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Abstract

In an interval society, voters are represented by intervals on the real line,
corresponding to their approval sets on a linear political spectrum. I imag-
ine the society to be a representative democracy, and ask how to choose
members of the society as representatives. Following work in mathematical
psychology by Coombs and others, I develop a measure of the compatibil-
ity (political similarity) of two voters. I use this measure to determine the
popularity of each voter as a candidate. I then establish local “agreeability”
conditions and attempt to find a lower bound for the popularity of the best
candidate. Other results about certain special societies are also obtained.
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Chapter 1

Introduction

In voting situations, a political spectrum can often be represented by a
line. Political preferences of voters may be imagined to be segments of
this line—generally someone will have a range of positions they approve
of rather than only one specific ideal point. Then, one approach to polit-
ical decision-making is to seek out points on this spectrum approved by
many voters (see Berg et al. (2010)). This approach and related work has
led to interesting geometric combinatorial results. For example, if every
pair of voters has a point in common, Helly’s theorem from convex geome-
try states that some point is shared by all voters. Berg et. al show a result for
a relaxation of these conditions: a society is defined to be (k, m)-agreeable if
among any m voters there is a subset of k voters who share a point in com-
mon. They provide a guaranteed minimum number of voters that must
share a point in common in a (k, m)-agreeable society.

In his 2012 thesis, Burkhart (2012) uses tolerance graphs to explore agree-
ability where voters have an intermediate level of approval between com-
plete approval and complete disapproval.

I have begun working on a different approach. Rather than attempt
to find a point of high agreement, I develop a notion of good representa-
tives. That is, I wish to find members of a society whose views are highly
compatible with many other voters. I develop a notion of compatibility that
assigns to any pair of voters a value between 0 and 1 measuring their sim-
ilarity. I use this compatibility to determine the most popular voter, that
is, the one with the highest average compatibility with the other voters in
the society. My goal is to develop guarantees of good candidates similar to
those shown by Berg et. al.

Whereas previous research has corresponded to approval voting soci-
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eties, my popularity system does not appear to precisely correspond to
any existing voting system. This is because voting systems typically rely
on voters providing only a ranked list of their candidate preference, rather
than the extent to which they approve each candidate (for one exception,
see Brams (1975)). However, results relating to positional voting systems
may still be relevant. In a positional voting system, each candidate receives
points based on their position in each voter’s ranked list of candidates, but
the points assigned for each ranking are the same for each voter (Hanusa
(2009)).

Chapter 2 is a more detailed review of previous work. In Chapter 3, I
provide several important definitions, including developing and justifying
my measure of voter compatibility. In Chapter 4, I show some results con-
cerning minimal popularity and ideal candidates in a class of societies I call
accordion societies. In Chapter 5, I discuss unanswered questions and new
directions for future inquiry.



Chapter 2

Background

In this chapter I provide an overview of research involving voter approval
sets and intersection, as well as some general background on voting prob-
lems.

2.1 Geometric Voting

In geometric voting models, a political spectrum is modeled as a space,
e.g. Rn or a circle. Then, voters’ approval sets are modeled as convex sub-
sets of the political space. Past research has generally sought results regard-
ing points in the intersections of many approval sets.

In an interval society, the political spectrum is the real line. Then we give
the following definition:

Definition 1. A society is a political spectrum together with a set of voters.
A voter is represented by a closed interval of R, which may be thought of
as a voter’s approval set within the reals. We say that a voter v = [`v, rv] has
size |v| = (rv − `v).

Figure 2.1 A linear spectrum with voter v’s approval set

A voter is thought of as approving of any point within that voter’s ap-
proval set. A concept of interest in most of this work is the agreement number
of a society, which denotes the maximum number of voters that intersect at
a single point.
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One easy and useful result follows from Helly’s theorem. It states:

Theorem 2 (Helly). Given n convex sets in Rd where n > d, if every d + 1 of
them intersect at a common point, then they all intersect at a common point.

This was interpreted by Berg et al. (2010) to obtain the following (in the
case where d = 1):

Theorem 3. In any society where every pair of voters has at least one point in
common, there exists a point shared by all voters.

In Voting In Agreeable Societies, Berg et al. (2010) provide guarantees re-
garding the intersection of many voters. The local condition they use is as
follows: suppose that out of every set of m voters, some k of those voters
share a point in common. A society with this property is said to be (k, m)-
agreeable. Then their main result is as follows:

Theorem 4. Let 2 ≤ k ≤ m. In a (k, m)-agreeable society of n voters, there is a
candidate who has the approval of at least n(k− 1)/(m− 1) voters.

Note that in this work “candidate” is taken to mean a point on the spec-
trum.

Berg et. al. also extend their work to Rd where approval sets are now
convex subsets of Rn, providing analogous results about agreement in (k, m)-
agreeable societies. Results are also found for the restricted case of d-box
societies, where approval sets are now boxes, or Cartesian products of d
intervals.

Eschenfeldt (2012) also studied agreement in box societies. He proves a
Turán-type result for circular arc societies; a minimum agreement number
is guaranteed given the number of pairs of voters with points in common.
He also considers results related to the projections of approval boxes onto
the coordinate axes.

Arcs of a circle were used as the model for voter preference sets in Carl-
son et al. (2010) and Hardin (2010). Here several convenient features of
interval societies on a line no longer apply, including Helly’s theorem. In-
spired by results by Turán in interval intersection graphs, Carlson et al.
(2010) suppose that emax pairs of arcs intersect (that is, emax edges are present
in the intersection graph of the arcs). Then, let M denote the maximum
and m the minimum number of arcs containing a given point. The authors
proved a lower bound on M given emax and m. They did this by construct-
ing a society Amax which they proved minimized M given emax and m.

In Burkhart (2012), voters are instead modeled by tolerance intervals,
with an approval interval contained in a larger interval denoting a “maybe”
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Figure 2.2 A 2-box society.

region. Then two voters are said to intersect if their approval regions inter-
sect, or if the approval region of one intersects the “maybe” region of the
other. The author uses results about tolerance graphs to bound agreement
number below. He achieves improvements in these bounds by applying
bounds on the relative sizes of voter intervals and the relative sizes of ap-
proval and “maybe” regions.

In Basic Geometry of Voting, Saari (1995) approaches voting problems
through a geometric lens. Rather than modeling a political space geomet-
rically, Saari uses discrete preference rankings to describe possible election
results in geometric terms.

Some seminal work in geometric or spatial voting problems was done
by Steven J. Brams. In Spatial Models of Election Completion Brams (1979),
Brams models elections by supposing voters are points “distributed along
a left-right continuum”, justifying this model with examples of elections
where candidate positions on one or a few key issues were the driving
force of a campaign. Here Brams takes the usual position of making can-
didates into points, and focuses much of his attention on two-candidate
races. However, in Chapter 8 Brams (1979) introduces the idea of candi-
dates as intervals. Brams points out that candidates are often known to
state their positions on issues vaguely, effectively creating a range of posi-
tions which the candidate could be believed to take. Brams offers several
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Figure 2.3 A circular arc society

different potential voter responses to such a “fuzzy” position, including as-
suming that the candidate’s true position is the point in the range closest
to their own, or instead assuming that it is the farthest point. He does not
propose a probablistic model where voters make judgments based on esti-
mating the probabliity that a candidate agrees with them. Brams points to
Nixon’s presidential primary victory in 1968 and George McGovern’s gen-
eral election loss as examples of varying effects of ambiguous positions.

Brams explores another interesting area of voting theory in Game Theory
and Politics Brams (1975). Brams distinguishes between “qualitative” and
“quantitative” voting games. In quantitative voting games, voters do not
simply provide a preference ranking of the candidates, but may express ap-
proval with varying levels of intensity according to their own preference.
For example, a voter may be given six votes to distribute as they choose,
with the option of giving multiple votes to the same candidate. Brams con-
siders elections to representative bodies such as multiple-person commit-
tees, and adds the additional condition that a minority faction of the voters
should be able to guarantee roughly proportional representation on such
a committee. He then shows an interesting result: these two conditions,
proportional reperesentation and varied intensity voting, are actually in-
terdependent. That is, voting systems in which voters cannot choose how
strongly to support a candidate do not in general admit the guaranteed
representation of minority factions. This is relevant to my work since I am
also proposing a system where voters register different levels of support
for their chosen candidates.
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2.2 Mathematical Psychology

Since much of my paper is devoted to developing a concept and measure-
ment of voter agreement, some discussion of theories of measurement is
warranted. In Chapter 3, I will explain how these ideas relate to my model.

Mathematical Psychology (Coombs et al. (1970)) describes frameworks
for applying mathematical models to psychology in several different ways.
This book includes discussions of measurement, utility, and decision mak-
ing that are all relevant to my work.

Coombs defines measurement as "The process by which the scientist
represents properties by numbers." Several problems and desired proper-
ties present themselves with this process. Measurements should respect
certain relationships between the objects they measure. We should know
the extent to which a certain measurement is unique. And our measure-
ment should yield meaningful inferences about the real-world properties
we measure.

The representation problem refers to the evaluation of a measurement
by checking whether it respects binary relations between the objects it mea-
sures. For example, a weight measurement reflects an "is heavier than" re-
lation that may be checked empirically with a balance scale. Coombs et al
provide a theorem that states that for any relation between a collection of
objects, a measurement (function from the collection to the real numbers)
respecting that relation exists if and only if the relation is transitive.

The uniqueness condition refers to the set of different functions which
would be a valid measure for an empirical property. For example, if our
representations only preserve an order relation, then any representation
with the same order is valid. On the other hand, if a measurement is an
interval scale (preserving “distance" between quantities), then admissible
measurements are related by positive linear transformations. Weight is an
interval scale by this definition, but a scale defined by asking people to
describe the relative loudness of sounds may not be.

Coombs et. al. describe meaningfulness problems as those related to the
kinds of interpretations which may be validly extracted from a measure-
ment (for example, we must have an interval scale to meaningfully take an
average). They define a statement as formally meaningful if its truth is not
changed by admissible transformations of a measurement. For example,
the average weight of a collection of objects is the same, up to unit conver-
sion, in grams or pounds. They also discuss the problem in psychology of
justifying a numerical measurement. The authors offer the primary justifi-
cations of using a numerical scale to predict some dependent variable, or
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of providing descriptive statistics with respect to the population as a whole
(such as IQ).

The authors conclude their discussion of psychological measurement
by providing some examples of different types of scales. These include or-
ders; semiorders where the transitivity condition is relaxed; bisection systems
where a “halfway between” criterion provides a sort of interval scale; and
systems where multiple independent variables are applied to one depen-
dent variable.

In Chapter 5 of Mathematical Psychology Coombs et al. (1970) discuss in-
dividual decision making and mathematical theories of utility. The basic
conflicts in individual decision making are incomplete knowledge of ex-
ternal outcomes on the one hand, and unsure internal preferences on the
other.

An interesting outcome in decision making is that even in easily mea-
sureable decisions (with monetary awards, for example), a straightforward
expected value is not adequate to predict decision making. We must in-
stead use expected utility, where utility is a numerical measurement of out-
comes. Utility theory was axiomatized by von Neumann and Morgenstern
in 1971, providing the conditions under which a utility function that ade-
quately predicts behavior in gambles exists.

I will next define some important terms and develop my concept of
voter agreement. Since I am seeking good representatives rather than pop-
ular points, my concept of voter agreement will be significantly different
from the definitions used by previous authors. I will also develop some
new concepts analogous to agreement proportion and agreeability.



Chapter 3

The Compatibility Metric

Recall:

Definition 5. A society is a political spectrum (in our case, R) together with
a set of voters. A voter is represented by a closed interval of R, which may
be thought of as a voter’s approval set within the reals. We say that a voter
v = [`v, rv] has size |v| = (rv − `v).

The problem of choosing representatives in such a society has important
differences from the related problem of choosing point positions. A voter
may not simply be satisfied that a candidate has any agreement with them
at all; voters have a range of opinions that they wish to see represented, and
wish to vote for a candidate that they can trust to do things they approve
of. I seek to develop a measure of voter compatibility that reflects this and
allows interesting choices of candidates, not trivial ones. It is also desirable
to have compatibility be symmetric and normalized (that is, take on values
between 0 and 1). The basic idea of compatibility should be a measurement
of the similarity of two voters.

A naive measure of this compatibility would simply measure the over-
lap of two voters. That is, for voters u and v, we could have their compati-
bility equal |u ∩ v|.

Figure 3.1 An example pair of voters
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Under this approach, the pair of voters above has compatibility 1
4 , as

does any pair of voters of any size with the same overlap.
However, this approach fails to take into account that voters disapprove

of positions outside their approval intervals. A voter large enough to con-
tain all the other voters would be the most popular candidate under this
measure, but a voter might not want to elect a candidate that could take on
any position in the entire spectrum.

Figure 3.2 In a society where compatibility is measured by overlap size, the
blue voter wins.

Another option is to compare the overlap to the candidate’s entire interval—
a voter may wish to vote for a candidate if the voter approves of most of
the candidate’s approval interval. We could imagine the compatibility of
voter v with a candidate interval c as

Cc(v, c) =
|v ∩ c|
|c| .

Under this measure, the red voter in Fig. 3.1 has compatibility 1
2 with the

blue voter as a candidate, while the blue voter has compatibility 1
4 with the

red voter as a candidate.
This resolves the issue above. However, this compatibility measure in-

vites the opposite problem: a very small candidate whose approval set in-
tersects or is contained by many voters would be the most popular, despite
the fact that any voter would have few of its positions represented by this
candidate.

Figure 3.3 A society where a very small voter is the most popular under the Cc
measure.

As comparing the overlap to the voter’s interval size has similar prob-
lems to simply using the overlap size, I propose using the average of these
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two approaches:

Definition 6. The compatibility of two voters u and v is defined to be

C(u, v) =
|v ∩ u|

2

(
1
|v| +

1
|u|

)
.

For example, the two voters in Fig. 3.1 have compatibility 3
8 .

Some facts are immediately apparent about this measure.

• It is symmetric, which matches the intuitive sense that voter v’s will-
ingness to vote for candidate u should match u’s willingness to vote
for v; it is a measure of voter compatibility. Thus C(u, v) = C(v, u).

• It rewards candidates for having similar sizes. If |u|/|v| = r ≤ 1, then
their compatibility is bounded above by 1

2 (1 + r).

• Two voters have compatibility 0 if and only if they are disjoint; they
have compatibility 1 if and only if they are identical.

If we suppose that a voter or candidate’s decision on any issue is chosen
randomly from their interval, we can interpret the compatibility measure
as the probability that voter v chooses a position voter u finds acceptable
averaged with the probability that u chooses a position v finds acceptable.

The compatibility measure can be examined in terms of the measure-
ment properties described by Coombs et al. (1970). Because empirical data
is outside the scope of this project, the representation problem cannot be
directly addressed. However, taking the probablistic interpretation above
we may consider compatibility to be an interval scale, implying that it is
unique up to positive linear transformations. Considering compatibility as
an interval scale also allows averages to be taken, a fact that will be used in
definining popularity.

I also propose a concept of popularity which grows out of pairwise com-
patibility. If a candidate is compatible with many voters in a society, that
candidate would make a good representative for the society. So that soci-
eties with different numbers of voters may be compared, we use an average
compatibility to measure popularity.

Definition 7. A voter v in an n-voter society V has popularity

P(v) =
1

n− 1 ∑
u 6=v∈V

C(u, v).

This is the voter’s average compatibility with all voters in the society be-
sides itself.
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Finally, we introduce two ideas of “agreeable” societies under this idea
of compatibility. These are meant to be analogous to the agreeable societies
studied in previous work on interval societies (Berg et al. (2010)).

Definition 8. A society V is ε-overlapping, or an ε-ovelap society, if for all
u, v ∈ V,

|u ∩ v| ≥ ε.

This agreeability measure is convenient in that its geometric implica-
tions are relatively obvious. However, it does not work well as a measure
of a highly compatible society. This can be seen by the fact that any com-
patibility in (0, 1] can be achieved by a pair of voters with any fixed ε > 0
overlap. In fact, any ε-overlap society can be written equivalently (in terms
of compatibility) as a unit overlap society by scaling each voter by 1

ε .
The following alternate agreeability measure attempts to resolve these

issues by invoking pairwise compatibility directly.

Definition 9. A society V is ε-compatible if for all u, v ∈ V,

C(u, v) ≥ ε.

This measure, while closer to what is meant intuitively by an “agree-
able” society, is harder to work with. As a result my present work concerns
ε-overlap societies.

Next I will explore how to bound candidate popularity in these agree-
able societies. This problem will be approached primarily by construct-
ing societies which I hope will minimize average or maximum popularity
while maintaining the overlap or compatibility conditions.



Chapter 4

Minimum Popularity and
Accordion Societies

One of my overall goals is to develop guarantees regarding the best repre-
sentative in society. Specifically I wish to find ways to give a lower bound
for this best candidate’s popularity. Clearly no nonzero bound exists in
general; in a society where all voters are disjoint, every voter has popular-
ity zero. But local conditions may be imposed that change this bound. I
will investigate the ε-overlap societies defined in the previous chapter. Re-
call that in these societies, an interval of length at least ε is shared by all
voters.

4.1 Unit Interval Societies

For simplicity’s sake I first constrain my attention to societies where every
voter is of unit length. Then in order to demonstrate the minimal popular-
ity of the best candidate in such a society, I construct a society where the
maximum candidate popularity is minimized for all ε-overlap societies.

Theorem 10. For a unit interval society V with n voters, suppose that each pair
of voters has an overlap of at least ε. Then there exists some voter c ∈ V with
popularity at least

P(c) ≥ n
2
(1 + ε)− 1.

Furthermore, there exist societies where the most popular candidate has exactly
this popularity—that is, the bound is tight.
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Figure 4.1 An ε-overlap society with unit intervals

Proof. To see this, first note that by Helly’s theorem (Thm. 2) there exists
some point a such that a is in the approval interval of every voter. Further-
more, since the approval sets are convex, a is involved in the ε overlap of
each pair of intervals. Then, we may choose a so that for each voter interval
[li, ri], we have

a− li ≥ ε/2,

ri − a ≥ ε/2.

Now, order voters left to right, and consider Vl ⊂ V and Vr ⊂ V

consisting of those voters with over half of their interval to the left and right
of a, respectively. Note that Vl ∩Vr = ∅. If any voters have a fall exactly
at the midpoint of its interval, one such voter is our popular candidate, c.
Otherwise, if |Vl | > |Vr| choose the rightmost member of Vl , if |Vr| > |Vl |
choose the leftmost member of Vr, and if the sets are the same size choose
either of these.

Now consider the popularity of c. Suppose without loss of generality
that c ∈ Vl . Then for each v 6= c with v ∈ Vl ,

v ∩ c ≥ 1
2
(1 + ε).

Next, consider any u ∈ Vr. It is possible that ( 1
2 (1+ ε)− u∩ c) = δ > 0.

However, because we know that the left endpoint of v is no further right
than a− ε/2, we must have that for lc, the left endpoint of c,

lc ≤ a− ε

2
− 1

2
− δ.

For any other member of Vl , each member of Vl has its left endpoint lie
between (a + ε/2− 1) and lc (since we have chosen c to be the rightmost
interval in Vl). Thus we see that for any interval v ∈ Vl ,

c ∩ v ≥ 1
2
(1 + ε) + δ.
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Figure 4.2 The 8-voter ε-accordion society

Because |Vl | ≥ |Vr|, we may balance out the popularity loss from each
member of Vr with a corresponding gain from a member of Vl , so that the
average popularity of c is at least 1

2 (1 + ε). Summing over all of V and
subtracting the intersection of c with itself supplies the desired popularity
of c.

The bound proved above is a tight bound. To see this, consider the ε-
accordion society. I define this society to be one where the voters are evenly
divided into left side and right side voters, with the left side voters contain-
ing only the required overlap interval and points to its left, while the right
side voters contain only the overlap interval and points to its right.

In an ε-accordion society with an even number n of voters, each voter
has an intersection of 1 with n

2 − 1 voters and an intersection of ε with n
2

voters, for a total popularity of 1
2 (1 + ε)− 1.

4.2 Varied-Size Accordion Societies

It seems that it is unavoidable for each voter to have a high degree of com-
patibility with many other voters in a ε-overlap society, since even when
such a society is polarized there are still many voters on a voter’s “side”.
One way to decrease the average compatibility is to have these voters vary
in size, since voter compatibility is bounded above as a function of the ratio
of two voters’ sizes. In such a society, we suppose that a pair of voters vi,L
and vi,R of the same size exist on either side of the overlap region for each
distinct voter size.

Now rather than a compatibility of 1 between all voters on the same
side, their compatibility takes on values between 1

2 and 1. And as larger
voters are added to a society, a fixed voter vi has its compatibility with
large voters on the opposite side approach zero.
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Figure 4.3 A ε-overlap accordion society with voters of varying sizes

To perform calculations on the popularity of voters in such a society, we
fix an overlap size of 1 (since this is equivalent to a ε-overlap society scaled
by a factor of 1

ε ). Then the following bound may be calculated:

Theorem 11. Let V be a unit overlap society of size n in which the unit overlap
region is shared by pairs of voters vi,L and viR with |vi,L| = |vi,R| = |vi|. Suppose
each voter vi,L has its right endpoint at the right endpoint of the overlap interval,
and voter vi,R has its left endpoint at the left endpoint of the overlap interval.

Let

M =
n/2

∑
k=1

1
|vk|

.

Then the popularity of a voter v is maximized when

|v| =
√

n
2M

.

Proof. Note that our numebr 2M is simply the sum of the reciprocals of |v|
for all v ∈ V. The voters are grouped into |vi| pairs for notational conve-
nience.

Consider a voter vi,L (the calculation is the same for its opposite voter
vi,R).

For each of the n/2 voters on the left side of the overlap region,

C(vi,L, vk,L) =
1
2

(
1 +
|vi|
|vk|

)
.

For each of the n/2 voters on the right side,

C(vi,L, vk,R) =
1
2

(
1
|vi|

+
1
|vk|

)
.

We take the sum of these (and subtract 1 to account for overcounting
the compatibility of v1,L with itself), to find

P(vi,L) =
1

n− 1

(
n/2

∑
k=1

[
1
2

(
1 +
|vi|
|vk|

)
+

1
2

(
1
|vi|

+
1
|vk|

)]
− 1

)
.
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We simplify this to obtain

P(vi,L) =
|vi|+ 1

2

n/2

∑
k=1

1
|vk|

+
n
4

(
1 +

1
|vi|

)
− 1.

Then, this may be rewritten

P(vi,L) =
M
2
(|vi|+ 1) +

n
4

(
1 +

1
|vi|

)
− 1,

leaving only constants and terms that depend on |vi|. Maximizing the
voter’s popularity is now a matter of finding a zero of the derivative; that
is, our ideal candidate c satisfies

M
2
− n

4

(
1
|c|2

)
= 0.

Some algebraic manipulation leads to the desired result.

Note that a voter of the ideal size does not necessarily exist in the so-
ciety. Then this result may be interpreted as giving the size of an extra
“weirdo” candidate that could be added to the society on either the left or
right side of the overlap region.

We can use this result to calculate the ideal voter size for different types
of accordion societies. I will provide some examples. First I consider a
society with linearly increasing voter sizes.

Corollary 12. Let V be a society of size n as described in Theorem 11 where
|vk| = k. Then for large values of n, the ideal voter v has size

|v| ≈
√

n
2 ln(n)

.

Proof. The result follows from using

M =
n/2

∑
k=1

1
k
≈ ln(n/2).

Since ln(n/2) = log(n) + ln( 1
2 ), the additive factor may be ignored when

describing the result asymptotically.
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So a linearly increasing society with 100 voters of lengths 1 to 50 would
have an ideal candidate size of approximately 3.29, while a society with
1000 voters of lengths 1 to 500 would have an ideal candidate size of ap-
proximately 8.51. With 10,000 voters, the ideal candidate size reaches about
23.3.

Next, I consider a society where voters’ size increases exponentially
rather than linearly.

Figure 4.4 An exponentially increasing varied-size accordion society

Corollary 13. Let V be a society of size n as described in Theorem 11 where
|vk| = 2k. Then for large values of n, the ideal voter v has size

|v| ≈
√

n
2

.

Proof. Again we begin by calculating, for large values of n,

M =
n/2

∑
k=1

1
2k ≈ 1,

giving the desired result by Theorem 11.

So if our society had 100 voters of lengths 1 to 250, the ideal candidate
size would be approximately 7.07. If it had 1000 voters of lengths 1 to 2500,
the ideal candidate size would be approximately 22.36. In a 10,000 voter
society with voters of length 1 to 25000, the ideal candidate has size approx-
imately 70.7.

It remains to be shown that one of the voters of the two closest sizes
to the ideal is the actual most popular voter, and to determine this voter’s
popularity. This could by done by demonstrating that popularity is mono-
tonic on either side of the ideal candidate size. There are other related in-
quiries and further work that I will discuss in the next chapter.



Chapter 5

Further Questions

There are several unfinished approaches to my compatibility scheme, par-
ticularly involving accordion societies. In addition to determining the pop-
ularity of the ideal candidate, it should be shown that one of the voters
with size close to the ideal will be the most popular candidate in practice
and find this voter’s popularity. Finally, it remains to be shown that un-
der some restriction these accordion societies have the least popular best
candidates for ε-overlap societies.

Then, this work could be applied to ε-compatibility societies. By bound-
ing the maximum size of voters, an ε-overlap society becomes a compati-
bility society. Then it could be possible to find a scheme for varying voter
size in an accordion arrangement that minimizes the maximum popularity.
One related problem that may be useful for this is exploring minimizing
average popularity (which is equivalent to minimizing average compati-
bility). This could lead to a result guaranteeing candidate popularity in
ε-compatible societies.

An important direction for future research will be expanding my results
to conditions more realistic than ε-compatibility. For example, it may be
desirable to develop a condition analogous to (k, m)-agreeability.

Finally, some exploration of the relationship of my popularity rating to
known or possible voting systems should be done. This work will involve
more research in voting theory.
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