown to run in time polynomial in the size of the two networks H D .VH ; EH / and P D .VP ; EP /: The

size of the dynamic programming table is O.jVP j � jEH j � .jVH j C jVP j//. In order to compute a single

entry �.p; .u; v/; t/ in the table, we may consider each combination of associations for the children of p.

Let � denote the constant upper-bound on in-degree and out-degree. Each of the (at most) � children of

p can be associated with O.jEH j/ distinct edges at O.jVH j C jVP j/ distinct times, resulting in a total

of O..jEH j � .jVH j C jVP j//�/ constant-time lookups into the dynamic programming table. Along with

each lookup is an accompanying computation of the cost function, each of which requires at most O.jEH j/

invocations of breadth-first search to compute the loss counts. Each breadth-first search, in turn, takes time

O.jVH j C jEH j/. Thus, the worst-case running time is polynomial in the size of the two networks. This

completes the proof of Theorem 1.

4. NP-COMPLETENESS

Next, we show that the problem becomes NP-complete when some host taxa can occur at one of two

relative times. For precision, we define the Generalized Cophylogeny Reconstruction Decision Problem

(GCRDP) as follows:

GCRDP

Instance: Given .H D .VH ; EH /; P D .VP ; EP /; tH ; tP ; '; �/, and a cost K.

Question: Does there exist a reconstruction whose cost is K or less?

We prove that GCRDP is NP-complete even when restricted to instances such that that P is a tree and

for all v 2 VH , jtH .v/j � 2. The reduction is from 3-SAT which is stated as follows and is known to be

NP-complete (Garey and Johnson, 1979):
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3-SAT

Instance: Given a collection of n Boolean variables and m clauses each comprising the disjunction of

three literals over the given variables.

Question: Does there exist a valuation of the variables that satisfies all of the clauses?

For convenience, we assume that the in- and out-degrees of nodes can be arbitrary. We can then simply

replace any high degree node in our reduction by a tree (of polynomial size) of degree two nodes.

Proof of Theorem 2. First, the problem is clearly in the class NP since a valid solution can be verified

in polynomial time. We show hardness by a reduction from 3-SAT.

Let n denote the number variables and let m denote the number of clauses in the given 3-SAT instance.

Our reduction consists of several types of gadgets for the host network. In these gadgets, some sink nodes

in the host network will not be labeled since they will not be the images of any nodes in the domain of '.

A k-thorn gadget, illustrated in Figure 2a, is a directed rooted proper binary tree in which the subgraph

of internal nodes is a directed path of length k (the value of k will be determined later). We introduce

k consecutive time slots where the root of every k-thorn gadget is fixed by the function tH to occur in

the first of these slots and each descendant, or thorn, at distance i from the root of the gadget occurs i

time slots later. The time slots of the leaves are assumed to be a common “current time” as shown in

Figure 2b. For clarity, the representation shown in Figure 2c is used henceforth to represent a k-thorn

gadget. At most one leaf of a k-thorn gadget will be of interest to us, and thus only one leaf is exposed

in this representation.

For each variable xi in the given 3-SAT instance, we introduce a corresponding variable gadget. We

describe this gadget in two parts. The first part of the variable gadget is the truth setting component shown

in Figure 3a. Some of these nodes will have additional in-coming or out-going edges to other types of

gadgets, described below. All nodes ˛i , 1 � i � n, occur at a common fixed time t . Each node Ti and Fi

may occur at time t C 1 or t C 2, 1 � i � n. All nodes ˇi , 
i , and ai , 1 � i � n, occur at times t C 3,

t C 4, and t C 6, respectively, where time t C 6 is current time. Time t C 5 will be used later to connect

gadgets.

Note that there are four possible combinations of times for each pair Ti and Fi as shown in Figure 3a–3d.

Other gadgets, described later, will be used to force one of Ti and Fi to occur at time t C 1 and the other

at time t C 2, as shown in Figure 3c and 3d. The former case will correspond to xi D TRUE and the latter

to xi D FALSE.

Next, we assemble k-thorn and truth setting components to construct a variable gadget for each variable

xi as shown in Figure 4. Each xi , 1 � i � n, has a unique time and all nodes bi occur at current time.

The thorns on the k-thorn gadget occur at fixed times before the time t associated with ˛i .

For each clause Cj we introduce a clause gadget as shown in the box on the left side of Figure 5.

The clause gadget consists of a node Cj with two children: one the root of a k-thorn gadget with a leaf

labeled C 0

j and the other a node Sj . Vertex Sj has three outgoing edges representing the three literals

that can satisfy Cj . Specifically, if literal xi appears in clause Cj then there is an edge from Sj to node

FIG. 2. (a) The k-thorns gadget. (b) The gadget with times indicated by dashed lines. (c) The representation of the

k-thorns gadget used in the remainder of the proof.
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FIG. 3. The truth setting component in each of four possible configurations (a)–(d). The configuration in (c)

corresponds to xi D TRUE, and the configuration in (d) corresponds to xi D FALSE.

Ti in the variable gadget for xi . Conversely, if xi appears in Cj , then there is an edge from Sj to node Fi

in the variable gadget for xi . Each node Cj and Sj is set to occur at a time distinct from any other event.

We introduce a pair of nodes ıj ; C 00

j with an edge from ıj to C 00

j for each clause, setting C 00

j to occur at

current time and ıj to occur at the time immediately prior. For each variable xi that occurs in Cj , we

introduce an edge from node 
i in the xi variable gadget to the node ıj . This is illustrated in Figure 5 for

the case that literal xi appears in clause Cj .

Next, we construct the host network and parasite tree as follows: The host network, shown in Figure 6a,

comprises a source node h with an edge to a node h0. From h0, there is an edge to each variable gadget

and to each clause gadget.

The parasite tree, shown in Figure 6b with times aligned to the host network, is relatively simple. There

is a source p0 that is set to be contemporaneous with h0. For each node xi in a variable gadget in the

host tree, there is a corresponding node xi in P , occurring at a unique earlier time slot, with two children

labeled yi and zi , that have fixed times of t C 2 and t C 1, respectively. Each of yi and zi have two leaf

children labeled ai and bi occurring at current time. Finally, for each clause Cj there is an edge from p0

to a node labeled Cj occurring at time t C 2, with two leaf children C 0

j and C 00

j occurring at current time.

We define the mapping ' from the tips of P into the tips of H by '.p/ D h if and only if the label of

tip p is equal to the label of tip h in our construction. Note that some nodes in P have identical labels,

FIG. 4. The variable gadget is comprised of a truth setting component and a k-thorn gadget.
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FIG. 5. The clause gadget is shown in the box on the left. The interactions with a variable gadget are shown for the

case that literal xi occurs in clause Cj .

which is permitted since ' need not be one-to-one, potentially permitting multiple parasites to reside on

the same host. This completes the description of the instance of GCRDP.

The costs of the four permitted events are as follows: Codivergence has cost 0 and all other events

have cost 1. The value of the decision parameter, K, is 18n C 9m. (Recall that n denotes the number of

variables and m denotes the number of clauses.) Let k, the number of thorns in each k-thorn gadget, be

18n C 9m C 1. Thus, the total number of nodes and edges in H and P is polynomial in n C m and the

reduction can be completed in polynomial time.

We now show that the 3-SAT instance is satisfiable if and only if the answer to the constructed GCRDP

problem is “yes.” First, assume that there is a satisfying valuation for the 3-SAT instance. We associate p0

FIG. 6. (a) The host network. (b) The parasite tree. The special times t C 1 and t C 2 are indicated in heavy dashed

lines.
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with h0. If xi is TRUE, we choose time t C 1 for Ti and t C 2 for Fi , and vice versa if xi is FALSE. Each

xi in P associates with edge .h0; xi/ and two duplication events are incurred for its children, contributing

2n to the total cost. If Ti is at time t C 1 and Fi is at time t C 2 in H then node yi in P associates

with edge .Ti ; ˇi/ at time t C 2 whereas node zi in P associates with edge .˛i ; Fi / at time t C 1. For

node yi two duplication events are incurred and its bi child host switches to the edge .xi ; bi/. Similarly, zi

incurs two duplication events at time t C 1 and its bi child host switches to edge .xi ; bi/. The case that Ti

is at time t C2 and Fi is at time t C1 is analogous. In each case, the ai children of yi and zi associate with

the ai tip in H while the bi children, as a result of the host switch, associate with the bi tip in H . This

involves an additional four duplication events, two host switching events, and ten loss events per variable.

Finally, for each clause Cj , we select any one literal that satisfies that clause in the satisfying valuation.

If xi satisfies the clause then Ti occurs at time t C 1 and parasite node Cj associates with edge .Ti ; ˇi /

at time t C 2 incurring three loss events on the path Cj ; Sj ; Ti . Next, parasite Cj incurs two duplication

events where its child C 0

j host switches to edge .Cj ; C 0

j / in H whereas its child C 00

j associates with the

node with the same label in H . The case that xi satisfies the clause is analogous. Thus, there are two

duplication events, one host switch event, and six loss events per clause. Therefore, the total cost of this

solution is 18n C 9m and the answer to the GCRDP instance is “yes.”

Conversely, assume that the answer to the GCRDP instance is “yes.” Notice that no lineage of P can

pass through a k-thorn gadget in H since this cost would exceed the maximum permitted cost K. Thus,

since each yi and zi node in P has a child labeled ai , and this child must be associated with the ai tip

in H , we are forced to associate both yi and zi in P with an edge or node of the xi variable gadget in

H . However, both yi and zi also each have a bi child that must be associated with the bi tip in H . This

requires that the ai and bi children of both yi and zi arise from duplication followed by host switching

onto the edge .xi ; bi / in H . Since duplication and host switching can only occur on edges and not on

nodes, this further implies that yi and zi are associated with edges in the xi variable gadget. Since yi is

fixed to occur at time t C 2 and zi is fixed to occur at time t C 1, one of Ti or Fi must occur at time t C 1

and the other at time t C 2 in order for the host switches to be possible. We construct a valuation for the

Boolean variables such that xi is TRUE iff the node Ti in the xi variable gadget is at time t C 1.

Each node Cj in P has two children, C 0

j and C 00

j . Since the parasite lineage Cj cannot pass through

the k-thorn gadget on the edge .Cj ; C 0

j / in H , the parasite node Cj must be associated with an edge in a

variable gadget from which there is a path to C 00

j . By construction, there are three such variable gadgets,

one for each variable occurring in clause Cj . Since node Cj occurs at time t C 2 in P , the path from p0

to Cj in P must be associated with a path in H that enters one of these variable gadgets at time t C 1.

However, this implies that the variable corresponding to that gadget has a value that satisfies clause Cj ,

implying that the 3-SAT instance is satisfied by the valuation and is therefore satisfiable.

Finally, we consider the case of Pareto optimality. Consider an instance of the cophylogeny reconstruction

problem. For any feasible solution for this instance, the event vector is a vector .x1; x2; x3; x4/ where x1,

x2, x3, and x4 denote the number of codivergence, duplication, host switching, and loss events, respectively,

incurred in that solution. A solution with event vector x D .x1; x2; x3; x4/ is said to be Pareto optimal if, for

every feasible solution with corresponding cost vector .y1; y2; y3; y4/, if yi < xi for some i 2 f1; 2; 3; 4g

then yj > xj for some some j 2 f1; 2; 3; 4g. In other words a solution with event vector x is Pareto

optimal if there is no solution whose event vector is “strictly better” than x. The set of event vectors of

Pareto optimal solutions is called the Pareto front for the problem instance.

The Pareto optimization problem is that of finding the Pareto front for a given problem instance. The

corresponding Pareto decision problem is as follows: Given a host network H , parasite network P , time

functions tH and tP , mapping ', and an integer vector x D .x1; x2; x3; x4/, is x on the Pareto front?

It is easily shown that the Pareto decision problem is NP-hard via a Cook Reduction (polynomial-time

Turing Reduction) (Garey and Johnson, 1979) from GCRDP to to the Pareto decision problem. The reduction

is based on two observations: First, for a given problem instance, the number of distinct possible event

vectors is polynomial in the size of the problem instance since the number of codivergences, duplications,

host switches, and losses are each upper-bounded by the number of nodes and edges in the host and

parasite networks. Thus, we can use an oracle for the Pareto decision problem to find the entire Pareto

front in polynomial time. Second, a solution of minimum total cost with respect to the cost vector � in the

GCRDP instance must be a Pareto optimal solution, for otherwise there is a solution of even lower total cost
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with respect to �. Thus, we can first use the oracle for the the Pareto decision problem to find the Pareto

front. Then, for each vector .x1; x2; x3; x4/ in the Pareto front we compute x1�C C x2�D C x3�S C x4�L.

The answer to the GCRDP instance with target cost K is “yes” if and only if at least one of these

sums of products is less than or equal to K. Since this is a polynomial-time reduction, the proof is

complete.

5. HEURISTICS

Since the reticulate cophylogeny problem is, in general, NP-complete, good heuristics or approximation

algorithms are needed. In this section we show that the the dynamic programming algorithm described in

Subsection 3.1 for the “fixed time” case can be used as the basis for meta-heuristics for this problem. We

restrict our attention here to the case that the host network may be reticulate but the parasite network is a

tree. The case that both networks are reticulate is evidently considerably more complicated, as explained

later in this section.

Consider a host network H and a parasite tree P . For simplicity, assume that there are no time constraints

on the event times in H and P , so that each node can occur at any time. (The general case of arbitrary

time constraints is a trivial extension.) Recall that the internal nodes of H correspond to events. Consider

a total ordering of the event times in H , that is, a permutation of internal nodes of H such that if a node u

is ancestral to v then u must occur before v in the permutation. We henceforth refer to such a permutation

as a valid ordering for H .

We can use the dynamic programming algorithm in Subsection 3.1 to find the optimal solution to the

cophylogeny problem under a particular valid ordering. Different valid orderings will give potentially

different solutions to the cophylogeny problem. However, since the dynamic programming algorithm finds

an optimal solution for a particular valid ordering, an optimal solution for the general problem can be found

by enumerating all possible valid orderings of the event times in H , applying the dynamic programming

algorithm to each one, and selecting a solution of minimum cost. Since there are, in general, an exponential

number of host event orderings, this algorithm is exponential time in the worst case. However, we can

exploit this idea for efficient and effective heuristics.

For a given valid ordering of the host network events, define the neighbor set of a valid ordering to

be the set of all valid orderings derived by inverting the order of two consecutive events that are not

ancestrally related. That is, if u comes immediately before v in the ordering and u is not the parent of v,

then the order of events u and v can be inverted, resulting in another a valid ordering. Note that the size

of the neighbor set is bounded by O.n/ where n is the number of nodes in the host network.

A meta-heuristic (e.g., gradient descent, simulated annealing, or great deluge) can now be applied as

follows: Begin by selecting a random valid ordering for H . Find the optimal solution for this ordering by

applying the dynamic programming algorithm. Select another valid ordering from the neighbor set subject

to the rules of the meta-heuristic. Repeat this process until the termination condition of the meta-heuristic

is reached.

For example, for gradient descent, we begin with an arbitrary ordering and apply the dynamic pro-

gramming algorithm to find the cost of the solution under this ordering. Next, we apply the dynamic

programming algorithm to the host tree under each of these orderings. We choose the ordering that provides

the largest reduction in cost and repeat this process until we reach an ordering such that all neighboring

orderings do not further reduce the cost.

This meta-heuristic approach has the desirable property that the diameter of the solution space is bounded

by O.n2/ where n is the number of internal nodes in H . Thus, in theory, an optimal ordering can be reached

from any random ordering in O.n2/ iterations of the meta-heuristic.

Since, to the best of our knowledge, this is the first known heuristic approach to the reticulate cophy-

logeny problem, we have provided a portable and documented implementation for research purposes at

www.cs.hmc.edu/�hadas/cophylogeny.

Finally, we note that this heuristic depends on the parasite network being a tree, since the underlying

dynamic programming algorithm makes this requirement. The dynamic programming algorithm does not

appear to extend to the case that the parasite network is reticulate and thus different heuristics are needed

for the case that both the host and parasite networks are reticulate.
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6. CONCLUSION

In this paper, we have examined the computational complexity of the cophylogeny reconstruction

problem. For the case that the host phylogeny may be reticulate, we have shown a sharp complexity

boundary. In particular, we have shown that the GCRP is polynomial-time solvable when the relative times

of host events are fixed but is NP-complete when they are allowed to take one of two values, even if the

parasite phylogeny is a tree. Note that since trees are special types of phylogenetic networks, the more

general case that both phylogenies may be reticulate is also NP-complete. As a consequence, the Pareto

optimization version of this problem is NP-hard. We have also proposed a meta-heuristic approach for the

case that the host network is reticulate but the parasite network is a tree.

There are a number of interesting directions for future research. First, it is widely-conjectured that the

reconstruction problem is NP-complete when both the host and parasite networks are trees, but this problem

still remains open. Moreover, while our results imply that the problem is NP-complete for the general case

that the host and parasite trees are reticulate, we conjecture that when both networks are reticulate the

problem is NP-complete under even more stringent conditions than those in Theorem 2.

Finally, the development and analysis of heuristics for this problem is an area of practical interest.

While we have proposed one family of heuristics, there may be a number of other fruitful approaches. For

example, if host switching is disallowed, the cophylogeny problem is easily solvable in polynomial time for

arbitrary host and tree networks. Thus, one approach to developing good heuristics, or even approximation

algorithms, for this problem may be in bounding the number of host switch events that are considered.
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