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Abstract

The Prisoner’s Dilemma is a two player game where playing rationally
leads to a suboptimal outcome for both players. The game is simple to
analyze, but when it is played repeatedly, complex dynamics emerge. Re-
cent research has shown the existence of extortionate strategies, which al-
low one player to win at least as much as the other. When one player plays
such a strategy, the other must either decide to take a low payoff, or ac-
cede to the extortion, where they earn higher payoff, but their opponent
receives a larger share. We investigate what happens when one player uses
this strategy against an “evolutionary” player, who makes small changes to
her strategy over time to increase her score, and show that there are cases
where such a player will not evolve towards the optimal strategy of giving
in to extortion.
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Chapter 1

Introduction

Game theory is a mathematical model for human interaction and decision
making. Any interaction between people where each person’s actions have
an impact on the rest can be thought of as a game and modeled by this
mathematical theory. A game of particular importance is the Prisoner’s
Dilemma.

1.1 The Prisoner’s Dilemma

Before we can define the Iterated Prisoner’s Dilemma, we first define what
a two player game is. We denote the players X and Y. A game consists
of both players’ strategies, which are simply sets, and their payouts. If we
denote the strategy sets by SX and SY, then the outcome of a game is an
element of SX × SY. The payouts, FX and FY, are functions from SX × SY to
R.

This is a very general definition of a game. There is a more restricted
definition associated with the phrase “game theory,” which the Prisoner’s
Dilemma is an example of. In such a game, each player has a finite num-
ber of pure strategies, PX and PY. The pure outcomes are then elements of
PX × PY, each of which yields a payout for X and Y. These payouts are usu-
ally represented in the form of a matrix, where the rows are labeled with
X’s pure strategies, the columns with Y’s. Each entry contains a pair of
numbers, the first being X’s payout for that outcome, and the second being
Y’s.

However, we do not restrict X and Y to playing these pure strategies.
Their entire strategy set consists of all possible probability distributions on
their pure strategy sets. These are called mixed strategies. When X and Y
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choose a mixed strategy, the pure outcome is then a random variable, and
we say the payout for X and Y is the expected value of their payouts for
this pure outcome.

Given a game, it is natural to ask how rational players will act. Here,
rational means the player will choose strategies to maximize their payout.
In order to simplify games, there is a way to see if certain strategies can
be ignored, using the concept of dominance. Suppose p1, p2 ∈ PX, and for
all p ∈ PY, we have that FX(p1, p) ≥ FY(p2, p), with strict inequality for
some p ∈ PY. Then we say that p1 dominates p2. In this case, it would be
irrational for X to choose p2, since they can always perform at least as well,
and sometimes better, with p1.

We are now ready to define the Prisoner’s Dilemma. Each player has
two pure strategies, Cooperate and Defect. The payout matrix is as below:

C D
C R, R S, T
D T, S P, P

The numbers R, S, T, P can be anything satisfying these two conditions.

1. T > R > P > S

2. 2R > T + S

This game is easy to solve. Since T > R and P > S, Defection is the
dominant strategy for both players, so they will both choose D and re-
ceive P. This is called a Dilemma because this outcome is suboptimal:
they would be better off cooperating and receiving R. In fact, using the
given inequalties, we can show that the outcome CC (the outcome where
both players cooperate) is Pareto optimal, meaning that if any other outcome
gives a player more that R, than it gives the other less than R. To see this,
suppose X cooperates with probability p and Y with probaility q. Then a
simple calculation shows that the expected sum of their scores will be

pq(2R) + [p(1− q) + (1− p)q](S + T) + (1− p)(1− q)(2P).

From the relations R > P and 2R > S + T, the above quantity is always at
most 2R. Since the outcome CC maximizes the sum of X and Y’s score, it
must also be Pareto optimal.

There are many cases where the Prisoner’s Dilemma is a model for hu-
man interaction. When people work together, they can profit the most, but
there is often a benefit to being dishonest and trying to gain more than one’s
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fair share at the other’s expense. The previous analysis predicts that when
humans act rationally in such situations, both players will defect, resulting
in a suboptimal outcome. Since this result is very grim, and unrealistic in
terms of how humans actually interact, a central question in the Prisoner’s
Dilemma is how to change the above game so that cooperative strategies
become viable. A way to do this that seems possibly effective is to play the
Prisoner’s Dilemma many times against the same opponent. In the single
case, their is no reason not to harm your opponent and gain the most for
yourself, but in iterated play, it may be advantageous not to antogonize a
player with whom you could benefit from cooperating in the future.

1.2 Past Formulations of the Iterated Prisoner’s Dilemma

Robert Axelrod was one of the first to analyze the Prisoner’s Dilemma un-
der repeated play. In Axelrod (1984), he considers what happens when two
players play the prisoner’s dilemma an infinite number of times, but where
the amount won from the ith round is discounted by wi for some 0 < w < 1.
This is equivalent to stipulating that players play together over and over,
but after each round they stop playing with probability w. Each player’s
strategy can be thought of as a computer program: given an input of the
outcomes of all the past rounds, a strategy outputs either the decision to
cooperate or defect. There are infinitely many strategies, so analyzing this
game is very difficult. In order to cope with this, Axelrod held a tourna-
ment, where people were invited to submit computer programs to play the
Prisoner’s Dilemma against each other repeatedly in a round-robin fash-
ion, where every pair of programs played the Prisoner’s Dilemma against
each other a large number of times. There were two such tournaments,
the first with 15 entries and the second with 63. In both tournaments, the
most succesful strategy was Tit-for-Tat, which initially cooperates, and in
subsequent rounds repeats its opponent’s last move.

In general, Axelrod found that the stragies which performed well had
the following properties:

1. Kindness (never defecting unless opponet does first),

2. Reciprocity (treat your oponent as they treat you),

3. Simplicity (described by a short computer program).

These results are in no way conclusive proof that Tit-for-Tat is the “best”
strategy. Both of these tournaments used the values R = 3, T = 5, S =
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0, P = 1, so we cannot conclude anything about the Prisoner’s Dilemma
in general. In addition, this experiment only shows Tit-for-Tat performs
well when played against the particular makeup of competitors that was
submitted into the tournament. However, these experiments still do illu-
minate many of the important properties of an effective strategy in the IPD,
and Axelrod’s work sparked further research into the subject.

The approach taken by Axelrod is not the only way to formulate the
Iterated Prisoner’s Dilemma. In Nowak and Sigmund (1990), the set of
strategies each player can use is much more limited; their probability of
cooperating on a given round is only a function of their opponents previous
action. Using this limited set of strategies, Nowak was able to find exact
formulas for the payoff of each player given their strategies. This is similar
to the approach taken in this paper.

In this paper, we deal with a particular form of the IPD, where the each
player bases their strategy for a particular round on the result of the previ-
ous round (not just their opponent’s previous action). The exact definitions
of this IPD formulation are in Chapter 2, along with the previous research
done by Dyson and Press (2012). In Chapter 3, we examine classify the
cases where the IPD is particularly easy to study. Finally, in Chapter 4, we
examine the implications of the recenetly discovered exortionate strategies in
the IPD.



Chapter 2

Background

Before defining the our version of the IPD, we need some results from the
theory of Markov chains.

2.1 Markov Chains

Definition 2.1. Let X0, X1, X2, . . . be a sequence of random variables, which each
take values in some finite set S. Then {Xn}∞

n=0 is a Markov chain if

P(Xn+1 = x|X1 = x1, . . . , Xn = xn) = P(Xn+1 = x|Xn = xn).

We say a Markov Chain is time homogenous if P(Xn+1 = x|Xn = x′) is inde-
pendent of n.

We will only consider time homogenous Markov processes. The ele-
ments of S will be referred to as states, and can be thought of as being in-
dexed from 1 to s. The probability, given that a variable is in the ith state, of
the next variable being in the jth state is denoted pij. We can arrange these
probabilities in a matrix, M. This is useful, since, if we write the distribu-
tion of each Xk as a row vector vk, whose ith entry is P(Xk = si), then one
can show that

vk+1 = vk M.

Applying this formula k times to the initial distribution v0, we have that

vk = v0Mk.

In the same way that the i, j entry of M determines the probability of tran-
sitioning from state i to state j, we can show that the i, j entry of Mk de-
termines the probability of transitioning from state i to state j in exactly k
steps. We denote this probability by p(k)ij . This leads to several definitions:
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Definition 2.2. If p(n)ij > 0 for some n > 0, then we say state j is accessible from
state i. If both i and j are accessible from each other, then they communicate.

The relation “i communicates with j” is an equivalence relation, which
partitions S into equivalence classes called communicating classes.

Definition 2.3. If a communicating class C has the property that no state outside
of C is accessible from one in C, then we say that C is ergodic. Otherwise, it is
transient.

If a communicating class is a single state, then that state is absorbing.

A Markov chain always has at least one ergodic communicating class.
This can be seen by forming a poset on the communicating classes, where
C1 ≥ C2 if there is a state in C2 accessible from some state in C1. This poset
is finite, and must therefore have minimal elements, which are ergodic.

There is one more main property used to characterize Markov chains.
It may be the case that when Xn is in some state, sk, then it will only return
to sk after a number of steps later which is a multiple of some period, d. For
instance, if the transition matrix M is[

0 1
1 0

]
and the state is initially in s1, then it will only return to s1 on even numbered
steps. This motivates the below definition:

Definition 2.4. The period of a state si is greatest common divisor of the set

{n|p(n)ii > 0}.

If all states of a Markov chain have period 1, we say that the chain is aperiodic.

One of the central problems in Markov theory is determining what dis-
tribution the Xn converge to, if any. The Xn may not converge at all: this oc-
curs when there are states with periods greater than 1, since this will cause
the process to alternate between distributions instead of settling. However,
it can be shown that the average of X0, . . . , Xn will always approach some
limit distribution. Specifically, we have

Proposition 2.1. For any Markov chain, 1
n ∑n−1

k=0 p(k)ij converges as n→ ∞.

This is proved in (Tijms, 2003: p. 96). We then have that
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Corollary 2.1. For any initial distribution v0,

lim
n→∞

1
n

n−1

∑
k=0

v0Mn

exists.

This is true since the jth component of 1
n ∑n−1

k=0 vMn is given by

s

∑
i=1

vi

(
1
n

n−1

∑
k=0

p(k)ij

)
,

which is a linear combination of series which converge. The above limit is
called a stationary distribution of the Markov process, and it can be shown
that when π is such a distribution, then

πM = π.

Such a distribution must exist, but it may not be unique. To see this, sup-
pose that C1 and C2 are two distinct ergodic communicating classes. Any
initial distribution which is only nonzero in C1 will have this property for
all future time steps, as will its limit. The same applies for C2, so that there
are two initial distributions which cannot converge to the same distribu-
tion. Since the property of having a unique stationary distribution is im-
portant, we give the following definition:

Definition 2.5. If M is the transition matrix for a Markov process, and there is
a π such that for all v0, 1

n ∑n−1
k=1 v0Mk converges to π as n → ∞, we say that the

process is well-behaved.

The previous paragraph showed that having only one ergodic class is
necessary for being well-behaved. The next theorem proves that this is
sufficient as well.

Theorem 2.1. If a Markov chain with transition matrix M has a single ergodic
communicating class, then

1. The matrices 1
n ∑n−1

k=0 Mk converge (componentwise) to a matrix A, whose
rows are all the same probability vector π.

2. The Markov chain is well-behaved.

This is also proved in (Tijms, 2003: p. 131-2).
We are now ready to define the Iterated Prisoner’s Dilemma rigorously.
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2.2 The Iterated Prisoner’s Dilemma

As discussed, there are many ways to define the Iterated Prisoner’s Dilemma.
Our approach follows that of Dyson and Press (2012), and we use notation
largely similar to this article. Each player chooses a strategy, which con-
sists of their decision of how to act on the first round, and how to decide
their decision for every subsequent round based on the outcomes of the
previous rounds. To simplify the problem, we assume that each player has
finite memory, meaning that their decision for a particular round is a func-
tion of the past m outcomes for some fixed number m. Press and Dyson’s
paper proved that if X has memory 1, then every higher memory strategy
Y plays leads to the same outcome as Y playing a certain memory 1 strat-
egy (Dyson and Press, 2012: p. 4). We then suppose that X has memory 1,
so that without loss of generality, Y does as well.

Formally, each player chooses a vector p = (p1, p2, p3, p4), which are her
probabilities of cooperating on a given round given the previous outcome
was respectively CC, CD, DC or DD, where X’s choice is the first letter and
Y’s is the second. Throughout this paper, we will always refer to the out-
comes in this order. When we say the ith outcome, we mean the ith outcome
in the list CC, CD, DC, DD. If X adopts the strategy p = (p1, p2, p3, p4) and
Y plays q = (q1, q2, q3, q4), and we let random variable Vi be the outcome of
the ith round, then the sequence {Vi}will be a markov chain with transition
matrix M, where

M =


p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q2 p2(1− q2) (1− p2)q2 (1− p2)(1− q2)
p3q3 p3(1− q3) (1− p3)q3 (1− p3)(1− q3)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)


In order to define the payouts of X and Y, we look at stationary vector

of this process. Let SX = (R, S, T, P)T and SY = (R, T, S, P)T be column
vectors which encode the payout for each player for each outcome. If π
is a unique stationary vector of M, as shown in the previous section, the
expected average payouts of each player tend to πSX and πSY. We denote
these payouts by sX and sY. However, it may be the case that the Vi are
not well-behaved, so that we must specify an initial distribution in order
for these payouts to be well defined. A very general way to do this is for
X and Y to choose probabilities p0 and q0 of cooperating on the first round,
so that v0 = (p0q0, p0(1− q0), (1− p0)q0, (1− p0)(1− q0)). Now, we have
a well defined game: each players strategies consist of a probability vector
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and a probability, and their payoffs are given by the below limits:

sX =

(
lim
n→∞

1
n

n−1

∑
k=0

v0Mk

)
, sY =

(
lim
n→∞

1
n

n−1

∑
k=0

v0Mk

)
.

When the Markov process is well-behaved, the above formula will not
depend on v0. This is true for most strategies (for instance, when all of X
and Y’s probabilities are strictly between 0 and 1).

2.3 Previous Work

Suppose that X plays the strategy p = (p1, p2, p3, p4) and Y plays q =
(q1, q2, q3, q4). In their paper, Press and Dyson gave a formula for the dot
product of the stationary vector, v, with any vector f. Namely, if we define

D(p, q, f) ≡ det


−1 + p1q1 −1 + p1 −1 + q1 f1

p2q2 −1 + p2 q2 f2
p3q3 p3 −1 + q3 f3
p4q4 p4 q4 f4

 ,

then we have that

v · f = D(p, q, f )
D(p, q, 1)

,

where 1 = (1, 1, 1, 1). Since the average payouts of each player, sX and sY,
are given by v · SX and v · SY, the average payouts of X and Y are given by

sX =
D(p, q, SX)

D(p, q, 1)
, sY =

D(p, q, SY)

D(p, q, 1)
.

Since D(p, q, f) is linear in f , this also gives that

asX + bsY + c =
D(p, q, aSX + bSY + c1)

D(p, q, 1)
.

Notice that, in the formula for D(p, q, f), the middle two columns are en-
tirely under a single player’s control. When it is possible for a player to
choose a strategy such that their column is a multiple of aSX + bSY + c1,
then D(p, q, aSX + bSY + c1) will be zero, so that asX + bsY + c = 0. It is
not possible for players to choose a strategy which makes this true for all
choices of a, b and c. However, they did show that it is possible for X to
force the relationship, for any χ > 1,

sX − P = χ(sY − P)
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This means that X’s score, in excess of P, is a multiple of Y’s score rela-
tive to P. They called such strategies extortionate, with extortion factor χ.
Specifically, X can do this by choosing

1− p1
1− p2

p3
p4

 = φ


(χ− 1)R−P

P−S
1 + χ T−P

P−S
χ + T−P

P−S
0

 .

However, the range of φ which makes the above a valid probability vector
is

0 ≤ φ ≤ (P− S)
(P− S) + χ(T − P)

When φ is chosen so that these inequalites are strict, then 0 < p1, p2, p3 < 1.
There also exist extortionate strategies for Y, which are defined similarly.

When X plays an extortionate strategy, Press and Dyson showed that
when Y cooperates fully (i.e. uses the strategy (1,1,1,1)), the payouts of
both X and Y are maximized. In this case, X receives an amount more than
R, and Y receives less that R. The only way for Y to win an equal amount
as X is for Y to choose a strategy where q4 = 0. Since X also will have
p4 = 0, the state DD, once entered, will never be left, so that both players
will receive a payout of P, which is less than what she would have gotten
if she had cooperated.

Extortionate strategies place X in a position which is at least as good
as Y. This makes the strategy seem too good to be true. However, it is
only beneficial to X if Y goes along with the extortion, so we must try to
determine how a player will react to such a strategy. This is discussed in
Chapter 4. Before that, we must examine the foundations on which Press
and Dyson’s results stand; namely, their formulas for sX and sY.



Chapter 3

Uniqueness of the Stationary
Distribution

The Markov process for the IPD will not always have a unique distribu-
tion. Suppose that both X and Y play Tit-for-Tat (repeating opponent’s last
move), meaning p = (1, 0, 1, 0) and q = (1, 1, 0, 0). Then the communicat-
ing classes are {CC}, {CD, DC}, and {DD}. These are all ergodic, mean-
ing that it impossible to move from one class to the other. The Markov
processes restricted to each of these classes each have a unique stationary
distribution, and the limit distribution of the entire process will be some
weighted average of these three distributions.

For instance, suppose that X initially cooperates, and Y initially coop-
erates with probability 2/3, making the initial distribution (2/3, 1/3, 0, 0).
Then there will be a 2/3 chance that the first outcome is CC, where it will
be CC for all subsequent rounds, and a 1/3 chance of CD, where play will
alternate between CD and DC. In this case, the average of their distribu-
tions will approach ( 1

3 , 1
6 , 1

6 , 0). In contrast, if they both initally defected, the
distribution would approach (0, 0, 0, 1).

In their paper, Press and Dyson gave a formula for the dot product of
the stationary distribution with any vector, which was independent of the
initial condition. We can see that this formula must be wrong in the cases
where there are more than one ergodic class. In fact, when the values for
Tit-for-Tat are substituted in the formula for sX and sY, then the denomina-
tor, D(p, q, 1), becomes zero! This formula is important for many of Press
and Dyson’s results, as well as for our results in the next chapter. Thus, in
this chapter, we characterize the choices of strategies for X and Y for which
the formula does hold, which are given in Theorem 3.1.
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3.1 When the IPD is not Well-Behaved

In order to simplify the calculations, we introduce an alternate way to
write the players’ strategy vector. Suppose that X plays a strategy p =
(p1, p2, p3, p4), and Y plays q = (q1, q2, q3, q4). We define the vectors

p̃ = (1− p1, 1− p2, p3, p4) q̃ = (1− q1, q2, 1− q3, q4).

Whereas p gives probability of cooperating, p̃ gives the probability of switch-
ing strategies. For instance, if p̃2 = 1/3, then if the previous outcome was
CD, meaning X just cooperated, there is a 1/3 chance X will switch to D
on the next round.

We break the gameplay chains which aren’t well-behaved into several
cases.

3.1.1 Multiple Absorbing States

Any Markov process with multiple absorbing states will not be well-behaved,
since these states will be different ergodic classes. Notice that the ith state
is absorbing exactly when p̃i = q̃i = 0, since once state i is reached, neither
player will switch strategies. Thus, having two states whose coordinates
in p̃ and q̃ are zero is a sufficient condition for gameplay to not be well-
behaved.

3.1.2 No Absorbing States

In order for the gameplay to not be well-behaved, there must be two er-
godic communicating classes, and in this case they must be each of size
two. There are 3 ways to partition {CC, CD, DC, DD} into two sets of size
two. In order for the communicating classes to be {CC, CD} and {DC, DD},
it must be the case that X never changes her strategy, so that p̃ = (0, 0, 0, 0).
Similarly, q̃ = (0, 0, 0, 0) yields gameplay with ergodic classes {CC, DC}
and {CD, DD}. Note when both p̃ = q̃ = (0, 0, 0, 0), then all states are
absorbing, which was covered in the last case. To get the remaining pos-
sibility, both players must switch strategies after every move, so that p̃ =
q̃ = (1, 1, 1, 1).

3.1.3 One Absorbing State

If exactly one state is absorbing, and there are two ergodic classes, then the
other class must be of size 2 or 3. The next table shows all of the ways to
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choose an S ⊆ {CC, CD, DC, DD} of size 2 or 3, along with the necessary
and sufficient conditions for S to be closed (meaning the probability of leav-
ing S is zero). For ease of reading, we use the numbers 1 through 4 to refer
to the states (in the order CC, CD, DC, DD), and omit the braces for around
each set S.

S is closed if. . .
1, 2 p̃1 = p̃2 = 0
3, 4 p̃3 = p̃4 = 0
1, 3 q̃1 = q̃3 = 0
2, 4 q̃2 = q̃4 = 0
1, 4 p̃1 = q̃1 = p̃4 = q̃4 = 1
2, 3 p̃2 = q̃2 = p̃3 = q̃3 = 1

1, 2, 3 p̃1q̃1 = p̃2(1− q̃2) = (1− p̃3)q̃3 = 0
1, 2, 4 p̃1(1− q̃1) = p̃2q̃2 = (1− p̃4)q̃4 = 0
1, 3, 4 (1− p̃1)q̃1 = p̃3q̃3 = p̃4(1− q̃4) = 0
2, 3, 4 (1− p̃2)q̃2 = p̃3(1− q̃3) = p̃4q̃4 = 0

For instance, the first row gives the conditions required for {CC, CD}
to be a closed set. In order for this to be true, it must mean that if X has just
cooperated, she will cooperate again, so that she will not change strategies.
This is equivalent to saying that p̃1 = p̃2 = 0, as shown in the second
column. The other cases where |S| = 2 are derived similarly. In the 1, 2, 3
row, where S = {CC, CD, DC}, the only way to leave S is to transition
to DD. The probabilities of transitioning to DD from each state are (1−
pi)(1− qi), since pi and qi are the probabilities of each player cooperating in
state i. For S to be closed, we must have each of the transition probabilities
be zero. These three conditions are what is listed in the cell adjoining 1, 2, 3,
with each pi and qi converted to p̃i and q̃i.

This table is useful for checking if the IPD is well-behaved, given that it
has exactly one absorbing state. Suppose only state i is abosrobing. If none
of the subsets of {CC, CD, DC, DD} − {i} are closed, then they are not er-
godic communicating classes, so there will not be two ergodic communicat-
ing classes. We know that none of the singleton subsets of {CC, CD, DC, DD}−
{i} are closed, since only i is absorbing, and the above table allows us to
check if the subsets of size 2 or 3 are closed. If none are closed, the IPD
will be well-behaved. If not, then some subset of the closed class will be a
communicating class, so the IPD will not be behaved.

We have now exhausted all ways for the IPD to not be well-behaved,
leading us to the main theorem of this chapter.



14 Uniqueness of the Stationary Distribution

Theorem 3.1. When X plays the vector p̃ = ( p̃1, p̃2, p̃3, p̃4) and Y plays q̃ =
(q̃1, q̃2, q̃3, q̃4), then their gameplay is well-behaved if and only if none of these
conditions hold:

(i) There are two distinct states i and j for which

p̃i = q̃i = p̃j = q̃j = 0.

(ii) Either p̃ = 0 or q̃ = 0.

(iii) Both p̃ = q̃ = 1.

(iv) There is a state i for which p̃i = q̃i = 0, and a row in the above table where
i /∈ S and the listed conditions hold.

In these cases, the formula given by Dyson and Press holds. In all other
cases, no formula for sX and sY independent of their initial choices can exist.

3.2 Discussion

When we initially defined the IPD, we allowed for any choice of the vectors
p and q. This requires both players to also choose an initial probability of
cooperating, because as we have just seen, there are several caes where
the stationary distribution will depend on the initial. The IPD would be
much cleaner if they did not have to specify this initial condition, since
their strategies would be vectors of four numbers instead of five. There are
several ways to modify the IPD in order to eliminated the need for p0 and
q0. One way to is to fix p0 and q0; for example, we could assume that both
players are “nice”, and will initially cooperate. Though this works, it has a
number of drawbacks. No choice of p0 or q0 seems natural, and making an
arbitrary choice for the initial condition is unintuitive.

More importantly, when we do this, the payoffs will be a discontinuous
function of the player’s strategies. To see this, supose both players initially
cooperate, and consider the case where they both play Tit-for-Tat. Then
each of their payoffs will be R. However, if X, instead of playing (1, 0, 1, 0),
reduces p1 by ε, for any ε > 0, then eventually X will defect, where the
outcomes will then alternate between CD and DC. We see that X makes
an arbitrarily small strategy change, and the payoffs for each player drop
to (S + T)/2. The reason that continuity is important will become more
apparent in the next section.
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Another way to modify the IPD is to impose restrictions on the choices
for p and q, or equivalently, on p̃ and q̃. This allows us to ensure that the
cases listed in the previous theorem never occur. For instance, if any p or
q with two zero entries are made illegal, then cases (i) and (ii) will never
occur. Similarly, we can avoid (iii) by eliminating 1 as an option for both
players. In order to avoid case (iv), we can require that if any of p̃i are zero,
then all other entires must be striclty between 0 and 1, and simlarly for q̃.
Though this eliminates the dependency of payoffs on the initial conditions,
it has also eliminated several famous strategies, such as Always Cooperate,
Always Defect, and Tit-for-Tat. Instead, players must play strategies which
are close. For example, suppose that X and Y each does not trust the other
to cooperate, so that they decide to defect as much as possible. It is illegal to
defect all of the time, but they may choose to always cooperate with small
probabilities δ and ε. When X plays (δ, δ, δ, δ) and Y plays, (ε, ε, ε, ε) one
can find that Y’s payoff is given by

sY = 1 + 4δ− ε(1 + δ)

for the conventional values (R, T, S, P) = (3, 5, 0, 1). Notice that as Y de-
creases ε, her payout increases. In this situation, Y has no best strategy;
she would always prefer a smaller value of ε. This is counter-intuitive, and
slightly troubling.

In order to eliminate this strange behavior, we can impose more restric-
tions on the available strategies to X and Y. For some number 0 < ε < 1

2 ,
if we only allow strategies where each pi and qi are in the interval [ε, 1− ε],
then we avoid dependence on initial conditions, and avoid the previous
situtation where Y is never satisfied with her strategy. This is exactly the
approach taken by Bohning et al. (2002).





Chapter 4

Evolutionary Play

We might ask how a rational player would react when they know X is play-
ing an extortionate strategy. If Y is rational, then she will play to maximize
her gain, which means choosing the strategy (1, 1, 1, 1), and accepting the
unfair payoff. This is because Y has only one chance to earn points. How-
ever, when the IPD is played many times (!), then there could be some
advantage to being uncooperative. If Y played (0, 0, 0, 0), then X would
receive P; if she does this repeatedly, there is a chance X could realize that
the extortionate strategy wasn’t effective, and instead switch to a more co-
operative strategy.

In order to eliminate the need for analyzing the though processes of
each player, we suppose that Y plays according to a simple rule. She intially
plays a strategy q0 and makes small changes to this strategy to increase her
score. We can then ask what strategy Y will approach when X plays an
extortionate strategy. Even though Y’s optimal strategy given that X plays
an extortionate strategy is to cooperate (q = 1), it may not be true that
Y will always evolve towards this. Press and Dyson conjectured that for
conventional payouts, i.e. (R, T, S, P) = (3, 5, 0, 1), play will always evolve
towards cooperation.

To formalize this, suppose that X plays an extotrionate stategy with
χ > 1, where she choose φ so that 0 < p1, p2, p3 < 0. We wish to only
consider cases where the stationary distribution is unique in order to sim-
plify the analysis. Referring to Theorem 3.1, neither case (i) nor (iii) when
X plays an extortionate strategy. However, we can see that case (iv) occurs
when Y chooses a strategy of the form q̃ = (0, q̃2, 0, 0). In order to make sY
a function of q alone, we allow Y to play all strategies except these. In this
new domain, since sY is a rational function in q1, q2, q3, q4 whose denomi-
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nator is never zero, both it and its derivative are Lipschitz continuous on
this domain.

We want q(t) to change in the direction that increases Y’s payout the
most. Intuitively, the derivative of q(t) should be the gradient of sY, but
there are cases where this would cause q(t) to leave I4, which would make
it an invalid probability vector. For instance, along the wall where q4 =
0, both players will receive a payout of P. Once Y is at this point, the
gradient of sY will be zero in the first 3 coordinates (since in these direc-
tions, her payout is still P), and there are choices of R, T, S, P where it is
negative in the fourth. In order to account for this, we define F(q) =
(F1(q), F2(q), F3(q), F4(q)) to be ∇sY(q(t)), except when qi(t) = 0 and the
ith coordinate of ∇sY is negative, or qi(t) = 1 and the ith coordinate of ∇sY
is positive. In these cases, we say that Fi(q(t)) = 0.

Given an initial vector q0, we define Y’s evolution of play to be a vector
valued function q(t), for t ∈ [0, ∞) which satisfies:

q(0) = q0

q′(t) = F(q(t)).

when q(t) ∈ U.
From the Picard-Lindelöf theorem, such a q exists and is unique as long

as q(t) remains in the interior of I4. Once a path hits the boundary of I4,
q(t) may fail to be continuous, as F(t) may fail to be.

Our first result shows that there is a region near the origin in which all
initial strategies will reach the situation described above.

Theorem 4.1. When 2P > S + T, there is an open region W such that when
q0 ∈W, the path q(t) terminates on the boundary of q4 = 0.

Proof. To prove this, we first cite a result from Press and Dyson, which
states that

∇sY

∣∣∣
q=0

= F(0) =
(

0, 0, 0,
(T − S)(S + T − 2P)
(P− S) + χ(T − P)

)
Since 2P > S + T, the last coordinate is negative: call its value −2ε. Since F
is continuous, there is a δ > 0 such that when 0 < ‖q‖ < δ, then |Fi(q)| < ε
when i = 1, 2, 3 and F4(q) < −ε. Here, we let ‖q‖ be the infinity norm,
namely, the maximum of its coordinates.

Now, define W to be the region where 0 < q4 < δ/2, and |qi − δ/2| <
δ/2− q4 for i = 1, 2, 3. We first show that any flow originating in W must
leave W.
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For any q0 ∈ W, assume that q(t) ∈ W when t ≤ δ/(2ε). Consider the
fourth coordinate of q(t). This satisfies

dq4(t)
dt

= F4(q(t)).

Integrating, we have

q4

(
δ

2ε

)
= q4(0) +

∫ δ
2ε

0
F4(q(t)) dt.

We have that q4(0) < δ/2 , and since W is in the region where ‖q‖ < δ,
that F4(q(t)) < −ε. Thus,

q4

(
δ

2ε

)
< δ/2 +

∫ δ
2ε

0
−ε dt = 0.

This shows q has exited W, contradicting our assumption.
Now, we show that q exits W where q4 = 0. Since W is open, the

set of times where q(t) 6∈ W is closed, and there is a minimum time t∗

where q(t∗) 6∈ W. This must either satisfy |qi(t∗)− δ/2| ≥ δ/2− q4(t∗) or
q4(t∗) 6∈ (0, δ/2). However, for i = 1, 2, 3,

∣∣∣∣qi(t∗)−
δ

2

∣∣∣∣ = ∣∣∣∣qi(0)−
δ

2
+
∫ t∗

0
Fi(q(t)) dt

∣∣∣∣
≤
∣∣∣∣qi(0)−

δ

2

∣∣∣∣+ ∫ t∗

0
|Fi(q(t))| dt

<

(
δ

2
− q4(0)

)
+
∫ t∗

0
ε dt

<
δ

2
−
(

q4(0) +
∫ t∗

0
F4(q(t)) dt

)
=

δ

2
− q4(t∗).

Thus, must be true that q4(t∗) 6∈ (0, δ/2). Since q4 is monotone decreas-
ing, this implies q4(t∗) ≤ 0, so that q first exits W where q4 = 0.

Once q4 = 0, we have that sY(q) = P, since this causes the state DD to
be absorbing. This holds for all values of qi, so the gradient of sY is zero in
these coordinates. Since ∇sY is negative, we have that F is also zero in the
fourth coordinate, so that q(t∗) is an equilibrium point. Thus, q(t) = q(t∗)
for all t ≥ t∗.
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Ultimately, this shows that W is a region where extortion is not an ef-
fective strategy for X. The hope, when X chooses an extortionate strategy,
is for Y to cooperate, so that X can receive her maximum possible score.
However, in this case, Y will evolve to choose a strategy where q4 = 0, so
that X actually recieves the lowest possible score.

The fact that 2P > S + T is a necessary condition for this proof suggests
that when 2P < S + T, initial strategies near the origin will evolve toward
cooperation, where sY is maximized. This is the conjecture that Press and
Dyson had. The case where q0 was near the origin was tractable since the
formula for ∇sY at this point was relatively simple. In most places, the
gradient is a complicated function which is difficult to even find useful
bounds for. A good path for future research would be to try to prove the
conjecture of Press and Dyson, and in the case where 2P > S + T, to find
the precise regions where Y evolves towards rejecting extortion.
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