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Reduced Electronic Spaces for Modeling Donor/Acceptor Interactions†
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Marshall D. Newton*
Department of Chemistry, BrookhaVen National Laboratory, Upton, New York 11973

ReceiVed: March 15, 2010; ReVised Manuscript ReceiVed: June 17, 2010

Diabatic states for donor (D) and acceptor (A) interactions in electron transfer (ET) processes are formulated
and evaluated, along with coupling elements (HDA) and effective D/A separation distances (rDA), for reduced
electronic spaces of variable size, using the generalized Mulliken Hush model (GMH), applicable to an arbitrary
state space and nuclear configuration, and encompassing Robin-Day class III and as well as class II situations.
Once the electronic state space is selected (a set of n g 2 adiabatic states approximated by an orbital space
based on an effective 1-electron (1-e) Hamiltonian), the charge-localized GMH diabatic states are obtained
as the eigenstates of the dipole moment operator, with rotations to yield locally adiabatic states for sites with
multiple states. The 1-e states and energies are expressed in terms of Kohn-Sham orbitals and orbital energies.
Addressing questions as to whether the estimate of HDA “improves” as one increases n, and in what sense the
GMH approach “converges” with n, we carry out calculations for three mixed-valence binuclear Ru complexes,
from which we conclude that the 2-state (2-st) model gives the most appropriate estimate of the effectiVe
coupling, similar (to within a rms deviation of e15%) to coupling elements obtained by superexchange
correction of HDA values based on larger spaces (n ) 3-6), and thus yielding a quasi-invariant value for HDA

over the range explored in the calculations (n ) 2-6). An analysis of the coupling and associated D and A
states shows that the 2-st coupling involves crucial mixing with intervening bridge states (D and A “tails”),
while increasingly larger state spaces for the same system yield increasingly more localized D and A states
(and weaker coupling), with HDA tending to approach the limit of “bare” or “through space” coupling. These
results help to reconcile seemingly contradictory assertions in the recent literature regarding the proper role
of multistate frameworks in the formulation of coupling for both intra- and intermolecular ET systems.The
present results are compared in detail with other reported results.

I. Introduction

Electron transfer (ET) between molecular donor (D) and
acceptor (A) sites (DA f D+A-) is typically treated in a two-
state (2-st) framework, in which the transferring electronic
charge (electron (e) or hole (h)) is primarily localized, respec-
tively, on a D site (initial state) or an A site (final state). Such
2-st models have been employed in analyzing a wide range of
intramolecular and bimolecular ET processes, including thermal
(ground state or photoinitiated) and optical charge separation
(CS), charge recombination (CR), and charge shift (CSh).1-15

In all these cases, a key quantity governing the ET is the
effective 2-st Hamiltonian matrix element, HDA,12,13 a central
focus of the present study, which deals with ET of the CSh
type.

Although the two-state approximation (TSA) may be adequate
if the two states are sufficiently separated energetically from
other solute states,16 it has frequently been noted that a larger
set of electronic states may be necessary, especially when
molecular spacers with low-lying states are interposed between

D and A sites (as in bridge-mediated (DBA) intramolecular
ET)17-23 or when more than one state on a given D or A site
must be considered (e.g., a ground (G) and locally excited (LE)
state, D* or A*).24,25 For example, in a 3-state DA/D*A/D+A-

system, one may attempt to model the various ET processessfor
example, an optical CS one (DAf D+A-, the Mulliken charge
transfer (CT) transition26), or the radiative recombination process
(CR)), or the photoinitiated CS one (D*Af D+A-, which may
involve exciplex formation)27)susing the appropriate 2-st
models in a pairwise fashion. However, if the states interact
strongly with each other, a 3-state treatment may be required,
especially in the case of radiative CR, which may involve
significant intensity borrowing or other types of vibronic
coupling.28-30

Some studies have reported calculation of effective HDA

values for an electronic state space of variable size, n (i.e., with
n g 2), and indeed, sensitivity of HDA with respect to n has
been found18-21,25,28,29,31 (in the following, n-st denotes an
n-dimensional model). These results invite a closer look at the
nature of the n-st variation of HDA (denoted HDA

d(n)) and the
corresponding diabatic states in which they are expressed
(denoted ψD

d(n) and ψA
d(n)), thus giving perspective needed to

interpret the differences between 2-st and multistate frameworks
(superscripts a(n) and d(n) will be used to denote, respectively,
adiabatic and diabatic states in an n-space). Even in cases that
the 2-st model is adequate for modeling ET kinetics, a multistate
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analysis may still be valuable in facilitating the decomposition
of D/A coupling in terms of superexchange (se) coupling.13,32

The present paper is motivated by a number of questions
related to the above issues. What is the most appropriate reduced
electronic space (n g 2) for modeling ET processes? When is
the 2-st model adequate, bearing in mind the debate and analysis
in the recent literature (Bixon et al.,28 Gould et al.,29 Cave and
Newton,31 Rust et al.,25 Voityuk,18,19 Lambert et al.,20,21 and
Nelsen et al.22)? What is the appropriate set of states, either
adiabatic (eigenstates) or diabatic states (initial, final, etc.) to
be employed in modeling ET within the chosen space? More
specifically, what precise operational definitions are suitable for
expressing these states? In this context, what are the distinctions
between various common descriptors such as “zeroth-order”,
“bare”, “localized”, “true”, and “real” diabatic states and
associated D/A coupling, and once suitable D and A states have
been identified, how can one determine quantitatively if the
strength of D and A mixing with bridge (B) states is weak
enough to justify the use of a 2-st se model (e.g., in a golden
rule (GR) model for the ET rate constant, kET).2,6,8 In the
remainder of the paper, we label the states according to the
dominant contribution (D, A, B, etc.). Finally, how can
the preceding questions be addressed in a framework amenable
to computational implementation and contact with experiment?
After explaining the theoretical and computational methodology,
calculated results are presented for some binuclear Ru com-
plexes, which were the subject of a previous computational
study.33

II. Electronic States and Spaces

A. Electronic Spaces. The electronic space is taken as an
adiabatic space (n-space) consisting of n eigenstates of the
electronic Born-Oppenheimer (BO) Hamiltonian, Hel, with n
as small as possible, while still encompassing the D and A
manifolds pertaining to the ET process of interest (in the
following, the superscript “el” will be suppressed). The relevant
D and A manifold also must take adequate account of the role
of any intervening bridge states (B).13,14,16,22,32,34,35 Quantitative
means of assessing the degree to which this criterion is satisfied
are considered below over a range of n values for a given ET
system. The spaces adopted here are based on in vacuo adiabatic
states, but may also be defined as in situ spaces (e.g., in the
presence of a variable solvent reaction field).36-39 A many-
electron state space can often be represented to good ap-
proximation in terms of a space of orbital eigenfunctions (e.g.,
self-consistent field (SCF) orbitals, as employed in the present
study), with HDA taken as hDA, where h is an effective 1-electron
(1-e) Hamiltonian, and D and A are donor and acceptor orbitals
(see section IIIB).15,37,40-43

B. Electronic States. The chosen space for modeling ET may
be represented using the adiabatic states themselves or, for
convenience, a linear transformation to a diabatic basis (the two
representations can be shown to give equivalent account of D/A
coupling2). Diabatic states are not uniquely defined and should
be based on a suitable physically motivated criterion (section
III).

Within the selected adiabatic space, the desired diabatic states
may be defined as eigenstates of some operator other than the
full electronic Hamiltonian: for example, a reference Hamilto-
nian or some other operator. Before proceeding to our particular
choice of operator, we offer a few comments about terminology
for different types of diabatic states. States fully localized on
various atomic or molecular sites (e.g., by truncation of off-
site contributions, a procedure easily implemented when an

atom-centered basis set is employed) are one candidate for
zeroth-order reference or “bare” diabatic states (denoted ψD

0 ,
ψA

0 , ψB
0 , etc.).13,16 Direct coupling between ψD

0 and ψA
0 on

different sites is generally referred to as through-space coupling
(HDA

0 ), although in the presence of bridge or other nearby groups,
it is not clear what this quantity means due to effects arising
when the states are required to be orthogonal.13,44,45 Alternatives
to such strictly localized states (ψi

0) will be considered below
in comparing diabatic results from different n-spaces.

When the constraint of strict localization is relaxed, the “true”
or “dressed” diabatic states (denoted as ψi

d(n) and defined
according to whatever physical criterion and n-space is adopted),
while still having the transferring charge primarily localized on
the various sites (D, A, B, etc.), will typically incorporate tails
extending onto neighboring sites, especially in the case of
bridge-mediated ET, where the D and A tails on the bridges
are the essence of the superexchange (through-bond) coupling
entailed in HDA

d(n) for a DBA system.13,32 The generalized Mulliken
Hush (GMH)31,46 criterion (section III) maximizes the localiza-
tion of ψD

d(n) and ψA
d(n) along the charge transfer direction (subject

to orthogonalization); these states may be more extended in
perpendicular directions, as revealed in section V. As the size
(n) of the adiabatic space increases, the extent of “dressing” in
ψD

d(n) and ψA
d(n) will be found to vary. A corresponding variation

is expected for the matrix elements HDA
d(n),

HDA
d(n)may be re-expressed in terms of the bare functions ψi

0 and
an n-dependent effective Hamiltonian, Heff

(n) (e.g., based on the
partitioning model or the transition operator, T).15,17,47

Each of these equivalent expressions incorporates the tails
noted above, with diabatic states orthogonal either by construc-
tion (as in the present work) or by explicit orthogonalization of
a nonorthogonal set (e.g., Lowdin orthogonalization).45,48

C. “Prepared States”. In general, the initial and final
diabatic states are intended to represent the “prepared states”
in a particular process: for example, for the purpose of evaluating
HDA, the initial state for thermally activated ET might correspond
to the residence in the transition state (TS) occasioned by a
fluctuation in the reaction coordinate (for either a ground state
or a photoinitiated process when relaxation of nuclear modes
is rapid), whereas for optical ET, the initial state would be the
equilibrium DBA reactant.49 For Franck-Condon contolled ET,
the final state will have the same nuclear configuration as the
initial state.

III. The Generalized Mulliken Hush (GMH) Model

Several formulations have been proposed for diabatic states
in ET systems. For bimolecular processes, the so-called block-
diagonal (BD)31,50 method exploits a reference level based on
infinitely separated reactants or truncated states at finite separa-
tion (the BD zeroth-order space is quite distinct from the
analogous ψi

0 reference space introduced in section II). For the
general case, including intramolecular processes, one can employ
the symmetry-broken (SB) SCF method, applicable when
distinct charge-localized (and generally non-orthogonal) initial
and final SB SCF states can be obtained.13,15,51-54 The nonper-
turbative GMH model31,46 (an extension of the Mulliken Hush

HDA
d(n) ) 〈ψD

d(n)|H|ψA
d(n)〉 (1)

HDA
d(n) ) 〈ψD

0 |Heff
(n) ψA

0 |〉 (2)
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model4) defines the maximally localized diabatic states for a
charge transfer process as the eigenstates of the component of
the electric dipole operator (µ̂) in the direction of the overall
ET process (in the following, µ̂ refers to this projected
component)31,46 If this direction is not defined by symmetry, a
mean direction may be obtained from the calculated results (e.g.,
the dipole matrix elements). A consequence of this physical
criterion is that (by construction), the projected diabatic off-
diagonal dipole moment matrix elements (transition moments)
are zero.

Diagonalization of µ̂ gives diabatic states ψD
d(n) and ψA

d(n), in
which the separation of the D and A centroids (rDA

d(n) ) (µAA
d(n) -

µDD
d(n))/e) is maximized. We represent this procedure in terms of

the following n × n matrices:

where Hij
a(n) and µij

d(n) are diagonal by construction: µij
d(n) ) µii

d(n)δij

and Hij
a(n) ) Hii

a(n)δij.
The localization inherent in the GMH approximation assumes

a distance scale separation in which rDA
d(n) is large relative to the

spatial extent of the local states in the ET direction (σD
d(n) and

σA
d(n), etc), which may be expressed as suitable second moments

of the state charge densities (σ ) ((|µ - µii|2)ii)1/2/e, where i
denotes D or A). When a given site has more than one local
state, Hij

d(n) for each such block is rediagonalized, as denoted
collectively by the locally adiabatic (la) transformation, Ula(n),
so that eqs 3 and 4 are updated as

In the following, we retain the notation Hd(n) and µd(n), assuming
that any necessary local adiabaticity has been imposed. In the
present study, the n-spaces selected contain only a single diabatic
state on the D (ψD

d(n)) and A (ψA
d(n)) sites, and these states are

unaffected by la transformation involving other diabatic states
(in general, the la transformation impacts coupling when D and
A sites include more than a single state).

A. 2-st (n ) 2). The GMH model for HDA
d(2) is compactly

expressed at the 2-st level:

relating diabatic and adiabatic energy (∆E12
a(2) ≡ H22

a(2) - H11
a(2))

and dipole quantities (where ∆Xij′ ≡ Xj - Xi). In turn, the
denominator in eq 8 is proportional to rDA

d(2),

Thus, via eqs 7 and 8, HDA
d(2) and rDA

d(2) may be determined entirely
from adiabatic results, requiring no additional information, such
as population analysis, and no ad hoc assumptions about D and
A states: that is, the information about diabatic coupling in
thermal, nonradiative ET is contained in the adiabatic quantities
pertinent to the energy gap and intensity of the corresponding
radiative optical process. The adiabatic information needed to

evaluate HDA
d(2) may be obtained from either computational (e.g.,

many-electron configuration interaction (CI) or SCF calcula-
tions) or experimental (e.g., Stark spectra55,56) sources. This
situation, explicitly displayed for n ) 2 (eq 7), is general for
any n-space. Combined use of computation and experiment has
been pursued by Lambert et al. for 3-st GMH models, for which
calculated magnitudes and signs of some dipole quantities are
used to supplement optical data.20,21 Another great advantage
of GMH is that it can be applied to an arbitrary molecular
configuration, thus permitting tests of the Condon approxima-
tion.57

In eqs 7 and 8, the diabatic (D, A) and adiabatic (1, 2) states
are related by the following transformation,

where tan (2η) ) -2µ12
a(2)/∆µ12

a(2). The sign of HDA
d(2) is a physical

observable, but contingent on phase conventions for ψD
d(2) and

ψA
d(2), as discussed in section V.13 When HDA

d(2) is squared, as in
the GR rate constant expression, the sign is irrelevant, but in
general (n > 2), interference effects may occur (see sections II,
V, and VI). Even for n ) 2, the overall coupling, HDA

d(2), implicitly
contains through-space as well as through-bond (se) amplitudes
whose superposition may lead to appreciable interference. The
signs of HDA

d(2) reported below are based on the convention that
the phases of ψD

d(2) and ψA
d(2) are chosen so that they are “in

phase” with each other (i.e., in a formally “bonding” situation,
such as for orbitals of type dxz (D) and -dxz (A), if sites D and
A lie along a common z axis. This convention is suitable for
the DBA complexes addressed below, although in other cases,
the “bonding” relationship may be ambiguous.58

In the limit of symmetry-equivalent D and A sites, eq 7
becomes the familiar expression,

applicable to the TS for thermal electron exchange or the
equilibrium geometry for optical excitation in a Robin/Day Class
III system.59 In the latter delocalized situation, there is no net
ET (∆µ12

a(2) ) 0), but in the diabatic (partially localized)
representation, rDA

d(2) * 0 (eq 8), and the optical excitation may
be viewed as a superposition of exactly compensating ET
transitions. In the Class III case, the adiabatic states ψ1

a(2) and
ψ2

a(2) will transform according to different irreducible representa-
tions (irreps), but the optical process will be dipole-allowed if
the product of ψ1

a(2) and ψ2
a(2) transforms as the dipole operator

in the D/A direction. On the other hand, HDA
d(2) (eq 7) will in

general be finite, since the product of symmetry-equivalent
diabatic states (ψD

d(2) and ψA
d(2)) contains the totally symmetric

irrep in the point group of the Hamiltonian.
B. Case of n > 2. For larger n-spaces (n > 2), the details of

the effective D and A states (ψD
d(n) and ψD

d(n) are expected to
change (as governed by the transformation U(n) in eqs 3-6)
and, hence, also the values of HDA

d(n) and ∆µDA
d(n). The quantity

rDA
d(n) retains its natural definition as the separation distance of

the D and A centroids (∆µDA
d(n)/e). A larger n-space may in general

include states representing e and h transfer through a bridge
(involving, respectively, the unoccupied and occupied orbitals
of B), as well as additional states on D and A or other sites. A
balanced n-space is necessary to ensure the appropriate inclusion
of interference effects. Diagnostic tests of 2-st results can
indicate the possibility of appreciable differences in coupling

µd(n) ) (Ud(n))† µa(n) Ud(n) (3)

Hd(n) ) (Ud(n))† Ha(n) Ud(n) (4)

Hla(n) ) (Ula(n))† Hd(n) Ula(n) (5)

µla(n) ) (Ula(n))† µd(n) Ula(n) (6)

HDA
d(2) ) -∆E12

a(2) µ12
a(2)/((∆µ12

a(2))2 + 4(µ12
a(2))2)1/2 (7)

erDA
d(2) ) ∆µDA

d(2) ) ((∆µ12
a(2))2 + 4(∆µ12

a(2))2)1/2 (8)

〈DA| ) 〈12|(cos η -sin η
sin η cos η ) (9)

HDA
d(2) ) -∆E12

a(2)/2 (10)
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magnitude for larger n-spaces, and approximate means of
adjusting 2-st results have been formulated.25 Trends with
increasing n and indications of “convergence” are explored in
section V (see also ref 34). A proposal for defining the “optimal”
n-space (in which the magnitude of the total excess charge at
the D and A sites, as obtained by population analysis of the
entire ψi

d(n) manifold, approaches unity as closely as possible)
has also been suggested.34

In cases that a mean ET direction is not well-defined for n >
2 (e.g., in cases of multiple D and A sites), a more general
diabatization scheme has been reported.60,61 When the rate of
ET is very weak or symmetry forbidden (either optically, due
to the transition moment, or thermally, due to HDA

d(n)), an electronic
model such as GMH should be extended to include vibronic
coupling (either non-Condon (Herzberg-Teller) or non-BO state
mixing).28,62-64

IV. Calculations

A. Molecular Systems. Properties of diabatic states in
variable n-spaces are examined for mixed valence (MV) Ru
complexes (Ru2+/Ru3+) involving a central ((Ru-pz-Ru)5+

moiety (pz′ pyrazine), in which the superscripts denote nominal
oxidation states. Primary attention is focused on a porphinide
(P) complex with axial pyridine (py) ligands, 1 (Figure 1a), and
the Creutz-Taube (C-T) complex,65,66 2 (Figure 1b). Compari-
son is also made with complex 3 (not displayed), in which the
outer axial py ligands of 1 are replaced by CO ligands.
Electronic structure calculations for 1-3 and their effective 2-st
coupling elements (HDA

d(2)) have been reported recently,33 as well
as experimental studies of redox and spectral behavior as a
function of ligand type in related Ru complexes.67 The sensitivity
of D/A coupling in the Ru-pz-Ru moiety to variation of
equatorial (P or NH3) and outer axial (py, NH3, or CO) ligands,
along with n-space dependence, is analyzed in the present work.

B. Computational Models. 1. DFT Electronic Structure
and Geometry Calculations. The molecular structures of 1-3
were optimized in vacuo for the reduced binuclear complexes
(Ru2+/Ru2+), using the B3LYP density functional68 with the Los
Alamos effective core potential and associated “double-�” (DZ)
valence orbital basis set for Ru,69 and all-electron treatment of
other atoms, using the Dunning DZ basis.70 The reduced
molecular complexes have a net charge of either 0 (1 and 3,
where the P ligands have nominal charges of 2-) or 4+ (2).

Optimized geometries for 1-3 possess point group symmetry,
respectively, D2h, C2, and D2h (the C2 geometry of 2 has a quasi
D2h Ru-pz-Ru core, perturbed somewhat due to the NH3

ligands). The equatorial Ru-N bonds of 1 and 3 are staggered
relative to the nearly planar Ru-pz-Ru moiety, and the plane

of the nearly planar py ligands in 1 is orthogonal to the
Ru-pz-Ru plane. The coordinate axes are assigned as z along
the Ru-Ru axis and x, perpendicular to the pz plane. The C2

axis in 2 lies along y. The π-type valence orbitals of Ru and pz
are respectively, 4dxz and 2px. The calculated Ru-N bond
lengths have been discussed in detail in ref 33 and are found to
be ∼0.1 Å larger than crystal structure values. The optimized
rRuRu distances are 7.020 (1), 7.146 (2), and 7.217 Å (3).33

Ideally, the structures optimized directly for the
(Ru-pz-Ru)5+ charge states of interest would be desirable,
especially the Ru-Npz bond lengths. However, in the case of
the C-T complex (2), for which crystal structure data is
available,71 the equilibrium Ru-Npz bond lengths for the 4+
and 5+ charge states are found to be very similar (1.99 ( 0.02
Å), and in both cases, the Ru sites are close to symmetry-
equivalent. The 5+ charge state is thought to be an electronically
delocalized Robin-Day Class III system59 (or a borderline Class
II/III system72,73), with nominal effective charges of +2.5 on
each Ru site (i.e., a special (nonintegral) case of “mixed
valence”). The 5+ oxidation state of the porphinide complex
1, in which the coupling is found to be weaker than for 2, is
likely to be a Class II system, with nominal Ru charges of 2+
and 3+. The symmetric (D2h) calculated structure for 1, based
on the 4+ charge state, thus serves as a model for the TS in the
5+ ET process. Even weaker coupling is found for 3, for which
the ground state redox process is calculated (and found
experimentally67) to occur at the P sites, with a higher energy
Ru2+/Ru3+ redox process.

2. EffectiWe Electronic Models for the (Ru-pz-Ru)5+

Complexes. For analysis of diabatic states and properties, we
employ a frozen orbital 1-e model33,37 based on Kohn-Sham
(KS) orbitals,74 and the corresponding orbital energies (εi), and
dipole matrix elements, calculated in vacuo. In this approach,
which is similar in spirit to the use of Koopmans’ Theorem75

in the Hartree-Fock (HF) framework,18,19,41,42,58 the states of
the Ru2+/Ru3+ complexes are treated in terms of the orbitals of
their reduced (Ru2+/Ru2+) counterparts. Previous analysis for
MV binuclear complexes and other DBA systems has shown
the utility of such frozen orbital approaches for calculating HDA

d(2)

values;13,18,19,22,33,40,52 that is, the many-electron diabatic matrix
element of H (HDA) may to good approximation (i.e., typically
within ∼10%13) be represented by the diabatic orbital matrix
element (hDA) of an effective 1-e Hamiltonian h (see section
II). Furthermore, sample comparisons of coupling from the 1-e
model (based on (Ru-pz-Ru)4+ orbitals) and direct SCF
calculations for the 5+ complexes show reasonable agreement.33

Details of the relationship between state and orbital quantities
are given in section V, after the selection of a 4-orbital space is
described. In subsequent discussion of the GMH calculations,
in which orbital dipole matrix elements are also employed
(sections V and VIA), the term “state” will generally be used
to refer to orbitals.

In the KS-orbital-based GMH model, we have

where the εi of the KS orbitals in the n-space have been relabeled
εi

a(n); ∆E12
a (2) is replaced by ε2

a(2) - ε1
a(2) in eq 7; and the ψi

a(n)and
ψi

d(n) now refer, respectively, to adiabatic and diabatic orbitals
in an orbital n-space. The matrix elements of h in the ψi

d(n) basis
are denoted as hij

d(n). For n g 4, with two states on the pz sites
(π and π*), the corresponding 2 × 2 block of h (generated by
the standard GMH model) is diagonalized (the la situation

Figure 1. Optimized structures of the reduced (Ru2+/Ru2+) binuclear
Ru complexes 1 (D2h) and 2 (C2), with net charges, respectively, of 0
and 4+ and with y the C2 axis. The py, pz, P (porphinide), and NH3

ligands are indicated above each complex. The Ru, C, N, and H atoms
are indicated, respectively, by cyan, gray, blue, and white spheres. The
heavy-atom framework of 2 has ∼ D2h symmetry, and the py and pz
moieties in 1 and 2 are essentially planar, with the x-axis perpendicular
to the pz plane.The atoms of the P ligands lie nearly in the xy planes
containing the Ru atoms. In 3 (optimized D2h structure, not shown),
the outer axial ligands of 1 (py) are replaced by CO ligands.

hij
a(n) ) εi

a(n) δij (11)
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mentioned in section III) and then µd(n) is transformed to the la
basis. Note that the strict 1-e model employed here is distinct
from an alternative approach in which the many-electron H was
approximated as a sum of effective 1-e Hamiltonians expressed
in an assumed diabatic basis12 (see also ref 13).

V. GMH Results

Most of the GMH analysis involves n ) 2, 3, or 4 (n ) 5 is
also considered for 1, and n ) 6, for 3). Figure 2 displays the
four KS SCF orbitals (i.e., the adiabatic states in the present
1-e model, ordered from bottom to top according to increasing
εi

a(4)) most important for coupling in the (Ru-pz-Ru)5+ unit
of 1 and 2 (the analogous orbitals for 3 (not shown) are
qualitatively similar): states ψ2

a(4) and ψ3
a(4) (middle of figure),

with the major Ru 4dxz contributions, and ψ1
a(4) (bottom) and

ψ4
a(4) (top) dominated, respectively, by the highest occupied (π)

and lowest unoccupied (π*) pz π-type molecular orbitals (MO),
which have finite amplitude on the N-atoms (i.e., the atoms
linked to the Ru atoms). The zero of energy is defined as the
energy of the degenerate ψD

d(2) and ψA
d(2) shown in Figure 3 (see

caption for Figure 2).
In the selection of the adiabatic 4-space described above

(similar to the procedure employed in ref 22), ψ3
a(2) is the highest

occupied MO (homo), and ψ2
a(2) is found to be homo-3 (1) and

homo-5 (2).33 The π and π* pz orbitals are, respectively, homo-
38 and lumo +4 (1) and homo-14 and lumo (2), where lumo
denotes the lowest unoccupied MO.

With respect to the actual (for 1) or approximate (for 2) D2h

reflection plane bisecting the Ru-Ru vector, the ψi
a(4) are,

respectively of A, S, A, and S symmetry (symmetric or
antisymmetric). In D2h symmetry, A and S correspond, respec-
tively, to irreps b2g and b3u. The orbitals are superimposed on
the structures a and b of Figure 1.

In the 4-st space, the ground state (G) corresponds to the
orbital occupations (1)2(2)2(3)1.

Some orbital transitions of interest in order of increasing
excitation energy are intervalence transfer (IT), 2 f 3; metal-
to-ligand charge transfer (MLCT), 3f 4; ligand-to-metal charge
transfer (LMCT), 1 f 3; and also the pz π f π* transition
(ππ*), 1 f 4, although the high-energy ππ* state is of minor
importance for coupling in the Ru-pz-Ru complexes. In terms
of the εi

a(4), the energy gaps for the above transitions are
approximated in the 1-e model as ε3

a(4)-ε2
a(4) (IT), ε4

a(4)-ε3
a(4)

(MLCT), ε3
a(4)-ε1

a(4) (LMCT), and ε4
a(4)-ε1

a(4) (ππ*). These orbital
transitions (originating from G) are the lowest energy examples
of each of the four generic types of excitation. Additional
excitations of the MLCT and ππ* type are also possible.The
transition dipole moments (µij

a(4)) linking the four orbitals (ψi
a(4))

cover the same set as those that would be obtained for the
corresponding many-electron states associated with the various
IT, MLCT, LMCT, and ππ* transitions, although there is no
simple 1-1 relationship between the orbitals and many-electron
states (the latter involve spin-adapted configurations consisting
of either one or three half-filled MO’s) and no simple relation-
ship between 1-e and many-electron transition dipole moments
(µij

a(4)) for excitations in which an electron-hole pair is created.
The ability of the present strict 1-e model based on ap-

proximate (B3LYP, with a modest orbital basis) KS orbital
energy gaps to provide useful estimates of the energy gaps for
the (Ru-pz-Ru)5+ system is not immediately clear. However,
some comparisons with experiment for 2, included in section
VI, suggest reasonable agreement, thus supporting the use of
the present model for evaluating and analyzing coupling
elements in different multistate situations.

A. Comparison of Results for Different n Values. 1. Adia-
batic and Diabatic Orbitals. In complex 1, the P ligands make
notable contributions to the four adiabatic orbitals, ψi

a(4), whereas
those due to the axial py ligands are negligible at the resolution
displayed in Figure 2 (a threshold of 0.02 au). Likewise, the
ammine ligands in 2 make very minor contributions (Figure
2). The orbital with the “bonded” Ru-Ru interaction in ψ2

a(4)

(i.e., left (L)- and right (R)-hand 4dxz color-coded lobes are in-
phase (S)) lies below the orbital (ψ3

a(4)) with the out-of-phase
(A) pairing in Figure 2. The Ru-pz bonding and antibonding
interactions are visible in Figure 2. Note that ψ3

a(4), which is

Figure 2. Four-state adiabatic spaces for 1 and 2 (ψi
a(4)). The Ru orbitals

are of the 4dπxz type. Symbols S and A denote symmetry or
antisymmetry with respect to the xy reflection plane of 1 (respectively,
b3u and b2g in D2h) and the quasi reflection plane of 2 (respectively, b
and a in C2). Red and green distinguish positive and negative orbital
lobes, and atoms are assigned the same colored spheres as in Figure 1.
The εi

a(4) are the KS DFT orbital energies, shifted so that zero is the
energy of the degenerate orbitals ψD

d(2) and ψA
d(2) (shown in Figure 3).The

zero chosen here corresponds to -4.615 eV (1) and -16.759 eV (2)
on the KS orbital energy scale. Labels Ru and pz denote the major
contributor to each orbital.

Figure 3. Two-state GMH diabatic orbitals for 1 and 2, ψD
d(2) and ψA

d(2).
These symmetry-equivalent orbitals are distinguished as the left-hand
(L) and right-hand (R) localized states. The energy scale for the εi

d(2) is
given in the Figure 2 caption.
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nominally labeled nonbonding in simple 3-st models,76 exhibits
a small degree of Ru-pz antibonding character.

The GMH procedure (section III) has been implemented for
1 and 2 using the set of four adiabatic states (4-st) or a subspace
(2-st or 3-st). For the n ) 2 and 3 cases, the larger 4-space can
serve as a variant of the zeroth-order reference basis, ψi

0,
introduced in section II. The results for 3 are discussed below.
Diabatic states for 1 and 2 at the 2-st level (ψD

d(2)and ψA
d(2)) are

displayed in Figure 3, and for comparison, the 4-st orbitals (ψi
d(4))

are shown in Figure 4. The 2-st results exhibit notably less
Ru-pz mixing (especially for 2) than in the corresponding
adiabatic orbitals, ψ2

a(4) and ψ3
a(4) (cf., Figures 2 and 3).

Nevertheless, for 1, the Ru-pz mixing in ψD
d(2) and ψA

d(2) is still
appreciable, displaying net bonding character, dominated by Ru
dπ-pz π* backbonding (MLCT). The equatorial Ru-P mixing
in 1, while not directly affected by the GMH localization along
the Ru-Ru axis see section III) is also substantial. The 4-st D
and A orbitals for 1 and 2, ψD

d(4) and ψA
d(4) (see Figure 4), are

more localized on their respective Ru atoms than their 2-st
counterparts, but for 1, they maintain Ru-P mixing.

2. hDA
d(n) and rDA

d(n). GMH results for hDA
d(n) and rDA

d(n) are presented
in Table 1 (the se quantities are discussed below). In addition
to the 2-st and 4-st results, Table 1 also includes results for
intermediate-sized spaces (3-st), in which either the pz occupied
π (ψ1

a(4)) or unoccupied π* (ψ4
a(4)) adiabatic orbitals are included.

The 3-st cases are denoted as n ) 3 (π) or n ) 3* (π*) and are
introduced to help in elucidating the contributions of the pz π
and π* orbitals to the effective D/A coupling and the nature of
interference effects between the two se pathways (respectively,
h and e types).

Table 1 together with Figures 2-4 indicate a monotonic
increase in localization of ψD

d(4) and ψA
d(4) as n increases from 2

to 4. In particular, the tails of ψD
d(4) and ψA

d(4) extending onto the
pz bridge are reduced, hDA

d(n) becomes less negative (or more

positive, comparing 3* and 4 for 2), and rDA
d(n) is increased for

both 1 and 2. The negative sign for most of the hDA
d(n) values

corresponds to the coupling of D and A states in a “bonding”
(in phase) relationship (i.e., mirror equivalent pair), as noted in
section IV.

As an additional test of n-dependence, 5-st calculations were
carried out for 1, adding the KS lumo (mostly involving the P
orbitals, with very little Ru 4dπ contribution) to the 4-space.
The results, ψD

d(5) and ψA
d(5), are more localized than their 4-st

counterparts (rDA
d(n)/rRuRu ) 0.99), and the coupling hDA

d(5) ) +0.36
x 103 cm-1, larger in magnitude than for n ) 3* and 4, but
with opposite sign, thus reinforcing the monotonic trends
displayed in Table 1.

To assess these results further, we let a larger n-space (n )
3 or 4) serve as a zeroth-order reference space for the 2-st wave
functions, ψD

d(2) and ψA
d(2); that is, the ψi

0 introduced in section
II are taken as ψi

d(n), with n ) 3 or 4. Of course, the ψD
d(n) are

not fully localized on D, A, or B sites, etc., but they are still
useful as a reasonably localized reference basis for analyzing
the 2-st model. The matrix elements hDA

d(n), n ) 3 or 4, provide
estimates of “bare” or direct (through space) coupling. Residual
coupling due to the larger space represented by the full manifold
of KS SCF orbitals is implicitly contained in the coupling
dicussed here explicitly for n e 4. Calculations with the pz
ligands removed yield direct coupling magnitudes of <10 cm-1.

3. Superexchange (se) Models. We first employ a se
model13,14,32,35 to construct a PT estimate of ψD

d(2) and ψA
d(2)

coupling for comparison with the actual 2-st (hDA
d(2)) result:

where

for the present case of symmetry-equivalent D and A sites, and
i and j run over the n-space diabatic states other than ψD

d(n) and
ψA

d(n). When orbitals i, j belong to a la block, the inverse matrix
in eq 13 is diagonal, yielding the simpler se expression,

Figure 4. Four-state diabatic orbitals for 1 and 2, ψi
d(4). The pz orbital

pair, belonging to a 2 × 2 locally adiabatic (la) block (see section III
and eqs 5 and 6) retains S/A symmetry while being more localized on
pz relative to their adiabatic counterparts in Figure 2. The energy scale
for εi

d(4) is given in the Figure 2 caption.

TABLE 1: GMH hDA
d(n) Values for Complexes 1 and 2 (103

cm-1)a

complexb nc hDA
d(n) ∆hDA

se-d(n) hDA
se-d(n) rDA

d(n) /rRuRu

1 2 (D, A) -1.36 0.92
3 (D, A, π(pz)) –0.85 –0.53 –1.39 0.93
3* (D, A, π*(pz)) –0.28 –1.19 –1.48 0.95
4 (D, A, π, π*(pz)) –0.07 –1.38 –1.45 0.97

2 2 (D, A) –2.39 0.87
3 (D, A, π(pz)) –1.18 –1.32 –2.50 0.90
3* (D, A, π*(pz)) +0.32 –3.61 –3.29 0.98
4 (D, A, π, π*(pz)) +0.49 –3.52 –3.03 0.99

a Matrix elements of h defined in eqs 10-14. For discussion of
sign conventions, see section VA1 and Figures 2-4. rDA

d(n) ≡ ∆µDA
d(n)/e

(see eqs 3, 6, and 8). rRuRu is the DFT-optimized Ru-Ru separation
distance (see section VA1). b Structures of 1 and 2 are given in
Figure 1. c Size and composition of the n-space; D, A, π, and π*
correspond, respectively, to ψD

d(n), ψA
d(n), ψπ(pz)

d(n) , and ψπ*(pz)
d(n) (obtained

from the ψi
a(n) at the n-st GMH level). The se quantities are based

on eqs 12-15.

hDA
se-d(n) ) hDA

d(n) + ∆hDA
se-d(n) (12)

∆hDA
se-d(n) ) ∑

i,j)3

n

hDi
d(n)(hD/A

d(n)1 - hd(n))ij
-1

hjA
d(n) (13)

hD/A
d(n) ≡ hDD

d(n) ) hAA
d(n) and n > 2 (14)
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where ∆hD/Ai
d(n) ≡ hD/A

d(n) - hii
d(n). Equations 13 and 15 are second-

order perturbation theory results (2° PT) based on 1° PT wave
functions.

The net couplings, augmented (or “dressed”) by the se terms,
are seen (Table 1) to be fairly close to the n ) 2 values, as
discussed in section VIA. It may also be noted that the π and
π* contributions (respectively, h and e tunneling pathways), as
reflected in the 3 and 3* results in Table 1, interfere construc-
tively (i.e., the ∆hDA

se-d(n) terms have the same sign) in the overall
tunneling represented by the 2-st results. This is also true for
the π(pz) and π *(pz) contributions to ∆hDA

se-d(4) (note that this
latter quantity differs from the sum of ∆hDA

se-d(3) and ∆hDA
se-d(3*) due

to differences in the relevant ψi
d(n) for n ) 3, 3*, and 4).

4. Projection Analysis of ψD
d(n) and ψA

d(n). An alternative,
nonperturbative, means of comparing ψD

d(n) and ψA
d(n) for different

n values is to project the n ) 2, 3, and 3* states onto the “bare”
4-st reference basis (ψi

d(n)), using the U matrix introduced in
eqs 3-6:

where i ) D, A and k runs over the orbital sets defined in Table
2 for the n ) 2, 3, and 3* spaces. Results are presented in Table
2, where each row corresponds to PDj, j ) 1-4 (based on the
assignment of the π(pz) and π*(pz) orbitals to a 2 × 2 la block
(see section III and eqs 5 and 6).

Complementing Figures 3 and 4 and Table 1, Table 2 shows
quantitatively how the D and A tails penetrate the pz bridge
increasingly in the sequence n ) 3* to 3 to 2, dominated by
backbonding to the π*(pz) orbital for both 1 and 2, as seen in
particular by comparing results for the intermediate 3 and 3*
spaces. Alternatively, extending the size of the n-space is seen
to attenuate or remove the delocalized D and A tails. Even
though the tails constitute at most a 10% effect, the hDA

d(n) values
in Table 1 demonstrate their great importance in establishing
the coupling strength. The trends in coupling can also be
understood in terms of the trade-off between the implicit and
explicit bridge contributions to the coupling. For example, hDA

d(3*)

in the 3* space (relative to the 2-space), retains the implicit
coupling due to ψπ(pz)

d(4) but has the stronger coupling due to ψπ*(pz)
d(4)

explicitly removed (recoverable by se, to the extent that PT is

valid, as shown in Table 1). In constrast, hDA
d(3) retains the implicit

ψπ*(pz)
d(4) coupling and, hence, is notably larger than hDA

d(3*).
B. Sensitivity to Geometry. As noted in section IV, the

GMH results are based on in vacuo DFT optimized geometries
(with the Lan2DZ basis). These calculations tend to yield
Ru-Npz bond lengths ∼0.1 Å larger than crystal structure
values.33,77,78 As a test of sensitivity of hDA

d(n) to rRuN(pz), we have
carried out GMH calculations for 2 in which the geometry is
modified by replacing the optimized bond length (2.12 Å) with
2.00 Å (the crystal structure value for the 4+ and 5+
complexes). The Ru-Ru distance decreases from 7.15 to 6.91
Å. As expected, the Ru-pz mixing increases, yielding hDA

d(2)

values of -3400 (n ) 2) and +570 cm-1 (n ) 4), and rDA
d(2)/

rRuRu ) 84% (n ) 2) and 99% (n ) 4), with backbonding (Ru
4dπxz to pz π*) remaining the dominant Ru-pz interaction. The
hDA

d(2) values obtained in the present work with both optimized
and adjusted geometries lie within the upper and lower bounds
for HDA

d(2) suggested by Reimers and Hush (∼ 2400-3600
cm-1).78 The geometry (especially rRuN(pz)) is, in turn, found to
be sensitive to the basis set employed77 and is also likely to
depend on the environment of the complex (e.g., in vacuo,
aqueous solution, or crystalline solid).78 Strictly speaking, HDA

d(2)

should be less than one-half the vertical gap, ∆E12
a(2) (eq 10) by

a term depending on the reorganization energy due to symmetric
normal modes of the solute, a correction likely to be a few
hundred cm-1.78-80

C. Sensitivity to Axial Ligands. In complexes 1 and 2, a
pronounced feature is backbonding from Ru to the pz π-acid,
the internal axial ligand, with the external axial ligands (py and
NH3) playing a passive role in the DA coupling. In striking
contrast, replacing py ligands in 1 with strong π-acid CO ligands
in complex 3 is known to lower the Ru πdxz orbitals so that the
lowest energy redox process for 3 involves the P ligand sites,
with the Ru2+/Ru3+ process occurring at higher energy. Using
the KS ε values to estimate the ionization potentials (IP) of 1
and 3 (taking the mean value of ε for the S and A Ru 4dπ type
MOs), it is found that IP (Ru 4dπ) - IP (P π) ) +0.2 eV (5.8
- 5.6 eV) for 3, in contrast to -0.2 eV (4.6 - 4.8 eV) for 1.
These results are consistent with the experimental results for
the mononuclear Ru complexes.67 Even with the resonance
stabilization of the (Ru-pz-Ru)5+ moiety in complex 3 in its
optimized symmetric structure (hDA

d(2) ) -340 cm-1; Table 3),
the P ligands remain the lowest energy redox sites.

∆hDA
se-d(n) ) ∑

i)3

n

hDi
d(n) hiA

d(n)/∆hD/Ai
d(n) (15)

ψi
d(n) ) ∑

j)1

4

Pij
(n,4) ψj

d(4) n < 4 (16)

Pij
(n,4) ) ∑

k)1

n

(U(n))ik
† Ukj

(4) (17)

TABLE 2: Delocalization Tails for 1 and 2: ψD
d(n) (n ) 2, 3, 3*) Projecteda onto ψj

d(4)

complex nb,c ψD
d(4) ψπ*(pz)

d(4) ψπ(pz)
d(4) ψA

d(4)

1 2 (D, A) +0.977 (95.5) +0.192 (3.67) -0.089 (0.79) -0.014 (0.02)
3 (D, A, π(pz)) +0.981 (96.2) +0.192 (3.67) +0.023 (0.05) -0.018 (0.03)
3* (D, A, π*(pz)) +0.996 (99.2) -0.011 (0.01) -0.089 (0.79) +0.005 (0.00)

2 2 (D, A) +0.945 (89.4) +0.304 (9.27) -0.109 (1.18) -0.043 (0.22)
3 (D, A, π(pz)) +0.949 (90.1) +0.304 (9.27) +0.065 (0.42) -0.047 (0.22)
3* (D, A, π*(pz)) +0.994 (98.8) -0.021 (0.05) -0.109 (1.18) +0.006 (0.00)

a See section VA3 and eqs 16 and 17; signs of the projection coefficients (PDj) are based on the phases of the ψj
d(4) displayed in Figure 4;

squared values of PDj are displayed as percentages in parentheses. b ψπ(pz)
d(4) and ψπ*(pz)

d(4) belong to a 2 × 2 la block (see section III and eqs 5 and
6). c See footnote c of Table 1.

TABLE 3: GMH hDA
d(n) Values for Complex 3 (103 cm-1)a

nb hDA
d(n) ∆hDA

se-d(n) hDA
se-d(n) rDA

d(n) /rRuRu

2 (D, A) -0.34 -0.34 1.03
4 (D, A, π, π*(pz)) +0.23 -0.59 -0.36 1.05
6 (D, A, π, π*(pz),π*(CO)) +0.10 -0.56 -0.47 0.99

a See footnote a in Table 1 and Figure 5. b See footnote c in
Table 1.
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To examine the excited state Ru 4d π D/A coupling in 3, we
employ the same type of 2-st and 4-st spaces as for 1 (i.e., the
Ru 4d π and pz π and π * orbitals), but in view of the expected
influence of the CO π* orbitals on the coupling, we also consider
a 6-st model, in which the KS CO π* type orbitals are added
to the 4-space.

Results for the n ) 2, 4, and 6-st GMH model are displayed
in Figure 5 (ψD

d(n)), Table 3 (hDA
d(n) and rDA

d(n)), and Table 4
(projection of ψD

d(2) and ψD
d(4) on ψi

d(6), where in eqs 16 and 17
the integer variables, i ) D, A; n ) 2 and 4; and n′ ) 4 should
be replaced by n′ ) 6). Note the trend of increasing localization
as n increases, in conformity with the results for 1 and 2 (Table
1), and the positive values of the coupling element for n ) 4
and 6. For n ) 2 (Figure 5), all three ligand types contribute
significantly to ψD

d(n), but for n ) 4, the pz π and π* contribution
is greatly reduced. Only at the 6-st level are the CO π* orbitals
essentially uncoupled from the Ru 4dπ orbitals. The competition
for axial backbonding is dominated by the CO ligands, as seen
in the fact that rDA

d(n) > rRuRu for n ) 2 and 4 and in the mixing
coefficients shown in Table 4. The 2° PT se correction for n )
6 in Table 3 includes four pathways (see eq 12): two involving
pz and two (more circuitous) involving the CO ligands.

VI. Discussion

A. Overview of Diabatic States and Effective Coupling.
1. Conclusions from Present GMH Calculations. The GMH
model provides a compact, self-contained prescription for
quantitative characterization of ET diabatic states and properties,
requiring no additional information, such as population analysis
or effective D/A separation (rDA

d(n) follows directly from the GMH
ansatz, according to which diabatic states are those that yield
maximally charge-localized states along the ET direction). A
primary focus has been to assess the validity of the 2-st
approximation (TSA), which permits the use of the superex-
change model for D/A coupling and may also permit use of the
simple nonadiabatic GR expression for ET kinetics (where kET

is proportional to (HDA
d(2))2), and its generalization to accommodate

stronger coupling (e.g., via the Landau-Zener model)81,82 and
solvent dynamics as the adiabatic ET limit is approached. The
electronic coupling plays an important role in all of these
dynamical regimes. The TSA has been addressed in the context
of hDA values obtained from larger spaces (hDA

d(n), n > 2) and their
dependence on space size for three different MV Ru-pz-Ru
complexes (1-3).

To assess the validity of the TSA, a central issue is to specify
which two states, “ψD” and “ψA”, are most suitable for
determining the effective coupling, hDA. As emphasized above,
the desired D and A states must incorporate suitable delocalized
tails, as observed for the 2-st wave functions, ψD

d(2) and ψA
d(2), in

contrast to the larger n-spaces, in which ψD
d(n) and ψA

d(n) become
increasingly “bare”. On the basis of these considerations alone,
the 2-st orbitals ψD

d(2) and ψA
d(2) would be the preferred candidates

for the effective ψD and ψA. A 2-st se model based on “bare”
(zeroth-order) D and A states, however, is required to satisfy
another important constraintsnamely, the mixing with the
bridge states or those from other sites, while crucial for
establishing the effective couplingsand must conform to the
demands of PT, denoted as the “weak coupling” regime by
Evenson and Karplus.16

Focusing first on the Ru-pz-Ru moiety, we find the largest
mixing is due to backbonding to the π*(pz) orbital, increasing
in the order,

with nonperturbative projection coefficients ranging from 0.12
(3) to 0.19 (1) to 0.30 (2). A similar trend is observed (Tables
2 and 4, and eqs 12-16) for the ratios hDπ*

d(4) /∆hD/Aπ*
d(4) (not shown),

a measure of the vaidity of PT, ranging from ∼0.2 (1 and 3) to
∼0.4 (2). These ratios are somewhat larger than the normalized
projection coefficients. The dominance of the Ru- π*(pz)
mixing (backbonding) relative to the Ru-π(pz) mixing is due
mainly to the respective energy denominators, ∆hD/Aπ*

d(4) (see
Figures 4 and 5). The trend in eq 18 is also the same as that for
both hDA

d(2) and hDA
se-d(2)) and also the inverse trend for rDA

d(n) (Tables
1 and 3).

The extent of mixing noted above suggests that the use of
PT and the se model would be valid for 1 and 3, but less certain
for 2. For 3, however, the situation is more complex than for 1
(cf. the coefficients for π*(CO) and π*(pz) in the first row of
Table 4). The detailed 6-st calculations indicate that the se
pathways involving π*(CO) contribute destructive interference
to the net coupling. The rather large mixing coefficient (0.34)
offers a caveat regarding the use of se for 3.

To within a modest percentage (e15%, based on rms
deviations, and e38%, based on maximum deviation of hDA

se-d(n)

from hDA
d(2)) an “invariant” hDA value is obtained (independent of

n) for each complex by augmenting the “bare” (i.e., residual,
implicit) coupling, hDA

d(n), for a given n, by se mixing with the
states explicitly included in the n-space. This quasi invariance
constitutes an internal consistency in the various n-st GMH
results for coupling and provides a measure of the validity of
the se model. The se terms lead to sign changes in several cases
(Tables 1 and 3) as a result of destructive interference among
pathways. The deviations among hDA

d(2) and hDA
se-d(n) for the three

complexes (see Tables 1 and 3) are to be compared with the
much larger variation of hDA

d(n) over the range of n for each
complex (e.g., by as much as a factor of 20 for 1).

In short, the se TSA in vacuo is valid for characterizing the
Ru-Ru coupling in complex 1 but is perhaps of marginal
validity in the case of 2 (due to stronger Ru-pz backbonding)

Figure 5. Diabatic donor orbitals for 3, ψD
d(n) (Ru 4dπ(L)), based on

n ) 2 (a), 4 (b), and 6 (c). The atomic spheres represent the optimized
structure in the neutral charge state, with the same colors as in figures
1-4, and with red designating the O atoms. The energy scale for εD

d(n)

is given in the Figure 2 caption, where for 3, the zero of energy
corresponds to -5.782 eV on the scale of KS energies.

3 < 1 < 2 (18)
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and 3 (due to the strong backbonding to the external axial CO
ligands). In condensed phases, the validity of the se TSA would
be influenced by the effect of the environment on the local
sites.78 With regard to dynamics or kinetics, the coupling in all
three complexes is strong enough to be at or near the adiabatic
limit, thus precluding the use of the GR in modeling rate
constants. In any case, the two states appropriate for the effective
D/A coupling when the TSA is valid are ψD

d(2) and ψA
d(2), and

not the more localized (bare) D and A states, which we have
obtained for n > 2 (ψD

d(n) and ψA
d(n)).

The trend of increasing localization with n and the attenuation
of the tails extending onto the pz bridge is evident not only in
the magnitudes of hDA

d(n) and rDA
d(n) (Tables 1 and 3) and the

projection coefficients, PDj (Tables 2 and 4), but also in the
change of signs exhibited by hDA

d(n) in several cases for the largest
n-spaces sampled. It is likely that the change of sign as n is
increased is indicative of residual destructive interference with
pathways involving other higher-lying localized states. However,
the magnitude of hDA

d(n) remains considerably smaller than hDA
d(2),

indicating that this interference is relatively small.
Concerning the issue of “convergence” of diabatic state

properties with respect to n for 1-3, the generally monotonic
decrease of hDA

d(n) with n (and increase of rDA
d(n)) found here is an

interesting preliminary finding, but any general conclusion
would require considerably more computational information
based on a larger range of n.

2. Contact with Experiment. Aside from extended compu-
tational efforts, clearly, a comparison with coupling elements
inferred from experiment will be essential in validating and
arbitrating among different models and operational definitions
of effective D and A states and their coupling. Comparison with
experiment has not been the focus of this study, but we
emphasize that despite the approximate nature of the frozen
orbital model used here, the calculated energy gaps seem in
reasonable agreement with experiment in the few cases for
which comparison can be made: for example, for 2, the in vacuo
calculated adiabatic gaps (see Figure 2) for IT and MLCT,
respectively, 0.6 and 2.6 eV, are to be compared with observed
values, 0.8 and 2.2 eV.65,66,83 The IT band is thought to be
sensitive to medium (including the influence of medium on
intramolecular structure),78 and dielectric continuum-based (DC)
reaction field (RF) models may be of some use in modeling the
effect (e.g., see ref 37), but specific solvent effects may well
be more important, as indicated, for example, by the fact that
MLCT transition energies for Ru2+ complexes correlate mono-
tonically with donor number, but not well with dielectric
constant.83 Related conclusions were reached by Pearl and
Zerner,84 who examined MLCT transition energies for Ru
complexes using a molecular-level solvent model (QM/MM)
and a DC model.

The calculated relative energetics of oxidation at Ru and P
sites in 1 and 3 is consistent with experimental findings,67

indicating a gap of ∼0.4 eV separating the oxidation energies
of P and Ru in 3.

3. GMH Results for Other ET Processes. Several GMH
studies have been carried out for ET in DA or DBA systems
involving a LE as well as G and CT states, using single
excitation configuration interaction (CIS) wave functions at the
ab initio (all-electron) or INDO/S (all-valence-electron) levels,
comparing 2-st and 3-st results,24,25,36 and in one case examining
the solvent dependence of HDA

d(n) (based on a DC reaction field
(RF) model).37 The ET processes included photoinduced and
optical ET for singlet state species, both neutral CS and CR
(D*BA f D+BA- f DBA and DBA f D+BA-) and cation
CSh ((D(A+)* f D+A and D+A f DA+). In all cases, HDA

d(3)

was found to be smaller in magnitude than HDA
d(2) (by amounts

ranging from 10 to 38%), in qualitative agreement with the trend
found for 1-3 (weaker coupling and greater localization on D
and A sites).

Lambert et al. have obtained 2-st and 3-st GMH results for
CSh in two series of radical cation DBA systems, with
triphenylamine D and A groups and conjugated20 or cyclo-
phane21 bridges (B), using AM1 CIS wave functions (and
including a solvent RF for comparison with in vacuo results).
For these systems, HDA

d(3) ranges from 50% smaller to 90% larger
than HDA

d(2). The latter situation, which represents ∼75% of the
cases, suggests the presence of special interference effects not
present in the other results mentioned above. That is, for orbital
spaces more complex than those depicted in Figure 2 or with
different ordering of the various D, A, and spacer orbitals,
cancellation of destructive interference implicit in the 2-st
coupling might be reduced in the coupling elements for larger
spaces, hDA

d(n), where such implicit interference is at least partially
removed.

The work of Lambert et al. also reports comparison with
experimental optical data and explores the promising avenue
of using calculated quantities to supplement the experimental
data (especially dipole matrix elements and their signs) and thus
permit a complete implementation of the 3-st GMH method.

Voityuk has applied the GMH method to calculate HDA
d(n) for

thermal CSh in DNA radical cations composed of duplex DNA
fragments, with D and A ≡ guanine (G) and with one to three
intervening adenine (A) or thymine (T) bases in each DNA
strand.18,19,34 Using ab initio HF orbitals at the KT level, he has
evaluated hDA

d(n) for over 40 different DNA systems, with n ranging
from 2 to as much as 8. About 50% of his results yield hDA

d(3)

smaller than hDA
d(2) (by as much as 90%), and the rest, larger (by

up to an order of magnitude). In these comparisons, n is
generally equated to m + 2, where m is the number of
intervening base pairs in a single strand. Once again, the wide
variations with n suggest the likelihood of special interference
effects (whose analysis would require the sign as well as
magnitudes of all the constituent matrix elements of h). While
advocating the use of n > 2 in GMH models, Voityuk suggests
that n should not be so large as to include multiple states on a
given site, thereby leading to unphysical mixing in the diaba-
tization process. The present approach largely obviates this

TABLE 4: Projectiona,b of ψD
d(2) and ψD

d(4) onto ψj
d(6)

nc ψD
d(6) ψπ*(CO(D))

d(6) ψπ*(pz) d(6) ψπ(pz)
d(6) ψπ*(CO(A))

d(6) ψA
d(6)

2 (D, A) +0.938 +0.321 +0.123 -0.043 -0.010 -0.004
(88.0) (10.3) (1.52) (0.18) (0.01) (0.00)

4 (D, A, π, π*(pz)) +0.940 +0.339 -0.018 -0.006 +0.009 -0.003
(88.4) (11.5) (0.03) (0.00) (0.01) (0.00)

a The phases of ψD
d(6), ψA

d(6), ψπ(pz)
d(6) , and ψπ*(pz)

d(6) are the same as for the corresponding 4-st orbitals for 1 and 2 (see footnote a in Table 2); the
localized CO π*orbitals (denoted π*CO(D) and π*CO(A)) are in phase (i.e., “bonding”) with the Ru 4dπxz orbitals (D and A), as depicted in Figure
5. b ψπ(pz)

d(6) and ψπ*(pz)
d(6) belong to a 2 × 2 la block (see section III and eqs 5 and 6). c See footnote c in Table 1.
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possibility by imposing the locally adiabatic (la) constraint at
each site (see section III).

Voityuk approximated his n-st GMH results using a PT model
in which the zeroth-order diabatic states are taken as the 2-st
results.19 The form of this model is superficially similar to the
se model introduced in section VA2 (see also ref 13), but with
the important distinction that eqs 12-15 are based on the “bare”
states, which we argue are the appropriate zeroth-order diabatic
states, in constrast to ψD

d(2) and ψA
d(2), which have appreciable

delocalization tails through mixing with the bridge (pz, for 1-3;
see Figures 3-5).

Although we have emphasized the significant differences
found in some cases between 2-st and larger-state hDA

d(n) values,
this fact by itself does not directly indicate which space is
“better” or “more reliable”, and no categorical resolution of this
question seems possible at present. In the work reported here,
we offer an example (1) in which the se model is valid and the
2-st framework provides the most appropriate expression for
the effective D/A coupling element (hDA

d(2)). We also show that
even in the case of 2 and 3, the se model is of semiquantitative
value, even though it is quantitatively inadequate.

4. A Related Method. Nelsen et al.22 have questioned the
validity of the 2-st model for characterizing ET in a number of
systems (both radical anions and cations, in the Class III or
borderline regimes). In fact, part of the issue seems to be
semantic. Actually, the 2-st and 4-st GMH treatment given here
for the radical cations 1-3 is isomorphic and quite consistent
with (but more complete than) the 2-st and 4-st analysis reported
in ref 22 for the cation of 1,4-N,N-dimethylaminobenzene The
proper 2-st results for hDA are not the 4-st D/A pair, which we
adopt as the “bare” D and A states, but rather, the ψD

d(2) and
ψA

d(2) pair, which have been demonstrated to have delocalized
tails (expressed in terms of the 4-st decomposition in Tables 2
and 4) and, thus, yield the “dressed” result, hDA

d(2) (given by eq
18 in ref 22 where the right-hand side should be multiplied by
1/2).

In the 4-st method reported ref 22, the three adiabatic gaps
do not fully specify the four diabatic parameters (two energy
gaps and two coupling elements, as required, for example, in
the summation of eq 12, with n ) 4), and it was concluded that
a value of approximately unity was a reasonable estimate for
the following ratio, R (expressed in the present notation):

where D and A are symmtry-equivalent. The 4-st GMH yields
values of all four diabatic quantities on the rhs of eq 19: for 1
and 2, we find R ∼ 0.7-0.8, somewhat smaller than unity, but
R ∼ 1.9 for 3 (in ref 22, the bare diabatic D and A states have
been symmetrically delocalized, but the resulting factors of 1/�2
in the DB and BA martrix elements cancel in eq 19).

5. Intensity Borrowing. Three-state models have been em-
ployed to highlight the important role of intensity borrowing in
radiative CR of the D+BA- f DBA type and CS of the DA*
f DA type. Two such studies28,29 have shown, starting from a
model diabatic 3-st basis, that the omission of the LE diabatic
state can lead to large underestimation of the adiabatic CR
transition dipole. Furthermore, in the case of naphthyl D*
groups, one or both steps in the photoinitiated ET sequence,
DBAf D*BAf D+BA-, may be spatially forbidden (or nearly
so due to interference in the excited state wave function). These
examples draw attention to the need in some cases for purely
electronic CT models to be extended to include suitable vibronic

mixing, and preliminary models have been explored.63,64 Fur-
thermore, in several of the cases cited,28,29 the Gf LE transition
moment is likely to be perpendicular to the direction of the CS
and CR dipole moment shifts, thus rendering the 3-st GMH
model inapplicable, although pairwise use of the 2-st model may
yield useful estimates of the G/CT and LE/CT coupling
elements.

VII. Summary

Diabatic states for donor (D) and acceptor (A) interactions
in electron transfer (ET) processes have been formulated and
evaluated, along with coupling elements (HDA) and effective
D/A separation distances (rDA), for reduced electronic spaces
of variable size, using the generalized Mulliken Hush model,
applicable to an arbitrary state space and nuclear configuration,
and encompassing Robin-Day class III and as well as class II
situations. With the electronic state space selected (a set of n
g 2 adiabatic states approximated by an orbital space based on
an effective 1-electron (1-e) Hamiltonian), the charge-localized
GMH diabatic states have been obtained as the eigenstates of
the dipole moment operator, with rotations to yield locally
adiabatic states for sites with multiple states. The 1-e states and
energies are expressed in terms of Kohn-Sham (KS) orbitals
and orbital energies. Addressing questions as to whether the
estimate of HDA “improves” as one increases n and in what sense
the GMH approach “converges” with n, we have carried out
calculations for three mixed-valence binuclear Ru complexes
(each with a pyrazine bridge (Ru-pz-Ru)), from which we
conclude that the 2-state (2-st) model gives the most appropriate
estimate of the effectiVe coupling, similar (to within a rms
deviation of e15%) to coupling elements obtained by super-
exchange (se) correction of HDA values based on larger spaces
(n ) 3-6), and thus yielding a quasi-invariant value for HDA

over the range explored in the calculations (n ) 2-6).
An analysis of the coupling and associated D and A states

has shown that the 2-st coupling involves crucial mixing with
intervening bridge states (D and A “tails”) while increasingly
larger state space for the same system yield increasingly more
localized D and A states (and weaker coupling), with HDA

tending to approach the limit of “bare” or “through space”
coupling.The mixing is dominated by Ru backbonding and for
complex 3 reflects the competition between inner (pz) and outer
(CO) axial π acid lgands. In terms of PT, the se model is found
to be quantitatively valid for complex 1 and still useful
semiquantitatively for complexes 2 and 3. Nevertheless, for all
three complexes, the overall 2-st coupling (hDA

d(2)) is too strong
to satisfy the separate PT requirements for use of the GR in
modeling the kinetics as a nonadiabatic process. Even in other
cases, when the 2-st model is adequate for modeling ET kinetics,
a multistate analysis may still be valuable in facilitating the
decomposition of D/A coupling in terms of the superexchange
(se) model.

The present results help to reconcile seemingly contradictory
assertions in the recent literature regarding the proper role of
multistate frameworks in the formulation of coupling for both
intra- and intermolecular ET systems.The new results presented
here are compared in detail with other reported results, many
of which are in conformity with the trends observed here, but
with others showing different behavior. This latter behavior may
reflect special interference effects arising from the qualitative
features of the adiabatic states constituting the n-space and their
relative ordering, a topic warranting further calculations and
analysis.

R ≡ |hDπ*
d(4) ∆hD/Aπ*

d(4) /hDπ
d(4) ∆hD/Aπ

d(4) | (19)
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