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adems@free.fr

Jean-Paul Delahaye

LIFL, Laboratoire d’Informatique Fondamentale de Lille
UMR CNRS 8022, Université de Lille I,
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Abstract

The Online Encyclopedia of Integer Sequences (OEIS) is a catalog of integer
sequences. We are particularly interested in the number of occurrences of N(n)
of an integer n in the database. This number N(n) marks the importance of
n and it varies noticeably from one number to another, and from one number
to the next in a series. “Importance” can be mathematically objective (210

is an example of an “important” number in this sense) or as the result of a
shared mathematical culture (109 is more important than 910 because we use a
decimal notation). The concept of algorithmic complexity [6, 2, 7] (also known
as Kolmogorov or Kolmogorov-Chaitin complexity) will be used to explain the
curve shape as an “objective” measure. However, the observed curve does not
conform to the curve predicted by an analysis based on algorithmic complexity
because of a clear gap separating the distribution into two clouds of points. We
shall call this phenomenon “Sloane’s gap”.
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4 Sloane’s Gap

1. Introduction

Sloane’s on-line encyclopedia of integer sequences [10]1 (OEIS) is a re-
markable database of sequences of integer numbers, carried out methodically
and with determination over forty years [3]. As of August 29, 2012, the OEIS
contained 215 260 integer sequences. Its compilation has involved hundreds
of mathematicians, which confers it an air of homogeneity and apparently
some general mathematical objectivity–something we will discuss later on.

When plotting N(n) (the number of occurrences of an integer in the
OEIS) two main features are evident:

a. Statistical regression shows that the points N(n) cluster around k/n1.33,
where k = 2.53× 108.

b. Visual inspection of the graph shows that actually there are two distinct
sub-clusters (the upper one and the lower one) and there is a visible gap
between them. We introduce and explain the phenomenon of “Sloane’s
gap”. This clear zone in the value of N(n) was first noticed by Philippe
Guglielmetti2.

The paper and rationale of our explanation proceeds as follows: We ex-
plain that (a) can be understood using algorithmic information theory. If U
is a universal Turing machine, and we denote m(x) the probability that U
produces a string x, then m(x) = k2−K(x)+O(1), for some constant k, where
K(x) is the length of the shortest description of x via U . Function m is usu-
ally referred to as the Levin’s universal distribution or the Solomonoff-Levin
measure [7]. For a number n, viewed as a binary string via its binary repre-
sentation, K(n) ≤ log2 n+2 log2 log2 n+O(1) and, for most n, K(n) ≥ log2 n.
Therefore for most n, m(n) lies between k/(n(log2 n)2) and k/n. Thus, if we
view OEIS in some sense as a universal Turing machine, algorithmic proba-
bility explains (a).

Fact (b), however, is not predicted by algorithmic complexity and is not
produced when a database is populated with automatically generated se-
quences. This gap is unexpected and requires an explanation. We speculate

1The encyclopedia is available at: http://oeis.org/, last consulted 29 August, 2012.
2On his site http://drgoulu.com/2009/04/18/nombres-mineralises/ last consulted

29 August, 2012.

http://oeis.org/
http://drgoulu.com/2009/04/18/nombres-mineralises/
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that OEIS is biased towards social preferences of mathematicians and their
strong interest in certain sequences of integers (even numbers, primes, and
so on). We quantified such a bias and provided statistical facts about it.

2. Presentation of the database

The encyclopedia is represented as a catalogue of sequences of whole
numbers and not as a list of numbers. However, the underlying vision of the
work as well as its arrangement make it effectively a dictionary of numbers,
with the capacity to determine the particular properties of a given integer as
well as how many known properties a given integer possesses.

A common use of OEIS is in determining the logic of a sequence of in-
tegers. If, for example, you submit to it the sequence 3, 4, 6, 8, 12, 14, 18,
20..., you will instantly find that it has to do with the sequence of prime
augmented numbers, as follows: 2+1, 3+1, 5+1, 7+1, 11+1, 13+1, 17+1,
19+1...

Even more interesting, perhaps, is the program’s capacity to query the
database about an isolated number. Let us take as an example the Hardy-
Ramanujan number, 1729 (the smallest integer being the sum of two cubes of
two different shapes). The program indicates that it knows of more than 350
sequences to which 1729 belongs. Each one identifies a property of 1729 that
it is possible to examine. The responses are classified in order of importance,
an order based on the citations of sequences in mathematical commentaries
and the encyclopedia’s own cross-references. Its foremost property is that
it is the third Carmichael number (number n not prime for which ∀a ∈ N∗,
n|an − a)). Next in importance is that 1729 is the sixth pseudo prime in
base 2 (number n not prime such that n|2n−1 − 1). Its third property is
that it belongs among the terms of a simple generative series. The property
expounded by Ramanujan from his hospital bed appears as the fourth prin-
ciple. In reviewing the responses from the encyclopedia, one finds further
that:

• 1729 is the thirteenth number of the form n3 + 1;

• 1729 is the fourth “factorial sextuple”, that is to say, a product of
successive terms of the form 6n + 1: 1729 = 1× 7× 13× 19;

• 1729 is the ninth number of the form n3 + (n + 1)3;
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• 1729 is the sum of the factors of a perfect square (332);

• 1729 is a number whose digits, when added together yield its largest
factor (1 + 7 + 2 + 9 = 19 and 1729 = 7× 13× 19);

• 1729 is the product of 19 a prime number, multiplied by 91, its inverse;

• 1729 is the total number of ways to express 33 as the sum of 6 integers.

OEIS comprises more than 200 000 sequences. A partial version retain-
ing only the most important sequences of the database was published by
Neil Sloane and Simon Plouffe [11] in 1995. It records a selection of 5 487
sequences [11] and echoes an earlier publication by Sloane [9].

Figure 1: Number of occurrences of N(n) as a function of n per n ranging from 1 to 10 000.
Logarithmic scale in ordinate.

Approximately forty mathematicians constitute the “editorial commit-
tee” of the database, but any user may propose sequences. If approved, they
are added to the database according to criteria of mathematical interest.
Neil Sloane’s flexibility is apparent in the ease with which he adds new se-
quences as they are proposed. A degree of filtering is inevitable to maintain
the quality of the database. Further, there exist a large number of infinite
families of sequences (all the sequences of the form (kn), all the sequences of
the form (kn), etc.), of which it is understood that only the first numbers are
recorded in the encyclopedia. A program is also used in the event of a failure
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of a direct query which allows sequences of families that are not explicitly
recorded in the encyclopedia to be recognized.

Each sequence recorded in the database appears in the form of its first
terms. The size of first terms associated with each sequence is limited to
approximately 180 digits. As a result, even if the sequence is easy to calculate,
only its first terms will be expressed. Next to the first terms and extending
from the beginning of the sequence, the encyclopedia proposes all sorts of
other data about the sequence, e.g., the definitions of it and bibliographical
references.

OEIS is available in the form of a data file that is easy to read, and that
contains only the terms retained for each sequence. One can download the
data file free of charge and use it–with mathematical software, for example–
to study the expressed numbers and conduct statistical research about the
givens it contains.

One can, for example, ask the question: “Which numbers do not appear
in OEIS?” At the time of an initial calculation conducted in August 2008 by
Philippe Guglielmetti, the smallest absent number tracked down was 8795,
followed in order by 9935, 11147, 11446, 11612, 11630,... When the same
calculation was made again in August 2012, the encyclopedia having been
augmented by the addition of several hundreds of new sequences, the series
of absent numbers was found to comprise 13794, 14228, 14275, 14435, ...

The instability over time of the sequence of missing numbers in the OEIS
suggests the need for a study of the distribution of numbers rather than of
their mere presence or absence. Let us consider the number of properties of
an integer, N(n), while measuring it by the number of times n appears in
the number file of OEIS. The sequence N(n) is certainly unstable over time,
but it varies slowly, and certain ideas that one can derive from the values
of N(n) are nevertheless quite stable. The values of N(n) are represented
in Figure 1. In this logarithmic scale graph a cloud formation with regular
decline curve is shown.

Let us give a few examples: the value of N(1729) is 470 (August 2012),
which is fairly high for a number of this order of magnitude. For its pre-
decessor, one nevertheless calculates N(1728) = 854, which is better still.
The number 1728 would thus have been easier for Ramanujan! Conversely,
N(1730) = 148 and thus 1730 would have required a more elaborate answer
than 1729.

The sequence (N(n))n∈N∗ is generally characterized by a decreasing curve.
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However, certain numbers n contradict this rule and possess more properties
than their predecessors: N(n) > N(n− 1).

We can designate such numbers as interesting. The first interesting
number according to this definition is 15, because N(15) = 34 183 and
N(14) = 32 487. Appearing next in order are 16, 23, 24, 27, 28, 30, 35,
36, 39, 40, 42, 45, 47, 48, 52, 53, etc.

We insist on the fact that, although unquestionably dependent on certain
individual decisions made by those who participate in building the sequence
database, the database is not in itself arbitrary. The number of contributors
is very large, and the idea that the database represents an objective view
(or at least an intersubjective view) of the numeric world could be defended
on the grounds that it comprises the independent view of each person who
contributes to it and reflects a stable mathematical (or cultural) reality.

Indirect support for the idea that the encyclopedia is not arbitrary, based
as it is on the cumulative work of the mathematical community, is the gen-
eral cloud-shaped formation of points determined by N(n), which aggregates
along a regular curve (see below).

Philippe Guglielmetti has observed that this cloud possesses a remarkable
characteristic3: it is divided into two parts separated by a clear zone, as if the
numbers sorted themselves into two categories, the more interesting above
the clear zone, and the less interesting below the clear zone. We have given
the name “Sloane’s Gap” to the clear zone that divides in two the cloud
representing the graph of the function n 7−→ N(n). Our goal in this paper
is to describe the form of the cloud, and then to formulate an explanatory
hypothesis for it.

3. Description of the cloud

Having briefly described the general form of the cloud, we shall direct
ourselves more particularly to the gap, and we will investigate what charac-
terizes the points that are situated above it4.

3Personal communication with one of the authors, 16th of February, 2009.
4Computations from this section henceforth were made using 2009 data.
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3.1. General shape

The number of occurrences N is close to a grossly decreasing convex
function of n, as one can see from Figure 1.

A logarithmic regression provides a more precise idea of the form of the
cloud for n varying from 1 to 10 000. In this interval, the coefficient of
determination of the logarithmic regression of ln (N (n)) in n is of r2 = .81,
and the equation of regression gives the estimation:

ln (N (n)) ' −1.33 ln(n) + 14.76

or

N̂ (n) =
k

n1.33
,

where k is a constant having the approximate value 2.57× 108, and N̂ is the
estimated value for N .

Thus the form of the function N is determined by the equation above.
Is the existence of Sloane’s gap natural then, or does it demand a specific
explanation? We note that to our knowledge, only one publication mentions
the existence of this split [4].

Figure 2: The cloud represents the logarithmic regression of ln(N) as a function of n for
n varying from 1 to 10 000. The grey scale points are those classified as being “above” the
gap, while the others are classified as being “below” it.
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3.2. Defining the gap

In order to study the gap, the first step is to determine a criterion for
classification of the points. Given that the “gap” is not clearly visible for the
first values of n, we exclude from our study numbers less than 300.

One empirical method of determining the boundary of the gap is the
following: for the values ranging from 301 to 499, we use a straight line
adjusted “by sight”, starting from the representation of ln(N) in functions of
n. For subsequent values, we take as limit value of n the 82nd percentile of
the interval [n− c, n + c]. c is fixed at 100 up to n = 1000, then to 350. It is
clearly a matter of a purely empirical choice that does not require the force
of a demonstration. The result corresponds roughly to what we perceive as
the gap, with the understanding that a zone of uncertainty will always exist,
since the gap is not entirely devoid of points. Figure 2 shows the resulting
image.

3.3. Characteristics of numbers “above”

We will henceforth designate as A the set of abscissae of points classified
“above” the gap by the method that we have used. Of the numbers between
301 and 10 000, 18.2% are found in A– 1767 values.

In this section, we are looking for the properties of these numbers. Philippe
Guglielmetti has already remarked that the prime numbers and the powers
of two seem to situate themselves more frequently above the gap. The idea
is that certain classes of numbers that are particularly simple or of particular
interest to the mathematician are over-represented.

3.3.1. Squares

83 square numbers are found between 301 and 10 000. Among these,
79 are located above the gap, and 4 below the gap, namely, numbers 361,
484, 529, and 676. Although they may not be elements of A, these num-
bers are close to the boundary. One can verify that they collectively realize
the local maximums for ln(N) in the set of numbers classified under the
cloud. One has, for example, N(361) = 1376, which is the local maximum of
{N (n) , n ∈ [325, 10 000] \A}. For each of these four numbers, Table 1 gives
the number of occurrences N in Sloane’s list, as well as the value limit that
they would have to attain to belong to A.
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An overwhelming 95.2% of squares are found in A, as opposed to 17.6%
of non-squares. The probability that a square number will be in A is thus
5.4 times greater than that for the other numbers.

n N (n) value limit
361 1376 1481
484 976 1225
529 962 1065
676 706 855

Table 1–List of the square numbers n found between 301 and 10 000 not
belonging to A, together with their frequency of occurrence and the value of

N(n) needed for n to be classified in A.

3.3.2. Prime numbers

The interval under consideration contains 1167 prime numbers. Among
them, 3 are not in A: the numbers 947, 8963, and 9623. These three numbers
are very close to the boundary. 947 appears 583 times, while the limit of A
is 584. Numbers 8963 and 6923 appear 27 times each, and the common limit
is 28.

A majority of 99.7% of prime numbers belong to A, and 92.9% of non-
prime numbers belong to the complement of A. The probability that a prime
number will belong to A is thus 14 times greater than the same probability
for a non-prime number.

3.3.3. A multitude of factors

Another class of numbers that is seemingly over-represented in set A is
the set of integers that have “a multitude of factors”. This is based on the
observation that the probability of belonging to A increases with the number
of prime factors (counted with their multiples), as can be seen in Figure 3. To
refine this idea we have selected the numbers n of which the number of prime
factors (with their multiplicty) exceeds the 95th percentile, corresponding to
the interval [n− 100, n + 100].

811 numbers meet this criterion. Of these, 39% are found in A, as opposed
to 16.3% for the other numbers. The probability that a number that has a
multitude of prime factors will belong to A is thus 2.4 times greater than
the same probability for a number that has a smaller number of factors.
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Table 2 shows the composition of A as a function of the classes that we have
considered.

Figure 3: For each number of prime factors (counted with their multiples) one presents,
the proportion of integers belonging to A is given. For the interval determined above, all
numbers with at least 10 factors are in A.

class number in A % of A % (cumulated)
primes 1164 65.9 65.9
squares 79 4.5 70.4

many factors 316 17.9 87.9

Table 2–For each class of numbers discussed above, they give the number of
occurrences in A, the corresponding percentage and the cumulative

percentage in A.

3.3.4. Other cases

The set A thus contains almost all prime numbers, 95% of squares, and
a significant percentage of numbers that have a multitude of factors and
all the numbers possessing at least ten prime factors (counted with their
multiplicity).

These different classes of numbers by themselves represent 87.9% of A.
Among the remaining numbers, some evince outstanding properties, for ex-
ample, linked to decimal notation, as in: 1111, 2222, 3333. . .. Others have
a simple form, such as 1023, 1025, 2047, 2049... that are written 2n + 1 or
2n − 1.

When these cases that for one reason or another possess an evident “sim-
plicity” are eliminated, there remains a proportion of less than 10% of num-
bers in A for which one cannot immediately discern any particular property.
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4. Explanation of the cloud-shape formation

4.1. Overview of the theory of algorithmic complexity

Save in a few exceptional cases, for a number to possess a multitude
of properties implies that the said properties are simple, where simple is
taken to mean “what may be expressed in a few words”. Conversely, if a
number possesses a simple property, then it will possess many properties.
For example, if n is a multiple of 3, then n will be a even multiple of 3
or a odd multiple of 3. Being a “even multiple of 3” or “odd multiple of
3” is a little more complex than just being a “multiple of 3”, but it is still
simple enough, and one may further propose that many sequences in Sloane’s
database are actually sub-sequences of other, simpler ones. In specifying a
simple property, its definition becomes more complex (by generating a sub-
sequence of itself), but since there are many ways to specify a simple property,
any number that possesses a simple property necessarily possesses numerous
properties that are also simple.

The property of n corresponding to a high value of N(n) thus seems
related to the property of admitting a “simple” description. The value N(n)
appears in this context as an indirect measure of the simplicity of n, if one
designates as “simple” the numbers that have properties expressible in a few
words.

Algorithmic complexity theory [6, 2, 7] assigns a specific mathematical
sense to the notion of simplicity, as the objects that “can be described with
a short definition”. Its modern formulation can be found in the work of Li
and Vitanyi [8], and Calude [1].

Briefly, this theory proposes to measure the complexity of a finite object in
binary code (for example, a number written in binary notation) by the length
of the shortest program that generates a representation of it. The reference
to a universal programming language (insofar as all computable functions can
possess a program) leads to a theorem of invariance that warrants a certain
independence of the programming language.

More precisely, if L1 and L2 are two universal languages, and if one notes
KL1 (resp. KL2) algorithmic complexity defined with reference to L1 (resp.
to L2), then there exists a constant c such that |KL1(s)−KL2(s)| < c for all
finite binary sequences s.

A theorem (see for example [Theorem 4.3.3. page 253 in [8]]) links the
probability of obtaining an object s (by activating a certain type of universal
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Turing Machines–called optimal–running on binary input where the bits are
chosen uniformly random) and its complexity K(s). The rationale of this
theorem is that if a number has many properties then it also has a simple
property.

The translation of this theorem for N(n) is that if one established a
universal language L, and established a complexity limit M (only admitting
descriptions of numbers capable of expression in fewer than M symbols),
and counted the number of descriptions of each integer, one would find that
N(n)/M (where M =

∑
i∈N N(i)) is approximately proportional to 2−K(n):

N(n)

M
=

1

2K(n)+O(ln(ln(n)))
.

Given that K(n) is non computable because of the undecidability of the
halting problem and the role of the additive constants involved, a precise
calculation of the expected value of N(n) is impossible. By contrast, the
strong analogy between the theoretical situation envisaged by algorithmic
complexity and the situation one finds when one examines N(n) inferred from
Sloane’s database, leads one to think that N(n) should be asymptotically
dependent on 1/2K(n). Certain properties of K(n) are obliquely independent
of the reference language chosen to define K. The most important of these
are:

• K(n) < log2(n) + 2 log2(log2(n)) + c′ (c′ a constant)

• the proportion of n of a given length (when written in binary) for which
K(n) recedes from log2(n) decreases exponentially (precisely speaking,
less than an integer among 2q of length k, has an algorithmic complexity
K(n) ≤ k − q).

In graphic terms, these properties indicate that the cloud of points ob-
tained from writing the following 1/2K(n) would be situated above a curve
defined by

f(n) ≈ h

2log2(n)
=

h

n
(h being a constant), and that all the points cluster on the curve, with the
density of the points deviating from the curve decreasing rapidly.

This is indeed the situation we observe in examining the curve giving
N(n). The theory of algorithmic information thus provides a good descrip-
tion of what is observable from the curve N(n). That justifies an a posteriori
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recourse to the theoretical concepts of algorithmic complexity in order to
understand the form of the curve N(n). By contrast, nothing in the theory
leads one to expect a gap like the one actually observed. To the contrary,
continuity of form is expected from the fact that n + 1 is never much more
complex than n.

To summarize, if N(n) represented an objective measure of the complexity
of numbers (the larger N(n) is, the simpler n ), these values would then be
comparable to those that yield 2−K(n). One should thus observe a rapid
decrease in size, and a clustering of values near the base against an oblique
curve, but one should not observe a gap, which presents itself here as an
anomaly.

To confirm the conclusion that the presence of the gap results from special
factors and render it more convincing, we have conducted a Monte Carlo
experiment.

Figure 4: Graph of N(n) obtained with random functions, similar to that belonging to
Sloane’s Database (Figure 1). Eight million values have been generated.

We define random functions f in the following manner (thanks to the
algebraic system Mathematica):

1. Choose at random a number i between 1 and 5 (bearing in mind in the
selection the proportions of functions for which i = 1, i = 2, . . ., i = 5
among all those definable in this way).

2. If i = 1, f is defined by choosing uniformly at random a constant k ∈
{1, ..., 9}, a binary operator ϕ from among the following list: +, ×, and
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subtraction sign, in a uniform manner, and a unary operand g that is
identity with probability 0.8, and the function squared with probability
.2 (to reproduce the proportions observed in Sloane’s database). One
therefore posits fi(n) = ϕ(g(n), k).

3. If i ≥ 2, fi is defined by fi(n) = ϕ(g(fi−1(n)), k), where k is a random
integer found between 1 and 9, g and ϕ are selected as described in
the point 2 (above), and fi−1 is a random function selected in the same
manner as in 2.

For each function f that is generated in this way, one calculates f(n)
for n = 1,. . . , 20. These terms are regrouped and counted as for N(n). The
results appear in Figure 4. The result confirms what the relationship with
algorithmic complexity would lead us to expect. There is a decreasing oblique
curve with a mean near 0, with clustering of the points near the base, but
no gap.

4.2. The gap: A social effect?

This anomaly with respect to the theoretical implications and modeling
is undoubtedly a sign that what one sees in Sloane’s database is not a simple
objective measure of complexity (or of intrinsic mathematical interest), but
rather a trait of psychological or social origin that mars its pure expression.
That is the hypothesis that we propose here. Under all circumstances, a
purely mathematical vision based on algorithmic complexity would encounter
an obstacle here, and the social hypothesis is both simple and natural owing
to the fact that Sloane’s database, while it is entirely “objective”, is also a
social construct.

Figure 5 illustrates and specifies our hypothesis that the mathematical
community is particularly interested in certain numbers of moderate or weak
complexity (in the central zone or on the right side of the distribution), and
this interest creates a shift toward the right-hand side of one part of the
distribution (schematized here by the grey arrow). The new distribution
that develops out of it (represented in the bottom figure) presents a gap.

We suppose that the distribution anticipated by considerations of com-
plexity is deformed by the social effect concomitant with it: mathematicians
are more interested in certain numbers that are linked to selected properties
by the scientific community. This interest can have cultural reasons or math-
ematical reasons (as per results already obtained), but in either case it brings
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Figure 5: The top figure above represents the local distribution of N expected without
taking into account the social factor.

with it an over-investment on the part of the mathematical community. The
numbers that receive this specific over-investment are not in general complex,
since interest is directed toward them because certain regularities have been
discovered in them. Rather, these numbers are situated near the pinnacle
of a theoretical asymmetrical distribution. Owing to the community’s over-
investment, they are found to have shifted towards the right-hand side of the
distribution, thus explaining Sloane’s gap.

It is, for example, what is generated by numbers of the form 2n + 1, all
in A, because arithmetical results can be obtained from this type of number
that are useful to prime numbers. Following some interesting preliminary
discoveries, scientific investment in this class of integers has become intense,
and they appear in numerous sequences. Certainly, 2n + 1 is objectively a
simple number, and thus it is normal that it falls above the gap. Nevertheless,
the difference in complexity between 2n + 1 and 2n + 2 is weak. We suppose
that the observed difference also reflects a social dynamic which tends to aug-
ment N(2n +1) for reasons that complexity alone would not entirely explain,
namely the importance of 2n + 1 in number theory. Moreover, if a number
appears in diverse and apparently unlinked sequences, mathematicians are
then driven to give them even more attention. This phenomenon of positive
feedback may explain the overrepresentation of particularly simple numbers,
as measured by N .
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5. Conclusion

The cloud of points representing the function N presents a general form
evoking an underlying function characterized by rapid decrease and “cluster-
ing near the base” (local asymmetrical distribution). This form is explained,
at least qualitatively, by the theory of algorithmic information.

If the general cloud formation was anticipated, the presence of Sloane’s
gap has, by contrast, proved more challenging to its observers. This gap has
not, to our knowledge, been successfully explained on the basis of uniquely
numerical considerations that are independent of human nature as it impinges
on the work of mathematics. Algorithmic complexity anticipates a certain
“continuity” of N , since the complexity of n + 1 is always close to that of n.
The discontinuity that is manifest in Sloane’s gap is thus difficult to attribute
to purely mathematical properties independent of social contingencies.

By contrast, as we have seen, it is explained very well by the conduct
of research that entails the over-representation of certain numbers of weak
or medium complexity. Thus the cloud of points representing the function
N shows features that can be understood as being the result of at the same
time human and purely mathematical factors.
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