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Abstract

Classical algebraic geometry is the study of curves, surfaces, and other va-
rieties defined as the zero set of polynomial equations. Tropical geometry
is a branch of algebraic geometry based on the tropical semiring with op-
erations minimization and addition. We introduce the notions of projective
space and tropical projective space, which are well-suited for answering
enumerative questions, like ours. We attempt to describe the set of trop-
ical lines contained in a tropical quadric surface in TP3. Analogies with
the classical problem and computational techniques based on the idea of a
tropical parameterization suggest that the answer is the union of two dis-
joint conics in TP5.
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Chapter 1

Introduction

Classical algebraic geometry is the study of geometric objects that can be
defined through algebraic formulas, such as conics and hyperplanes. A
prominent area of the subject is enumerative geometry, the study of count-
ing the number of a particular geometric object. For instance, one may ask
how many points are in the intersection of two lines, or how many conics
are contained in a particular surface. This thesis is an attempt to answer an
enumerative question, namely:

Question 1. How many tropical lines are contained in a general, smooth
tropical quadric surface in TP3? In particular, what is their structure as a
subset of the tropical Grassmannian?

Classical quadric surfaces in P3 have two distinct rulings of lines that
form conics in the Grassmannian, so it is of particular interest to find to
what extent the analogue holds in the tropical setting. One rephrasing of
this question is: do all points in a smooth tropical quadric surface have two
distinct tropical lines through them that are contained in the surface?

Vigeland Vigeland (2010) used a purely combinatorial approach to show
that the answer to this question is yes for points contained in the 2-dimen-
sional bounded region of a smooth quadric surface. We take a more alge-
braic approach.

In order to answer this question, we first introduce tropical geometry
and what it means for a set to be a tropical variety (Section 2). Then, we de-
fine projective space, show how it can provide consistant answers to enu-
merative problems, and extend our definition to the tropical setting (Sec-
tion 3). In Section 4, we explain how to define the structure of a set of lines,
namely, we define the Grassmannian to be the set of lines (or more general
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linear spaces) and embed it in a space we do understand using the Plücker
embedding. Section 5 solves this problem in the classical (non-tropical) set-
ting using the background developed in previous sections and Section 6
describes how the classical result may be used to answer our main ques-
tion. Section 7 discusses what it means for a tropical surface to be smooth
and how we use properties of smoothness to restrict our attention to par-
ticular tropical quadrics. In Section 8, we develop of method of tropical
parameterization, which is used to construct the key computer program of
Section 9, which details our exploration of tropicalized conics in the tropi-
cal Grassmannian. This program failed to find a pair of intersecting conics
in 157,000 examples of possibly smooth surfaces, providing evidence for
the tropical analogue. Section 10 describes in detail two examples run by
our computer program (one with intersecting conics and one with disjoint
conics) and Section 11 discusses potential plans for future research.



Chapter 2

Tropical Geometry

Tropical geometry is a developing field of algebraic geometry that is often
called “piecewise linear” geometry. To see why, we define tropical curves
and surfaces through two different approaches in this section.

2.1 Tropical Hypersurfaces

First, we consider the tropical semiring: R ∪ {∞} with the operations �
and ⊕ defined by x � y = x + y and x ⊕ y = min{x, y}. For example,
3� (2⊕ 8) = 3� 2 = 5. We refer to � as tropical multiplication and ⊕ as
tropical addition and may write x� x� . . .� x = xn as an abbreviation of
repeated tropical multiplication.

Under these operations, R∪{∞} satisfies all the axioms of a field except
that not all elements have an additive inverse. To see this, observe that
x� 0 = x and x⊕∞ = x for all x ∈ R ∪ {∞}. Thus, 0 is the multiplicative
identity and ∞ is the additive identity. However, given a real number x,
there is no real number y such that min{x, y} = ∞.

Since R ∪ {∞} is “almost” a field, we can define polynomials over it.
We now drop the ∪{∞} and use R to refer to the tropical semiring in order
to simplify notation.

Definition 2. A tropical monomial in variables x1, . . . , xn is an element of the
form xi1

1 � x2 � . . .� xin
n , written as x1x2 . . . xn for short. We say a tropical

monomial has degree i1 + . . . in. A tropical polynomial is a tropical linear
combination of tropical monomials and has degree equal to the maximum
degree of these monomials.
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Figure 2.1 The graph of f (x, y) = 3 � x2y ⊕ −5 � y2 ⊕ 1xy. Source:
Wolfram-Alpha.

Example 3. Consider the tropical polynomial in two variables f (x, y) =
3� x2y⊕−5� y2 ⊕ 1xy. We may write this in terms of usual arithmetic as
f (x, y) = min{3 + 2x + y,−5 + 2y, 1 + x + y}. Graphing f in 3 space, we
see that it is the minimum of three planes, hence continuous, concave, and
piecewise linear.

We are now ready to define tropical curves through tropical polynomi-
als.

Definition 4. Let f : Rn → R be a tropical polynomial. Following Macla-
gan and Sturmfels (In progress), we define the tropical hypersurface T ( f ) to
be the set of points p in Rn such that in computing f (p), the minimum of
the summands of f is attained at least twice. Equivalently, these are the
points where f is not differentiable. We call these points the corner locus of
f .
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Figure 2.2 The tropical graph of x⊕ y⊕ 0

Example 5. As a simple example, consider the function f (x, y) = x ⊕ y⊕
0 = min{x, y, 0}. When x and y are negative, the minimum is attained
twice if and only if x = y, so V( f ) contains the ray x = y beginning at
the origin of R2 and extending into the third quadrant. When x > 0, the
minimum is attained twice if and only if y = 0, so V( f ) also contains the
x-axis for positive x and similarly the y-axis for positive y. We also get that
(0, 0) ∈ V( f ) since the minimum is attained three times at the origin.

This approach is fine for defining hypersurfaces, that is, the corner locus
of a tropical polynomial. However, we would often like to define other
tropical objects such as conics in 3-space, or planes of codimension greater
than 1. It is easier to define these objects as the “tropicalization” of their
classical analogues.

2.2 Tropicalizations

Let us begin our description of this approach by discussing the classical
version of such objects. In the classical case, the term we typically use to
describe conics and hypersurfaces and the like is “affine variety.” For the
following, we let K be an algebraically closed field and K[x1, . . . , xn] be the
polynomial ring in n variables over K.

Definition 6. Let I ⊆ K[x1, . . . , xn] be an ideal. Then we define the zero
locus of I to be the set

V(I) = {(x1, . . . , xn) ∈ Kn| f (x1, . . . , xn) = 0 for all f ∈ I}.
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We say that V(I) is an affine variety.

The polynomial ring K[x1, . . . , xn] is Noetherian, which for our pur-
poses means that all of its ideals are finitely generated. Since every element
of an ideal in a commutative ring may be written as a linear combination
of its generators, the zero locus of an ideal is equal to the zero locus of its
generators.

Example 7. Let K = R, f = 1− x2 − y2 ∈ K[x, y] and I be the ideal gener-
ated by f , that is, I = ( f ). Then,

V(I) = V( f )

= {(x, y) ∈ R2|1− x2 − y2 = 0}
= {(x, y) ∈ R2|x2 + y2 = 1}.

Thus, V(I) is the unit circle in R2. (Note that R is not algebraically
closed, but we may still use it to provide intuition in some circumstances.)

Before we move on to tropical varieties, we introduce one last impor-
tant concept involving classical varieties: the coordinate ring of a variety.
Here we just give enough of an idea to motivate future definitions, but for
those seeking a more rigorous development of the coordinate ring, we rec-
ommend Reid (1988). The coordinate ring of Kn is K[x1, . . . , xn]. We may
describe the coordinate ring as the set of all rational functions on V that are
defined at all points of V. Since K is assumed to be algebraically closed, it
is not hard to show that all denominators must be constant and that such
functions (called regular) on Kn may only use positive powers of x1, . . . , xn.

However, we will soon consider the set (K \ {0})n, denoted (K∗)n. Since
no coordinates of (K∗)n are 0, we may adjoin inverse powers of the xi and
the coordinate ring is K[x±1

1 , . . . , x±1
n ].

The first step in tropicalizing an affine variety is to define a valuation.
Intuitively, a valuation is a map that transfers the classical operations of
multiplication and addition into their equivalent tropical operations.

Definition 8. Maclagan and Sturmfels (In progress) A valuation is a map
val : K → R such that:

(a) val(a) = ∞ if and only if a = 0

(b) val(ab) = val(a) + val(b)

(c) val(a + b) ≥ min{val(a), val(b)}
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We remark that any valuation map val : K → R naturally extends to a
valuation map val : Kn → Rn by (a1, . . . , an) 7→ (val(a1), . . . , val(an)).

Example 9. Let v : C→ R be defined by

v(a) =
{

∞ if a = 0
0 otherwise

Then v is a valuation map called the trivial valuation.

Example 10. Consider the field Q and let p be a prime. Any element of Q

may be written as pka
b , where k ∈ Z and p divides neither a nor b. Then,

val(
pka
b

) = k

is a valuation, known as the p-adic valuation. Maclagan and Sturmfels (In
progress) If we introduce a subscript to denote p, then val3(9/23) = 2 and
val5(7/5) = −1.

Example 11. For reasons that will be clear later, we want a valuation map
with image dense in R. We would also like to work over an algebraically
closed field to strengthen the transfer of results from the classical to the
tropical setting. For both these reasons, we introduce the field of Puiseux
series, C(t), the algebraic closure of the field of rational functions on C. We
may equivalently define Puiseux series as the set of formal power series

c1zq1 + c2zq2 + . . .

where ci ∈ C, qi ∈ Q and have bounded denominators, and q1 < q2 <
. . .. From this definition, we may easily define a valuation map by c1zq1 +
c2zq2 + . . . 7→ q1, the lowest exponent in the power series expansion. In the
study of tropical geometry, it is common to take the field K to be the field
of Puiseux series and that is what we will do from here on. Maclagan and
Sturmfels (In progress)

Returning to the idea of tropicalization, we define a tropical variety fol-
lowing Richter-Gebert et al. (2005).

Definition 12. Let I ⊆ K[x±1
1 , . . . , x±1

n ] be an ideal, where V(I) ⊆ (K∗)n.
Then,

T (I) = val(V(I))

is a tropical variety. If V(I) is a conic, we call T (I) a tropical conic and so
forth.
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Observe that the deletion of 0 from K removes the possibility of a coor-
dinate of ∞ in T (I). We would like to show that in some way, this definition
of tropical variety corresponds to the definition of tropical hypersurface we
gave earlier. In order to do so, we will need the following translation be-
tween classical and tropical polynomials.

Definition 13. Let f = Σu∈Nn+1 cuxu be a polynomial in K[x1, . . . , xn]. Then,
the tropicalization of f is the function trop( f ) : Rn → R by w 7→ min{val(cu)+
w · u : cu 6= 0}.

Example 14. Take f = (1+ t)x− 2t−1y+ t3x2y ∈ K[x, y]. Then, trop( f )(x, y) =
min{1 + x,−1 + y, 3 + 2x + y} = 1x⊕−1y⊕ 3x2y.

Theorem 15. Let I be an ideal of K[x±1
1 , . . . , x±1

n ]. Then

val(V(I)) = ∩ f∈IT (trop( f )).

That is, a tropical variety defined through a classical ideal is the intersection of all
corner locuses of the tropicalized ideal.

This theorem, found in Maclagan and Sturmfels (In progress), essen-
tially says that both notions of a tropical variety are equivalent. For that
reason, it is often called the Fundamental Theorem of Tropical Geometry.
We introduce the first notion, based on corner locus, to provide intuition
and background for applications of tropical geometry. But, the second
characterization via classical varieties will prove the most useful for our
purposes.



Chapter 3

Projective Space

In this section, we introduce the notion of projective space and extend our
definition of a tropical variety to tropical projective space. Projective space
is similar to affine space, except it is slightly “bigger” so that enumerative
questions have consistent answers. For instance, we will show later in this
section that any two distinct lines in 2-dimensional projective space inter-
sect exactly once; they cannot be parallel like in affine space.

3.1 Defining Pn

We begin with the definition of projective space.

Definition 16. Let K be a field with multiplicative group K∗ = K \ {0}.
Define an equivalence relation ∼ on Kn+1 \ {(0, . . . , 0)} by

(x0, . . . , xn) ∼ (y0, . . . , yn) if (x0, . . . , xn) = (λy0, . . . , λyn) for some λ ∈ K∗.

Then, n-dimensional projective space over K is Pn = Kn+1 \ {(0, . . . , 0)}/ ∼.
Elements of Pn are written (x0 : . . . : xn) with a colon instead of a comma.

We claim that projective space is much like affine space. First, there is
a natural inclusion ι : Kn → Pn. To see this, let U0 = {(x0 : . . . : xn) ∈
Pn|x0 6= 0} and define the following two maps, one in each direction. Let
π : U0 → Kn by

(x0 : . . . : xn) 7→ (
x1

x0
, . . . ,

xn

x0
)

and let ι : Kn → U0 by

(x1, . . . , xn) 7→ (1 : x1 : . . . : xn).
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By considering the equivalence relation used to define Pn, one may see,
perhaps unintuitively, that π is well-defined and ι is surjective. After this, it
is not hard to see that the two maps are inverses, so Kn is naturally included
in Pn. One may extend this construction to the sets Ui = {(x0 : . . . : xn) ∈
Pn|xi 6= 0}. We call such sets Ui the standard open sets of Pn.

Second, zero sets of polynomials in affine space naturally extend to zero
sets of polynomials in projective space.

Definition 17. A polynomial is homogeneous if it is the sum of monomials
of equal degree.

Given a d-degree polynomial f ∈ K[x1, . . . , xn], we define the homoge-
nization of f with respect to x0 to be the polynomial fh = xd

0 f ( x1
x0

, . . . , xn
x0
) ∈

K[x0, . . . , xn].

The first thing to notice is that while polynomials are generally not well-
defined on Pn (i.e., we do not have f (~x) 6= f (λ~x) for all λ), the zero sets of
homogeneous polynomials g on Pn are well-defined. That is, for λ ∈ K∗,

g(x0 : . . . : xn) = 0 if and only if g(λx0 : . . . : λxn) = 0

since g(λx0 : . . . : λxn) = λdg(x0 : . . . : xn). Because of this, we may define
a projective variety to be the zero set of an ideal generated by homogeneous
polynomials.

Also, the homogenization of a polynomial on U0 is essentially the same
as the original polynomial. If we take the representatives in U0 with first
entry equal to one, we find that fh(1 : x1 : . . . : xn) = f (x1, . . . , xn), so the
inclusion defined by ι respects zero sets of polynomials, provided that we
take the homogenization of such polynomials.

3.2 Enumerative Properties and TPn

Now, we demonstrate one of the critical properties of projective space, that
enumerative geometric questions have consistent answers. Take the sim-
plest nontrivial enumerative question possible: in how many points do two
distinct lines in the plane intersect? In affine space, the answer is usually
one, except it is zero when the two lines are parallel. We give three equiva-
lent definitions of a projective line in P3 then prove a proposition regarding
P2, which shows that the answer is always one in the projective case.

Definition 18. A projective line is the image of a map φ : P1 → P3 defined
by:

(x0 : x1) 7→ (a0x0 + a1x1 : b0x0 + b1x1 : c0x0 + c1x1 : d0x0 + d1x1)
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where the coefficients ai, . . . , di ∈ C and the vectors (a0, . . . , d0) and (a1, . . . , d1)
are linearly independent to ensure that φ is well-defined and more than a
single point.

Proposition 19. A subset L ⊆ P3 is a line if and only if L = H/ ∼ for some 2-
dimensional plane H ⊂ K4 through the origin, where∼ is the equivalence relation
used to define projective space.

Proof. Let H = span{(a0, . . . , d0), (a1, . . . , d1)}. Then, we may write H/ ∼
as

{(a0x0 + a1x1, b0x0 + b1x1, c0x0 + c1x1, d0x0 + d1x1)|(x0, x1) ∈ K2 \ {(0, 0}}/ ∼

Scaling a point (x0, x1) corresponds to scaling a point of H, so this is equal
to

{(a0x0 + a1x1 : b0x0 + b1x1 : c0x0 + c1x1 : d0x0 + d1x1)|(x0 : x1) ∈ P1}/ ∼

where we require (x0 : x1) ∈ P1 since this only means that at least one of the
coordinates is nonzero. (This is necessary to ensure that the corresponding
linear combination has at least one nonzero coordinate.) This gives us the
desired one-to-one correspondence between lines in P3 and 2-dimensional
planes in K4.

We remark that in general, there is a similar correspondence between
k− 1-dimensional planes in Pn−1 and k-dimensional planes in Kn, though
for our purposes we will mostly refer to the case where k = 2, n = 4.

Proposition 20. A subset L ⊆ P3 is a line if and only if it is the intersection of
two distinct hyperplanes. (A hyperplane in P3 is the zero locus of a single linear
homogeneous polynomial and is thus 2-dimensional.)

Proof. By the last proposition and the above remark (with k = 2, n = 4), we
may rephrase this proposition as: A subset L′ ⊆ K4 is a 2-dimensional plane
if and only if it is the intersection of two distinct 3-dimensional planes.
This is an elementary fact of linear algebra, which we cite to prove the
proposition.

We now return to the case of P2, where a line may be viewed as a linear
parameterization or the zero set of a single homogeneous linear polyno-
mial. We use the second characterization for the following proposition.

Proposition 21. Let L = V(ax + by + cz) and L′ = V(a′x + b′y + c′z) be two
distinct lines in P2. Then, L and L′ intersect in exactly one point.
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Proof. We observe that a point (x : y : z) ∈ L ∩ L′ if and only if it is a
solution to both linear equations, that is, if

(
a b c
a′ b′ c′

) x
y
z

 =

(
0
0

)

Since L and L′ are distinct lines, the vectors (a, b, c) and (a′, b′, c′) are lin-
early independent. Hence, the matrix above has rank two and a null space
of dimension 1. Suppose the null space is spanned by (x0, y0, z0). Then, all
elements of the null space are of the form (λx0, λy0, λz0). If λ = 0, then the
vector does not represent a point in P2 and can be ignored. All such vec-
tors with λ 6= 0 are equivalent under projective equivalence and account
for exactly one point of P2. Therefore, the lines L and L′ meet in that one
point.

A natural question one might ask is how to extend the notion of projec-
tive variety to the tropical setting. We choose to follow Richter-Gebert et al.
(2005) and use the following definition.

Definition 22. Let I be an ideal in K[x±1
0 , . . . , x±1

n ] generated by homoge-
neous polynomials. Then a tropical projective variety is of the form

T (I) = val(V(I))/R(1, . . . , 1)

where modding out by R(1, . . . , 1) means by tropical scalar multiplication,
i.e., the usual addition by the vector λ(1, 1, 1, 1, 1, 1) for λ ∈ R. For example,
(1, 2, 3, 4) ∼ (5, 6, 7, 8). A tropical projective variety is contained in TPn =
Rn+1/R(1, . . . , 1).



Chapter 4

Defining the Structure of a Set
of Lines

In this thesis, we attempt to decribe a particular set of lines as the union
of two disjoint conics, but in order to answer our main question, we must
first answer another: what does it mean for a set of lines to have a particular
structure? This motivates the definition of the Grassmannian, first for affine
space, and later for projective space.

4.1 The Classical Grassmannian

Definition 23. The Grassmannian G(k, n) is the set of all k-dimensional planes
through the origin in Kn.

By itself, this definition is not very useful, but we gain a lot by consid-
ering G(k, n) as an embedded object in projective space. But in order to do
this, we must first define the wedge product.

Definition 24. Let V be a finite-dimensional vector space. For v, w ∈ V and
a ∈ K, define the wedge product ∧ as follows:

(a) v ∧ v = 0

(b) v ∧ w = −w ∧ v

(c) (av + w) ∧ u = av ∧ u + w ∧ u

Products such as these may be added, scaled by constants, or wedged
together following the above rules. If an α is the sum of products of the
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form v1 ∧ . . . ∧ vk, where k is fixed, then we say α is a k-form. The set of
all k-forms is a vector space, denoted Γk(V). If we are given an ordered
indexed set of vectors {v1, . . . , vm}, then we may write as shorthand vI =
vi1 ∧ . . . ∧ vik , where I = {i1, . . . , ik} ⊆ {1, . . . , n}.

Proposition 25. The vector space Γk(V) has dimension (n
k) and a basis given by

{eI}, with I ranging over all subsets of size k of {1, . . . , n} and {ei} being the
standard basis.

Corollary 26. Γk(V) is isomorphic to R(n
k) as a vector space.

We note that by the above corollary, we have an induced definition of
P(Γk(V)) ∼= P(n

k)−1. Additionally, it is standard to order the standard basis
lexicographically by subsets I. In the case of k = 2, n = 4, the ordering is:

{e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}

For a more rigorous development of the wedge product, see Roman
(2008).

We are now ready to define the Plücker embedding.

Definition 27. Let W be a k-dimensional plane in Kn spanned by vectors
w1, . . . , wk. Then we define a map Φ : G(k, n)→ P(Γk(V)) by

W 7→ w1 ∧ . . . ∧ wk

The map Φ is known as the Plücker embedding.

It may be shown that the image of the Grassmannian under this map
is a variety. For example, Φ(G(2, 4)) = V(p12 p34 − p13 p24 + p14 p23), where
the pij are the coordinates of P5. Harris (1995)

Example 28. Let H be the plane in R4 spanned by the vectors (1,−2, 3, 0)
and (0, 0, 4,−5). Then,

(1,−2, 3, 0) ∧ (0, 0, 4,−5) = (e1 − 2e2 + e3) ∧ (4e3 − 5e4)

= 4e1 ∧ e3 − 5e1 ∧ e4 − 8e2 ∧ e3 + 10e2 ∧ e4 + 12e3 ∧ e3 − 15e3 ∧ e4

= 4e1 ∧ e3 − 5e1 ∧ e4 − 8e2 ∧ e3 + 10e2 ∧ e4 − 15e3 ∧ e4,

which corresponds to the point (0 : 4 : −5 : −8 : 10 : 15) ∈ P5.

What this means is that any collection of k-planes has a natural embed-
ding in a space we already know and understand. It makes sense for use to
say that a set of lines has the structure of a conic; it is a conic in P(n

k)−1.
We now turn our attention to our real goal, the projective Grassman-

nian.
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Definition 29. The projective Grassmannian G(k− 1, n− 1) is the set of (k−
1)-dimensional planes in Pn−1.

At first glance, it may seem strange that we defined the projective Grass-
mannian in terms of k− 1 and n− 1. However, we now recall the equiva-
lence established in the previous section between k− 1-planes in Pn−1 and
k-planes in Kn. This demonstrates that G(k− 1, n− 1) ∼= G(k, n). Therefore,
our definition of the Plücker embedding extends to the projective Grass-
mannian.

4.2 The Tropical Grassmannian

For this thesis, we must also define the tropical Grassmannian, which car-
ries over much of the structure from the classical Grassmannian. Speyer
and Sturmfels (2004) defines the tropical Grassmannian of lines in TP3 as
the tropical projective variety T (p12 p34− p13 p24 + p14 p23), which is the cor-
ner locus of x12x34 ⊕ x13x24 ⊕ x14x23. Speyer and Sturmfels show that there
is a bijective correspondence between points in this tropical Grassmannian
and lines in TP3, which we describe below.

Like all other tropicalized varieties, lines in TP3 may be constructed as
the tropicalization of classical lines. However, we provide that following
description due to Richter-Gebert et al. (2005).

A tropical line is given by its 6 coordinates in the tropical Grassman-
nian, (a12 : a13 : a14 : a23 : a24 : a34). There are 3 cases, due to the description
of the Grassmannian as a corner locus. Either

a14 + a23 = a13 + a24 ≤ a12 + a34,

a14 + a23 = a12 + a34 ≤ a13 + a24, or

a13 + a24 = a12 + a34 ≤ a14 + a23.

In the first case, the line is the union of a line segment with endpoints
(a34 − a13, a34 − a23, a24 − a23, 0) and (a24 − a12, a14 − a12, a24 − a23, 0) and
four rays, e1 and e2 emanating from the first endpoint, and e3 and −e1 −
e2 − e3 from the second endpoint. We choose representatives in TP3 so
that the line segment may be viewed in R3. Note that the line segment is
parallel to e1 + e2.

The other two cases are similar and may be derived by swapping axes
in the first case.





Chapter 5

Classical Solution

In this section we prove the classical result through techniques that will
assist its potential applications towards proving the tropical analogue. But
first, we provide a characterization of quadric surfaces and prove a couple
of necessary lemmas.

Let f (x0, . . . , x3) = Σ0≤i≤j≤3cijxixj be a homogeneous quadratic polyno-
mial. Then, we may write Q(x0, . . . , x3) = XT AX, where X = (x0, . . . , x3)
is a column vector and

A =


c00

1
2 c01

1
2 c02

1
2 c03

1
2 c01 c11

1
2 c12

1
2 c13

1
2 c02

1
2 c12 c22

1
2 c23

1
2 c03

1
2 c13

1
2 c23 c33

 .

A matrix may be either singular (degenerate) or invertible (nondegen-
erate), so we extend this definition to quadratic polynomials by saying that
a quadratic is (non)degenerate if and only if the above matrix is (non)de-
generate.

Lemma 30. Let Q ⊂ P3 be the nonempty zero set of a single nondegenerate
quadratic polynomial f (x0, . . . , x3). Then, there exists a change of coordinates
(x0, . . . , x3) 7→ (z0, . . . , z3) such that Q = V(z0z3 − z1z2).

Proof. We observe that the matrix A corresponds not only to a quadratic
form, but to a symmetric bilinear form B, where B(X, Y) = XT AY.

Fix nonzero e1 ∈ K4 such that f (e1) = 0. Such an e1 exists because we
take Q to be nonempty. Since f is nondegenerate, there exists f2 ∈ K4 such
that B(e1, f2) 6= 0. By scaling f2, assume that B(e1, f2) =

1√
2
. It follows that

f2 is not a mulitple of e1 since B(e1, λe1) = λB(e1, e1) = λ f (e1) = 0.
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Let e2 = 1√
2

f2 − 1
2 B( f2, f2)e1 so that

B(e2, e2) = B(
1√
2

f2,
1√
2

f2)− 2B(
1√
2

f2,
1
2

B( f2, f2)e1) + B(
1
2

B( f2, f2)e1,
1
2

B( f2, f2)e1)

=
1
2

B( f2, f2)−
1√
2

B( f2, f2)B( f2, e1) +
1
4

B( f2, f2)
2B(e1, e1)

=
1
2

B( f2, f2)−
1
2

B( f2, f2)

= 0.

Similarly,

B(e1, e2) = B(e1,
1√
2

f2)− B(e1,
1
2

B( f2, f2)e1)

=
1√
2

B(e!, f2)−
1
2

B( f2, f2)B(e1, e1)

=
1
2

.

We may repeat this process in the orthogonal complement (with respect
to B) of span{e1, e2} to obtain e3, e4 such that B(e3, e3) = B(e4, e4) = 0 and
B(e3, e4) = − 1

2 (with the negative from a simple negation of e3).
Observe that f (x0e1 + x1e2 + x2e3 + x3e4) = x0x1 − x2x3. These basis

vectors may be renumbered to show the desired result.

Theorem 31. Let K be algebraically closed. Let Q be a smooth (non-degenerate)
quadric surface in P3. Then, the set of lines contained in Q is two disjoint conics
in G(2, 4) ⊆ P5. The explicit description of these lines is given in the proof.

Proof. We may assume by Lemma 30, without loss of generality, that Q is
the zero set of the quadratic z0z3 − z1z2 = 0. It can be seen that Q is the
image of the injective map.

φ : P1 ×P1 → P3

((x0 : x1), (y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1)

In fact, this is a special case of the Segre embedding. We may see imme-
diately that two sets of lines are contained in Q, both families parametrized
by P1.

φ((a0 : a1)×P1) = {(a0y0 : a0y1 : a1y0 : a1y1)|(y0 : y1) ∈ P1}
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φ(P1 × (b0 : b1)) = {(x0b0 : x0b1 : x1b0 : x1b1)|(xo : x1) ∈ P1}

We claim these are all the lines contained in Q. To see this, look at the
inverse map of φ, given by

φ−1((z0 : z1 : z2 : z3)) =


((z0 : z2), (z0 : z1)) : z0 6= 0
((z1 : z3), (z0 : z3)) : z1 6= 0
((z0 : z2), (z2 : z3)) : z2 6= 0
((z1 : z3), (z2 : z3)) : z3 6= 0.

This means that φ−1 is linear, so if we have a line L ⊆ Q, then φ−1(L) is
a line in P1 ×P1. Thus, we need only consider lines in P1 ×P1. Such lines
may be parametrized

(x : y) 7→ ((a0x + b0y : a1x + b1y), (c0x + d0y : c1x + d1y))

In order for the image of a line in P1 × P1 under φ to be a line in P3, we
must have either a0 = a1 = b0 = b1 = 0 or c0 = c1 = d0 = d1 = 0, else we
would have quadratic terms. But, these lines are precisely the lines we have
already described, that is, one of the coordinates P1 is fixed. Therefore,
there are these two families of lines and no other lines in Q.

We now consider the image of these families under the Plücker embed-
ding G(2, 4) → P5. We begin with lines of the form (a0y0 : a0y1 : a1y0 :
a1y1). Observe that this line in P3 may be viewed as a plane through the
origin in K4 spanned by vectors (a0, 0, a1, 0) and (0, a0, 0, a1).

By definition of the Plücker embedding, this corresponds to the point
(a2

0 : 0 : a0a1 : −a0a1 : 0 : a2
1) ∈ P5. Since (a0 : a1) varies over P1,

this is the parametrization of a conic. We may repeat this process for the
second family of lines and obtain the conic determined by parametrization
(b0, b1) 7→ (0 : b2

0 : b0b1 : bob1 : b2
1 : 0).





Chapter 6

Application to the Tropical
Case

Now we consider the applications of this theorem to the tropical analogue.
We begin by demonstrating the existence of two families of 2-dimensional
planes in a general quadric surface in (K∗)4 defined by a homogeneous
polynomial.

Let Q = V( f ) be such a quadric surface in (K∗)4, i.e., f ∈ K[x0, . . . , x3] ⊆
K[x±1

0 , ..., x±1
3 ] is a homogeneous quadratic polynomial. Then, we let Q′ be

the zero set of f in P3. By the classical solution proven in the last section,
we have the existence of a set of lines contained in Q′, which we denote
L = {lα}. Let lα = V( fα, gα). Then, by the reverse containment of varieties
and ideals, we have

( fα, gα) ⊇ ( f )

as subsets of K[x0, . . . , x3]. That is, f = a fα + bgα for some a, b ∈ K[x0, . . . , x3] ⊆
K[x±1

0 , ..., x±1
3 ]. So, the above equation also applies when we consider the

ideals as generated in K[x±1
0 , ..., x±1

3 ]. As a result, V( fα, gα) ⊆ V( f ) when
viewed as subsets of (K∗)4.

To see the applications to the tropical setting, recall that the definition
of a tropical projective variety we are using is the set

T(I) = val(V(I))/R(1, ...1)

where I ⊆ K[x±1
0 , ..., x±1

3 ] is a homogeneous ideal. If I is generated by two
linear forms, then we say T(I) is a line in TP3. If J is a homogeneous ideal
generated by a single quadratic form, then we say T(J) is a quadric surface
in TP3.
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Now, if I and J are as described above, then V(I) is a 2-dimensional
plane in (K∗)4, V(J) is a quadric surface in (K∗)4, and by the above defini-
tion of a tropical variety, V(I) ⊆ V(J) implies T(I) ⊆ T(J) (since J ⊆ I).
Therefore, by the result of the previous section and the beginning of this
section, we already have two families of tropical lines contained in a gen-
eral tropical quadric.

It is fairly easy to see that these families are conics in TP5. The explicit
form we have as of now is fairly complicated, so we will first describe the
general idea by which one takes a family of lines in TP3 and turns it into
a tropical variety in TP5, then include explicit computations at the end of
this section.

Let I = 〈 f = a1x1 + a1x2 + a3x3 + a4x4, g = b1x1 + b2x2 + b3x3 + b4x4〉.
According to Richter-Gebert et al. (2005), the coefficients in a tropical basis
for I must satisfy the Grassmann-Plücker relation, which defines the Grass-
mannian in the textbook. Thus, finding a tropical basis for I determines its
image in G(2, 4). More specifically, I has tropical basis of the form

U = {p12(t)x2 + p13(t)x3 + p14(t)x4,−p12(t)x1 + p23(t)x3 + p24(t)x4,

−p13(t)x1 − p23(t)x2 + p34(t)x4,−p14(t)x1 − p24(t)x2 − p34(t)x3}

Define a circuit of an ideal to be a minimal set of indices for linear forms
in that ideal. Maclagan and Sturmfels (In progress) says that a set of linear
forms in I whose supports (set of indices) cover all circuits exactly once is a
tropical basis for I. This means that starting with the 2 generators of I, we
can find this tropical basis by taking the set of aig− bi f . This gives us pij =

aibj − ajbi. So, the point in TP5 is really just (a1, a2, a3, a4) ∧ (b1, b2, b3, b4),
but all this reasoning gives us the necessary justifications for doing this.

It’s somewhat inaccurate to consider a point in TP5 in the sense that
this point will have all rational coordinates and G(2, 4) is the closure of all
these points, but when we consider families of lines, this will be much more
natural.

For instance, if we consider the ai and bj to be homogeneous linear func-
tions of variables, then each pij is a quadratic form and the tropicalization
of the family is a conic.

In the classical quadric Q = V(z0z3 − z1z2), we have demonstrated the
existence of two families of lines. We perform computations with just one
of them, since the other case is similar. So consider the line

(x0 : x1) 7→ (x0b0 : x0b1 : x1b0 : x1b1).
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This line may be written as Lb = V(b1z0 − b0z1, b1z2 − b0z3). To obtain
an arbitrary quadric surface, in the sense that it will give us an arbitrary
tropical quadric, we perform a classical change of coordinates on projective
space, meaning we determine new coordinates (x1 : x2 : x3 : x4) such
that (z0, . . . , z3)T = M(x1, . . . , x4)

T for an invertible matrix M = (mij). We
change the first index from 0 to 1 so the indices better correspond to those in
M. We say that the defining equation of Q written in terms of xi is arbitrary.
Through this transformation, we may see that our family of lines has the
following description in x-coordinates.

Lb = V[(b1m11 − b0m21)x1 + (b1m12 − b0m22)x2+

(b1m13 − b0m23)x3 + (b1m14 − b0m24)x4,

(b1m31 − b0m41)x1 + (b1m32 − b0m42)x2+

(b1m33 − b0m43)x3 + (b1m34 − b0m44)x4]

Under the Plücker embedding, we obtain the point (p12 : . . . : p34), where

pij = (m1jm3i −m1im3j)b2
1 − (m2jm3i −m2im3j + m1jm4i −m1im4j)b0b1+

(m2jm4i −m2im4j)b2
0

To understand the significance of this equation, observe that the above
terms involving entries of M may be rewritten in terms of its 2× 2 minors.
Fixing columns i and j, we denote the 2× 2 minor of M involving rows k
and l as Mkl . We also flip the sign of all the pij through projective equiva-
lence to obtain:

pij = M13b2
1 − (M23 + M14)b0b1 + M24b2

0.

Note that the other ruling of lines is given by the tropicalization of:

pij = M12b2
1 + (M23 −M14)b0b1 + M34b2

0.

We now re-emphasize the main point that (b0 : b1) paramaterizes the
family of lines and each pij is a homogeneous quadratic polynomial in
b0, b1, so the tropicalization in TP5 is a conic. Thus, we have shown the
existence of two families of tropical lines in our tropical quadric, whose
image in the tropical Grassmannian is the union of two conics. The rest of
this thesis is dedicated to determining if those two conics are disjoint.





Chapter 7

Subdivisions

In this chapter, we introduce the notion of the subdivision of the Newton
polytope of a tropical polynomial. This allows us to define smoothness of
a tropical surface, which we will see for quadric surfaces can have a huge
impact on whether or not the tropicalized rulings are distinct. We then give
an algorithm which allows us to eliminate many instances of nonsmooth
surfaces.

7.1 Definitions and Duality

Definition 32. Let S ⊂ Rn be a finite set. Then the convex hull of S is
the minimal convex set containing all the points of S. This minimal set
is unique because the intersection of convex sets is convex. If S is finite,
then its convex hull is a polytope. A polyhedron is the intersection of finitely
many closed half-spaces of Rn. One may show that polytopes are bounded
polyhedra. Ziegler (1995)

Definition 33. A face of a polyhedron P is a set of the form {x ∈ P : wẋ ≤
wẏ for all y ∈ P} for some w ∈ Rn. That is, a face is the minimum of
a linear functional on P. A face of a three-dimensional polyhedron may
refer to either a vertex, an edge, a usual two-dimensional face, or the entire
polyhedron.

Definition 34. A polyhedral complex is a collection of polyhedra such that:

1. If P is in the collection, then so is any face of P.

2. If P and Q are both in the collection, then P∩Q is a face of both P and
Q or the empty set.
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The support of a polyhedral complex is the union of its polyhedra.

Theorem 35. If f is a tropical polynomial, then trop( f ) is the support of a poly-
hedral complex.

For a proof, see Maclagan and Sturmfels (In progress).

Definition 36. Let f (x1, ..., xn) = ⊕u∈S⊂Nn cuxu be a tropical polynomial,
where S is a finite set and if u = (u1, ...un), then xu denotes xu1

1 xu2
2 ...xun

n .
Then the Newton polytope of f is the convex hull of −S.

The subdivision of a Newton polytope of a tropical polynomial f is the
lower part of the convex hull of {(−u, cu) : u ∈ S} ⊂ Rn. Itenberg et al.
(2009)

We remark that this definition differs slightly from the one given in Iten-
berg et al. (2009) due to our choice of the minimum operation (as opposed
to maximum) in the tropical semiring. This alteration is used to preserve
the following duality theorem

Theorem 37. There is a bijective correspondenceB between the elements of trop( f )
(as a polyhedral complex) and the subdivision of its Newton polytope such that if
σ is an i-dimensional element of trop( f ), then B(σ) is an (n − i)-dimensional
element of the subdivision of the Newton polytope. Additionally, the linear spans
of σ and B(σ) are orthogonal and B preserves incidence. Itenberg et al. (2009)

To illustrate the meaning and usefulness of this duality theorem, we
give two examples of tropical conics in the plane and their Newton poly-
topes. Also, note that this implies that there is an edge between two vertices
of the subdivision of the Newton polytope if and only if both terms are si-
multaneously the minimum of all terms of f , a fact that will be useful in
the next section of this chapter.

Example 38. Let g(x, y) = min{2x, 2y + 2, 4, y− 2, x− 3, x + y− 4}. Then
the corner locus of g and the subdivision of its Newton polytope are shown
below.

Example 39. Let h(x, y) = min{2x + 3, x + y + 2, y + 4, 1}. Its corner locus
and Newton polytope subdivision are shown below.

Definition 40. A tropical hypersurface in Rn is smooth if:
1) its Newton polytope is the convex hull of

{(−d, 0, ..., 0), (0,−d, 0, ..., 0), ..., (0, ..., 0,−d)}
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Figure 7.1 Example 38.

Figure 7.2 Example 39.
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, where d is the degree of f and
2) the subdivision of its Newton polytope is maximal, that is, if all n-

dimensional polytopes in the complex are simplexes with volume 1
n! .

The conic shown in Example 38 above is smooth, while the one in Ex-
ample 39 is not, failing on both counts.

7.2 Algorithm for Smooth Quadrics

For this section, consider the tropical quadric f (x, y, z, w) = ax2 ⊕ bxy ⊕
cxz⊕ dxw⊕ ey2 ⊕ f yz⊕ gyw⊕ hz2 ⊕ izw⊕ jw2. Let Q denote the tropical
hypersurface defined by f in TP3. We observe that in projective coordi-
nates, we may take w = 0, so that Q may also be considered the corner
locus of f (x, y, z) = ax2 ⊕ bxy⊕ cxz⊕ dx⊕ ey2 ⊕ f yz⊕ gy⊕ hz2 ⊕ iz⊕ j.

We claim that Q is a smooth tropical surface (the Newtonian subdivi-
sion corresponding to f is maximal) only if the following conditions hold:

i) Each of the following equations is satisfied

a + e > 2b, a + h > 2c, a + j > 2d, e + h > 2 f , e + j > 2g, h + j > 2i

ii) None of the following pairs of numbers is equal

{b+ h, c+ f }, {a+ f , b+ c}, {c+ e, b+ f }, {e+ i, f + g}, {g+ h, f + i}, { f + j, g+ i}

{a+ i, c+ d}, {d+ h, c+ i}, {c+ j, d+ i}, {a+ g, b+ d}, {d+ e, b+ g}, {b+ j, d+ g}
iii) The set {b + i, c + g, d + f } has a distinct minimum.
If any of these conditions fail, then Q is not smooth.

7.3 Proof of Algorithm

In the following proof, let 2∆ denote the simplex with vertices (0, 0, 0),
(−2, 0, 0), (0,−2, 0), and (0, 0,−2).

Suppose Q is smooth, so the subdivision of its Newton polytope is max-
imal. The condition i) simply says that each of the terms in the polyno-
mial contribute to the function defined by it, that each term determines
the unique minimum for some (x, y, z, w). For instance, ax2 ⊕ bxy⊕ ey2 =
min{2x + a, x + y + b, 2y + e}. For the x + y + b term to contribute, we re-
quire that it be strictly less than the average of the other two terms, which
leads to the inequality a + e > 2b. The other 5 inequalities follow similarly.

Next, each face of the polytope must also have a maximal subdivision.
Consider the face F of 2∆ that is the convex hull of (0, 0, 0), (−2, 0, 0) and
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Figure 7.3 The three ways a maximal subdivision can ‘go wrong.’

(0,−2, 0). If F does not have a maximal subdivision, then it must contain a
polygon that contains one of the three area 1 paralellograms shown in the
figure below, meaning that 4 distinct terms give rise to f (p) at some point
p. (This fact may be verified by checking all possible polygons of area ≥ 1
and eliminating those which involve 3 colinear vertices and thus cannot
correspond to a dual tropical element given condition i).) This is why we
consider the 3 pairs {b + j, d + g}, {a + g, b + d}, and {d + e, b + g}. Now
suppose for instance, that b + j = d + g. Then, choose x0, y0 such that

j = d + x0 = g + y0 = b + x0 + y0

Thus, the four terms of f j, dx, gy, and bxy are all equal for such x0 and
y0. Choose z0 sufficiently large such that we need only consider the other
terms ax2 and ey2 in determining f (x0, y0, z0). By condition i), a + j > 2d.
By substitution, a + d + x0 > 2d, so a + 2x0 > d + x0. Similarly, e + 2y0 >
g + y0, so the four equal terms are all equal to f (x0, y0, z0) at (x0, y0, z0).
Thus, b + j = d + g implies nonsmoothness, so smoothness implies b + j 6=
d + g. The other 11 terms in condition ii) follow by considering the other
two polygons shown in the figure and the other faces of the simplex.

A maximal subdivision of 2∆ contains 25 edges, 24 of which have already
been determined and one edge that intersects the interior of the simplex.
Maclagan and Sturmfels (In progress) This edge may connect (−1,−1, 0)
to (0, 0,−1), (−1, 0,−1) to (0,−1, 0) or (0,−1,−1) to (−1, 0, 0). Suppose,
without loss of generality, that we have the first case, and let (x0, y0, z0) be
a point in which bxy and iz are the distinct minimum of the ten terms of
f . Then, b + x0 + y0 = i + z0 < c + x0 + z0, g + y0, d + x0, f + y0 + z0. In
particular,

b + i + x0 + y0 + z0 < c + g + x0 + y0 + z0, d + f + x0 + y0 + z0

and b + i is the distinct minimum of {b + i, c + g, d + f }. The other two
edges result in the other two terms being the distinct minimum of the set.
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Remark 41. We believe that this algorithm may be stated as an ‘if and only
if,’ but as we will see, this was not necessary to restrict the quadric surfaces
we consider to those whose tropicalized rulings are distinct.



Chapter 8

Tropical Parametrization

As we saw in Chapter 6, our problem involves two conics in the tropical
Grassmannian. Much of the existing theory on tropical varieties involves
the intersection of tropical hypersurfaces (for instance, the use of a tropical
basis). Thinking back to the classical setting, a conic in P5 is the intersec-
tion of many hypersurfaces, yet may be parametrized in a single variable.
In this section, we develop a method to extend this simple description to
tropical curves which are tropicalizations of parametrized curves.

8.1 Line Example

Consider the line L = V(x + y− 1) ⊆ K2. By the Fundamental Theorem of
Tropical Geometry, L tropicalizes to T (L), the corner locus of the tropical
polynomial:

x⊕ y⊕ 0,

which is depicted in Figure 8.1
Since L is a line, it may not only be written as the zero locus of a linear

polynomial, but also as the image of a parameter, i.e., L = {(a, 1− a)|a ∈
K}

Thus, T (L) = cl({(val(a), val(1− a))|a ∈ K}). We could parameterize
T (L) over K, but here it will be more useful to conceive a ’parametrization’
over Q with val(a) as the parameter.

If we think of a as a Puiseux series a(t), then it is easy to see that when
val(a) < 0, a and 1− a have the same first term. Thus, val(1− a) = val(a).
Similarly, when val(a) > 0, 1 and 1− a have the same first term and val(1−
a) = val(1) = 0. If we only require that val(a) = 0, then we may choose
a = 1 + tk, where k ∈ Q and k ≥ 0, so that val(1− a) = val(tk) = k.
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Figure 8.1 The tropical graph of x⊕ y⊕ 0

Looking at Figure 8.1, we can see this phenomenon play out graphically.
T (L) is ’almost’ a piecewise linear function of x. It is a piecewise linear
function for x 6= 0, but at x = 0, it has a range of [0, ∞). We formalize this
notion for more general curves in the next section.

8.2 General Curves in the Plane

In order to succinctly describe points where the image "goes off to infinity,"
we introduce the following definition.

Definition 42. Let f (x) be a tropical polynomial of one variable. Then, if
x0 ∈ T ( f ), then x0 is a breakpoint of f .

This allows us to state the proposition central to this section.

Proposition 43. Let f (x) ∈ K[x] and g(x, y) = y − f (x) ∈ K[x, y]. Then,
T (g) is the union of the graph of trop( f ) and the collection of {xi} × [ f (xi), ∞),
where the xi are the breakpoints of trop( f ).

Proof. Let trop( f )(x) = anxn⊕ ...⊕ a1x⊕ a0. Then, T (g) is the corner locus
of trop(g) = y⊕ anxn ⊕ ...⊕ a1x⊕ a0.

(⊆) Suppose (x0, y0) ∈ T (g). Then, two terms of trop(g) obtain their
minimum at (x0, y0). If those terms are y and aixi, then y0 = aixi

0 =

trop( f )(x0). If those terms are aixi and ajxj, then aixi
0 = ajx

j
0, meaning

x0 is a breakpoint of trop( f ) and y0 ≥ ix0 + ai = jx0 + aj = trop( f )(x0),
meaning (x0, y0) is on one of the rays described in the proposition state-
ment.
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(⊇) Suppose x0 is a breakpoint of trop( f ) and (x0, y0) is on the ray
{x0} × [trop( f )(x0), ∞). Then, for some i 6= j, aixi

0 = ajx
j
0 and y0 ≥

ix0 + ai = jx0 + aj = trop( f )(x0), so (x0, y0) ∈ T (g). If y0 = trop( f )(x0),
then trop(g) obtains its minimum at both the terms y and whichever term
of trop( f ) is the minimum at x0, so (x0, y0) ∈ T (g).

Corollary 44. Let f and g be as stated in the proposition above and let b ∈ K.
Then the possible values of val( f (b)) are:

• A dense subset of [trop( f )(b), ∞) if val(b) is a breakpoint of trop( f )

• trop( f )(b) otherwise

Proof. In the classical setting, V(g) = {(a, f (a))|a ∈ K}. By the Fundamen-
tal Theorem of Tropical Geometry, T (g) = cl({(val(a), val( f (a))|a ∈ K}).
Thus, in the xy-plane, val(a) = x and val( f (a)) = y. But, by the proposi-
tion above, T (g) is also the union of the graph of trop( f ) with rays towards
∞ described as {xi}× [ f (xi), ∞) at the breakpoints xi. Equating the two de-
scriptions proves the corollary.

Remark 45. This corollary could likely be proven with purely algrebraic
techniques, but we provide a geometric proof for visualization purposes.

8.3 Higher Dimensions

We now consider one-dimensional curves in higher dimensions. Suppose
γ : P1 → Pn by

(x0 : x1) 7→ (g0(x0 : x1) : ... : gn(x0 : x1))

is a parametrization of a curve C in Pn, where the gi are homogeneous
polynomials of the same degree. We use the parametrization technique de-
veloped in the previous section to describe its tropicalization, which we
denote trop(C). (Not to be confused with the tropicalization of a polyno-
mial, of course.)

First, we break P1 into elements that may be written as (x : 1) and the
single element (1 : 0) so we may consider C as parameterized by a single
variable plus an additional point. We denote these two parts as C′ and p,
so C = C′ ∪ {p}. Note that it is trivial to determine val(p).

Let fi(x) = gi(x : 1) so C′ is the image of the following parametrization
γ′ : K → Pn by
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x 7→ ( f0(x) : ... : fn(x)).

Thus, trop(C′) = cl({(val( f0(x)) : ... : val( fn(x)))|x ∈ K}). If val(x) is
given, then the previous section tells us the possible corresponding points
of C′, with one caveat. According to the Structure Theorem for Tropi-
cal Varieties Maclagan and Sturmfels (In progress), the tropicalization of
a 1-dimensional classical variety is a polyhedral complex of dimension 1.
This means if trop( fi) and trop( f j) (i 6= j) share a breakpoint val(x∗) and
(val( f0(x∗)) : ... : val( fn(x∗))) ∈ C′, then only one of val( fi(x∗)) and
val( f j(x∗)) may exceed trop( fi(x∗)) or trop( f j(x∗)), respectively.

We remark that this technique only maps out a curve in Rn+1. Since
we only considered points of the form (x : 1) ∈ P1, this curve does not
necessarily contain the entire equivalence class of points in TPn. However,
it does give us a single point for each equivalence class.
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Computer Generation of
Examples

9.1 Integer Method

In performing the arithmetic of tropicalizations, particularly that of valu-
ations, one generally must only consider the first term of a Puiseux series
a(t). So instead of using a(t) = t−3 + 2it−1 + . . ., we may wish to use
a(t) = t−3 instead. However, if we are forced to compute val(a(t)− b(t)),
then it is possible that the first terms of both series will cancel. If this is
the case, then we must consider more terms of the Puiseux series. But if
not, then val(a(t) + b(t)) = min{val(a), val(b)} and the tropicalization of
classical objects may be computed solely in terms of the valuations of coef-
ficients.

In general, the assumption that val(a(t) + b(t)) = min{val(a), val(b)}
is not valid, of course, but for the sake of constructing examples, it is nice
to know when it is. There are two ways of dealing with this problem, as
described below.

First, we may restrict ourselves to cases in which we never take the
valuation of the sum of terms with different valuations. That is, we choose
coefficients carefully enough that whenever we compute val(a(t) + b(t)),
val(a) 6= val(b) so that val(a(t) + b(t)) = min{val(a), val(b)}. In this case,
we may assume that all Puiseux series coefficients are single terms.

Example 46. Relating to our original problem, in which we use a classical
change of coordinates matrix M, we would like to encode M in a computer
as a matrix of integers.
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Suppose

M =


t−2 + t1 + ... t2 + t6 + ... 1 + t5 + ... t−10 + t−9 + ...
t−3 + t5 + ... t−2 + 1 + ... t3 + t6 + ... 1 + t + ...
t8 + t9 + ... t + t2 + ... t−4 + t−2 + ... t−3 + t−2 + ...

t−9 + t4 + ... t−1 + 1 + ... t5 + t7 + ... t3 + t6 + ...


It can be verified (by hand or though the programs described later in

this chapter) that in computation of the tropical quadric derived from this
matrix, and in computation of the lines contained in the corresponding
tropical surface, we never add or subtract terms of equal valuation. There-
fore, we would obtain the exact same tropicalizations were we to use

M′ =


t−2 t2 1 t−10

t−3 t−2 t3 1
t8 t t−4 t−3

t−9 t−1 t5 t3


For the purposes of computation, we replace each entry with its valua-

tion to obtain

M′′ =


−2 2 0 −10
−3 −2 3 0
8 1 −4 −3
−9 −1 5 3


Second, we note that above, we used a canonical choice of a single-

termed a(t) such that val(a) = c, that is, tc. However, we could have just as
easily used 2tc, or itc, or 1000tc. When using the canonical choices, cancella-
tion happens easily, but when we choose other single term coefficients with
the same valuation, cancellation does not occur so easily. The test used in
the computer program is strict, in the sense that it only works with entries
tk, but this is not always necessary when computing examples by hand.

9.2 Programming in Python

Given the tropical version of parametrization developed earlier, the com-
putations involved in determining whether two tropical conics in TP5 in-
tersect are trivial, though rather tedious. A major task in this thesis then,
was to develop a computer program that could look at many tropical quadric
surfaces and determine if the tropical conics associated to them intersected.



Programming in Python 37

The first two functions are shorter and found in the appendix with all
helper functions.

smoothtest: This function takes in the defining polynomial of a tropi-
cal quadric surface in TP3 and determines if the surface is smooth. If so,
then it returns the combinatorial type of the surface. This is done by list-
ing the edges of the corresponding Newtonian subdivision. This assumes
that the algorithm from Chapter 7 is an ‘if and only if,’ but at least narrows
our attention to surfaces that are almost smooth, if not completely. That is,
we have not strictly shown that these surfaces are smooth, but all smooth
surfaces will pass our test. As we will see, this is enough to restrict our at-
tention to surfaces which, in our simulations, were found to exhibit distinct
rulings.

findmatrix: finds a matrix M with integer coefficients such that the cor-
responding tropical quadric surface is smooth (using smoothtest) and such
that the lines may be computed without worry of first term cancellation as
described in the previous section.

findconics: given a matrix M, finds the tropical conics in TP5 associated
to the tropicalized rulings of the classical surface.

conicintersect: This is the most important function, since it determines
if two given conics intersect or not. It works as follows. For each of the
two conics, it extracts the corresponding breakpoints of the quadratics in
each coordinate and compiles them into a single list. If a point p is on the
conic, then it must be the image corresponding to a parameter that is a
breakpoint or is in an interval between breakpoints. (Once we are past all
of the breakpoints, then each of the coordinates changes at the same rate,
meaning we get the same point projectively.) Thus, each intersection may
be characterized as either ’breakpoint-breakpoint,’ ’breakpoint-interval,’ or
’interval-interval.’ This function matches up all possibilities and attempts
to find an intersection in each case.

When the potential intersection is interval-interval, this is trivial, since
it simply amounts to solving a system of linear equations. However, when
there is a breakpoint involved, it must first solve the system for all coordi-
nates in which the quadratics do not have the breakpoint in question, then
test the remaining coordinates. Working through each possible combina-
tion, it returns ’yes’ if the conics intersect and ’no’ if they do not.

Running conicintersect on 157,000 examples of matrices of integer en-
tries in [−1000, 1000] that determine smooth quadric surfaces, none of them
were found to have tropical conics which intersected. While we do not of-
fer a proof, this certainly supports the hypothesis that all smooth quadric
surfaces have distinct rulings.
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Examples

In this chapter, we explore two examples of quadric surfaces, one which is
not smooth, the other which has 25 edges in the subdivision of its Newto-
nian polytope. The first demonstrates significant intersection of the tropical
conics in the Grassmannian, while the second has disjoint conics.

10.1 Overlapping Conics

Let M be the change of coordinates matrix in K4×4
t−30 t25 t−5 t47

t−20 t6 t−33 t34

t t31 t−9 t34

t−20 t−10 t−9 t−22


which takes z0z3 − z1z2 to the polynomial g(x0, x1, x2, x3). Then, if f is
the tropicalization of g, f = −50x2 ⊕ −40xy ⊕ −39xz ⊕ −52x ⊕ 15y2 ⊕
−15yz⊕ 3y⊕−42x2 ⊕−27z⊕ 25.

Recall that the first conic in the tropical Grassmannian is given by the
coordinates:

aij = val(M13b2
1 − (M23 + M14)b0b1 + M24b2

0)

for 1 ≤ i < j ≤ 4, with (b0 : b1) ranging over P1. Recall that by Mkl , we
mean the 2× 2 minor of M involving rows k and l and columns i and j. In
our example, we have

a12 = val((t− t26)b2
1 + (t11 − t7 + t−40 − t5)b0b1 + (t−30 − t−14)b2

0).
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By the parametrization technique outlined in Chapter 8, we may first
consider a12 written as

a12 = val((t− t26)b2 + (t11 − t7 + t−40 − t5)b + (t−30 − t−14)).

Furthermore, if B = val(b), then

a12


= 2B + 1 : B < −41
≥ −81 : B = −41
= B− 40 : −41 < B < 10
≥ −30 : B = 10
= −30 : B > 10

That is, a12 = min{2B + 1, B− 40,−30} when B is not a breakpoint of
the tropical polynomial (-41 or 10). Continuing this process for the other 5
coordinates, we find the breakpoints {−56,−41,−31,−28,−19,−14, 0, 10}.
Note that we are able to determine the entire behavior of the aij from their
values at their breakpoints since the slope of trop(pij) is 2 when B is less
than the first breakpoint, 1 in between the two breakpoints and 0 when B is
greater than the second breakpoint. Thus, we can summarize the behavior
of the aij in the following chart, where the horizontal axis corresponds to B,
the vertical axis to the coordinate aij, and the table values are the possible
outputs. A ’+’ symbolizes a breakpoint, so 6+, for instance, means aij ∈
[6, ∞).

B −56 −41 −31 −28 −19 −14 0 10
a12 −111 −81+ −71 −68 −59 −54 −40 −30+

a13 −151 −121 −101 −95 −77 −67+ −53+ −53
a14 −108+ −93 −83 −80 −71 −66 −52 −42+

a23 −96 −66 −46+ −43+ −43 −43 −43 −43
a24 −53+ −38 −28 −25 −16+ −16 −16 −16
a34 −83+ −68 −58 −55+ −55 −55 −55 −55

For the other ruling, the corresponding coordinates are given by

a′ij = val(M12b2
1 − (−M23 + M14)b0b1 + M34b2

0)

which gives us the following chart:
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B −56 −50 −41 −16 − 7 −4 6 10 24 31
a′12 −136 −124 −106 −56+ −47 −44 −34 −30 −16 −9+

a′13 −175 −163 −145 −95 −77 −71 −51 −43+ −29+ −29
a′14 −108+ −102 −93 −68 −59 −56 −46 −42 −28 −21+

a′23 −120 −108 −90 −40 −22+ −19+ −19 −19 −19 −19
a′24 −59 −47+ −38 −13 −4 −1 9+ 9 9 9
a′34 −98 −86 −68+ −43 −34 −31+ −31 −31 −31 −31

One property of parametrizations, both tropical and classical, is that if
two parametrized curves intersect, it need not be when their parameters
are equal. The images of these parametrizations are invariant under ap-
propriate transformation of the parameter. Additionally, we are working
in tropical projective space, so the images are also invariant under addition
by scalar multiples of the vector (1, 1, 1, 1, 1, 1). In order to demonstrate
the overlap of the two conics, we reprint the first chart with the parame-
ter translated by 24 and the images translated by (24, 24, 24, 24, 24, 24). The
overlapped sections are bolded.

B −32 −17 −7 −4 5 10 24 34
a12 −87 −57+ −47 −44 −35 −30 −16 −6+

a13 −127 −97 −77 −71 −59 −43+ −29+ −29
a14 −84+ −69 −59 −56 −47 −42 −28 −18+

a23 −72 −42 −22+ −19+ −19 −19 −19 −19
a24 −29+ −14 −4 −1 8+ 8 8 8
a34 −59+ −44 −34 −31+ −31 −31 −31 −31

As the charts above show, the two tropical conics intersect, and not just
at a single point, but at a continuum of solutions. In fact, they intersect for
all B ∈ [−16, 5].

10.2 Disjoint Conics

Now let M be the change of coordinates matrix
2t10 t−5 t5 t−9

t6 t−9 t7 t−1

t−4 t6 t−7 t8

t−7 t4 t7 t9


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which takes z0z3 − z1z2 to the polynomial g(x0, x1, x2, x3). Then, if f
is the tropicalization of g, f = 2x2 ⊕ −13xy ⊕ −2xz ⊕ −16x ⊕ −3y2 ⊕
−16yz⊕−5y⊕ 0x2 ⊕−8z⊕ 0.

We remark that the 2 in the upper left corner is present to prevent the
cancellation of terms that would otherwise occur in computing the lines in
trop( f ). Also, the 0’s are necessary in the expression of f because 0 is not
the additive identity of the tropical semiring.

Repeating the same process as before, we get the two following charts
for the conics.

B −4 −3 −2 0 2 5 8 14
a12 −17+ −16+ −16 −16 −16 −16 −16 −16
a13 −7 −5+ −4 −2 0+ 0 0 0
a14 −21 −19+ −18 −16 −14 −11 −8+ −8
a23 −20+ −19 −18 −16 −14 −11 −8+ −8
a24 −11 −9 −7+ −5 −3 0+ 0 0
a34 −24 −22 −20 −16 −12 −6 0+ 6+

B −14 −13 −12 −6 2 10 12 13 17
a12 −27+ −26+ −25 −19 −11 −3 −1+ −1 −1
a13 −17 −15+ −14+ −14 −14 −14 −14 −14 −14
a14 −31 −29+ −28 −22 −14 −6 −4 −3 1+

a23 −32 −30 −28+ −22 −14 −6 −4 −3+ −3
a24 −46 −44 −42 −30 −14 2 6 8+ 12+

a34 −30 −28 −26 −14+ −6 2+ 2 2 2

We now present a simple argument for why these two conics do not
intersect. This type of argument may not necessarily be applied to all pairs
of non-intersecting conics, but we have chosen this example to make the
argument as simple as possible.

Suppose the conics did intersect at some point p. Then, the lowest co-
ordinate of p must be in the same position no matter which representative
of p we choose, as equivalence is up to addition by scalar multiples of the
vector (1, 1, 1, 1, 1, 1). In both charts above, we have bolded the lowest term
at each breakpoint. Note that these are necessarily the lowest terms since
none of the bolded boxes have a ‘+’ in them. The first conic only has the
a12 and a34 terms as the lowest, whereas the second conic only has the a13
and a24 terms as the lowest. Thus, the two conics cannot intersect where
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this is the case. There is one exception we must check, the boundary point
where the lowest term changes from a34 to a12 (and a24 to a13). This occurs
at B = 0 for the first conic and B = 2 for the second, so we have included
both columns on our charts despite neither being a breakpoint. A quick in-
spection of the two columns shows that they are not equal and we confirm
the conics do not intersect.
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Future Plans

While there is certainly strong evidence for the claim that smooth tropi-
cal quadric surfaces hvae distinct rulings, a proof remains unfound. One
question we ask is if there is a connection between combinatorial type (the
subdivision of the Newton polytope) and whether or not the tropicalized
rulings are distinct. For instance, if one quadric surface were to have dis-
tinct rulings, would all other surfaces of the same combinatorial type have
distinct rulings as well? If so, then a proof could be found using com-
puter experimentation as done in this thesis. However, the programs used
here were only able to output 168 of the 192 possible maximal subdivisions
Maclagan and Sturmfels (In progress) of 2∆. This must be due to the re-
strictions we made in assuming a lack of term cancellation in classical cal-
culations, but not necessarily expected. Using purely random coefficients,
we were able to find surfaces of all 192 types, so we wonder if those 24
missing types have nondistinct rulings.

We also acknowledge the failure of tropicalized rulings to be distinct in
the case of some nonsmooth quadric surfaces. We wonder if there is a proof
strategy that would prove the contrapositive of our hypothesis, that if two
lines through a point tropicalize to the same line, then the tropicalization of
that point must correspond to an element of the subdivision which is larger
than would be allowed in a maximal subdivision.

Lastly, we would like to consider the presence of other lines on the
quadric surface, that may not arise as the tropicalizations of classical lines
on the classical surface. In general tropical lifting problems such as this are
difficult and an answer to this question would be necessary to complete the
answer to the posed problem.





Appendix A

Code

Here is the commented code used to find examples and test the smoothness
of tropical quadrics:
import random
import math

def dismin ( L ) :

# d e t e r m i n e s i f a l i s t has a d i s t i n c t minimum , r e t u r n s 1 i f yes , 0 i f no t
# Th i s w i l l be u s e f u l in d e t e r m i n i n g i f a t r o p i c a l q u a d r i c i s smooth .
m=min ( L )
count=0
for i in range ( len ( L ) ) : # c o u n t s how many t i m e s t h e minimum shows up

i f L [ i ]==m:
count+=1

i f count ==1:
return 1

e lse :
return 0

def makematrix (N) :

# makes a random mat r i x with i n t e g e r c o e f f i c i e n t s t h a t c o r r e s p o n d t o
# v a l u a t i o n s o f Puiseux s e r i e s .

m11= f l o a t ( random . randint (−N,N) )
m12= f l o a t ( random . randint (−N,N) )
m13= f l o a t ( random . randint (−N,N) )
m14= f l o a t ( random . randint (−N,N) )
m21= f l o a t ( random . randint (−N,N) )
m22= f l o a t ( random . randint (−N,N) )
m23= f l o a t ( random . randint (−N,N) )
m24= f l o a t ( random . randint (−N,N) )
m31= f l o a t ( random . randint (−N,N) )
m32= f l o a t ( random . randint (−N,N) )
m33= f l o a t ( random . randint (−N,N) )
m34= f l o a t ( random . randint (−N,N) )
m41= f l o a t ( random . randint (−N,N) )
m42= f l o a t ( random . randint (−N,N) )
m43= f l o a t ( random . randint (−N,N) )
m44= f l o a t ( random . randint (−N,N) )

return [ [ m11 , m12 , m13 , m14 ] , [ m21 , m22 , m23 , m24 ] , [ m31 , m32 , m33 , m34 ] , [ m41 , m42 , m43 , m44]]\\

def m2c (M) :
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# t a k e s mat r i x M ( l i s t o f 16 i n t e g e r s ) and t u r n s i t i n t o
# t r o p i c a l q u a d r i c c o e f f i c i e n t s by t r e a t i n g M as a change o f
# b a s i s mat r i x a p p l i e d t o t h e s t a n d a r d c l a s s i c a l q u a d r i c :
# z0z3−z1z2 =0 , th en t r o p i c a l i z i n g t h e r e s u l t

m11=M[ 0 ] [ 0 ]
m12=M[ 1 ] [ 0 ]
m13=M[ 2 ] [ 0 ]
m14=M[ 3 ] [ 0 ]
m21=M[ 0 ] [ 1 ]
m22=M[ 1 ] [ 1 ]
m23=M[ 2 ] [ 1 ]
m24=M[ 3 ] [ 1 ]
m31=M[ 0 ] [ 2 ]
m32=M[ 1 ] [ 2 ]
m33=M[ 2 ] [ 2 ]
m34=M[ 3 ] [ 2 ]
m41=M[ 0 ] [ 3 ]
m42=M[ 1 ] [ 3 ]
m43=M[ 2 ] [ 3 ]
m44=M[ 3 ] [ 3 ]

c1=min ( [ m11+m41 , m21+m31 ] )
# In t h e c l a s s i c a l s e t t i n g , ( m11m41−m21m31 ) i s t h e c o e f f i c i e n t
# on $x^2$

c2=min ( [ m11+m42 , m21+m32 , m31+m22 , m41+m12 ] )
c3=min ( [ m11+m43 , m21+m33 , m31+m23 , m41+m13 ] )
c4=min ( [ m11+m44 , m21+m34 , m31+m24 , m41+m14 ] )
c5=min ( [ m12+m42 , m22+m32 ] )
c6=min ( [ m12+m43 , m22+m33 , m32+m23 , m42+m13 ] )
c7=min ( [ m12+m44 , m22+m34 , m32+m24 , m42+m14 ] )
c8=min ( [ m13+m43 , m23+m33 ] )
c9=min ( [ m13+m44 , m23+m34 , m33+m24 , m43+m14 ] )
c10=min ( [ m14+m44 , m24+m34 ] )

i f dismin ( [ m11+m41 , m21+m31] ) = = 0 :
# e n s u r e s t h a t we a r e a l l o w e d
# t o l e t v a l ( a+b )= min ( v a l ( a ) , v a l ( b ) )

# p u t t i n g a l l z e r o e s makes t h e r e s t f a i l
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m11+m42 , m21+m32 , m31+m22 , m41+m12] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m11+m43 , m21+m33 , m31+m23 , m41+m13] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m11+m44 , m21+m34 , m31+m24 , m41+m14] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m12+m42 , m22+m32] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m12+m43 , m22+m33 , m32+m23 , m42+m13] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m12+m44 , m22+m34 , m32+m24 , m42+m14] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m13+m43 , m23+m33] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m13+m44 , m23+m34 , m33+m24 , m43+m14] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i f dismin ( [ m14+m44 , m24+m34] ) = = 0 :
return [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

return [ c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , c9 , c10 , ’split’ ]+M
# r e t u r n s t h e c o e f f i c i e n t s wi th t h e o r i g i n a l ma t r i x a t t h e end , so
# we can comose f u n c t i o n s and s t i l l s e e what t h e ma t r i x i s .
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def smoothtest (C ) :

a=C[ 0 ]
# Note t h a t t h i s i g n o r e s any l i s t e l e m e n t s p a s t t h e 10 th ,
# such as t h e e l e m e n t s o f t h e mat r i x t h a t were a t t a c h e d a t t h e end o f
# m2c .

b=C[ 1 ]
c=C[ 2 ]
d=C[ 3 ]
e=C[ 4 ]
f =C[ 5 ]
g=C[ 6 ]
h=C[ 7 ]
i =C[ 8 ]
j =C[ 9 ]

combtype = [ ]
# l i s t o f c o n n e c t i o n s made in t h e c o n s t r u c t i o n o f t h e
# s u b d i v i s i o n ant iw : r e f e r s t o t h e f a c e o f t h e s i m p l e x ( Newton
# p o l y t o p e ) o p p o s i t e t h e v e r t e x c o r r e s p o n d i n g t o t h e $w^2$ term .

i f b+h<c+ f : # t h e f o l l o w i n g s t e p s r e f l e c t c o n d i t i o n i i ) o f t h e a l g o r i t h m
combtype+=[’bh’ ]

i f b+h>c+ f :
combtype+=[’cf’ ] # adds t h i s c o n n e c t i o n t o t h e l i s t i f i t i s s a t i s f i e d

i f b+h==c+ f :
return ’fail’

i f b+c<a+ f :
combtype+=[’bc’ ]

i f b+c>a+ f :
combtype+=[’af’ ]

i f b+c==a+ f :
return ’fail’

i f b+f <c+e :
combtype+=[’bf’ ]

i f b+f >c+e :
combtype+=[’ce’ ]

i f b+ f ==c+e :
return ’fail’

# a n t i x

i f e+i < f +g :
combtype+=[’ei’ ]

i f e+i > f +g :
combtype+=[’fg’ ]

i f e+ i == f +g :
return ’fail’

i f f +i <h+g :
combtype+=[’fi’ ]

i f f +i >h+g :
combtype+=[’gh’ ]

i f f + i ==h+g :
return ’fail’

i f g+i < f + j :
combtype+=[’gi’ ]

i f g+i > f + j :
combtype+=[’fj’ ]

i f g+ i == f + j :
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return ’fail’

# a n t i y

i f a+i <c+d :
combtype+=[’ai’ ]

i f a+i >c+d :
combtype+=[’cd’ ]

i f a+ i ==c+d :
return ’fail’

i f c+i <d+h :
combtype+=[’ci’ ]

i f c+i >d+h :
combtype+=[’dh’ ]

i f c+ i ==d+h :
return ’fail’

i f d+i <c+ j :
combtype+=[’di’ ]

i f d+i >c+ j :
combtype+=[’cj’ ]

i f d+ i ==c+ j :
return ’fail’

# a n t i z

i f a+g<b+d :
combtype+=[’ag’ ]

i f a+g>b+d :
combtype+=[’bd’ ]

i f a+g==b+d :
return ’fail’

i f b+g<d+e :
combtype+=[’bg’ ]

i f b+g>e+d :
combtype+=[’de’ ]

i f b+g==e+d :
return ’fail’

i f d+g<b+ j :
combtype+=[’dg’ ]

i f d+g>b+ j :
combtype+=[’bj’ ]

i f d+g==b+ j :
return ’fail’

# d i s t i n c t minimum f o r "3D" terms "

i f dismin ( [ b+i , c+g , d+ f ] ) = = 0 : # c o n d i t i o n i i i )
return ’fail’

e lse :
i f b+ i ==min ( [ b+i , c+g , d+ f ] ) :

combtype+=[’bi’ ]

i f c+g==min ( [ b+i , c+g , d+ f ] ) :
combtype+=[’cg’ ]

i f d+ f ==min ( [ b+i , c+g , d+ f ] ) :
combtype+=[’df’ ]

# b a s i c p a r t o f smooth t e s t
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i f a+e<=2∗b : # c o n d i t i o n i )
return ’fail’

i f a+h<=2∗c :
return ’fail’

i f a+ j <=2∗d :
return ’fail’

i f e+h<=2∗ f :
return ’fail’

i f e+ j <=2∗g :
return ’fail’

i f h+j <=2∗ i :
return ’fail’

return combtype +[ ’split’ ]+C
# r e t u r n s t h e c o m b i n a t o r i a l t y p e o f t h e s u b d i v i s i o n , a l o n g with
# e v e r y t h i n g e n t e r e d i n t o t h e f u n c t i o n

def n i c e l i n e t e s t (M) :

# d e t e r m i n e s i f we a r e a l l o w e d t o assume
# v a l ( a+b )= min ( v a l ( a ) , v a l ( b ) ) in c o m p u t a t i o n o f t h e t r o p i c a l l i n e s
# in t h e s u r f a c e d e f i n e d by t h e t r o p i c a l q u a d r i c r e s u l t i n g from
# t h e m at r i x M

for i in range ( 3 ) :
for j in range ( i + 1 , 4 ) :

i f dismin ( [M[ 0 ] [ i ]+M[ 1 ] [ j ] ,M[ 0 ] [ j ]+M[ 1 ] [ i ] ] ) = = 0 :
return ’fail’

i f dismin ( [M[ 2 ] [ i ]+M[ 1 ] [ j ] ,M[ 2 ] [ j ]+M[ 1 ] [ i ] ,M[ 0 ] [ i ]+M[ 3 ] [ j ] ,M[ 0 ] [ j ]+M[ 3 ] [ i ] ] ) = = 0 :
return ’fail’

i f dismin ( [M[ 2 ] [ i ]+M[ 3 ] [ j ] ,M[ 2 ] [ j ]+M[ 3 ] [ i ] ] ) = = 0 :
return ’fail’

i f dismin ( [M[ 0 ] [ i ]+M[ 2 ] [ j ] ,M[ 0 ] [ j ]+M[ 2 ] [ i ] ] ) = = 0 :
return ’fail’

i f dismin ( [M[ 1 ] [ i ]+M[ 2 ] [ j ] ,M[ 1 ] [ j ]+M[ 2 ] [ i ] ,M[ 0 ] [ i ]+M[ 3 ] [ j ] ,M[ 0 ] [ j ]+M[ 3 ] [ i ] ] ) = = 0 :
return ’fail’

i f dismin ( [M[ 1 ] [ i ]+M[ 3 ] [ j ] ,M[ 1 ] [ j ]+M[ 3 ] [ i ] ] ) = = 0 :
return ’fail’

return ’pass’

def f indmatr ix (N) :
# k e e p s computing random m a t r i c e s u n t i l one o f them l e a d s t o a
# smooth t r o p i c a l q u a d r i c s u r f a c e , th en r e t u r n s a l l r e l e v a n t
# i n f o r m a t i o n r e g a r d i n g t h a t mat r i x .

word=’fail’
while word==’fail’ :

word=smoothtest ( m2c ( makematrix (N) ) )
return word
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