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Quasidegenerate variational perturbation theory and the calculation of first­
order properties from variational perturbation theory wave functions 

Robert J. Cave and Ernest R. Davidsona) 
Department a/Chemistry, Indiana University, Bloomington, Indiana 47405 

(Received 18 July 1988; accepted 16 August 1988) 

In previous work on the treatment of correlation in molecular systems we have applied a 
muItireference version of second-order Hylleraas variational perturbation theory. The choice 
made for the partitioning of H treated the interactions between the correlating functions to 
infinite order and gave the corrections to the wave function to first order. The method was 
shown to be accurate in many cases, but became less so when near degeneracies occurred 
between the reference energy and other eigenvalues of Ho. In this article we introduce an 
effective Hamiltonian method that is analogous to variational perturbation theory, but which is 
significantly more accurate when near degeneracies are important. This quasidegenerate 
variational perturbation theory (QDVPT) is an explicitly multireference procedure and treats 
the entire reference space as a quasidegenerate space. A novel method for solving the QDVPT 
equations is introduced that avoids explicit construction of the effective Hamiltonian. As a 
result, the work involved in application of QDVPT is on the roder of that required for 
variational perturbation theory. We also present an approximate method for calculating first­
order atomic and molecular properties based on Hylleraas variational perturbation theory, 
multireference linearized coupled cluster, and QDVPT wave functions. The properties are 
calculated as derivatives of the energy with respect to the field strength. Construction of a one­
electron density matrix based on the energy derivative expression allows rapid evaluation of 
one-electron properties. Results are presented and compared to full and truncated CI results. 
Good agreement is found in the cases examined. 

I. INTRODUCTION 

One of the goals in the development of ab initio quantum 
chemical methods is to obtain procedures which yield size­
consistent (or size-extensive, we use the two terms inter­
changeably here) results. I A size-consistent method is one in 
which the energy of the system scales linearly with the num­
ber of particles. Some examples of size-consistent methods 
are restricted and unrestricted Hartree-Fock theory, 
M011er-Plesset perturbation theory, some types of complete­
active-space SCF, coupled-cluster theory, and full configu­
ration interaction calculations. Truncated configuration in­
teraction (CI) is an example of a size-inconsistent method; 
for a singles and doubles CI the correlation energy scales as 
V n, where n is the number of particles. However, it has been 
shown in systems containing only a few electrons and a small 
basis set that multireference singles and doubles CI 
(MRSDCI) results can accurately reproduce full CI re­
sults. 2 Comparisons have not been made for larger systems 
because the full CIs cannot be performed at the present time. 
For treatment oflarge systems it will be imperative to devel­
op methods that are more nearly size-consistent than single­
reference based SDCI. 

Until recently, the predominant size-consistent correla­
tion methods (M01ler-Plesset perturbation theory and cou­
pled-cluster theory) were applied almost exclusively as sin-

a) Author to whom correspondence should be addressed. 

gle-reference based procedures. In part this is due to the 
added computational complexity of the multireference 
based procedures, but also because of the rather severe re­
quirements on the reference space in the early formulations 
of multireference theories. 3 With large reference spaces 
problems arose due to the presence of intruder states, giving 
rise to numerical instabilities or poor convergence of the per­
turbation series.4 In addition, it has been shown that in many 
cases single-reference based procedures can be quite robust 
and can overcome the rather severe limitations imposed by 
restriction to a single reference function. In a study by Laidig 
et al. 5 it was shown that a coupled-cluster model including 
single, double, and triple excitations was able to describe the 
potential curve for breaking a single bond with quite high 
accuracy. 

However, a host of problems exist for which a single­
configurational description is inappropriate. Excited states 
of the same symmetry as the ground state, or higher lying 
states of other symmetries than the ground state are cases 
where adequate single-configurational descriptions may be 
difficult to obtain. In addition, points on the ground state 
surface may be inherently multiconfigurational, such as 
some transition states. It is therefore desirable to have multi­
configurational methods that are size consistent. The earliest 
applications of multi reference coupled-cluster theory5-12 

were all based on complete-active-space SCF reference 
spaces. In previous applications of multi reference coupled­
cluster theory, the coupled-cluster equations have been trun­
cated at second order to yield manageable calculations. In 
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most cases,5,6,9-11 the orthogonal complement of the refer­
ence space was excluded from the expansion of the wave 
functions. When this approximation is made one is depen­
dent on the complete-active-space SCF to yield an accurate 
estimate of the relative weights of the configurations in the 
refrence space. In more recent developments the require­
ment of a complete-active-space SCF reference space has 
been relaxed. 13,14 A method related to multi reference cou­
pled-cluster approaches is the multi reference averaged cou­
pled-pair-functional approach ofGdanitz and Ahlrichs. IS In 
this method the orthogonal complement of the reference 
wave function is included in the wave function expansion. 
While not strictly size consistent, it has been shown to be 
quite accurate for a variety of small- and moderate-sized 
systems. IS 

We have recently proposed a version of variational per­
turbation theory 16--1H based on a multireference zeroth-order 
space. It was shown to differ from the multireference linear­
ized coupled-cluster5-7 (MRLCC) method in that the or­
thogonal complement of the reference space was included in 
the wave function expansion. Thus, variational perturbation 
theory allows correlation effects to alter the relative weights 
of the zeroth-order configurations in the final wave function. 
In test calculations IH variational perturbation theory (VPT) 
gave excitation energies and total energies in good agree­
ment with MRLCC and full CI results. However, in further 
testing of the method we have found that the inclusion of the 
orthogonal complement functions in the wave function can 
make the method more susceptible to intruder state effects 
than, e.g., MRLCC. In Sec. II we discuss the origin of this 
effect and introduce a simple model to illustrate the problem. 
It will be shown that this effect is a result of the coupling of 
the orthogonal complement of the zeroth-order wave func­
tion to all single and double excitations. In Sec. V computa­
tional results on this model will be presented to support ehe 
qualitative discussion of Sec. II. 

In many cases the intruder state problem in VPT does 
not manifest itself, but when it does one may be unwilling to 
merely remove the orthogonal complement functions from 
the wave function and use MRLCC theory. In. Sec. III we 
present an effective Hamiltonian based analog of VPT, 
which we call quasi degenerate variational perturbation the­
ory (QDVPT). Quasidegenerate variational perturbation 
theory treats the reference wave function (\110 ) and its or­
thogonal complement on a more equal basis. The partition­
ing made of H into Ho and Vis similar to that made in VPT, I H 
except that the reference space (P) now contains \110 and its 
orthogonal complement, while the correlation space (Q) 
only contains the single and double excitations relative to P. 
We retain the full coupling of the single and double excita­
tions between themselves in H o, thus yielding an infinite or­
der treatment of their interactions as in VPT. In the limit 
that the effective interaction within the reference space goes 
to zero, QDVPT yields results identical with MRLCC. 
When the effective coupling is small but nonzero QDVPT 
gives results similar to VPT. However, where intruder state 
problems arise is variational perturbation theory, or where 
correlation brings on significant reference space readjust­
ments, results indicate that QDVPT is superior to VPT. 

QDVPT will be shown to be not strictly size consistent, but 
to be much more nearly so than (MRSDCI). 

In Sec. IV we introduce a method for estimating first­
order one-electron properties based on VPT and QDVPT 
wave functions. Not only do the one-electron properties pro­
vide additional probes of size-inconsistency effects, but it is 
sometimes the case that one-electron properties are of more 
interest in a theoretical study than bond energies or excita­
tion energies. Also, comparison of calculated molecular 
properties with experimental values can provide a means of 
gauging the quality of a calculational procedure. 19 It is thus 
useful to be able to evaluate molecular properties in an accu­
rate and efficient manner. This is particularly true for corre­
lated wave functions, where one has some hope of system at i­
cally approaching agreement with experimental quantities. 

The Hellmann-Feynman theorem2o states that for the 
exact wave function one can obtain equivalent results for 
first-order properties by calculating the properties as deriva­
tives of the energy with respect to the perturbation of inter­
est, or as expectation values of the perturbation over the 
unperturbed wave function. This is also true for wave func­
tions that are optimal with respect to all variable parameters, 
such as SCF, complete-active-space multiconfigurational 
SCF, and full configuration interaction. 2 I Most other com­
monly employed wave functions (truncated configuration 
interaction,22 many-body perturbation theory, 22 coupled­
cluster approaches, I coupled-pair functional theory, IS and 
variational perturbation theory l6--IH) are not optimal with 
respect to all parameters and differences are expected 
between the energy derivative and expectation value meth­
ods of property evaluation. 

The disadvantage of the energy-derivative methods ap­
plied in a a finite-field form 23 is that several calculations of 
the wave function must be performed for each property de­
sired. The expectation value method, where a reduced one­
particle density matrix can be defined, allows efficient evalu­
ation of many properties at once. However, for some 
correlated wave functions in current use (most notably cou­
pled-cluster types of wave functions) calculation of the one­
particle density matrix can be more difficult than repeated 
application of the energy-derivative method. 

In this report we examine the utility of an approximate 
method for evaluation of properties based on second-order 
Hylleraas variational perturbation theory wave functions 
(and related wave functions) and QDVPT wave functions. 
The properties are formulated as the derivative of the sec­
ond-order energy expression with respect to the perturba­
tion strength. We neglect derivatives of the molecular orbital 
basis with respect to the perturbation. Due to the form of the 
energy expression used, a reduced density matrix can be de­
fined. A similar method for property evaluation has been 
used for coupled-pair functional theory wave functions. 15 
Results are compared for the three systems examined pre­
viously in our tests of variational perturbation theory.IH 
Variational perturbation theory, QDVPT, multi reference 
linearized coupled-cluster,5-7 and CI results are also present­
ed for the model system examined in Sees. II and III which is 
designed to aSSess the effects of size inconsistency on the 
energy and first-order properties. 
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II. VARIATIONAL PERTURBATION THEORY AND SIZE 
INCONSISTENCY 

In this section we discuss the source of the size inconsis­
tency in variational perturbation theory and introduce a sim­
ple model that illustrates this problem. We first review the 
relevant equations. 

We adopt the following conventions for designating the 
configuration space. lJIo designates the zeroth-order refer­
ence function for VPT or MRLCC. lJIo need not be the lowest 
root of the zeroth-order space. When the reference space 
contains two functions, we designate the orthogonal comple­
ment of IJI ° as IJI e' When the entire reference space is being 
considered, we designate a member of this space as IJI& 
(i = 1, ... ,n), where n is the number of functions in the refer­
ence space. Finally, when the reference space functions and 
the single and double excitations from the refrence space are 
being considered together, these functions are designated as 
<1>" (k = 1, ... ,N) with the first n <1>" being the reference 
space functions. With these definitions the configuration 
space is partitioned into three sets: 

II 

lJIo = 1J16 = <1>1 = I dbcpi' (1a) 
i-I 

II 

IJI~ =<1>" = I d~CPi' k=2, ... ,n, (1b) 
i-I 

<l>k =cP", k=n+ 1, ... ,N. (1c) 

The N - n CPk are all the single and double excitations rela­
tive to the reference configurations. The projection opera­
tors for these three spaces are denoted P, Qo, and Qp respec­
tively. The sum of Q o and Q\ is denoted as Q. The 
Hamiltonian is partitioned as 

Ho=PHP+QHQ, 

V=PHQ+QHP. 

(2a) 

(2b) 

Using Eqs. (1) and (2) and assuming intermediate normali­
zation (lJIollJl) = 1), the expression for the second-order 
correction to the variational perturbation theory energy is 
obtained as 16--1 x 

(3) 

with Eo=(lJIoIHllJlo) and IJI I composed of the <1>" 
(k = 2, ... ,N). That is, IJI I is defined as 

.v 

IJI I = I C"<I>,,. (4) 
k , 

The variation of E2 with respect to the Ck (k = 2, ... ,N) 
yields 

0= (<I>"IHllJlo) + (<I>"IH-EollJIl) 

or, in matrix form, 

QHP + Q(H - Eo)QC = O. 

(5) 

(6) 

Equations (3) and (6) are the defining equations for vari­
ational perturbation theory. We note that when Eq. (6) is 
satisfied the expression for E2 reduces to 

E2=(lJIoIHIIJI I ) (7) 

which is identical to the usual Rayleigh-Schrodinger expres­
sion for the second-order correction to the energy. 

The solution ofEq. (6) is the point at which the intruder 

state problems of the VPT equations can be seen formally. In 
general, Eq. (6) has a solution when the determinant of 
Q(H - Eo)Q is nonzero. 24 By performing a unitary trans­
formation on QH Q to diagonalize it, one sees that this condi­
tion is equivalent to requiring that no eigenvalue ofQH Q be 
equal to Eo. Near points where an eigenvalue ofQH Q equals 
Eo one expects the solutions of Eq. (6) to behave badly. The 
problem for VPT is that when the orthogonal complement of 
the reference space is included in Q one can always expect a 
crossing of an eigenvalue of QH Q and Eo as the system size 
increases. This is because all single and double excitations 
relative to the reference space are included in Q and these 
single and double excitations correlate the orthogonal com­
plement configurations as well as lJIo. As the correlation en­
ergy in the system increases, the lowest eigenvalue of QH Q 
(dominated by an orthogonal complement function for large 
systems) can be made to sweep through Eo- causing instabili­
ties in the resulting solutions. Thus the orthogonal comple­
ment functions (dressed by their interactions with the single 
and double excitations in Ho) become intruder states4 as the 
system size is increased for this nondegenerate treatment. 
Intruder state effects are less likely to occur for MRLCC 
since the orthogonal complement functions are excluded 
from Q, and the single and double excitations do not corre­
late each other to the extent that they do Qo. Therefore, in 
MRLCC the lowest eigenvalue ofQH Q can remain separat­
ed from Eo even as the system size increases. To illustrate 
these features we introduce a simple model system. 

The model system we wish to consider is the lowest IA I 

state ofCH2He ll , where CHe is at the equilibrium geometry 
for its lowest IA I state and the He are well separated from 
one another and from CH2• For simplicity we assume two 
AOs are centered on each He. Our treatment will be based on 
a two-configurational description of CH2He il , the two con­
figurations differing only in the orbitals occupied by the CHo 
lone pair electrons. The occupied and virtual orbitals ar~ 
assumed localized on their respective centers; the SCF re­
sults reported below support this assumption. All doubly 
excited configurations on the He relative to both reference 
configurations and all double excitations on CH? will be con-
sidered. -

We designate the optimal two-configuration SCF func­
tion as lJIo (with energy Eo) and its orthogonal complement 
in the reference space IJI e (with energy Ec ). Of the double 
excitations out of He orbitals, only those involving excita­
tion of a pair of electrons on one He into an orbital on the 
same He will have nonzero matrix elements with lJIo, due to 
the assumed large distance between the He. Furthermore, 
for the two configurations corresponding to a double excita­
tion on a given He one can transform to a new set of func­
tions cP~ and cP~ (using the two-configuration SCF CI coeffi­
cients) that have the following properties: 

(lJIoIHllJlo) = Eo, (lJiclHllJlc) =Eco 

(lJIoIHllJl c ) =0 (lJiolHlcpb) =HO,lIe' 

(IJI c IH IcptJ) = 0, (lJIolH Icp~) = 0, 

(IJI e IH Icp:·) = He,He = HO.He, 
(cp~ IH Icpb) = Eo + Elle , 

(cp~IHlcp:·)=Ec+EHE' (cp~IHlcbb)=O. (8) 

J. Chern. Phys., Vol. 89, No. 11,1 December 1988 
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In Eg. (8) EHe is the energy of the doubly excited configura­
tion on He relative to the ground state SCF value. We also 
make use of Ee = (Ee-Eo). Finally, we denote the set of 
doubly excited configurations on CH2 as (the vector) ifJCH2' 

the associated vectors of connecting matrix elements being 
Ho.cH2 and H e•CH2 ' Note that these double excitations do not 
connect with the He double excitations. 

Since the He are equivalent it is clear that each He dou­
ble excitation will enter I{I with the same coefficient, and that 
one can write I{I in the form 

I{I = Il{Io> + CC II{I e > + CCH2lifJCH2 > + C~e IXo> 

+ C~e IxJ, (9) 

where C CH2 is a vector of coefficients and we have defined 
the normalized functions Xo and Xc as 

n 

xo= I ifJ~/vn, (lOa) 
i= I 

n 

Xc = I ifJ~/Vn. (lOb) 
i= 1 

Note that n indicates the number of He. With these defini­
tions the VPT equations defining the coefficients [Eq. (6) 1 
become 

o o 
VnHO.He 

_(Vn~"H'). 
HO•CH2 

With the definitions 

(11 ) 

H~.o = Ho.cH2 (Eo - H CH2 ) -'HCH2.0 , (12a) 

H~.e = Ec + H e•CH2 (Eo - HcH2 ) -'HcH2P (l2b) 

H~,e = H~.o = He.CH2 (Eo - H cH2 ) -'HCH2 ,O' (12c) 

Eg. (11) can be solved to yield 

C~e = - VnHO,He/EHe' 

C~e = vnHO,HeH~,oID, 

Ce = -H~.c(Ec +EHe)ID, 

CCH2 = (Eo - H cH2 ) -'HcH2.o 

- (Eo - H cH2 ) -'HcH2.eH~.o (Ec + EHe )ID 
(13 ) 

with 

D=H~,c(Ec -EHe ) -nH~,He' (14) 

The total energy E = Eo + (I{I 0 IH II{I,) becomes 

E = Eo - nlHo.He 1
2/EHe - Ho,cH2 (HCH2 - Eo)-' 

XHcH2.o - IH~,c 12(Ec - EHe )ID. (15) 

The last term in Eq. (15) manifests the size inconsistency in 
variational perturbation theory for the present model sys­
tem. The D I (Ec + EHe ) factor in the last term of Eq. (15) 
approximately represents the energy of I{I c after being corre-

lated by the configurations in ifJCH2 and Xc' This quantity 
changes with increasing He, while the factor multiplying it 
does not, thus leading to size inconsistency. In addition, this 
term also leads to the numerical instability in the VPT equa­
tions with increasing He. For the present model, 
H ~,c (E c + EHe ) is positive and since - nH ~,He is negative, 
D will go thrugh zero as n is increased. At the point D = 0, 
the VPT equations have no solution, and near this point they 
are unstable with respect to variation of n. Thus, as noted 
above, the dressed I{I c becomes an intruder state in VPT. In 
the computations presented below it will be seen that this 
singularity is encountered between 9 and 13 He for the basis 
sets used. However, it will be shown that this singularity 
does not have a large effect on the total energy, and that the 
largest errors actually occur in the one-electron properties. 

For cases where D is not near zero we can expand the 
denominator in Eg. (15) to obtain 

E=Eo - nlHo.He 1
2
/EHe - Ho.cH2 (HCH2 - Eo)-' 

XHO,CH2 - IH~.o 12IH~,c - nlHo,He 12IH~,o 121 

(16) 

The second and third terms ofEq, (16) present the second­
order Rayleigh-Schrodinger contributions to the energy 
lowering based on the direct coupling of the He and CH2 

double excitations to l{Io. The last two terms represent cou­
pling of I{I c to l{Io through ifJCH2 . The direct coupling between 
I{I c and l{Io is zero when l{Io is an eigenfunction of Ho. When 
the He are well separated from CH2 the coupling ofl{l c to l{Io 

through the He double excitations is also zero. However, 
since one cannot transform away the coupling of l{Io and I{I c 

through the double excitations on CH2, this coupling will 
remain. 

When no CH2 double excitations are included in the 
present model the effective coupling between l{Io and I{I c is 
zero and variational perturbation theory yields the same 
size-consistent result as MRLCC. However, in this model 
the He double excitations are least like "normal" correlating 
configurations in most molecular calculations. That is, in 
general, l{Io and I{I c will be coupled through most or all of the 
double excitations. Thus, for a multireference case, these ef­
fects are always present for variational perturbation theory, 
and intruder state problems can arise whenever the correla­
tion energy is larger than the energy separation between l{Io 

and an orthogonal complement function. This fact suggests 
that VPT should be modified for cases were the correlation 
energy is substantial. 

III. QUASIDEGENERATE VARIATIONAL 
PERTURBATION THEORY (QDVPT) 

Variational perturbation theory and most other multire­
ference coupled-cluster or perturbation methodss

,6,9-'2.2s 

treat the zeroth-order space as a multiconfigurational non­
degenerate space. Thus, the orthogonal complement func­
tions are treated as minor contributors to the final wave 
function, However, there are occasions where such an ap­
proach may be inadequate. One example was given in Sec. II, 
where inclusion of I{I c in I{I, led to size-inconsistency effects 
because I{I c is coupled to all single and double excitations, A 
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second example occurs where correlation significantly alters 
the relative weights of the configurations comprising '1'0 in 
the final wave function. In this case neglect of the orthogonal 
complement configurations will lead to errors. Alternative­
ly, inclusion of the orthogonal complement functions via 
VPT will lead to large (usually inaccurate) coefficients for 
these functions because VPT is only first order in its treat­
ment of the corrections to '1'. 

In such cases it is important to be able to treat all the 
reference functions on a more equal basis, thus moving from 
a non degenerate to a quasidegenerate formalism. Several 
groups have discussed,·7,s.I3.26-28 and applied methods of 
this type. 8.13, 14 Below we present a modification to variation­
al perturbation theory based on an effective Hamiltonian 
constructed from a multireference zeroth-order space. It is 
derived using partitioning theory29 applied to the full CI 
Hamiltonian matrix and is aimed at treating the quasidegen­
erate problem, It also alleviates the problems encountered in 
nondegenerate muItireference perturbation theory caused 
by the crossing of Eo by eigenvalues of Ho when the orthogo­
nal complement of '1'0 is included in Q, The method will be 
shown to reduce to VPT when the effective interaction 
between zeroth-order configurations is weak, and to 
MRLCC when the effective interaction is zero, But, since the 
current method treats the interaction between the reference 
functions to all orders it remains stable when strong zeroth­
order mixing occurs. It will be shown that the model is not 
strictly size consistent, due to an assumption which elimi­
nates the dominant intruder state effects, Nevertheless, in 
applications of the model its size inconsistency will be shown 
to be much weaker than that of comparable CI calculations. 

A. Method 

The full CI Hamiltonian is partitioned into P, Q, and R 
spaces, in a similar way to that done for VPT. This partition­
ing was used by Kutzelnigg in work on perturbation theo­
ry.30 Based on this partitioning we obtain 

Ho = PHP + QHQ + RHR, 

V = PHQ + QHP + QHR + RHQ + PHR + RHP. 
e 17) 

If one assumes that P comprises all of the reference func­
tions, Q all single and double excitations from P, and R all 
higher excitations from P, then the fifth and sixth terms of V 
in Eq, (17) are zero, The CI equations for this partitioning 
can be written as 

(

PHP 

QHP 

o 

PHQ 

QHQ 

RHQ 

We rearrange Eq. (18) using 

CR = [R(E-H)R}-IRHQCQ 

to yield 

(
PHP-E PHQ ) 

QHP QHQ + QHR[R(E-H)R} IRHQ_E 

(18 ) 

(19) 

(~:) = 0, (20) 

where [R(E-H)R} --I is shorthand for the Lowdin Tmatrix29 

defined as R[u(P+Q)+R(E-H)RrIR, where u is a con­
stant. Note that [u(P+Q)+R(E-H)Rr l is block diagonal 
so that P[u(P+Q)+R(E-H)RrIR and Q[u(P+Q) +R(E­
H)RrIR equal zero. At this point, Eq, (20) is equivalent to 
the full CI equations and is impractical to solve, due to the 
coupling of the single and double excitations (Q) to all high­
er excitations, A means of truncating the equations is need­
ed, We do so in the following way. For the root within the 
reference space most like the state of interest we define 
Eo = ('I'oIH 1'1'0> and set E = Eo + Ecnrr in the block of H 
over the Q configurations. ( Various choices for '1'0 will be 
discussed below.) Realizing that the effect of higher excita­
tions contained in the term QHR[R(E-H)R} - IRHQ is to 
dress (or correlate) the single and double excitations, we 
approximate the Q block by replacing this term by the diag­
onal matrix Eco ... That is, we assume that the correlation 
energy for the single and double excitations is similar to that 
of the state of interest. [This is not completely accurate, 
since the E in the term QHR(R(E-H)R} -IRHQ is that of 
the state under consideration, and thus this term is not en­
tirely equivalent to the correlation energy of each of the sin­
gle and double excitations,] With this approximation Eq. 
(20) becomes 

(
PHP-E PHQ) (Cp ) 

QHP QHQ-Eo C
Q 

= O. (21 ) 

Equation (21) can itself be rearranged using 

CQ = [Q(Eo-H)Q}-IQHPCp (22) 

[where (Q(Eo-H)Q) -I is defined analogously to 
(R(E-H)R) -I] to give the effective Schrodinger equation 

(PHP + PHQ( Q(Eo - H)Q) -IQHP }Cp } =ECp . 

(23) 

The effective Hamiltonian defined by Eq. (23) is Hermitian 
and is defined only over the reference space, We stress that, 
as in VPT or MRLCC, QHQ is the full interaction matrix 
for the single and double excitations, not just the diagonal 
elements as in the BK" or Rayleigh-Schrodinger B K

J2 ap­
proaches. The direct method of solution for QDVPT uses 
this partitioning and solves Eqs. (22) and (23). In contrast 
to MRLCC where a specific C p is chosen and Eq. (22) is 
solved, Cp is not known in QDVPT. As a result one must 
essentially solve n MRLCC problems, one for each function 
in the P space. We have implemented the solution of the 
QDVPT equations using this direct method and have ob­
tained QDVPT wave functions by diagonalizing Eq. (23). 
While this approach is possible, it turns out to be unwieldy 
for large reference spaces, requiring essentially n times the 
work of a VPT or MRLCC calculation. In the Appendix we 
present an iterative method for solving Eq. (21) which 
proves to be much more efficient. This treatment takes only 
somewhat more effort than a MRLCC or VPT calculation. 

Since we require Eo for the root of the reference space 
most like the state of interest, we normally begin the calcula­
tion by diagonalizing Ho over the reference space and defin­
ing H in terms of the eigenfunctions of Ho in the reference 
space. (This is not a necessary step, since given an Eo the 
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QDVPT equations are invariant to a unitary transformation 
within the reference space. Rather, we perform this oper­
ation to make obvious the relation of QDVPT to MRLCC 
and VPT, where this prediagonalization of the reference 
space is necessary.) When this is done, PHP is diagonal and 
any coupling that occurs between the zeroth-order states 
now arises due to the PHQ{Q(Eo-H)Q}-'QHP term. If 
this term becomes large, significant mixing will occur within 
the P space. In this case, Eo is no longer the appropriate 
reference energy to use in solving Eq. (21) and it is best to 
iterate these equations, using the new Eo defined by 
Eo = C~HoCp with C~Cp = 1 (note this expression con­
tains Ho and not the effective H), repeating this process until 
convergence is reached. 

In the other extreme, when both PHP and 
PHQ{Q(Eo-H)Q} -'QHP yield no coupling within the 
reference space, Eqs. (22) and (23) can be shown to yield 
the MRLCC energy and wave function for the root corre­
sponding to the Eo chosen. The diagonal elements corre­
sponding to the remaining configurations are 

Hjj = E~ + <'I'~ IHQ{Q(Eo-H)Qr'QHI'I'~ >. (24) 

Thus the remaining diagonal elements do not corre­
spond to the MRLCC energies for these roots, due to the 
presence of Eo in their effective matrix elements, rather than 
E ~. However, it is just this approximation that inhibits the 
problems encountered with intruder states. Were the effec­
tive Hamiltonian to reduce to separate MRLCC calculations 
on each root when no effective coupling existed, one would 
have quite high values of E ~ in the effective matrix elements, 
leading to crossings with eigenvalues of QHQ and instabili­
ties in the equations as were encountered in VPT. 

B. Relation to other methods 

The present method is somewhat similar to the B K 3' and 
Rayleigh-Schrodinger B K 32 methods. Referring to Eq. 
(20), the first difference between QDVPT and the B K meth­
od is that in QDVPT we substitute - Eo for {- E 
+ QHR{R(E-H)R}-'RHQ}, whereas the BK method 

neglects QHR{R(E-H)R)-IRHQ and retains E, thus 
yielding a size inconsistency similar to that of MRSDCI. 
The second difference between BK and QDVPT is that the 
B K method only retains the diagonal elements in the QHQ 
block, whereas QDVPT retains the full QHQ matrix. Ray­
leigh-Schrodinger B K perturbation theory differs from 
QDVPT only in the second of these two ways, since it makes 
the same substitution of - Eo for {- E + QHR 
{R(E-H)R}-'RHQ} as QDVPT does. The expected im­
provement in accuracy of QDVPT over Rayleigh-Schro­
dinger B K perturbation theory should be similar to that 
found in proceeding from conventional Rayleigh-Schro­
dinger PT to the nondegenerate second-order VPT defined 
in Sec. II and Ref. 18. 

The relation between the present method and MRLCC 
was discussed above. The difference between QDVPT and 
MRSDCI consists in that CI neglects 
QHR{R(E-H)R}-'RHQ in the Q block, but retains E, 
rather than substituting Eo. Variational perturbation theory 
will be shown below to be related to QDVPT in a perturba­
tive sense; i.e., by solving the effective Schrodinger equation 

perturbatively (when such an expansion is appropriate) one 
recovers the VPT results in low orders. 

Finally, QDVPT can be shown to be similar to the re­
cently introduced multireference averaged coupled-pair 
functional method of Gdanitz and Ahlrichs. '5 In the multi­
reference averaged coupled-pair functional method the con­
figuration space (outside '1'0) is broken up into two parts: 'I' a 

comprises all configurations with orbital occupations that 
are the same as the reference configurations outside the ac­
tive space, and 'I' e is made up of all other configurations. A 
modified CISD energy expression is used in which the nor­
malization terms in the denominator corresponding to 'I' a 

and 'I' c are weighted by the factors ga and gc' respectively. 
Gdanitz and Ahlrichs choose ga = 1 (reasoning that no re­
normalization is needed for the a space) and ge = 2/n, 
where n is the number of electrons being correlated. The 
definition of gc is obtained by requiring that the energy func­
tional employed have the proper dependence on particle 
number for a system of separated electron pairs. QDVPT 
can be obtained from their energy functional by setting 
ge = 0 and ga = 1. 

C. Application of OOVPT to 1 'A, CH2 (He)n 

Using the same definitions of the components of 'I' as 
were used in Sec. II we now have 

P = 1'1'0><'1'01 + I'I'J<'I'r I, 

Q= IrPCH2> <rPCH21 + Ixo> <Xol + IxC><Xcl· (25) 

With the definitions for the Hamiltonian matrix elements 
used in Sec. II we obtain the effective Hamiltonian 

Heff -Eo 

= (H~.() - nH6'l{)itHe 

H~.o 

Because the He do not interact with CH2, H e•xc 
= H 0, \-0 = HO,Hc ' Defining the matrix elements of Eq. (26) 

as Ml} and solving for the lowest root of the effective Schro­
dinger equation we obtain 

E, = Eo + (M" + M 22 )!2 + [(M" - Mn)/2] 

X [(1 + 4(Md 2/(MII - Md ]1/ 2 

= Eo + Mil + (M'2)2/(MII - M 22 ) 

- (M'2)4/(M" - Md 1 + 0 [(M'2)6]. (27) 

Substituting for the Mij one obtains 

E, = Eo - nH6,He/EHe - H O•CH2 (Eo - H cH2 ) -'HCH2,0 

+ IH~.o 12/[ H~.o - H~,e - nH~,xD/ 

EHe + nH~.¥J(Ec + EHe )] 

- IH~,o 14/[ H~.o - H~.c - nH~.¥0/EHe 

+nH;.¥e/(Ec +EHe ]3+0(H,'J). (28) 
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For comparison with the VPT results we expand out the 
11.111 - M21 denominators around H ~,c and obtain 

IH
e 111H" He IH e 111(HC )2 - (,,0 c.c + 0,0 e.O C.C 

- nlHo.lle 11IH~.0 11{1I(Ec + Elle ) - l/Ellc}/(H~,c )2. 

(29) 

The only differences between Eq. (28) and the VPT result 
are the fifth and seventh terms of Eq, (28), which do not 
appear in Eq. (16). Thus, in the regions where liD or 11 
(Mil - Mn) can be expanded as above, the VPT and 
QDVPT results are expected to be quite close. 

A more natural choice about which to expand the 
QDVPT energy is lI(H~,c - H~.o), in which both 'l'o and 
'l' c are dressed by their interactions with the CH2 double 
excitations, The fifth term in Eq. (28) arises because we 
instead expanded about lIH~,c' and the ratio H~,oIH~,c 
gives information regarding the appropriateness of VPT for 
a given problem. When this factor becomes large one expects 
intruder state effects to be important. Note that QDVPT is 
still valid, it merely indicates that this choice for expansion 
of the QDVPT denominator is inappropriate, In fact, one 
need not perform any expansion in the QDVPT case and 
then the QDVPT energy expression is valid even when 
(Mil - Mn) is zero. (In the calculations presented below 
we, of course, do not expand out the QDVPT energy expres­
sion. This expansion is performed here for illustrative pur­
poses,) It should be noted that it is the presence of the factor 
lI(M Ii - M 22 ) rather than liD which contributes to the 
stability of the QDVPT equations. As shown above D will go 
through zero as the number of He is increased, whereas one 
expects (Mil - M 22 ) to be nearly constant with increasing 
He. When D becomes small the VPT equations cannot be 
solved either perturbatively or exactly, 

Finally, we comment on the lack of size consistency in 
QDVPT. Within the present simple model it can be shown 
that M 12 ( = M 21 ) is constant as the number of He is in­
creased, However, the difference between Mil and Mn will 
change as the number of He is increased. This is due to the 
presence of Eo in the expression for H~" rather than Ec as 
would be found in a MRLCC calculation on 'l' c' That is, 
given that the He are well separated from CH2 one would 
expect the same He double excitation coefficients (and thus 
the same contribution to the correlation energy of each 
state) from the expressions fQ(Eo-H)Q} ~IQH'l'o and 
f Q(Ec - H)Q} ~ IQH'l' c . This is not the case for 
f Q(Eo - H)Q}- IQH'l' c which is the expression used in 
QDVPT to generate the effective matrix elements for the 
orthogonal complement to 'l' 0' This leads to the energy con­
tribution per He to Mn being somewhat different from that 
to Mil' In the calculations performed below Mil - Mn be­
comes more negative with increasing He, and in the limit of 
an infinite number of He in the present system the QDVPT 
result would reduce to an MRLCC calculation on the lowest 
state. However, it will also be shown below that this effect is 
quite small relative to the size inconsistency of truncated CI 
and should not be a major factor, even for calculations on 
quite large molecules, 

IV. PROPERTY EVALUATION 

While the methods for evaluation of first-order one­
electron properties for VPT and QDVPT are formally simi­
lar, some differences exist between the two, We first present 
the theory for VPT and MRLCC and then proceed to 
QDVPT. 

A. VPT IMRLCC properties 

The full CI Hamiltonian for a fixed many-electron basis 
in the presence of the perturbation G is written as 

H =W +IlG, (30) 

where the superscript f denotes the field-free Hamiltonian 
for the system of interest. We partition the field-dependent 
Hamiltonian in the usual way for VPT or MRLCC and Eo, 
E 2, 'l'o, and 'l'1 are then functions of the strength of the per­
turbation Il' To the extent that Eo + E2 for VPT or MRLCC 
is able to approximate the eigenvalue of the full CI matrix, 
the property (G) is given by aE I all I!' ~ o. The derivative of 
the total VPT or MRLCC energy with respect to Il evaluated 
at Il = 0 is 

aE aEo aE, -=--+--- , 
all all all 

~~2 = (aa:o IHfl'l'l) + ('l'oIG l'l'l) + ('l'oIHfl aa:l ) , 

(31) 

After some manipulations, one obtains the expression (for 
real wave functions) 

aE , 
-= (1-I'l'II-)('l'oIGI'l'o) +2('l'IIGI'l'o) 
all 

+ ('l'IIG l'l'l) + 2 (aa:o IHf- Eo- E21'l'o + 'l'1) 

- 21'l'112('l'oIHfl aa:o ) , (32) 

When lJIo is an eigenfunction of H ~, the last term in Eq. (32) 
is zero, Furthermore, when 'l'n is an eigenfunction of H ~, 
a'l'o/all is easily obtained as fQo(E~ - Hf)QO}~IG'l'o and 
Eq. 32) becomes for VPT: 

aEVPT , 
--= (1 - l'l'II-) )'l'oIG I'l'o) 

all 

+ 2 ('l' II G IlJIo) + ('l' II G l'l'l) 

- 2E2 ('l'ol G If Qo - E~ - Hf)Qo} ~ l'l'I)' 
(33) 

whereas for MRLCC Eq, (32) becomes 

aE~:LCC = (1 _ 1'l'112) )'l'oIG I'l'o) 

+ 2('l'IIG I'l'o) + ('l'IIG l'l'l) 

+ 2('l'01 G I f Qo-E~ -Hf)Qo} ~ IH'l' I)' 
(34) 

Alternatively, one could choose to not allow the coefficients 
defining 'l'o to change with application of the field, In this 
case a PI all = a QI all = 0 and the expression for both the 
VPT and MRLCC properties reduces to 
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aE = O-IIIJII"»lIJoIGllIJo) 
all 

+ 2(IIJ IIG IlIJo) + (IIJIIG IIIJ I)· (35) 

We denote properties calculated using Eq. (35) as (G )fix 
below, and refer to these fixed or frozen 1IJ0 properties, since 
the coefficients defining 1IJ0 are fixed at their zero-field val­
ues. The properties obtained from Eq. (35) are equivalent to 
those obtained using the modified expectation value 

(G) = (lIJoIGllIJo) + (lIJo+IIJIIG-GollIJo+IIJI)' 
(36) 

where Go = (lIJol G IlIJo). Equation (36) can be obtained in a 
somewhat different manner by writing 

(G) = (lIJo + IIJIIG IlIJo + IIJI)/(lIJo + 1IJ111IJ0 + IIJ I) 
(37) 

expanding the denominator, and keeping terms up to second 
order in IIJ I' The equivalence of Eqs. (35) and (36) when the 
coefficients defining 1IJ0 are fixed at their zero-field values 
arises because the Cj are obtained variationally via Eq. (6). 
This may be viewed as a modified Hellmann-Feynman 
theorem for the energy expression used above [Eq. (3)], 
with the assumption that the atomic and molecular orbitals 
are fixed. 

In general, Eqs. (33) and (34) are expected to be more 
accurate than Eq. (35), since they take into account the 
variation of 1IJ0 with the perturbation strength. However, 
when IIJ 0 is not an eigenfunction of H ~ we have chosen to use 
Eq. (35) to evaluate molecular properties, thus using the 
form equivalent to the expectation value in Eq. (36). We 
choose this due to the ambiguity in the derivative of the d ;J 
associated with an arbitrarily chosen IIJ o. One could use stan­
dard first-order Rayleigh-Schrodinger perturbation theory 
to define a dol all, but we have chosen to discard the term 
arising from a dol all. In using Eqs. (32) or (34) an effective 
one-particle density matrix can be defined for the variational 
perturbation theory or MRLCC wave functions as 

P= 0- (1IJ111IJ1»po+ (POI +PIO) +PI + (P61 +PJo) 
(38) 

with X either VPT or MRLCC and where 

and 

Po = f ... f dr2 " 'drM 1IJ~(rl, .. ·,rM )IIJO(rl,· .. ,rM ), 

(39a) 

POI = f '" f dr2 "'drM 1IJ~(rl, .. ·,rl\1)'I'I(rl, .. ·,rM)' 

(39b) 

PIO = f ... f dr2 " 'drM 'l'i(rl,· .. ,rM )'I'o(rl,. .. ,rM ), 

(39c) 

PI = f ". f dr2 " 'drM 'l'f(rl, .. ·,rM)'I'I(rl, .. ·,rM ) 

(39d) 

P6tT = - E2 f '" f dr2" 'drM 'I'~(rl, .. ·,rM) 

X {Qo(E~ -W)Qo} -IIIJ I (rl, ... ,rM ), (40a) 

VPT - E f··· fd ···d {Q (Ef Hf)Q }-I PIO - - 2 r1 rM 0 0 - 0 

(40b) 

X {Qo(E~ - Hf)Qo} -IH'I' I (rl, ... ,rM ), (4Ia) 

pr;6RLCC = f··· f dr2"'drM{Qo(E~-W)Qo}-IH 
(4Ib) 

When fixed properties are calculated p is obtained using Eq. 
(42), with the various terms defined as in Eq. (39): 

P= 0- ('I'IIIIJI»po+ (POI +PIO) +PI' (42) 

One-electron properties are obtained via Eq. (43): 

(G) = Tr(pG). (43) 

Finally, we point out that there is an effective inconsis­
tency in Eqs. (33) and (34) in the order of the terms includ­
ed from the field-free wave function. Since '1'1 is the first­
order correction to the wave function, the expressions for 
(G) contain zeroth-order terms (Go), first-order terms 
«lIJoIGIIIJ I», and some of the second-order terms 
( ('I'll G - Go I 'I' I ) ). The other second -order terms, of the 

form (lIJol G 1'1'2), do not appear since the expression for the 
properties presented above is based on the second-order en­
ergy expression. These terms do not enter into the energy at 
second order. 

B. Quasidegenerate variational perturbation theory 
properties 

As was the case for VPT properties we obtain the 
QDVPT properties as derivatives of the total energy with 
respect to the strength of the applied perturbation. Begin­
ning with the effective Schrodinger equation [Eq. (23)] we 
have 

(44) 

where the dependence on Il has been made explicit. Assum­
ing that Cp is normalized we have 

(45) 

From here on we drop the explicit reference to the Il depen­
dence. We assume that the basis states for Heff are an arbi­
trary set of Il-independent linear combinations of the refer­
ence space configurations. The case where Heff and C pare 
defined in terms of field-dependent zeroth-order functions 
can be shown to be equivalent to what follows since, as long 
as the reference space configurations are fixed the field-de­
pendent and field-independent zeroth-order states are relat­
ed by a unitary transformation. Thus the effective Hamilto­
nians and C p in the two bases are related in the usual way 
and the energy is invariant to this transformation. 

Traking the derivative of E with respect to Il and using 
the facts that C p is an eigenfunction of Heff and that 
a(C~Cp)lall = 0 one obtains 

(G) = aE = C~ aHeff Cpo (46) 
all all 
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In an entirely analogous manner to the procedure for VPT 
one obtains the effective one-electron density matrix (noting 
that 3QI af1 = 0, since P contains lJIo and its orthogonal 
complement) 

(47) 

when Eo is defined by the eigenvector of Ho in the reference 
space, or 

P Po+ (Po, +P,o) +p, - (IJI,IIJII> 

X {po + 2( CpjHfl a~)} (48) 

when Eo is defined self-consistently in terms of the final Cpo 
In either case Po, Po" PIO' and p, are given by Eq. (39) and 

pg f··· f dr2"'drM IJIg*(r" ... ,rM)lJIg(r" ... ,rM ), 

(49) 

where IJIg is the eigenfunction of Ho corresponding to Eo. 
Note that due to the normalization chosen (C ~C pI) 

the trace of Po is equal to the total electron density, as is the 
case for pg and p. With this choice of normalization we can 
write Eg. (47) (defining IJI EVPT = lJIo + IJI, ) 

P PEVPT - (1JI,IIJI)pg (50) 

with 

PEVP] = f .,. f dr2 " ·dr.w 

X lJI~vPT (r" ... ,rM ) IJIEvPT (r" ... ,rM )· (51) 

For the one case considered below where Eo was defined self­
consistently, the last term in Eq. (48) was neglected and pg 
was replaced by Po in Eq. (50). 

Properties are calculated using Eqs. (43) and (50). Fin­
ally, we note that an expression identical to Eq. (50) holds 
for the fixed coefficient (or frozen lJIo) VPT properties. A 
significant difference exists in the application of this expres­
sion to the two types of wave functions, however. In VPT the 
orthogonal complement configurations of lJIo in the refer­
ence space are included in the Q space and contribute to IJI" 

and the intermediate normalization applied sets the coeffi­
cient of lJIo to one. In QDVPT all linear combinations of the 
reference space functions are included in the P space, thus 
(IJI,IIJI \) contains no contributions from the reference space. 
In addition, the intermediate normalization applied has the 
sum of the squares of all reference space configurations 
equal to unity. 

V.RESULTS 
All calculations were performed with the MELDF suite 

of electronic structure codes from this laboratory.3] The 
BeH2,."l4 CH2/(C) and ethylene35 basis sets and geometries 
were those used in Ref. 18 to allow comparison with previous 
full CI results. 2 (c).2(d),36 The He basis is the 3-12G basis of 
Binkley et al. n In all cases except the' B J II states of ethylene 
the MO basis sets were the SCF or two-configurational SCF 
(TCSCF) orbitals, with canonical virtual orbitals. For the 
I B J u states of ethylene the average natural orbitals3

)! for the 
two lowest 'B \ u states from a preliminary CI were used as an 
MO basis.,x.39,40 Properties are presented from multirefer­
ence singles and doubles configuration interaction calcula­
tions (MRSDCI) (calculated as the expectation value of the 
given property operator), variational perturbation theory, 
QDVPT, and multireference linearized coupled-cluster 
wave functions. We have used second-order Rayleigh­
Schrodinger perturbation theory to select correlating config­
urations in some cases. 'x Where this is done we also note the 
percentage of the second-order energy accounted for by the 
configurations retained in the variational part of the treat­
ment. When perturbation theory selection was used we re­
tained all single excitations relative to the reference func­
tions. 

We first present results based on QDVPT calculations 
on the systems examined in Ref. 18. Only for the' B 1 u states 
of ethylene did we perform an iteration of the QDVPT equa­
tions to redefine Eo. In all other cases the results were based 
on using the appropriate eigenvalue of Ho in the reference 
space as Eo-

In Table I results are presented from calculations at sev-

TABLE I. BeH, two-reference (MRSDCI) and QDVPT results, C 2, geometries. 

r(BeH,)" r(H,)" TCSCFb Corr. E" ~MRSDCld ~QDVPTd 

1.00 4.16 - 15.7054 31.8 0.3 - 0.5 
2.00 3.24 - 15.6330 41.8 0.4 - 1.4 
2.50 2.78 - 15.5696 53.3 0.9 - 2.9 
2.75 2.55 - 15.5386 64.3 2.0 - 4.7 
3.00 2.32 - 15.5583 66.7 3.1 - 5.5 
3.50 1.86 - 15.6372 56.0 2.1 - 2.3 
4.0 1.4 - 15.6872 50.4 2.5 -0.8 
6.0 1.4 - 15.7107 50.2 1.6 - 1.8 

"Distances in bohr. r( BeH,) is the distance from Be to the H, midpoint. r( H,) is the H, bond length. 
b Eoergy of the two configuration SCF wave function, in hartree. 
"Correlation energy, in millihartree, relative to the two configuration SCF energy, using the full CI energies of 

Ref. 36. 
d Error relative to the full CI energies of Ref. 36, in millihartree. (MRSDCI) designates singles and doubles CI 

results [in this case a two-reference (MRSDCI) 1 and QDVPT denotes uniterated quasidegenerate variation­
al perturbation theory results. 
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T ABLE II. MRS DC I and MRLCC, VPT, and QDVPT results for CH" C 2 v symmetry. 

State Refs." l1MRSDClb l1MRLCCb l1VPT 

I'B, I 4.7 
I'A, I 8.9 
l'A, 2 5.0 -1.3 -1.3 
I'A, 20 1.7 -1.3 - 1.7 
I'A, 29 1.1 - 1.2 - 1.6 

a The number of spin-adapted configurations in the reference space. 
b Errors relative to the full CI, in millihartree. The labels are defined in Table I. 
C Results from Ref. 2 (c), in hartree. 

l1QDVPTb Full CIe 

_ 1.3d - 39.0463 
_ 3.0d - 39.0272 
-1.3 
-1.7 
- 1.6 

d In the one-reference case, the MRLCC, VPT, and QDVPT methods are equivalent. 

eral geometries of BeH2• In Ref. 18 it was shown that while 
MRLCC and VPT generally gave good agreement with full 
CI energies, the geometry r(BeH 2 ) = 2.75 ao r(H2 ) = 2.55 
ao was particularly troublesome for either method. The VPT 
results gave a grossly incorrect ratio of the coefficients of the 
two reference functions in the final wave function, and the 
error in the total energy changed sign relative to the preced­
ing or following points in the series, leading to a bumpy sur­
face. A smooth surface and accurate relative sizes of the co­
efficients of the zeroth-order configurations were only re­
covered when the reference space size was increased signifi­
cantly. MRLCC gave a smooth surface but because the ref­
erence space coefficients were taken from diagonalizing R o' 

T ABLE III. Total energies for CH,He", C 2 v symmetry. 

their ratio in the final wave function was also incorrect. It is 
seen that the unite rated QDVPT results compare favorably 
with MRSDCI (relative to the full CI energies). The ratio of 
the coefficients of the two reference functions (x in Ref. 18) 
was found to be - 0.89 for QDVPT, - 0.82 for MRSDCI, 
- 0.57 for MRLCC, and + 0.04 for VPT. The full CI value 

is - 0.85, indicating that QDVPT is capable of treating the 
strong mixing between the two zeroth-order functions much 
more easily than VPT. 

In Table II we present results from MRSDCI, VPT, 
MRLCC, and QDVPT calculations on CH2, and compare 
them to the full CI results of Bauschlicher and Taylor. 2

(C) It 
is seen that excellent agreement is obtained. 

n State Refs." %PTKb l1MRSDCI' l1(MR)LCCC l1VPT" QDVPT" 

0 I'B, 100 4.7 -1.3 
0 I'A, 100 8.9 - 3.0 
0 I'A, 2 100 5.0 -1.3 -1.3 -\.3 

lIB, I 100 5.7 - 1.4 
I'A, I 100 10.3 - 3.0 
I'A, 2 100 6.1 -\.3 -1.3 -1.3 

3 I'B, 100 8.0 - I.S 
3 I'A, 100 13.2 - 3.1 
3 I'A, 2 100 8.4 - 1.4 - 1.4 - 1.4 
5 I'B, I 100 10.5 - 1.6 
5 I'A, I 100 16.3 - 3.2 
5 I'A, 2 >99.9 11.0 - 1.6 - 1.6 - 1.6 
9 I'B, I >99.9 16.4 -1.7 
9 I'A, I >99.9 23.2 -3.4 
9 I'A, 2 >99.9 17.1 -1.7 -1.7 - 1.7 

12 I'A, 2 >99.9 22.2 - 1.8 -1.7 - 1.8 
13 I'B, I >99.9 23.3 - 1.9 
13 I'A, I >99.9 31.0 - 3.6 
13 I'A, 2 > 99.9 24.0 - 1.9 - 1.9 - 1.9 
17 I'B, I >99.9 31.2 -2.1 
17 I'A, I >99.9 39.7 - 3.8 
17 I 'A, 2 >99.9 32.1 -2.1 -2.1 -2.1 
25 I'B, > 99.9 49.8 - 2.5 
2S I'A, >99.9 59.5 -4.1 
25 I'A, 2 >99.9 50.8 - 2.5 - 2.5 - 2.5 

"The number of spin-adapted configurations in the reference space. In the one-reference case, the LCC, 
QDVPT, and VPT methods are equivalent. 

b The percentage of the second-order energy accounted for by the configurations treated variationally. A value 
of 100 indicates all single and double excitations were included. All single excitations from the reference 
functions were included in all cases. 

C Errors relative to the full CI [Ref. 2 (c) 1 in millihartree. (MR) LCC denotes a (multireference) linearized 
coupled-cluster calculation. VPT denotes a variational perturbation theory calculation. The remaining labels 
are defined in Table I and the text. 
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TABLE IV. Results from correlated treatments for COH4," D2h symmetry. 

State Refs." PTK' Confd MRSDCI MRLCC VPT QDVPT 

I 'Ag I 100 5252 - 78.3272 - 78.3615 
1 'Ag 4 100 23762 - 78.3330 - 78.3616 - 78.3618 - 78.3617 
I 'Ag 4 96.5 3242 -78.3319 - 78.3563 - 78.3610 -·78.3592 
I 'Ag 2 100 10226 - 78.3356 - 78.3610 - 78.3622 - 78.3616 
I 'B,u 2' 100 21062 - 78.0287 - 78.0614 - 78.0614 - 78.0614 
2 'B lu 2' 100 21062 - 77.9911 - 78.0206 - 78.0206 - 78.0206 

"All energies in hartree. The labels are defined in Tables I and III. 
h Number of spin-adapted configurations in the reference space. For the 'B 'u states the average NOs were used 

(see the text) as an MO basis. For the two-reference I I A" calculation the TCSCF orbitals were used. For the 
remaining I I A g calculations the one-reference SCF orbitals were used. 

'Percentage of the second-order Rayleigh-Schrodinger perturbation theory energy accounted for by the con­
figurations retained. All single excitations were kept. 

d Number of spin-adapted configurations treated beyond second-order Rayleigh-Schrodinger perturbation 
theory. 

'The choice of Eo for the QDVPT equation was iterated once. The coefficients defining tPo for MRLCC and 
VPT were chosen to be the coefficients of the reference space configurations used to define Eo in the final 
iteration of the QDVPT equations. 

In Table III we present results from MRSDCI, 
MRLCC, VPT, and QDVPTcaIculations on the model sys­
tem CH2Hen • The He are placed at 10 ao intervals along the 
+ z axis (defined as the symmetry axis of CH2, C is at the 

origin and the H atoms lie in - z half-plane). The nearest 
He is 10 ao from the C. Since we have used the same basis for 

CH2 as in the results of Table II and since the He are well 
separated from each other and from CH2, we can calculate 
the full CI energy for this system from the results of Ref. 
2(c) and full CI on He (E He = -2.850 5767hartree).The 
energy values for the various methods are reported relative 
to the computed full CI values (based on the expression 

TABLE V. BeH, properties at selected geometries." 

r(BeH,) r(H o) Refs. Quantity Ref. space" MRSDCI MRLCC VARPT QDVPT Full CI 

1.0 4.16 2 (z) 0.794 0.686 0.674 0.671 0.671 0.689 
(XO) 4.80 4.84 4.84 4.85 4.85 4.84 
(z)", 0.674 0.671 
(XO)", 4.84 4.85 

3.5 1.86 2 (z) - 1.011 - 0.907 - 0.847 - 0.859 - 0.889 
(XO) 7.51 7.48 7.44 7.46 7.46 7.47 
(z) Ii, - 0.829 - 0.863 
(x')", 7.38 7.48 

6.0 1.4 2 (z) - 0.093 - 0.079 - 0.073 - 0.073 - 0.073 - 0.077 
(XO) 7.02 6.95 6.92 6.93 6.92 6.94 
(z)", - 0.072 - 0.073 
(x')", 6.88 6.93 

2.0 3.24 2 (z) 1.48 1.26 1.23 1.21 1.21 1.26 
(XO) 5.05 5.08 5.09 5.10 5.10 5.09 
(Z)h' 1.23 1.21 
(XO)", 5.08 5.10 

2.0 3.24' 9 Energy - 15.6748 - 15.6745 - 15.6750 - 15.6749 
(z) 1.43 1.26 1.28 1.25 1.25 
(x') 5.07 5.09 5.08 5.09 5.09 
(z)", 1.28 1.25 
(XO)fi' 5.08 5.09 

3.0 2.32 2 (z) - 1.40 - 1.20 - 0.954 - 0.948 - 0.952 - 1.16 
(x') 7.68 7.64 7.51 7.50 7.50 7.63 
(z)", - 0.955 - 0.947 
(x')", 7.51 

3.0 2.32' 9 Energy - 15.6246 - 15.6267 - 15.6283 - 15.6281 
(z) - 1.39 - 1.16 - 1.14 - 1.05 - 1.08 
(x') 7.82 7.62 7.58 7.54 7.56 
(z)", - 1.14 - 1.04 
(XO)", 7.59 7.51 

"All quantities in atomic units. The various methods are defined in Sec. II and the labels are defined in Tables I and III. Properties labeled fix for MRLCC and 
VPT are calculated using Eq. (36), otherwise Eqs. (34) and (35) are used for VPT and MRLCC, respectively. 

hThe value of the peoperty for the CI within the reference space. 
'The reference functions were the dominant spin-adapted configurations in the QDVPT calculation at the given geometry. 
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E tun + nEHe , where A labels the state of interest). The 
MRSDCI results, as expected, begin to deviate significantly 
from the full CI energies as the number of He is increased. 
The MRLCC, VPT, and QDVPT results are all significantly 
closer to the full CI values as n is increased, but they show 
some drift away from the full CI values. However, close in­
spection shows this drift with n is essentially linear. This 
drift is due to the fact that the total energy for these methods 
should vary as E'i".eth + n(EHe )Lee, since for the reference 
spaces chosen (the reference functions involve excitations 
localized on CH2 ) the He are treated at the single reference 
level. All three methods reduce to the linearized coupled 
cluster (LCC) method for a single reference function. Thus 
the change in t:..E with increasing He for MRLCC, VPT, and 
QDVPT goes as n [ (EHe ) Lee - EHe ]. 

In Table IV results of (MRSDCI), MRLCC, VPT, and 
QDVPT calculations are presented for various states of eth­
ylene. The QDVPT results are in good agreement with the 
MRLCC and VPT results. For the IB lu states the QDVPT 
equations were iterated once to redefine Eo, since the final 
C p were quite different from those obtained by diagonalizing 
Ho over the reference space. The VPT and MRLCC results 
are based on the coefficients of the QDVPT reference space 
functions used in the final iteration of the QDVPT equa­
tions. The energy values based on these reference functions 
are quite close to those reported previously where a some­
what different definition of '1'0 was used. IS The excitation 
energies based on these results are in good agreement with 
size-consistency corrected CI values. 18 

We next examine the results of calculations of one-e1ec-

TABLE VI. BeH, properties at r(BeH,) = 2.75b, r(H,) = 2.55b." 

Refs. Quantity Ref. spaceb MRSDCI 

2' Energy - 15.5386 - 15.6009 
(z) 0.807 0.135 
(x') 5.79 6.30 
(z)", 
(X')fi' 

15" Energy - 15.5788 - 15.6028 
(z) 0.716 0.100 
(x') 5.91 6.34 
(z)", 
(x')", 

12' Energy - 15.5814 - 15.6029 
(z) 0.320 0.093 
(x') 6.22 6.39 
(Z)fi' 
(X')fi' 

17' Energy - 15.5850 - 15.6029 
(z) 0.052 0.090 
(x') 6.47 6.35 
(Z)fi' 
(x') fix 

tron properties for these wave functions. The results from 
the calculations on BeH2 are given in Tables V and VI. For 
VPT and MRLCC we present both fixed coefficient proper­
ties [Eq. (35)] and properties calculated where the coeffi­
cients defining '1'0 are allowed to change with application of 
the field [Eqs. (33) and (34) ]. Several geometries36 are ex­
amined in Table V for treatments based on two-configura­
tion SCF wave functions. Representative examples for the 
effects of expansion of the reference space are also given in 
Table V. Similar results were obtained at other geometries. 
The full CI property results were obtained in the present 
study. For the geometries in Table V, the singles and doubles 
CI results are somewhat closer to the full CI results than 
MRLCC, VPT, or QDVPT, but in general the agreement for 
all the methods is quite good. Expansion of the reference 
space leads to better agreement for the MRLCC, VPT, and 
QDVPT results. In all cases the fixed coefficient MRLCC or 
VPT results are not as accurate as the variable coefficient 
results. 

In Table VI results are shown from calculations at a 
particularly difficult geometry. In the two-reference case the 
MRLCC and QDVPT energies and properties are reasona­
bly close to the full CI results, but the VPT error in the 
properties is quite large. Note that the fixed coefficient prop­
erties are generally worse. Expansion of the reference space 
leads to better agreement for all methods, with the QDVPT 
results converging to the full CI values somewhat quicker. 

Results from calculations on CH2He n (n = 0, ... ,25) are 
shown in Table VII; full CI results for n = 02(d) are listed as 
well. Since the He are well separated from each other and 

MRLCC VARPT QDVPT Full CI 

- 15.6053 - 15.5986 - 15.6076 - 15.6029 
0.191 0.403 - 0.\11 0.090 
6.23 6.14 6.50 6.35 
0.592 1.80 
5.84 4.80 

- 15.6010 - 15.6063 - 15.6037 
0.306 - 0.490 0.024 
6.12 6.92 6.41 
0.720 - 0.990 
5.75 7.35 

- 15.6026 - 15.6038 - 15.6033 
0.223 - 0.060 0.069 
6.23 6.48 6.37 
0.389 - 0.207 
6.06 6.63 

- 15.6028 - 15.6032 - 15.6031 
0.118 0.083 0.091 
6.33 6.48 6.35 
0.136 0.055 
6.31 6.38 

" All quantities in atomic units. The various methods are defined in Sec. II. 
b Results from Clover the reference space configurations. 
'The two-reference configurations are from the two-configuration SCF wave function. 
d The reference configurations are taken from the 15 dominant configurations (Ref. 41 ) in the two-configuration-based VPT calculation; their coefficients 

were obtained by diagonalizing H over the reference space. 
'The reference configurations are taken from the 12 dominant configurations (Ref. 41) in the two-configuration-based MRSDCI calculation. The zeroth­
order wave function was defined by diagona1izing H over the reference space. 

'The reference configurations are taken from the 17 dominant configurations (Ref. 41) in the 12-configuration-based MRSDCI calculation. The zeroth­
order wave function was defined by diagonalizing H over the reference space. 
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TABLE VII. Results for CH,He,,: (z) vs n." 

n State Refs. PTK" MRSDCI MRLCC VARPT QDVPT 

0 I 'B, 100 - 0.2630 - 0.2742 
I'A, I 100 - 0.7538 - 0.6835 
I'A, 2 100 -- 0.7232 - 0.7217 - 0.7232 - 0.7225 
I'A, 20 100 - 0.7192 - 0.7196 -0.7124 - 0.7149 
I'A, 29 100 - 0.7177 -0.7183 -0.7113 -0.7138 
I'B, 1 100 - 0.2622 - 0.2742 
I'A, I 100 - 0.7567 - 0.6835 
I'A, 2 100 - 0.7232 - 0.7217 - 0.7233 - 0.7225 

3 I 'B, 100 - 0.2606 - 0.2742 
I 'A, I 100 - 0.7616 - 0.6835 
I'A, 2 100 - 0.7231 - 0.7217 - 0.7236 - 0.7225 

5 I'B, 100 - 0.2593 - 0.2742 
1 'A, I 100 -- 0.7658 - 0.6835 
I'A, 2 99.9 - 0.7231 - 0.7217 - 0.7241 - 0.7225 

9 I'B, 1 99.9 - 0.2569 - 0.2739 
I 'A, I 99.9 - 0.7720 - 0.6832 
I'A, 2 99.9 - 0.7229 - 0.7217 - 0.7275 - 0.7225 

12 I'A, 2 99.9 - 0.7227 -0.7217 - 0.6431 - 0.7225 
13 I'B, 99.9 - 0.2552 - 0.2739 

I'A, 99.9 - 0.7768 - 0.6832 
I'A, 2 99.9 - 0.7226 - 0.7217 - 0.7076 - 0.7225 

17 I 'B, I 99.9 - 0.2538 - 0.2739 
I'A, I 99.9 - 0.7805 - 0.6832 
I'A, 2 99.9 - 0.7224 - 0.7217 - 0.7185 - 0.7224 

25 I'B, 99.9 -0.2516 - 0.2739 
I'A, I 99.9 - 0.7858 - 0.6832 
I 'A, 2 99.9 - 0.7219 - 0.7217 --- 0.7205 - 0.7224 

a The labels are defined in Tables I and III. Properties are reported in atomic units. The orbitals used for the multireference calculations on the I 'A, state are 
TCSCF orbitals. The SCF values of (z) are'B,: - 0.243; 'A, (one-reference): - 0.807; 'A, (two-reference): - 0.716; the full CI values [Ref. 2(d) 1 are 
'B,: - 0.264; 'A,: - 0.716. 

h The percentage of the second-order perturbation theory energy lowering accounted for by the configurations treated variationally. A value of 100 indicates 
that no perturbation theory selection was performed. For the two-reference cases PT selection was performed on both roots of the zeroth-order space. 

from CH2, and each He makes no contribution to the dipole 
moment, the full CI dipole moments for n =I 0 would be iden­
tical to the n = 0 results. In a one-reference wave function 
MRLCC, VPT, and QDVPT are all equivalent. For the 
I 'A I state all methods are sensitive to the expansion of the 
reference space from one function to two, with significantly 
better agreement obtained in the two-reference case. The 
VPT result for the one-reference case leads to an error com­
parable to the one-reference CI wave function. For n = 0 we 
also present results from expanded reference space calcula­
tions on the I 'A I state, based on the TCSCF orbitals with 
canonical virtual orbitals. It is seen that all methods ap­
proach the full CI values, although only the CI and MRLCC 
results appear to converge monotonically. 

For n > 0 it is seen that the one-reference 3B I value of (z) 
for the CI wave function changes as the number of He atoms 
is increased, whereas the VPT value does not. Note that use 
of perturbation theory selection in VPT alters the computed 
value of the property by 0.0003 for the 3 Bistate. The two­
reference I 'A I CI (z) changes slowly over the range of n 
considered here. In part this slow change is due to the small 
difference between the TCSCF value of (z) (to which the 
MRSDCI value goes as n increases) and the MRSDCI val­
ue. The MRLCC and QDVPT results are quite stable as n is 
increased, the small change in (z) for QDVPT arising from 
the size inconsistency discussed above. The error in the VPT 
result, which is large even by n = 9, arises from a crossing of 

Eo by one of the eigenvalues ofQHQ between n = 9 and 13. 
In addition to the odd behavior of (z), corroborating evi­
dence that this crossing is occurring comes from comparison 
of the total VPT and MRLCC energies. In Ref. 18 it was 
shown that E VPT is less than or equal to E MRLCC whenever 
Eo is the lowest eigenvalue of Ho (i.e., when the eigenvalues 
of QH Q are all greater than Eo). We have found that at 
n = 12 the MRLCC total energy becomes lower than the 
VPT energy, suggesting that a crossing has occurred. It is 
interesting to note that the results of Table III show that this 
crossing has no significant effect on the total VPT energy. 
Thus, the size inconsistency in VPT manifests itself in the 
one-electron properties to a much greater extent than in the 
total energy. 

Results obtained for various states of ethylene are 
shown in Table VIII. Examining the I lAg results it is seen 
that all four methods are sensitive to the expansion of the 
reference space, especially in the two-reference case, where 
the MOs are from a two-configuration SCF. The fixed and 
variable coefficient MRLCC and VPT properties agree to 
the number of significant figures reported. In the 'B I u cases, 
the CI results differ from the QDVPT, VPT, or MRLCC 
results to a greater extent. The QDVPT, MRLCC, and VPT 
values of (x") for the I I B I u state are somewhat smaller than 
the CI value. For the 2 'B lu state the QDVPT, MRLCC, 
and VPT values are all somewhat larger than the CI values. 
The coefficients defining \110 for the I B I u states in the VPT 
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TABLE VIII. C2H 4 properties." 

State Refs. PTKh Quantity 

100 (x 2
) 

(y') + (r) 
4 100 (x') 

(y') + (r) 
(x') 

«y') + (r) lfix 
2' 100 (x') 

(y') + (r) 
(x') 

«y') + (z') lfix 
I 'B lu e (x') 

(y') + (r) 
100 (x') 

(y') + (r) 
100 (x') 

(y') + (r) 

SDCI 

11.8 
18.0 
11.8 
18.1 

11.7 

18.1 
11.8 
19.6 
27.8 
38.7 
59.1 
80.0 

MRLCC 

11.6 
18.2 
11.6 
18.2 
11.7 
18.2 
11.7 
18.2 

23.7 
33.4 
70.6 
94.8 

VARPT QDVPT 

11.6 
18.1 
11.6 11.6 
18.2 18.2 
11.6 
18.2 
11.7 11.7 
18.2 
11.7 
18.2 18.2 
11.9 
19.8 
23.7 23.3 
33.5 32.9 
70.5 70.6 
94.8 94.8 

a All quantities in atomic units. The various methods are defined in Sec. II. Calculations based on Hartree--Fock molecular orbitals unless otherwise noted. 
b Denotes the percentage of the second-order Rayleigh-Schriidinger perturbation theory energy lowering corresponding to the configurations treated varia­

tionally. 
C The molecular orbitals are from a two-configuration SCF that correlates the 1T electrons. 
d The molecular orbitals are the average natural orbitals from a preliminary CI calculation (see the results section). The coefficients defining \flo for VPT and 

MRLCC were those used to define E" in the final QDVPT iteration. The definition of Eo in the QDVPT results was obtained via the iterative process 
described in the text. 

eSince the zeroth-order wave functions are defined iteratively, and not as the eigenfunctions of H{,. the B lu properties are evaluated using Eq. (36) for 
MRLCC and VPT, and the final term in Eq. (48) is neglected for the QDVPT properties. 

and MRLCC calculations were those used in the final iter­
ation of the QDVPT equations. 

VI. DISCUSSION 

Comparison of the VPT results of Ref. 18 and the 
QDVPT results presented above suggests that QDVPT and 
VPT are comparable whenever the effective coupling in the 
reference space is small and/or no instabilities are present in 
the VPT equations due to crossings of an eigenvalue ofQHQ 
and Eo. However, when such instabilities exist for VPT, or 
when the effective coupling is large, QDVPT remains accu­
rate. The elimination of these problems occurs because, rela­
tive to the VPT equations, Eo has been replaced by E Total in 
the diagonal elements corresponding to the orthogonal com­
plement reference space configurations. Eo is retained on the 
diagonal for the single and double excitations in QDVPT, 
but since the single and double excitations do not correlate 
each other to a significant extent, no crossings are expected 
of the eigenvalues ofQHQ with Eo for QDVPT. 

Even with the problems noted above for VPT, it is seen 
in the results on the CH2Hen systems that VPT, MRLCC, 
and QDVPT all yield more nearly size-consistent total ener­
gies than does MRSDCI. MRLCC is strictly size consistent 
for this choice of reference space. 

Concerning the properties results the agreement ob­
tained between the CI, MRLCC, VPT, and QDVPT results 
is quite good. For BeH2 , CH2, and most states of ethylene we 
find agreement to within a few percent of the total value of 
the property. Based on the BeH2 results and the CH2 .lBI 

one-reference results it can be seen that the CI properties 

tend to be more rapidly convergent than the VPT, MRLCC, 
and QDVPT properties. However, increasing the reference 
space from two to nine functions for the BeH2 example 
brought the VPT, MRLCC, and QDVPT results into much 
closer agreement with the CI results. Similar results were 
found for the 1 IA I state of CH2 on going from a one- to a 
multireference based treatment. 

The possible sensitivity of the calculated properties to 
the choice of 'l'o is graphically illustrated by the results of 
Table VI. It is seen that the energy estimate obtained by 
MRLCC, QDVPT, or VPT can be reasonably accurate (er­
ror < 4 mhartree), but that the error in the property esti­
mate can still be quite large. For MRLCC and VPT a signifi­
cant expansion of the reference space was required to obtain 
good agreement with the full CI property results, and even 
still the properties were not as accurate as the MRSDCI or 
QDVPT values. QDVPT gave reasonable results with some­
what less effort. It should be noted that this was also a diffi­
cult geometry for the two-reference singles and doubles CI 
approach, and expansion of the reference space was again 
required to obtain good agreement with the full CI. How­
ever, the error for a given reference space was found to be 
smaller for the MRSDCI results than the MRLCC, VPT, or 
QDVPT. 

The results for the CH2He n system illustrate a number 
of interesting points. First, the value of (z) is dependent on 
the number of He atoms for the MRSDCI properties, while 
for MRLCC and QDVPT (z) was basically independent of 
n. The ratio of the MRSDCI error in (z) to the SCF error in 
(z) [.:1 = (G SDC1 - T Full )/GSCF - GFull )] changed con­
siderably for the values of n examined here. For the 3 B I state 
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with n = 0 II equals 0.05, while for n = 25 it was 0.57. For 
the one reference description of the 1 'A I state the change in 
the CI value of (z) is quite large, with II = 0.30 for n = 0, 
while at n = 25 II was 0.77. The two configuration SCF val­
ue for (z) for the 'A I state is closer to the full CI than any of 
the correlated treatments. However, it is still the case that an 
increase in n changes the MRSDCI value of (z) significant­
ly. It should be noted that the 3BI MRSDCI values for (z) 
are closer to the full CI values than those of the perturbative 
treatments for all but the largest n. 

The results of Table VII also highlight the limitations of 
VPT for multireference cases. It is seen that the error in the 
VPT value of (z) becomes unacceptable when n is equal to 
12. With larger n the value of (z) again becomes close to the 
full CI value, but this agreement is most likely fortuitous. 
However, since the VPT energy agrees with the MRLCC 
and QDVPT energies to within one in the fourth decimal 
place it is clear that the coefficients of the single and double 
excitations from lIJo are similar in all three methods [cf. the 
energy expression, Eq. (7) ]. Due to the variational nature of 
these methods, the error in the energy goes quadratically 
with the error in IIJ" whereas the error in the property is first 
order in the error in IIJ I' The main source of the error in (z) is 
an inordinately large coefficient for the configuration which 
is the orthogonal complement ofllJo' The total energy is basi­
cally unaffected because lIJo is taken as the eigenfunction of 
H in the reference space and (lIJ e IH IlIJo) equals zero. Thus, 
while IIJ c can have no direct effect on the energy, it can still 
have quite a large effect on the properties. 

In most cases the ethylene results are in good agreement 
for all of the methods examined. The QDVPT, MRLCC, 
and VPT wave functions predict that the 1 'B lu state is sig­
nificantly more diffuse than either the ground state or the 
1 3B lu state, in agreement with CI. All three methods show 
similar sensitivity in the properties to expansion of the refer­
ence space, whereas the CI energies are much more sensitive 
to reference space expansion than the VPT or MRLCC ener­
gies. The MRLCC, QDVPT, and VPT results predict the 
1 I B I u state to be less diffuse than the MRS DC I result. Pre­
vious MCSCF calculations on this state42 have found similar 
results and it was suggested that size inconsistency in the 
MRSDCI may be the cause of the discrepancy. Our results 
lend support to this suggestion, but must be viewed with 
some caution. In the VPT, MRLCC, and QDVPT calcula­
tions reported where we have neglected the terms in the 
property expressions [Eqs. (35) or (36) and (45) or (50) 
and ( 45) ] related to derivatives of the reference space coeffi­
cients with respect to perturbation strength. Since for the 
IB lu states the reference space coefficients were defined iter­
atively and not as the eigenfunctions of the zeroth-order 
Hamiltonian, these terms will, in general, be nonzero. We 
expect them to be small, but further calculations are required 
to assess this. Similar comments apply to the 2 IB lu state, 
which VPT, MRLCC, and QDVPT predict to be more dif­
fuse than the MRSDCI result. Larger CI, QDVPT, VPT, 
and MRLCC results for these states are required to answer 
this question. 

The question arises as to which of the three methods 
(other than CI) is expected to be the most reliable. We be-

lieve that QDVPT should generally be the most accurate 
method because it treats the interaction of the reference 
functions to infinite order, thus avoiding the numerical in­
stabilities ofVPT, while still allowing the weights of the ref­
erence configurations to change in the final wave function, 
unlike MRLCC. However, the results presented above sug­
gest that both MRLCC and QDVPT can be quite accurate 
and should be useful for large systems where size-inconsis­
tency effects in CI results are of the same order as the errors 
incurred by basis set and CI truncation. 

V. CONCLUSIONS 

An effective Hamiltonian based method is introduced 
which eliminates the main intruder state effects encountered 
in variational perturbation theory. The reference space is 
treated as quasidegenerate and the effects of single and dou­
ble excitations from the reference space are obtained in an 
approximately size-consistent manner. QDVPT preserves 
the advantages ofVPT in that changes in the reference space 
coefficients brought on by correlation are possible, unlike 
MRLCC. A novel method for solving the QDVPT equations 
is introduced that avoids explicit construction of the effec­
tive Hamiltonian over the reference space. As a result, 
QDVPT takes little more computational time than MRLCC 
or VPT. 

Approximate expressions for the evaluation of one-elec­
tron properties for variational perturbation theory, quaside­
generate variational perturbation theory, and multireference 
linearized coupled-cluster wave functions are presented. Re­
sults are compared to truncated CI and full CI results and 
good agreement is obtained. 

It is shown that the inclusion of the orthogonal comple­
ment ofllJo in the variational perturbation theory wave func­
tion leads to size-inconsistency effects. These effects are rela­
tively minor in the total energy, but can be quite large in the 
one-electron properties. 
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APPENDIX 

The direct solution of Eq. (21) via Eqs. (22) and (23) 
(i.e., formation of the effective Hamiltonian) requires ap­
proximately n times the work of an MRLCC calculation, 
where n is the number of spin-adapted configurations in the 
reference space. In this Appendix we introduce an iterative 
procedure for the solution ofEq. (21) which, for the calcula­
tions presented above, converged faster than the effective 
Hamiltonian method and becomes increasingly faster as n 
increases. 

We begin with Eq. (21) and partition it as one would in 
a VPT calculation. That is, we single out one function in the 
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reference space (normally that associated with Eo, designat­
ed IJI~), write IJI in intermediate normalized form based on 
IJI~ and rewrite Eq. (21) as the two sets of equations: 

and 

E=Eo+ I (IJI~IHIC~,IJI~> + I (1JI~IHIC~¢j) 
Noi j 

(AI) 

(
P'HP'-E 

QHP' 
P'HQ ) (Cp

,) (P'HIJI~) 
QHQ-Eo CQ = - QHIJI~ . 

(A2) 

P' represents the orthogonal complement of IJIb in the refer­
ence space. Equations (A 1) and (A2) are identical to Eqs. 
(22) and (23). They are also formally similar to the VPT 
equations, except that E in the P' block would be replaced by 
Eo. It is the presence of E that prevents one from simply 
solving Eq. (A2) as a set of inhomogeneous linear equations. 

Rather than constructing the effective Hamiltonian of 
Eq. (23) we replace E in Eq. (A2) with an approximation to 
the total correlation energy and solve Eq. (A2) for approxi­
mateCp' and CQ' UsingEq. (AI) one obtains a new approx­
imation to the total correlation energy based on these C P' 

and CQ' Iterating this procedure leads (when it converges) 
to results identical with the direct solution of Eq. (21) via 
Eqs. (22) and (23). This iterative method (with the modifi­
cations described below to speed convergence) is the one we 
used to obtain the QDVPT results in the present article, and 
it affords significant speedups over formation of the effective 
Hamiltonian, especially when the reference space is large. 
[Only for cases having two reference functions where the 
energy was converged to quite high accuracy (better than 
1.0E - 10) was the effective Hamiltonian method competi­
tive in the present study. It may also be competitive for two­
reference case where a particularly bad initial guess at E is 
used or for near degeneracies.] After completion we renor­
malize IJI to have the proper normalization for property eval­
uation (i.e., :lICp 12 = 1). 

One can go a step further to speed convergence, with no 
increase in work. The above iterative expression has first 
order errors in En + I - En; i.e., it converges linearly with 
the error in E. Below we develop an iterative procedure 
which eiliminates the errors linear in En + I E" and obtain 
an approximately quadratically convergent method. The 
procedure is analogous to one used to obtain approximately 
quadratic convergence for the BK method.43 

Using the subscript 0 to refer to IJI~, and with p t and Q 
defined as for Eqs. (A 1) and (A2) one can rewrite Eqs. 
(AI) and (A2) as 

E = Hoo + HOp' {P'(E - H~,p' )P'}-'H~,o 

(A3) 

with 

H~,p' = Hp'P' + Hp'Q{Q(Eo - HQQ)Q}-'HQp', 
(A4) 

H~,o = Hp'o + Hp'Q{Q(Eo - HQQ )Q}-IHQo , (AS) 

H oo =HQo +HQP,{P'(E-H~,p,)P'} 'Hp'o' 
(A6) 

We assume En + I is known and is essentially converged. 
Using Eq. (A3), which is satisfied when En + I is the con­
vergedenergy,weexpand(En + 1 H) 'aboutEn • [Note, 
in the iterative scheme En + I is determined via En using Eq. 
(A3).] Expansion of {P'(E" + 1 Hp'p' )p'}-l around 
En yields [with ;lEn = (En + I - E" ) ] 

{P'(En+ 1 -Hp'p')P'}-' 

={P'(En - Hp'p' )p'}-I + {P'(En - Hp'p' )p'}-l 

X (;lEn){P'(En -Hp'p')P'} I +O[(;lEn)2]. 

(A7) 

Retaining only the first two terms and substituting back into 
Eq. (A3), noting that 

C~;+-l = {P'(En - Hp'p' )P'} I 

X {Hp'o + Hp'Q{Q(Eo HQQ)Q}-IHQo } 
(A8) 

one obtains the expression 

En + J = {Eo + I (lJIb IH IC~' IJI~ > 
J¥i 

+ I <1JI~iHICjQ¢j> 
j 

+ E,,:lICp' 12}/( 1+ :lICp' 12), (A9) 

wherewetakeCp' and CQ from the (n + l)th iteration.This 
method yields approximately quadratic convergence for E. 

Our method of solution proceeds as follows: (I) Guess 
an initial value for E, either based on Rayleigh-Schrodinger 
perturbation theory, size-consistency corrected CI, or a pre­
vious MRLCC calculation; (2) solve Eq. (A2) using the 
method of Ref. 18; (3) use the result of (2) toconstructEq. 
(A9); (4) check for convergence. If the energy is not con­
verged to the desired accuracy, repeat steps (2) and (3) with 
this new energy. 

In tests on systems with larger reference spaces44 we 
have found that the present iterative scheme yields a work­
able procedure, whereas construction of the effective Hamil­
tonian becomes too time consuming to undertake. 
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