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A METHOD FOR GENERATING REALISTIC CORRELATION
MATRICES

BY JOHANNA HARDIN1, STEPHAN RAMON GARCIA2 AND DAVID GOLAN1,3

Pomona College, Pomona College and Tel Aviv University

Simulating sample correlation matrices is important in many areas of
statistics. Approaches such as generating Gaussian data and finding their sam-
ple correlation matrix or generating random uniform [−1,1] deviates as pair-
wise correlations both have drawbacks. We develop an algorithm for adding
noise, in a highly controlled manner, to general correlation matrices. In many
instances, our method yields results which are superior to those obtained by
simply simulating Gaussian data. Moreover, we demonstrate how our gen-
eral algorithm can be tailored to a number of different correlation models.
Using our results with a few different applications, we show that simulating
correlation matrices can help assess statistical methodology.

1. Introduction. As computational resources continue to improve,
researchers can take advantage of simulation studies to investigate properties and
results associated with novel statistical methodology. In particular, simulating cor-
relation matrices with or without a given structure can provide insight into the
sensitivity of a model. There has been extensive work on simulating correlation
matrices with random entries, that is, generating positive-semidefinite matrices
with all entries bounded by [−1,1] and having ones along the diagonal. Seminal
work by Marsaglia and Olkin (1984) discusses distributional characteristics and
eigenvalues of simulated random correlation matrices. Although there has been ad-
ditional work expanding the ideas associated with generating random correlation
matrices [Joe (2006), Lewandowski, Kurowicka and Joe (2009), Holmes (1991),
Davies and Higham (2000), Rae (1997)] and even randomly generating correla-
tion matrices within particular settings [Ng and Joe (2010), Holmes (1989)], to our
knowledge there is no literature devoted to the problem of adding noise to given
template correlation structures.

We discuss the need to simulate realistic correlation matrices in a specific con-
text. By realistic we mean not only that the correlation matrix has some prescribed
structure (dependent upon the requirements of the particular application), but also
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that it is noisy. Below, we discuss the importance of simulating correlation matrices
in probit analysis, Bayesian shrinkage estimation, meta-analysis, multiple compar-
isons, management science, factor analysis, heritability estimation, network anal-
ysis and classification.

In order to ensure identifiability of model parameters, covariance matrices in
probit analysis on longitudinal data are often constrained to be correlation matri-
ces. Liu and Daniels (2006) and Zhang, Boscardin and Belin (2006) discuss ad-
vantages and disadvantages of different prior distributions used with a Metropolis
Hastings algorithm to sample correlation matrices from a posterior distribution.

Barnard, McCulloch and Meng (2000) use hierarchical Bayesian models to de-
scribe the covariance between parameters in a regression model with shrinkage. In
practice, joint uniform and inverse-Wishart priors are used to simulate correlation
matrices.

One important task in meta-analysis is to combine correlation matrices from
different studies. Different methods for combining such matrices are used to make
inferences about marginal correlations. Hafdahl (2007) ran a Monte Carlo study
generating sample correlation matrices using Gaussian deviates from a given pop-
ulation correlation matrix.

One of the big challenges in developing accurate multiple comparisons tech-
niques is knowing the underlying correlation structure of the many items being
compared. Simply knowing the rate of null versus alternative tests in a given simu-
lation does not provide enough information for realistic application to studies with
possibly strongly correlated data and hypotheses. In order to model false discov-
ery rates (FDR) in settings more realistic than i.i.d. (independent and identically
distributed), Kim and van de Wiel (2008) use Gaussian deviates to simulate nested
correlation matrices with constrained correlation strengths.

In order to maximize expected performance, Nelson and Goldsman (2001) use a
stochastic simulation to compare a variety of management systems (e.g., queues).
The authors use a modification of the method of Marsaglia and Olkin (1984)
to simulate correlation matrices. Instead of generating random points on the k-
dimensional unit sphere, they constrain their search to the part of the unit sphere
with all nonnegative coordinates (inducing nonnegative correlations).

In factor analysis, sample correlation matrices based on population correla-
tion matrices are typically used in simulation studies. Methods which incorporate
model error as well as sampling error create more realistic structures from which
to model data. Hong (1999) recommends using the eigenstructure of the popula-
tion correlation matrix along with random chi-square deviates to directly obtain a
random sample covariance matrix, from which the sample correlation matrix can
be computed.

Additionally, as we detail in Section 4, simulated correlation matrices are used
to estimate heritability in Genome Wide Association Studies (GWASs) and to as-
sess network and classification algorithms. We present work done by Lee et al.
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(2011) on estimating heritability without considering unknown noise in the cor-
relation structure. Alternatively, some clustering and classification methods sim-
ulate correlations (or covariances) using uniform distributions [Kraus and Kestler
(2010), Tai and Pan (2007), Huang, Tong and Zhao (2010), Kraj et al. (2008)].
However, randomly simulated univariate correlations do not typically produce ma-
trices that are positive semidefinite. We argue that neither the no-noise strategy nor
the uniform-noise strategy is realistic for assessing methodology. Our work is ap-
plicable to any context where simulating realistic correlation matrices is important.

Suppose that we are given a N × N correlation matrix � = (�ij )
N
i,j=1. Gen-

erating a noisy correlation matrix S = (Sij )
N
i,j=1 based upon the template � can

be difficult since noise must be added to � in such a way that S remains positive
semidefinite and satisfies Sii = 1 and −1 ≤ Sij ≤ 1 for 1 ≤ i, j ≤ N . Moreover,
for numerical purposes (e.g., generating data from S) one might also require an ex-
plicit upper bound on the condition number κ(S) of S (see Section A.1) to ensure
its numerical stability (e.g., for matrix inversion). Unfortunately, naively adding
random noise to a correlation matrix can result in matrices which violate any or all
of the above constraints.

1.1. Simulating data for evaluating algorithms. In certain applications, it is
important to have a known (or assumed) structure based on a covariance or cor-
relation matrix. Many authors use a particular structure and simulate Gaussian
data from that matrix. For example, in a recent paper, Tritchler, Parkhomenko and
Beyene (2009) simulate Gaussian data to assess a method for filtering genes prior
to, for example, network analysis. Their structure consists of within group correla-
tions of 0.4 and between group correlations of 0. Using clustering to find differen-
tially expressed genes, Hu, Qiu and Glazko (2010) generate Gaussian deviates in
a two-group setting with one group of 100 observations correlated at 0.94, another
group of 608 observations clustered at 0.9, and observations from different groups
correlated at 0.697.

We appreciate the difficulty in generating realistic data with known structure.
However, we believe that using Gaussian deviates often adds an additional unnec-
essary layer of assumptions. Indeed, much recent work has been applied to high-
throughput data and, for example, we do not believe that microarray data have
Gaussian distributions [Hardin and Wilson (2009)]. In Section 3.1 we demonstrate
that our method produces matrices that are more general than the class of matri-
ces produced by finding the sample correlation of Gaussian data. In particular, our
method is able to produce Gaussian-like deviates or other distributional deviates
(e.g., uniform-like deviates). Instead of simulating Gaussian data from a known
correlation structure, we argue in favor of simulating correlation matrices directly
based on a known correlation structure. The random correlation matrices can then
be used to assess the algorithm at hand.
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1.2. Three existing models. The goal of our work is to provide an algorithm
for simulating correlation structures that can be used to evaluate statistical method-
ology in a realistic context. Instead of relying on a known structure, noise is added
to the matrix to represent variability across different components of the entries.
Additionally, the noise is added in a way that can represent any underlying data
structure.

Below we have outlined three methods for generating correlation matrices, each
of which describes different dependence structures for simulating data. Each of the
three methods is taken from a different area of application (estimating heritability
from GWAS, classification and network analysis). Our paper offers a flexible way
to generate correlation structures given a reasonable model of what we would ex-
pect across observational units.

1.2.1. Constant correlation model. Heritability is the proportion of variability
in a phenotypic characteristic which is due to genetic differences between indi-
viduals. The estimation procedure for heritability is based on a mixture model
specified by a large correlation structure defining the correlations between the ge-
netic effects of individuals in a study. These correlations are typically referred to as
genetic correlations. The genetic correlation structure is then used to decompose
the phenotypic variance to genetic and environmental components, resulting in an
estimate of heritability.

Recent work has assumed that the genetic correlation structure is known [Lee
et al. (2011)], despite estimating it from genetic data. Simulations using a known
correlation structure are used to evaluate the heritability estimation algorithm. In
the actual data analysis, the estimate of the correlation matrix is plugged into the
algorithm as if it were the true value.

The simulation study generates genetic relationships between 10,000 individu-
als in the following manner: Groups of size 100 are simulated to have genetic cor-
relations of 0.05. Uncorrelated environmental effects are added to the genetic ef-
fects. The variances of the genetic and environmental effects are predetermined by
the value of heritability used in the simulation. According to the liability threshold
model used by Lee et al. (2011), individuals for which the sum of effects crosses
a pre-defined threshold are considered to be cases, while the rest are considered
controls.

Since the prevalence of most interesting phenotypes is small, the threshold is
set such that only a small fraction of the individuals in each group are considered
cases. To simulate realistic case-control studies, the cases are kept along with the
same number of randomly selected controls from the group, while the rest of the
controls are discarded. The process is repeated until 5000 cases and 5000 controls
are obtained.

Depending on the number of cases in each group, the resulting groups of genetic
correlation 0.05 are as small as a few individuals or as large as 100 individuals.
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Genetic correlations between different groups are assumed to be zero [Lee et al.
(2011)]. For future reference, we let

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0.05 0.05 0.05 · · · 0.05
0.05 1 0.05 0.05 · · · 0.05
0.05 0.05 1 0.05 · · · 0.05
0.05 0.05 0.05 1 · · · 0.05

...
...

...
...

. . .
...

0.05 0.05 0.05 0.05 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

be the genetic correlation matrix for the kth group of individuals, where the size of
the kth block matrix is a random variable (i.e., the group size), with a distribution
which is defined by the parameter settings.

1.2.2. Toeplitz model. Another structure is one that models high correlation
for observations which are close together in the correlation matrix and models
decreasing correlation values for observations which are increasingly far away.
In building a classification model, Guo, Hastie and Tibshirani (2007) describe a
Toeplitz structure (sometimes referred to as an auto-regressive structure) to the
correlation matrix, where adjacent pairs of observations are highly correlated, and
those further away are less correlated. For future reference we let

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρk ρ2
k ρ3

k · · · ρ
gk−1
k

ρk 1 ρk ρ2
k · · · ρ

gk−2
k

ρ2
k ρk 1 ρk · · · ρ

gk−3
k

ρ3
k ρ2

k ρk 1 · · · ρ
gk−4
k

...
...

...
...

. . .
...

ρ
gk−1
k ρ

gk−2
k ρ

gk−3
k ρ

gk−4
k · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

be the correlation matrix for the kth class, given by the base correlation value ρk .
In this model, the between group correlations are set to zero. Additional classifica-
tion models have used similar Toeplitz structure for simulating data from a correla-
tion matrix [Guo, Hastie and Tibshirani (2007), Dabney and Storey (2007), Witten
and Tibshirani (2009), Zuber and Strimmer (2009), Pang, Tong and Zhao (2009),
Huang, Tong and Zhao (2010)]. In fact, Huang et al. use a U [0.5,1.5] distribution
to simulate the variance components in order to add noise to the above prescribed
structure. Further, this Toeplitz correlation structure is seen in time series mod-
els where simulating correlation matrices is also important [Joe (2006), Ng and
Joe (2010)]. The Toeplitz structure has been used extensively in classification and
discriminant analysis as a model for group correlations

1.2.3. Hub observation model. The last model which we consider is one that
is hierarchical in nature based on a single hub-observation and the relationship
of each observation to that original hub. Within the context of network analysis,
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Horvath et al. [Zhang and Horvath (2005), Langfelder, Zhang and Horvath (2008),
Langfelder and Horvath (2008)] define a structure with respect to a particular pro-
file (or hub-observation). Each observation in a group is correlated with the hub-
observation with decreasing strength (from a user supplied maximum correlation
to a given minimum correlation). Additionally, groups are generated independently
(i.e., with correlation zero between groups). Letting observation 1 correspond to
the hub, for the ith observation (i = 2,3, . . . , g), the correlation between it and the
hub-observation is given by

�i,1 = ρmax −
(

i − 2

g − 2

)γ

(ρmax − ρmin).

Note that the correlation between the ith observation and the hub will range from
ρmax to ρmin; the rate at which the correlations decay is controlled by the expo-
nent γ (where γ = 1 would indicate a linear decay).

1.2.4. Overview. Motivated by the models above, we provide algorithms for
adding noise to prescribed correlation matrices. We begin in Section 2 detailing
algorithms for the three specific models of correlation matrices discussed above.
In Section 3.1 we demonstrate the benefits of generating random deviates from
the correlation matrix instead of using random deviates from a particular distribu-
tion. Section 4 gives applications of how our method can be used to assess new
and standard statistical procedures. Following a brief conclusion in Section 5, we
present the theoretical justifications of our algorithms in the Appendix.

2. Recipes. Using a single basic procedure (Algorithm 4 in Section A.2) for
adding noise to a given correlation matrix, we can take advantage of our theo-
retical understanding of certain known correlation structures to yield stronger re-
sults. This is carried out for the constant correlation structure (Algorithm 1 in Sec-
tion 2.1), the Toeplitz correlation structure (Algorithm 2 in Section 2.2) and the
hub correlation structure (Algorithm 3 in Section 2.3). Each model describes a
population based on multiple groups with the same underlying structure (with dif-
ferent sizes and parameter values). Since the justifications of these procedures are
rather involved, we defer the technical details until Appendix.

2.1. Constant correlation structure. Our first correlation structure is based on
constant correlations within each group and between each group (values of the
correlation differ for each relationship). In particular, observe that the approach
below yields a noisy correlation matrix which has a significant amount of noise on
the off-diagonal blocks. This is clearly more realistic than simply assuming that
all of these entries are zero. A detailed justification of the following algorithm can
be found in Section A.3 of Appendix.
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ALGORITHM 1. Let

• K denote a positive integer (the number of groups) and k = 1,2, . . . ,K ,
• gk be a positive integer (the size of the kth group),
• N = ∑K

k=1 gk (size of the desired matrix),
• ρk such that 0 ≤ ρk < 1 (baseline correlation in the kth group),
• ρmin = min{ρ1, ρ2, . . . , ρK} (minimum correlation in any group),
• ρmax = max{ρ1, ρ2, . . . , ρK} (maximum correlation in any group),
• δ such that 0 ≤ δ < ρmin (baseline noise between group),
• �k be the gk × gk matrix

�k =

⎛
⎜⎜⎜⎝

1 ρk · · · ρk

ρk 1 · · · ρk
...

...
. . .

...

ρk ρk · · · 1

⎞
⎟⎟⎟⎠(3)

(correlation matrix for kth group),
• � be the N × N matrix having the blocks �1,�2, . . . ,�k along the diagonal

and zeros elsewhere,
• ε such that 0 ≤ ε < 1 − ρmax (maximum entry-wise random noise),
• M be a positive integer (the dimension of the noise space).

Select N unit vectors u1,u2, . . . ,uN randomly from R
M . The N × N matrix S =

(Sij )
N
i,j=1 defined by

Sij =
⎧⎪⎨
⎪⎩

1, if i = j,

ρk + εuT
i uj , if i, j are in the kth group and i �= j,

δ + εuT
i uj , if i, j are in different groups,

(4)

is a correlation matrix whose condition number satisfies

κ(S) ≤ N(1 + ε) + 1

1 − ρmax − ε
.(5)

2.2. Toeplitz correlation structure. The Toeplitz structure has been used ex-
tensively in classification, discriminant analysis and in the time series literature as
a model for group correlations. In particular, the model we follow assumes that
each pair of adjacent observations is highly correlated and that the correlations be-
tween the ith and j th observations decay exponentially with respect to |i − j |. The
following algorithm, whose justification can be found in Section A.4 of Appendix,
produces noisy correlation matrices based upon the Toeplitz template.

ALGORITHM 2. Let

• K denote a positive integer (the number of clusters) and k = 1,2, . . . ,K ,
• gk be a positive integer (the size of the kth group),
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• N = ∑K
k=1 gk (size of the desired matrix),

• ρk be such that 0 ≤ ρk < 1 (correlation factor in the kth group),
• ρmax = max{ρ1, ρ2, . . . , ρK} (maximum correlation factor),
• �k be the gk × gk Toeplitz correlation matrix

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρk ρ2
k ρ3

k · · · ρ
gk−1
k

ρk 1 ρk ρ2
k · · · ρ

gk−2
k

ρ2
k ρk 1 ρk · · · ρ

gk−3
k

ρ3
k ρ2

k ρk 1 · · · ρ
gk−4
k

...
...

...
...

. . .
...

ρ
gk−1
k ρ

gk−2
k ρ

gk−3
k ρ

gk−4
k · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

(correlation matrix for kth group),
• � be the N × N matrix having the blocks �1,�2, . . . ,�k along the diagonal

and zeros elsewhere,

• 0 < ε <
1 − ρmax

1 + ρmax
(maximum entry-wise random noise),

• M be a positive integer (the dimension of the noise space).

Select N unit vectors u1,u2, . . . ,uN from R
M and form the M × N matrix U =

(u1|u2| · · · |uN) whose columns are the ui . The N × N matrix

S = � + ε
(
UT U − I

)
(7)

is a correlation matrix whose entries satisfy |Sij − �ij | ≤ ε and whose condition
number satisfies

κ(S) ≤ (1 + ρmax)/(1 − ρmax) + (N − 1)ε

(1 − ρmax)/(1 + ρmax) − ε
.(8)

Among other things, let us remark that for typical values of ρ [e.g., Guo, Hastie
and Tibshirani (2007) let ρ = 0.9] the noise level ε can be made quite large com-
pared to most of the entries in each �k . This occurs because the eigenvalue es-
timates (24) obtained in Section A.4 are remarkably strong and because the off-
diagonal entries of each submatrix �k are small (due to exponential decay) if one
is far away from the main diagonal. Thus, the approach outlined above yields a
flexible method for introducing noise into the Toeplitz model. In fact, one can in-
troduce so much noise (while still obtaining a correlation matrix with controlled
condition number) that the original block-Toeplitz structure becomes difficult to
discern.

2.3. Hub correlation structure. The hub correlation structure assumes a
known correlation between a hub observation (typically the first observation) and
each of the other observations. Moreover, one typically assumes that the correla-
tion between the 1st and the ith observation decays as i increases.
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Let us describe a typical example which has been considered frequently in the
literature. Suppose that the first row (and hence column) of a g × g correlation
matrix A is to consist of the prescribed values

A11 = 1, A1i = ρmax − (ρmax − ρmin)

(
i − 2

g − 2

)γ

which decrease (linearly if γ = 1) from A12 = ρmax to A1g = ρmin for 2 ≤ i ≤ g.
For instance, this model is considered in Horvath et al. [Langfelder and Horvath
(2008), Langfelder, Zhang and Horvath (2008), Zhang and Horvath (2005)]. For
the sake of simplicity, we consider the linear case γ = 1 and adopt a more con-
venient notation. Rather than specifying ρmax and ρmin, we specify only ρmax and
work instead with the step size τ = (ρmax − ρmin)/(g − 2).

After specifying the first row, there are a variety of ways to generate the re-
mainder of such a correlation matrix. Using any hub structure correlation matrix,
we can find the smallest resulting eigenvalue which can be fed into Algorithm 4
of Section A.2. For example, we can use a Toeplitz structure to fill out the re-
mainder of the hub correlation matrix and, using the well-developed theory of
truncated Toeplitz matrices [Böttcher and Silbermann (1999)], obtain eigenvalue
bounds which can be fed directly into Algorithm 4. This approach yields the fol-
lowing algorithm, whose justification can be found in Section A.5 of Appendix.

ALGORITHM 3. Let

• K denote a positive integer (the number of groups) and k = 1,2, . . . ,K ,
• gk be a positive integer (the size of the kth group),
• N = ∑K

k=1 gk (size of the desired matrix),
• ρk (maximum correlation in the first row of kth group),
• τk (step size in first row/column of kth group),
• αk,1 = 1 and αk,i = ρk −τk(i −2) (correlations between hub and observations),
• �k be the gk × gk hub-Toeplitz correlation matrix

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 αk,2 αk,3 αk,4 · · · αk,gk

αk,2 1 αk,2 αk,3 · · · αk,gk−1
αk,3 αk,2 1 αk,2 · · · αk,gk−2
αk,4 αk,3 αk,2 1 · · · αk,gk−3

...
...

...
...

. . .
...

αk,gk
αk,gk−1 αk,gk−2 αk,gk−3 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

(correlation matrix for kth group),
• � be the N × N matrix having the blocks �1,�2, . . . ,�k along the diagonal

and zeros elsewhere,
• 0 < ε < min{1 − ρk − 3

4τk : 1 ≤ k ≤ K} (ε is the maximum noise level),
• M be a positive integer (the dimension of the noise space).
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Select N unit vectors u1,u2, . . . ,uN from R
M and form the M × N matrix U =

(u1|u2| · · · |uN) whose columns are the ui . The N × N matrix

S = � + ε
(
UT U − I

)
(10)

is a correlation matrix whose entries satisfy |Sij − �ij | ≤ ε and whose condition
number satisfies

κ(S) ≤ λ1(�) + (N − 1)ε

λN(�) − ε
(11)

where

λ1(�) ≤ max
{

1 + (gk − 1)ρk − τk

(gk − 2)(gk − 1)

2
: 1 ≤ k ≤ K

}
,(12)

λN(�) ≥ min
{
1 − ρk − 3

4τk : 1 ≤ k ≤ K
}
.(13)

2.4. Extensions. Before proceeding, let us remark that our general Algo-
rithm 4, which can be found in Section A.2 of Appendix, is applicable to any
given positive-definite correlation matrix. The amount of noise which can be added
to the original matrix is determined by its smallest eigenvalue. For several specific
classes of correlation matrices, one can obtain simple, but powerful, lower bounds
on this lowest eigenvalue. For such correlation matrices, we have provided ex-
plicit, specialized algorithms which provide a significant amount of noise while
also maintaining quantitative control over the condition number of the resulting
matrix.

3. Distribution of error terms. As described above, our method uses the dot
product of normalized vectors as the error terms which are added to a given corre-
lation matrix. Below we discuss three methods for generating normalized vectors
with given distributions.

1. Random uniform vectors on the M-dimensional unit sphere: Consider

xi ∼ i.i.d. N(0,1), i = 1,2, . . . ,M,

x = (x1, x2, . . . , xM),

v = x
‖x‖ .

It is known that v will be uniformly distributed on the M-dimensional unit sphere
[Muller (1959)]. Additionally, for vectors distributed uniformly on the unit sphere,
the distribution of their dot product is well characterized [Cho (2009)]:

v,w ∼ uniformly on the M-dimensional unit sphere,

Z = vT w,

fZ(z;M) = �(M/2)

�((M − 1)/2)
√

π

(√
1 − z2

)M−3
, −1 ≤ z ≤ 1,



GENERATING CORRELATION MATRICES 1743

is the probability density function for the dot product of v and w. Note that if
M = 2, the distribution of Z is of the form 1/π

√
1 − z2 which gives a U-shaped

distribution favoring values of Z closer to −1 and 1. If M = 3, the distribution is
uniform across −1 to 1. For M > 3, the distribution function is mound shaped and
converges to a Gaussian distribution for large M (see below).

2. Random independent and identically distributed vectors: Consider two vec-
tors generated independently from identical distributions in R

M with mean zero,

v,w ∼ i.i.d. FM(μ = 0),

Z = vT w
‖v‖‖w‖ ,

√
MZ

D→ N(0,1).

The asymptotic distribution of Z is a straightforward application of the Central
Limit theorem and Slutsky’s theorem.

3. Arbitrary distribution: Some situations may call for a particular distribution
of error noise. The distribution can be controlled through the α parameter as seen
in equation (21).

Note that typically the error terms added to the correlation entries are of the
form

error = ε · vT w
‖v‖‖w‖ .

If the dot product is approximately distributed with a variance of 1/M , then the
variance of the error term is ε2/M , resulting in a standard error of the correlation
values,

SE(correlation) ≈ ε√
M

.(14)

The distribution of error terms will necessarily depend on the application. For
some problems, uniform error terms may be most appropriate; for other problems,
Gaussian errors will be preferable. In fact, for Gaussian data, correlations between
vectors are approximately Gaussian, which may motivate a user to want to add
Gaussian noise to the given correlation structure.

3.1. Comparison to a correlation matrix from Gaussian vectors. One method
for generating a noisy correlation matrix is to simulate Gaussian data from an orig-
inal template and then find the sample correlation matrix from the data. Varying
the sample size of the generated data can create correlation matrices which are
more or less variable (in magnitude). However, from Gaussian data the nature of
the variability (distribution) of the resulting correlations is similar across different
sample sizes—uniform or U-shaped distributions of error terms are not possible
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given correlations from Gaussian data. In addition, the majority of the entries in
a given sample correlation matrix generated from Gaussian data are quite close
to the template matrix. Only a handful of observations deviate from the template
substantially. In fact, the sample size needed in order to get a large amount of
variability could be smaller than the dimension of the correlation matrix (thus pro-
ducing sample correlation matrices which are not positive definite).

To demonstrate the restriction associated with simulating Gaussian data as a
way to find sample correlation matrices, we generate multiple correlation matri-
ces using both Gaussian samples and our method. The Gaussian noise is created
by simulating data of a particular sample size (25, 250, or 1000) from a template
correlation matrix. We then compute the sample correlation matrix and find the
difference between the estimate and the template; histograms of those differences
describe the distribution of the correlation error terms. For example, Gauss25 was
created by simulating 25 observations from a 230 × 230 template correlation ma-
trix. The difference between the correlations of the 25 observations and the tem-
plate matrix are computed; the histograms of the differences are given in Figure 1.

The three Gaussian structures (sample sizes 25, 250, 1000) show the same
tendencies with more spread for smaller sample sizes (see Figure 1: Gauss25,
Gauss250, Gauss1000). The three simulations using our method are based on uni-
form random vectors on the unit sphere in R

2, R
3 and R

25 (see Table 1 for different
generating scenarios). For each simulation we used a constant correlation struc-
ture with three groups of sizes g1 = 100, g2 = 50, g3 = 80; within group correla-
tions of ρ1 = 0.7, ρ2 = 0.7, ρ3 = 0.4; ε = 0.29; and between group correlations of
δ = 0.25 (see Algorithm 1 in Section A.3).

Note that in our simulations below, the distribution of differences from uniform
vectors in R

25 (S25) is similar to that obtained from the correlation matrix gen-
erated by sampling 250 random Gaussian vectors (Gauss250). In fact, not only
can our method create correlations with univariate distributions that are similar to
Gaussian deviations, but the eigenvalues of the respective matrices (ours compared
with correlations from Gaussian data) are indistinguishable (results not shown).

We see that our method is able to add larger noise terms than the Gaussian
simulation. Figure 1 shows the distribution of the differences. Depending on the
application, one might prefer large noise components, uniform noise components
or bell-shaped noise components. Our work provides a template for generating
multiple different structures depending on the problem at hand.

4. Applications. To demonstrate the effectiveness of our method, we simu-
late data from two applications to show that noise added to a known correlation
structure can be useful in practice. It may not always be obvious which format to
use to incorporate the noise; the format of the noise will be situation dependent and
should be based on the underlying data structure. In Section 3.1 we have provided
more details about the different noise models.
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FIG. 1. Each histogram represents the distribution of entry-wise differences between the generated
matrix and the template. The distribution of differences for random vectors in R

25 (S25) is similar
to that obtained from the correlation matrix generated by sampling 250 random Gaussian vectors
(Gauss250).

TABLE 1
Six different correlation matrix generating scenarios. S2, S3 and S25 use the algorithms given in

the paper for constant correlation; to simulate the error terms, we generate vectors on the unit
sphere using standard Gaussian deviates. The Gaussian simulations use the template matrix with
the given sample size of random vectors. Each correlation matrix is based on a setting of 3 groups

with sizes (100,50,80)

Template ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 ε = 0

S2 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 ui ∈ S2, ε = 0.29
S3 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 ui ∈ S3, ε = 0.29
S25 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 ui ∈ S25, ε = 0.29

Gauss25 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 25 vectors
Gauss250 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 250 vectors
Gauss1000 ρ1 = 0.7 ρ2 = 0.7 ρ3 = 0.4 δ = 0.25 1000 vectors
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4.1. Heritability. Heritability is the proportion of variability in a phenotypic
characteristic which is due to genetic differences. The understanding and estima-
tion of heritability is of great importance in directing future studies as well as un-
derstanding the architecture of human genetic diseases such as type-1 and type-2
diabetes, Crohn’s disease, schizophrenia and bipolar disorder. The study of heri-
tability in human disease presents the so-called “mystery” of the missing heritabil-
ity [Maher (2008)]: a considerable gap between the estimated heritability as ob-
tained from family studies and the estimated heritability as obtained from genetic
studies (known as genome-wide association studies, or GWASs), with the latter es-
timate of heritability being considerably smaller than the former for a wide range
of phenotypes.

Recently, a novel method for estimation of heritability from the genotypes of un-
related individuals was introduced by Yang et al. (2010). The method was first ap-
plied for random samples from a population [Yang et al. (2010)] and later adapted
for the more relevant scenario of case-control studies [Lee et al. (2011)]. These
works presented genome-based estimates of heritability that were considerably
higher than previous estimates, thus bridging, at least in part, the gap between
family-based and genome-based estimates of heritability. As expected, these works
attracted attention and are the focus of recent research and debate [see, e.g., Golan
and Rosset (2011), Lee et al. (2012)].

The central idea behind these methods is to estimate a population-wise corre-
lation structure from the genotypes of individuals and use this estimated structure
in a Restricted Maximum Likelihood (REML) estimation of the heritability. How-
ever, the REML estimation does not account for the fact that the correlation struc-
ture is estimated rather than known. Moreover, the simulations in Lee et al. (2011)
use a known correlation structure to demonstrate the validity of the method, which
in turn uses an estimated correlation structure. Such simulations might produce an
overly optimistic evaluation of the method used to estimate heritability in terms of
both bias and variance.

To demonstrate the sensitivity of the heritability estimate to the known corre-
lation structure, we reran the simulations in Lee et al. (2011) with and without
noise. As expected, adding noise to the matrix introduces bias to the estimators.
Our methods provide a mechanism for understanding the behavior of heritability
estimates under different correlation and error structures.

For our investigation, we are interested in estimating heritability in the setting
of a binary response, in particular, we want to estimate heritability for case control
studies. As done in Lee et al. (2011), we assume there is an underlying liability
continuous variable (e.g., glucose level) determining the binary measured pheno-
type (e.g., diabetes). We can find the heritability on the observed scale (with respect
to the binary disease trait) and transform it back to the value of interest, the heri-
tability on the liability scale. The transformation considers the disease prevalence
in the population [Lee et al. (2011)].
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TABLE 2
The average heritability from 100 simulations for the given population prevalence and heritability

of liability. In parentheses we provide the estimate given by Lee et al. (2011) with no error. The
error is added as described in Algorithm 1 with ε = 0.001,0.01 and 0.02, corresponding to a SE of

the noise terms of 0.0002, 0.002 and 0.004, respectively; see equation (14).

True heritability of liability

Prevalence of disease in pop. 0.1 0.3 0.5 0.7 0.9

ε
=

0.
00

1
SE

=
0.

00
02 0.5 0.10 (0.09) 0.28 (0.28) 0.47 (0.51) 0.64 (0.70) 0.80 (0.90)

0.1 0.11 (0.11) 0.29 (0.30) 0.49 (0.49) 0.70 (0.71) 0.87 (0.89)

0.001 0.05 (0.17) 0.23 (0.31) 0.37 (0.56) 0.56 (0.75) 0.77 (0.94)

ε
=

0.
01

SE
=

0.
00

2 0.5 0.08 (0.09) 0.23 (0.28) 0.37 (0.51) 0.54 (0.70) 0.69 (0.90)

0.1 0.06 (0.11) 0.23 (0.30) 0.42 (0.49) 0.60 (0.71) 0.78 (0.89)

0.001 0.00 (0.17) 0.01 (0.31) 0.01 (0.56) 0.02 (0.75) 0.02 (0.94)

ε
=

0.
02

SE
=

0.
00

4 0.5 0.07 (0.09) 0.19 (0.28) 0.35 (0.51) 0.51 (0.70) 0.65 (0.90)

0.1 0.03 (0.11) 0.16 (0.30) 0.22 (0.49) 0.53 (0.71) 0.73 (0.89)

0.001 0.01 (0.17) 0.01 (0.31) 0.01 (0.56) 0.01 (0.75) 0.01 (0.94)

We followed the simulation procedure of Lee et al. (2011), which is outlined in
Section 1.2.1. See Lee et al. (2011) for a more detailed description of the simu-
lation procedure. Subsequently, we added noise to the correlation matrices using
Algorithm 1 in Section 2.1. We used the software Genome-wide Complex Trait
Analysis (GCTA) to estimate heritability and standard errors of the estimate [Yang
et al. (2011)].

Results are presented in Table 2. Each table entry contains the estimated heri-
tability of liability from our simulations with noise as well as the corresponding
estimate given by Lee et al. (2011)—calculated using the known correlation struc-
ture. As expected, the more noise added to the relationship matrix, the more bias
in estimating the heritability. Additionally, we see that there is a strong interaction:
for low prevalence, even a small amount of error can have a large impact on the
estimate of heritability. With high prevalence, moderate amounts of error can bias
the estimate.

We run a second set of simulations to see how often we can capture the true her-
itability in a confidence interval using ± 2 SE (provided from the GCTA software)
when noisy correlation matrices are used; we expect roughly 95% of the confi-
dence intervals to capture the true heritability value. We simulated 100 heritability
values from a uniform (0.1,0.9) distribution. We then simulated phenotypes and
a corresponding correlation matrix with error (as described previously) for each
heritability. We constructed corrected CIs, using a multiplicative factor correction
obtained from our first set of simulations as well as uncorrected confidence inter-
vals, and counted the number of times these CIs contained the true heritability.
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TABLE 3
Out of 100 simulations, the number of true heritabilities captured in the interval two standard

errors around the estimated heritability. We would expect 95% confidence intervals to capture the
true heritability value 95 times out of 100. For each parameter setting, we calculated two intervals,

thus, we report two coverage rates. The first number uses a correction factor (for both the
heritability and the SE of the heritability) calculated from the bias estimated from Table 2 above.

The second number uses no correction. The error is added as described in Algorithm 1 with
ε = 0.001,0.01 and 0.02, corresponding to a SE of the noise terms of 0.0002, 0.002 and 0.004,

respectively; see equation (14).

Amount of error added to the correlation structure

ε = 0 ε = 0.001 ε = 0.01 ε = 0.02Prevalence of disease
in population SE = 0 SE = 0.0002 SE = 0.002 SE = 0.004

0.5 93/89 94/88 94/76 93/46
0.1 89/90 94/94 91/72 68/57

Results for the CIs are given in Table 3. Each entry gives the number of true
heritabilities captured in the interval two standard errors around the adjusted esti-
mated heritability (expected to be 95 when CIs are accurate). Our results show that
neglecting to account for the effects of noise on heritability estimation resulted in
problematic confidence intervals. Correcting the bias using the method described
above resolved the issue for low and moderate levels of noise.

We note that for the case of estimating heritability, the bias suggests an im-
mediate way of choosing ε for proper inference. The bias is a result of the noisy
estimation of the true underlying genetic correlation structure, and so can be esti-
mated using the actual genotypes, as done by Yang et al. (2010). We thus suggest
choosing ε such that the bias in simulations of correlation structures equals the bias
estimated from the genetic data as in Yang et al. (2010). Since the bias increases
with ε (as the signal-to-noise ratio decreases), finding the appropriate value of ε

should be straightforward using simulations.
The example provided on estimating heritability shows that a sensitivity analy-

sis can uncover obstacles in applying methods—which work for simulated data—
to actual data collected with error. In the following section we provide an addi-
tional sensitivity analysis applied to a clustering algorithm.

4.2. Clustering. As an additional example, we consider the PAM algorithm
[Kaufman and Rousseeuw (1990)] to cluster data which has known structure but
different levels of noise. We use the adjusted Rand statistic [Rand (1971), Yeung
and Ruzzo (2001)] to measure the degree of concordance between the clustering
output and the truth. Using silhouette width, the unsupervised PAM algorithm will
give the optimal number of clusters. The adjusted Rand statistic models the degree
of concordance between the PAM results and the truth. An adjusted Rand of 1
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indicates perfect concordance; an adjusted Rand of zero indicates a random parti-
tion. For each of the models we tested, we created the correlation matrix (including
noise) using an appropriately customized algorithm.

Clustering results from simulation. Using the hub correlation structure dis-
cussed in Section 1.2.3, we are required to choose a method to fill out the rest of
the correlation matrix. We use the Toeplitz structure as discussed in Algorithm 3
with the parameter settings below. All simulations were done in the three clus-
ter setting with groups of the following size: g1 = 100, g2 = 50, g3 = 80. Recall
that with the hub-Toeplitz correlation, the correlation values descend according to
some power (here linearly) from a specified maximum to a specified minimum
correlation (see Figure 2):

(a) hTC1 ρ1 ∈ (0.7 → 0) ρ2 ∈ (0.7 → 0) ρ3 ∈ (0.4 → 0) ui ∈ R
2 ε = 0.23

(b) hTC2 ρ1 ∈ (0.7 → 0.5) ρ2 ∈ (0.7 → 0.6) ρ3 ∈ (0.4 → 0.2) ui ∈ R
2 ε = 0.29

(c) hTC3 ρ1 ∈ (0.7 → 0.5) ρ2 ∈ (0.7 → 0.6) ρ3 ∈ (0.4 → 0.2) ui ∈ R
25 ε = 0.29

(d) hTC4 ρ1 ∈ (0.7 → 0.5) ρ2 ∈ (0.7 → 0.6) ρ3 ∈ (0.4 → 0.2) ui ∈ R
2 ε = 0.1

(e) hTC5 ρ1 ∈ (0.7 → 0.5) ρ2 ∈ (0.7 → 0.6) ρ3 ∈ (0.4 → 0.2) ui ∈ R
2 ε = 0.25

(f) hTC6 ρ1 ∈ (0.8 → 0) ρ2 ∈ (0.75 → 0) ρ3 ∈ (0.7 → 0) ui ∈ R
2 ε = 0.19

For each of the scenarios above, we simulated 1000 correlation matrices. We
then clustered the data using PAM; the clustering results were assessed by deter-
mining the number of clusters the algorithm produced (truth was 3 clusters) as
well as the concordance between the clustering results and the truth (1 gives per-
fect concordance).

Our results show that adding noise can create scenarios about which the al-
gorithm is unable to determine the true structure (hTC1 and hTC2) and scenar-
ios where the noise is not sufficient to decrease the performance of the algorithm
(hTC3, hTC4 and hTC6), as well as situations that work only sometimes (hTC5)
(see Table 4). For correlation structures that degrade all the way to zero (hTC1 and
hTC6), the algorithm is able to discern the structure if the original correlations are

TABLE 4
Results from optimal number of clusters as well as the adjusted Rand. The original correlation

structure had 3 clusters. A perfect allocation of points gives an adjusted Rand of 1.

Scenario hTC1 hTC2 hTC3 hTC4 hTC5 hTC6

min # clusters 3 3 3 3 3 3
median # clusters 11 8 3 3 3 3
max # clusters 20 13 3 3 10 3
median adj Rand 0.320 0.414 1 1 0.770 1
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FIG. 2. Each heatmap represents the correlation matrix from the scenarios given above.
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TABLE 5
Results for Fisher’s Iris data from optimal number of clusters as well as the adjusted Rand. The

original data have three species, but I. virginica and I. versicolor are remarkably similar according
to the measurements given in the data set and are typically grouped together. A perfect allocation of

points gives an adjusted Rand of 1.

Scenario ε = 0 (no error) R
25, ε = 0.05 R

10, ε = 0.2 R
5, ε = 0.2 R

2, ε = 0.15

min # clusters 2 2 2 2 2
median # clusters 2 2 2 3 4
max # clusters 2 2 3 5 5
median adj Rand

(2 species) 1 1 0.973 0.570 0.469

large (hTC6). For correlation structures that degrade only a small amount (hTC2,
hTC3, hTC4), the results are based on the amount of error and the dimension from
which the noise vectors from Algorithm 3 are selected.

Clustering results on Fisher’s Iris data. As an application to real data, we
consider Fisher’s Iris data [Fisher (1936)] which have been used extensively to
asses discriminant and cluster analysis methods. For 50 iris specimens in each
of three species, Iris setosa, I. versicolor and I. virginica, the sepal length, sepal
width, petal length and petal width are measured in millimeters (see Figure 3).
Though there are three species measured, I. versicolor and I. virginica are typically
quite difficult to differentiate with unsupervised clustering methods [Mezzich and
Solomon (1980), page 85]. Indeed, when applying the PAM algorithm to the iris
data, we get a perfect separation into two groups (with the three group silhouette
width being slightly smaller).

In order to assess the sensitivity of the output, we can add noise consistent with
the variability of the observations. In this case, we assume that the correlations
within a group are constant, and we estimate the standard error of the correlations
to be approximately 0.01. Such errors might be generated by using vectors from
R

25, with ε = 0.05. [Refer to the discussion preceding equation (14) for choice
of ε.] Even without noise, the unsupervised PAM algorithm separates the flowers
into two distinct groups (see Table 5). As would be expected with the iris data,
substantially more noise is needed before the two-group structure is lost.

5. Conclusion. We have developed an algorithm for adding noise, in a highly
controlled manner, to a template correlation matrix in order to obtain a more realis-
tic correlation matrix. Moreover, we have demonstrated how our general procedure
can be tailored to a number of different correlation models (e.g., constant correla-
tion, Toeplitz structure).

Our method allows for noisy correlation matrices which differ more from the
initial template than the estimated correlation matrix based on simulated Gaussian
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FIG. 3. The I. setosa flowers are clearly distinct, while I. versicolor and I. virginica are difficult to
differentiate, especially with respect to sepal measurements.

data. Using Gaussian data produces a sample correlation matrix with limited and
well-behaved (possibly unrealistic) differences from the original template corre-
lation if the generated sample is large. If the generated sample is small, then the
sample correlation matrix is not positive definite (i.e., most of the eigenvalues will
be zero). Using uniform [−1,1] deviates as random correlation values produces
a matrix that is in general not even positive semidefinite. It can also create re-
lationships between observations that are meaningless (e.g., a trio of observations
where the first is highly correlated to the other two, but the other two are negatively
correlated).

Using a recent—though already influential—model for heritability and a stan-
dard clustering algorithm, we have shown that simulated correlation matrices can
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be used to assess new or existing statistical methodology. We provide the user
with detailed algorithms to use on several standard clustering structures, as well
as a general algorithm to apply to any correlation matrix for which the smallest
eigenvalue can be reasonably estimated.

APPENDIX

A.1. Preliminaries. Recall that if A is a N × N symmetric matrix, then each
of its eigenvalues is real and, hence, we may list them in descending order

λ1(A) ≥ λ2(A) ≥ · · · ≥ λN(A)

where each eigenvalue is repeated according to its multiplicity. According to this
convention, A is positive semidefinite if and only if λN(A) ≥ 0 and A is positive
definite if and only if λN(A) > 0.

The norm of a N × N matrix A is defined to be

‖A‖ = max‖v‖=1
‖Av‖(15)

which equals λ1(A) if A is positive semidefinite. To be more specific, the expres-
sion (15) is often called the operator norm to distinguish it from other frequently
used matrix norms (e.g., the Frobenius norm). The condition number [Horn and
Johnson (1990), page 336] of a symmetric matrix A is defined to be

κ(A) =
{∥∥A−1

∥∥‖A‖, if A is nonsingular,
∞, if A is singular.

In particular, if A is positive semidefinite, then we have

κ(A) =
⎧⎨
⎩

λ1(A)

λN(A)
, if λN(A) > 0,

∞, if λN(A) = 0.

In the following, we let Ig denote the g ×g identity matrix and 1g denote the g ×g

matrix whose entries are all equal to 1.

A.2. The basic algorithm. Given an N × N prototype correlation matrix
� = (�ij )

N
i,j=1, we might wish to add noise to � in a computationally efficient

way such that the resulting matrix S is also a correlation matrix. Furthermore, we
might also require effective bounds on the condition number κ(S) of S to ensure
that S is a suitable candidate for certain numerical procedures (e.g., matrix inver-
sion). For example, in the statistical software R, the default tolerance for detecting
linear dependencies in the columns of a matrix is a condition number ≤ 1015. The
following simple procedure accomplishes this task.
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ALGORITHM 4. Let

1. � be a given N × N correlation matrix,
2. 0 < ε < λN(�) (ε is the maximum noise level),
3. M be a positive integer (the dimension of the noise space).

Select N unit vectors u1,u2, . . . ,uN from R
M and form the M × N matrix U =

(u1|u2| · · · |uN) whose columns are the ui . The N × N matrix

S = � + ε
(
UT U − I

)
(16)

is a correlation matrix whose entries satisfy |Sij − �ij | ≤ ε for 1 ≤ i, j ≤ N and
whose condition number κ(S) satisfies

κ(S) ≤ λ1(�) + (N − 1)ε

λN(�) − ε
.(17)

We might also desire that κ(S) ≤ κmax for some fixed κmax, which depends upon
the particular requirements of the software being employed. From (17), it is easy
to see that any ε > 0 satisfying the additional constraint

ε ≤ κmaxλN(�) − λ1(�)

κmax + (N − 1)
(18)

yields an S such that κ(S) ≤ κmax.

JUSTIFICATION OF ALGORITHM 4. Let E = UT U so that

E =

⎛
⎜⎜⎜⎜⎝

1 uT
1 u2 · · · uT

1 uN

uT
2 u1 1 · · · uT

2 uN

...
...

. . .
...

uT
Nu1 uT

Nu2 · · · 1

⎞
⎟⎟⎟⎟⎠

and note that E is symmetric and positive semidefinite [i.e., λN(E) ≥ 0]. More-
over, E is positive definite if and only if the ui are linearly independent [Horn and
Johnson (1990), Theorem 7.2.10].

Now recall that Geršgorin’s Disk theorem [Horn and Johnson (1990), Theo-
rem 6.1.1] asserts that if A = (Aij )

N
i,j=1 is a N × N matrix, then for each eigen-

value λ of A there exists a corresponding index i such that

|λ − Aii | ≤
N∑

j=1
j �=i

|Aij |.
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By Geršgorin’s theorem and Cauchy–Schwarz, it follows that every eigenvalue λ

of E satisfies

|λ − 1| ≤
N∑

j=1
j �=i

∣∣uT
i uj

∣∣ ≤ (N − 1),

whence 0 ≤ λi(E) ≤ N for i = 1,2, . . . ,N .
We next define S by (16) and observe that S is of the form

S =

⎛
⎜⎜⎜⎜⎝

1 �12 + εuT
1 u2 · · · �1N + εuT

1 uN

�21 + εuT
2 u1 1 · · · �2N + εuT

2 uN

...
...

. . .
...

�N1 + εuT
Nu1 �N2 + εuT

Nu2 · · · 1

⎞
⎟⎟⎟⎟⎠ .(19)

In particular, S is our original matrix � with “noise” terms εuT
i uj of magnitude

at most ε added to the off-diagonal entries. To analyze the impact of adding this
noise, we require Weyl’s Inequalities [Horn and Johnson (1990), Theorem 4.3.1],
which assert that if A and B are N × N symmetric matrices, then

λj (A) + λN(B) ≤ λj (A + B) ≤ λj (A) + λ1(B)(20)

for j = 1,2, . . . ,N . Applying the lower inequality in (20) with j = N , A = � −
εIN and B = εE, we obtain

0 < λN(�) − ε = λN(� − εIN) ≤ λN(� − εIN) + λN(εE) ≤ λN(S),

from which we conclude that S is positive definite. Next, we apply the upper in-
equality in (20) with j = 1, which yields

λ1(S) ≤ λ1(� − εI) + λ1(εE) ≤ (
λ1(�) − ε

) + Nε = λ1(�) + (N − 1)ε.

Putting this all together, we obtain the estimates

0 < λN(�) − ε ≤ λN(S) ≤ λ1(S) ≤ λ1(�) + (N − 1)ε.

The inequality (17) follows since κ(S) = λ1(S)/λN(S). �

There are several arguments which can be made in favor of adding noise in this
manner. First of all, the procedure described above is easy to implement numeri-
cally, and it can be rapidly executed. Moreover, it offers a great deal of flexibility
since the dimension M of the ambient space that the vectors u1,u2, . . . ,uN are
drawn from and the manner in which these vectors are selected is arbitrary and can
be tailored to the particular application at hand. Finally, our method is completely
general in the sense that any positive-definite N × N matrix E having constant
diagonal 1 can be factored as E = UT U where U is some matrix whose columns
are unit vectors (e.g., let U be the positive-semidefinite square root of E). In other
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words, regardless of the method one employs to produce a positive-semidefinite
matrix E = UT U for use in (16), the same E can in principle be generated using
our approach.

Let us now say a few words about the manner in which the vectors ui are se-
lected. If M is very small (e.g., 2 ≤ M ≤ 5), then many of the dot products uT

i uj

will be large in magnitude. For many purposes, this yields a very noisy coefficient
matrix S based upon the original template �. Moreover, even if M is relatively
large, then the matrix E = UT U can be computed extremely rapidly since gener-
ating the unit vectors ui and computing the dot products uT

i uj involve straightfor-
ward computations (e.g., no eigenvalue calculations).

There are of course many other ways which one could select the ui . If one
wishes the uT

i uj to be consistently large in magnitude while also ensuring that
E has full rank, one lets M ≥ N and then selects numbers α1, α2, . . . , αN at ran-
dom from [−1,1] using a continuous probability density function f (x) on [−1,1]
which favors extreme values (e.g., f (x) = |x|, f (x) = 2−2

√
1−x2

4−π
or a Beta distri-

bution transformed to exist on the range [−1,1]). One then replaces the numbers
uT

i uj in (19) by

αiαj +
√(

1 − |αi |2)(
1 − |αj |2)

uT
i uj .(21)

In effect, one is replacing the ui ∈ R
M with the unit vectors (αi,

√
1 − |αi |2ui) ∈

R
M+1. These vectors tend to have high negative or positive correlations (but they

are linearly independent) since the numbers αi favor extreme values in the interval
[−1,1].

A.3. Justification of Algorithm 1. In order to introduce a significant amount
of noise to the off-diagonal blocks, we work instead with the modified correlation
matrix

�′ =

⎛
⎜⎜⎜⎜⎝

�1 − δ1g1

�2 − δ1g2

. . .

�K − δ1gK

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

+δ1N(22)

where 1g denotes the g × g matrix whose entries are all 1. Since

�k − δ1gk
= (1 − ρk)Igk

+ (ρk − δ)1gk
,

it follows that

λj (�k − δ1gk
) =

{
gk(ρk − δ) + (1 − ρk), if j = 1,

1 − ρk, if j = 2,3, . . . , gk,
(23)
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and that the eigenspace corresponding to the largest eigenvalue of �k − δ1gk
is

spanned by the vector 1gk
= (1,1, . . . ,1) ∈ R

gk . In particular, the eigenspace cor-
responding to the eigenvalue 1 − ρk is (gk − 1)-dimensional and any eigenvector
v = (v1, v2, . . . , vgk

) belonging to this eigenspace is orthogonal to 1gk
(i.e., satis-

fies
∑gk

i=1 vi = 0).
If we augment v by placing N − gk zeros appropriately, we obtain a vector

v′ = (0,0, . . . ,0︸ ︷︷ ︸
g1+···+gk−1

, v1, v2, . . . , vgk
, 0,0, . . . ,0︸ ︷︷ ︸
gk+1+···+gK

) ∈ R
N

which is an eigenvector of �′ corresponding to the eigenvalue 1 − ρk since Av′ =
(1 − ρk)v′ and 1Nv′ = 0. It follows that the lowest N − K eigenvalues of � are
the numbers 1 − ρk , each repeated gk − 1 times. In particular,

λN

(
�′) = 1 − ρmax.

An upper bound on the eigenvalues of � follows from (20) and (23):

λ1
(
�′) ≤ λ1(A) + λ1(δ1N)

≤ max
1≤k≤K

{
gk(ρk − δ) + (1 − ρk)

} + Nδ

≤ N(1 − δ) + 1 + Nδ

= N + 1.

Plugging the matrix �′ into Algorithm 4 and using the preceding estimates for
λ1(�

′) and λN(�′) into (17), we obtain the desired estimate (5) for κ(S). �

A.4. Justification of Algorithm 2. Using the spectral theory of self-adjoint
Toeplitz operators, it is possible to show that Tg is positive definite and that its
eigenvalues satisfy

1 − ρ

1 + ρ
≤ λj (Tg) ≤ 1 + ρ

1 − ρ
(24)

for j = 1,2, . . . , g. We also remark that the preceding bounds are quite sharp in
the sense that

lim
g→∞λ1(Tg) = 1 + ρ

1 − ρ
, lim

g→∞λg(Tg) = 1 − ρ

1 + ρ
(25)

as the size g of the matrix tends to infinity. In light of the explicit bounds (24),
a straightforward application of Algorithm 4 yields the following procedure.
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To justify the crucial inequalities (24) and the limits (25), first observe that the
Toeplitz matrix

Tg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 · · · ρg−1

ρ 1 ρ ρ2 · · · ρg−2

ρ2 ρ 1 ρ · · · ρg−3

ρ3 ρ2 ρ 1 · · · ρg−4

...
...

...
...

. . .
...

ρg−1 ρg−2 ρg−3 ρg−4 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

is simply the upper-left corner of the infinite Toeplitz matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·
ρ3 ρ2 ρ 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠(27)

which induces a linear operator T on the Hilbert space 2 of all square-summable
infinite sequences. Since the ij th entry of T is the (i − j)th complex Fourier co-
efficient of the function Pρ(θ) : [−π,π ] → R defined by

Pρ(θ) =
∞∑

n=−∞
ρ|n|einθ = 1 − ρ2

1 − ρ cos θ + ρ2 ,

we conclude from Böttcher and Silbermann (1999), Theorem 1.9, that T is a
bounded self-adjoint operator whose spectrum equals the range of Pρ [Halmos
(1982), Problem 250] [note that Pρ(θ) is the so-called Poisson kernel from the
study of harmonic functions]. A short calculus exercise reveals that Pρ(θ) achieves
its maximum value 1+ρ

1−ρ
at θ = 0 and its minimum value 1−ρ

1+ρ
at θ = ±π (see Fig-

ure 4), from which we conclude that the spectrum of T is precisely the closed in-
terval [1−ρ

1+ρ
,

1+ρ
1−ρ

]. By Böttcher and Silbermann (1999), Proposition 2.17, it follows
that the eigenvalues of Tn are also contained in this interval. This establishes the
inequalities (24). The limiting behavior (25) follows immediately from Böttcher
and Silbermann (1999), Theorem 5.14. �

A.5. Justification of Algorithm 3. By Geršgorin’s Disk theorem Horn and
Johnson (1990), Theorem 6.11, the largest eigenvalue λ1(�k) of �k satisfies

λ1(�k) ≤ 1 + ρk + (ρk − τk) + · · · + (
ρk − (gk − 2)τk

)
= 1 + (gk − 1)ρk − τk

(gk − 2)(gk − 1)

2
.
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FIG. 4. The Poisson kernel Pρ(θ) for ρ = 0.2,0.5,0.8. As ρ → 1−, the graphs spike sharply at
θ = 0 while tending rapidly to zero for θ away from 0. Intuitively, the functions Pρ(θ) approximate
a point mass (i.e., Dirac δ-function) at θ = 0 as ρ → 1−.

This immediately yields (12). On the other hand, it is possible to show that the
smallest eigenvalue of �k satisfies

λgk
(�k) ≥ 1 − ρk − 3

4τk.(28)

To be brief, one regards the original gk × gk Toeplitz matrix �k as the upper-
left principal submatrix of a (2gk − 1) × (2gk − 1) symmetric circulant matrix,
the eigenvalues of which can be exactly computed using well-known techniques
[Böttcher and Grudsky (2005), page 32]. A series of elementary but tedious al-
gebraic manipulations and a standard eigenvalue interlacing result [Böttcher and
Grudsky (2005), Theorem 9.19] yield the desired inequality (28), from which (13)
follows. We thank A. Böttcher, the author of Böttcher and Grudsky (2005),
Böttcher and Silbermann (1999), for suggesting this approach to us.

SUPPLEMENTARY MATERIAL

R code (DOI: 10.1214/13-AOAS638SUPP; .r). R code for functions available
at http://pages.pomona.edu/~jsh04747/research/simcor.r.
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